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Immunosuppressive therapy is pivotal for sustained allograft and patient survival after renal
transplantation. However, optimally balanced immunosuppressive therapy is challenged by
between-patient and within-patient pharmacokinetic (PK) variability. This could warrant the appli-
cation of personalised dosing strategies to optimise individual patient outcomes. Pharmacometrics, the
science that investigates the xenobiotic–biotic interplay using computer-aided mathematical mod-
elling, provides options to describe and quantify this PK variability and enables identification of
patient characteristics affecting immunosuppressant PK and treatment outcomes. Here, we review and
critically appraise the available pharmacometric model-informed dosing solutions for the typical
immunosuppressants in modern renal transplantation, to guide their initial and subsequent dosing.
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Introduction
Immunosuppressive therapy is vital for the prevention of allo-
graft rejection after renal transplantation. Induction therapy is
initiated just before transplantation, typically comprising a short
course of basiliximab, antithymocyte globulin (ATG) or
alemtuzumab (see Glossary).1 Simultaneously, life-long
maintenance immunosuppression is begun, often comprising a
combination of a calcineurin inhibitor (tacrolimus or cyclos-
porine), antimetabolite [mycophenolic acid (MPA) or aza-
thioprine], with or without prednisolone.1 Other maintenance
regimens can include a mammalian target of rapamycin (mTOR)
inhibitor (everolimus or sirolimus) or belatacept.1

The delicate balance between over- and underimmunosup-
pression poses a persistent challenge in the clinical management
of renal transplant recipients. Underimmunosuppression can
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give rise to allograft rejection, whereas overimmunosuppression
poses a risk for infection, toxicity, and malignancies.1 Therefore,
appropriate dosing algorithms are key to achieving sustained
allograft and patient survival. However, the efficacy and safety
of immunosuppressant therapy are challenged by narrow thera-
peutic indices and considerable between-subject and time-
varying within-subject PK variability. This is particularly well
established for the calcineurin inhibitors, antimetabolites and
mTOR inhibitors.2,3 These phenomena have driven the develop-
ment of personalised dosing strategies for these agents, for which
most centres rely on classical therapeutic drug monitoring
(TDM).2–4 By contrast, alemtuzumab, basiliximab, ATG, and
belatacept are typically applied as a fixed or weight-adjusted
dose, owing to broad therapeutic indices, limited PK variability,
or sparse evidence to support alternative dosing strategies.5–7
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Pharmacometrics encompasses the computer-aided
mathematical modelling of the population PK and/or phar-
macodynamic (PD) characteristics of an agent of interest, pro-
vides options to quantify its PK variability, and enables
identification of clinical characteristics that affect its PK and
treatment outcomes (Box 1).8 In particular, for the immunosup-
pressive agents that are typically personalised by TDM, pharma-
cometrics can allow for clinically feasible area under the
concentration–time curve (AUC)-guided monitoring using Baye-
sian forecasting with limited sampling (Box 1), to yield a more
reliable exposure marker compared with the conventionally used
trough concentration (C0). This is especially valuable for agents
displaying unreliable C0–AUC relationships, including MPA,4

and, to a lesser extent, tacrolimus3 and everolimus.2 In addition,
pharmacometrics can aid in accelerating the initial dose titration
through a priori model-informed precision dosing (MIPD) relying
on baseline covariate information, and/or increase subsequent
C0 or AUC target attainment through a posteriori MIPD based
on previous PK assessments and updated covariate information
over time (Box 1).9 Alternatively, pharmacometrics can be used
to evaluate dosing algorithms for induction immunosuppressive
agents that are applied as a fixed dose and, if necessary, aid to
personalise these therapies utilising a priori MIPD (Box 1).9 Here-
with, pharmacometrics can aid to achieve optimally balanced
immunosuppressive therapy, ensuring efficacious allograft rejec-
tion prophylaxis with limited risk for infection, toxicity, and
malignancies. Whereas pharmacometrics has reached the clinic
in various medical disciplines, its widespread application is ham-
pered by limited clinical modelling expertise, limited model gen-
eralisability and harmonisation, and an abiding absence of
conclusive evidence that it does in fact improves outcomes.10

Nevertheless, considerable progress has been made, which pro-
vides a valuable source of evidence to aid and inform future clin-
ical pharmacometrics endeavours in the renal transplantation
setting.

Here, we identify (Box 2), grade (Box 2, Fig. 1), summarise
(Box 2, Figs. 2–4), and critically discuss the available pharmaco-
metric models and pharmacometric model-guided dosing
approaches for the immunosuppressive agents that constitute
the modern immunosuppressive regimen for the typical adult
renal transplant recipient, including tacrolimus, MPA, everoli-
mus, sirolimus, belatacept, alemtuzumab, basiliximab, and
ATG, to optimise and guide their initial and subsequent dosing.
Induction immunosuppressive therapy
Alemtuzumab
Alemtuzumab, under an off-label construction, is generally
applied as a fixed dose, administered intravenously or subcuta-
neously just before transplantation and, if divided over two gifts,
the day thereafter.7 No clear exposure–effect relationship has
been established for alemtuzumab and its between-subject PK
variability in renal transplant recipients is unknown.7 However,
clinical experience indicates considerable between-subject vari-
ability in lymphocyte reconstitution after alemtuzumab induc-
tion, possibly suggestive for substantial PK variability and an
exposure–effect relationship. Pharmacometrics could be used to
evaluate the adequacy of the current dosing algorithm for alem-
2528 www.drugdiscoverytoday.com
tuzumab and, if indicated, aid to personalise alemtuzumab ther-
apy utilising a priori MIPD.

No population PK studies for alemtuzumab in renal transplan-
tation were identified. Although perhaps not suitable for unam-
biguous translation to renal transplantation because of divergent
CD52 expression and concomitant immunosuppressive therapy
and their interrelation with alemtuzumab PK,7 evidence from
previously published population PK studies in paediatric
hematopoietic stem cell transplantation,11 chronic lymphocytic
leukaemia,12 and multiple sclerosis13 could inform future model
development in renal transplantation. These studies used two-
compartmental model structures with linear,13 nonlinear,12 or
combined linear and nonlinear clearance.11 Substantial
between-subject variability in alemtuzumab clearance (mean,
64.7%; range, 32–104%) and distribution (mean, 57.7%; range,
26–84%) was apparent.11–13 Of note, these studies described
intravenous alemtuzumab PK. However, some centres apply
alemtuzumab subcutaneously, which is likely associated with
higher PK variability owing to its additional absorption phase.
Lymphocyte count12,13 and body composition11,13 were found
to affect alemtuzumab PK in these populations and, thus, com-
prise important covariates to also explore in the renal transplan-
tation setting.

Overall, clinical experience and the abovementioned popula-
tion PK studies bring into question the current fixed-dosing algo-
rithm for alemtuzumab. Hence, a thorough evaluation of
alemtuzumab PK in renal transplant recipients is warranted.

Antithymocyte globulin
ATG is typically applied as a weight-adjusted and/or T cell count-
guided dose divided over two to five gifts administered just
before and on the first days after transplantation, relying on
empirical considerations from decades of clinical experience.6,14

Evidence for its PK variability and exposure–effect relationship
is limited.6,14 However, substantial between-subject variability
in immune cell reconstitution after ATG induction is apparent,
which has raised concerns about the current dosing approach.6,14

Pharmacometrics could be used to evaluate the adequacy of the
current dosing algorithm for ATG and, if necessary, aid to per-
sonalise ATG therapy utilising a priori MIPD.

One population PK study was identified for horse-derived
ATG (Table S2 in the supplemental information online),15 and
none for rabbit-derived ATG. Ternant et al. included 14 renal
transplant recipients who received intravenous horse-derived
ATG (Lymphoglobuline�) therapy, administered as an initial
infusion of 10 mg/kg/day followed by T cell count-guided subse-
quent infusions.15

Ternant et al. developed a two-compartmental model with
first-order elimination and a combined constant and time-
varying central distribution volume (Table S3 in the supplemen-
tal information online).15 ATG clearance, intercompartmental
clearance, constant and time-varying central distribution vol-
umes, and the peripheral distribution volume were 0.41 l/day,
0.53 l/day, 2.0 l, 538 l/day, and 8.0 l, respectively (Fig. 2,
Table 1).15 Distribution and elimination half-lives were 1.3 days
and 25.5 days, respectively. Moderate between-subject variability
was identified for clearance (21%), intercompartmental clearance
(18%), constant (40%), and time-varying (40%) central distribu-
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FIGURE 1
Quality assessment summary for all population pharmacokinetic studies.
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FIGURE 2
Population estimates for clearance and central distribution volume from population pharmacokinetic studies of (a) antithymocyte globulin (ATG), basiliximab,
and belatacept, and (b) everolimus, mycophenolic acid (MPA), sirolimus, and tacrolimus. The solid dots and whiskers represent parameter estimates and their
standard errors, sized according to the number of subjects in the development cohort. Vertical solid lines indicate the mean parameter estimate for each
drug, formulation and interacting co-medication, weighted according to the number of subjects included in each study. Abbreviations: CsA, cyclosporine A;
EC-MPS, enteric-coated mycophenolate sodium; MMF, mycophenolate mofetil.
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tion volumes, peripheral distribution volume (28%), and the dis-
tribution (35%) and elimination (29%) half-lives.15

Age, total bodyweight, gender and FCGR3A genetic variants
did not affect ATG pharmacokinetics (Fig. 3).15
2530 www.drugdiscoverytoday.com
The study by Ternant et al. was of low quality, with a quality
score of 6 (Fig. 1). Important information on the data descrip-
tion, data validity, and the modelling methodology was missing.
In addition, no internal or external validation was performed.
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FIGURE 3
Associations between evaluated covariates and model parameters for (a) induction therapies and (b) maintenance therapies. Each line represents a study that
evaluated a given covariate. Studies that reported influential covariates are linked to the corresponding model parameter(s) and shaded accordingly. Studies
that reported non-influential covariates are designated as ‘no effect’ and shaded grey. Abbreviations: ATG antithymocyte globulin; MPA, mycophenolic acid.
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Thus, evidence for the population PK of ATG in renal trans-
plantation is limited and of low quality. Whereas the available
study for horse-derived ATG indicated limited between-subject
variability in ATG PK and did not identify any influential covari-
ates, the absence of confirmatory population PK studies warrants
further evaluation of horse- and especially rabbit-derived ATG PK
in renal transplantation.
Basiliximab
Basiliximab is generally applied as a fixed dose divided over two
gifts, administered just before transplantation and 4 days there-
after.5 It displays limited PK variability, an exposure–effect rela-
tionship, and a wide therapeutic index.16 Although
considerable between-subject variability in CD25 receptor satura-
tion duration is observed, this does not affect treatment out-
www.drugdiscoverytoday.com 2531
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FIGURE 4
Predictive performances in terms of bias [mean percentage prediction error (MPPE)] and imprecision [root mean squared prediction error (RMSE) or mean
absolute prediction error (MAPE)] of the Bayesian estimators for each drug formulation, sized according to the number of subjects in the development
cohorts, and sorted to ascending imprecision. The grey-shaded areas represent the maximum tolerable bias and imprecision, whereas solid-grey lines
represent the lines of equality. The Bayesian estimators displaying the most optimal trade-off between clinical pragmatism and predictive performance are
highlighted. Abbreviations: EC-MPS, enteric-coated mycophenolate sodium; MMF, mycophenolate mofetil; MPA, mycophenolic acid.
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TABLE 1

Clearances and central distribution volumes for all immunosuppressive agents.
a

Drug Formulation Interactions No. of studies No. of subjects Parameter Meanb Range Refs

ATG Lymphoglobuline None 1 14 CL (l/day) 0.41 15
1 14 Vc (l) 2.00 15

Basiliximab Simulect None 4 336 CL (l/day) 0.79 0.52–1.10 16–18,20
5 382 Vc (l) 3.52 2.86–4.90 16–20

Belatacept Nulojix None 2 929 CL (l/day) 0.86 0.86–1.08 22–23
2 929 Vc (l) 3.59 3.50–3.59 22–23

Everolimus Certican None 3 160 CL (l/h) 17.0 14.7–17.9 26,28–29
3 160 Vc (l) 151 140–269 26,28–29

CsA 1 673 CL (l/h) 8.82 27
1 673 Vc (l) 110 27

MPA MMF None 7 385 CL (l/h) 13.2 2.87–19.4 44,50,54–57,59
7 385 Vc (l) 41.1 13.2–106 44,50,54–57,59

CsA 14 1892 CL (l/h) 21.7 1.70–37.2 35–42,45–49,51
13 1847 Vc (l) 60.6 8.00–97.7 35–37,39–42,45–49,51

MMF/EC-MPS None 2 130 CL (l/h) 15.9 6.83–25.0 64–65
2 130 Vc (l) 94.5 56.0–133 64–65

CsA 1 259 CL (l/h) 16.0 63
1 259 Vc (l) 40.0 63

EC-MPS CsA 3 154 CL (l/h) 9.72 9.30–10.6 60–62
3 154 Vc (l) 32.7 25.9–42.0 60–62

Sirolimus Rapamune None 1 22 CL (l/h) 14.1 72
1 22 Vc (l) 218 72

CsA 1 36 CL (l/H) 8.91 71
1 36 Vc (l) 113 71

Tacrolimus Advagraf None 2 56 CL (l/h) 17.1 17.0–17.2 95,97
2 56 Vc (l) 288 28.2–530 95,97

Advagraf/Prograf None 1 49 CL (l/h) 21.6 99
1 49 Vc (l) 463 99

Prograf None 22 2085 CL (l/h) 19.4 3.85–30.2 28,59,64–65,77–89,91–94
23 2102 Vc (l) 229 5.02–692 28,59,64–65,76–89,91–94

a Abbreviations: CL, clearance; CsA, cyclosporine A; Vc, central distribution volume.
b Mean parameter estimate, weighted according to the number of subjects included in each population pharmacokinetic study contributing to the calculation of the mean parameter estimate.
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comes.16 Pharmacometrics could be used to re-evaluate the ade-
quacy of the current dosing algorithm for basiliximab and, if
deemed necessary, aid to personalise basiliximab therapy utilis-
ing a priori MIPD.

Five population PK studies were identified for basiliximab
(Table S2 in the supplemental information online).16–20 These
included 30–169 renal transplant recipients up to 12 weeks after
transplantation.16–20 These patients received cumulative basilix-
imab dosages of 40–60 mg, administered as a single infusion
before transplantation or as two or three consecutive infusions
given just before surgery and 4–10 days thereafter. Concomitant
maintenance immunosuppressive therapy comprised cyclospor-
ine and prednisolone, with either azathioprine or mycopheno-
late mofetil (MMF).

All models comprised two-compartmental structures with
first-order elimination (Table S3 in the supplemental informa-
tion online).16–20) Mean weighted basiliximab clearance and cen-
tral distribution volume were 0.79 l/day (range, 0.52–1.10) and
3.52 l (range, 2.86–4.90), respectively (Fig. 2, Table 1, Box 2.
Moderate between-subject variability in basiliximab clearance
(mean, 36.7%; range, 34.8–41.4%)16–19 and distribution (mean,
31.2%; range, 18.6–41.1%)16–19 were reported.
One study reported basiliximab clearance to decrease with
age, and clearance and distribution to increase with total body-
weight, albeit both explained <6% of its between-subject PK vari-
ability.16 Others found no such effects for age18 or total
bodyweight (Fig. 3).17,18 One study reported haemodialysis to
increase distribution,16 whereas another reported concomitant
antimetabolite therapy to decrease basiliximab clearance by 22–
51%.20 Gender,16–18 ethnicity,16 or proteinuria16 did not affect
basiliximab PK.

The population PK studies for basiliximab were of low to mod-
erate quality, with quality scores of 4–13 (Fig. 1). In particular,
limited model evaluation and validation were conducted. All
studies relied solely on goodness-of-fit plots, and only Mentré
et al. evaluated their model in an independent cohort.19

So, considerable evidence of low to moderate quality is avail-
able on the population PK of basiliximab in renal transplantation.
These studies indicated limited between-subject variability in
basiliximab PK and no particularly influential covariates, support-
ive of a fixed-dosing strategy. However, they do show shortcom-
ings when held against current standards in pharmacometrics.
Considering the vast scale at which basiliximab is applied in renal
transplantation, this might justify a re-evaluation.
www.drugdiscoverytoday.com 2533
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Maintenance immunosuppressive therapy
Belatacept
Belatacept is typically administered by means of recurrent
weight-adjusted intravenous infusions.21 It displays limited
between-subject PK variability, but only limited evidence on its
therapeutic index and exposure-effect relationship is available.21

Pharmacometrics could aid evaluation of the adequacy of the
current dosing algorithm and, if necessary, aid personalisation
belatacept therapy using a posteriori MIPD and/or accelerate its
initial dose titration with a priori MIPD.

Two population PK models were identified for belatacept
(Table S2 in the supplemental information online).22,23 Zhou
et al. developed a model in 924 renal transplant recipients 0–
12 months after transplantation,22 whereas Klaasen et al.
included five patients 23–60 months after transplantation.23

These subjects received recurrent belatacept (Nulojix�) infusions
of 5–10 mg/kg bodyweight under concomitant MMF and
prednisolone.22,23

Zhou et al. developed a two-compartmental model with zero-
order intravenous infusion and first-order elimination (Table S3
in the supplemental information online).22 Klaasen et al. applied
a three-compartmental model, but provided only limited infor-
mation on their modelling methodology.23 Mean weighted
belatacept clearance and central distribution volume were
0.86 l/day (range, 0.86–1.08) and 3.59 l (range, 3.50–3.59),
respectively (Fig. 2, Table 1). Between-subject variability for clear-
ance (21.4%) and the central (17.7%) and peripheral (28.8%) dis-
tribution volumes was limited.22

Belatacept clearance and its central and peripheral distribu-
tion volumes increased with baseline total bodyweight, and
intercompartmental clearance with baseline and time-varying
total bodyweight (Fig. 3).22 Belatacept dose, age, ethnicity, gen-
der, serum albumin, renal function, and diabetes mellitus did
not affect belatacept PK.22

The population PK studies for belatacept were of low quality,
with quality scores of 6–9 (Fig. 1). In particular, Klaasen et al. pro-
vided limited information on their model development, parame-
terisation, and evaluation.23 Zhou et al. did adequately evaluate
and validate their model internally, but their population and
PK data description were limited.22 Neither study included an
external validation.

Thus, limited, low-quality evidence is available on the popula-
tion PK of belatacept in renal transplantation. Although the find-
ings by Zhou et al. support a weight-adjusted dosing strategy, the
abiding absence of confirmatory studies and the report by Klaa-
sen et al. provide limited assurance of the adequacy of this
approach. Hence, a call for a thorough evaluation of the current
linear weight-adjusted dosing algorithm for belatacept appears
justified.
Everolimus
Everolimus displays substantial PK variability, a narrow thera-
peutic index, and an exposure–effect relationship.2,24,25 Hence,
everolimus therapy is personalised, typically by C0-guided
TDM.2 The everolimus C0 is informative for its AUC0–12

(R2 = 0.78),26 rendering it a reliable marker for exposure assess-
ment. Unfortunately, maintaining everolimus C0 target attain-
2534 www.drugdiscoverytoday.com
ment can be challenging.25 In addition, patient subpopulations
can display variable C0–AUC relationships, for whom the C0 is
less informative. This could render patients exposed to subthera-
peutic everolimus exposure, which is associated with an
increased allograft rejection risk.24 By contrast, supratherapeutic
everolimus exposure can occur, which can give rise to infections
and toxicity, including anaemia, thrombocytopenia, hyper-
triglyceridaemia, hypercholesterolaemia, and non-infectious
pneumonia.2 Pharmacometrics could aid optimisation of everoli-
mus therapy by enabling pragmatic AUC0–12 monitoring using
Bayesian forecasting with limited sampling, increasing C0 or
AUC0–12 target attainment through a posteriori MIPD, and/or
accelerating its initial dose titration with a priori MIPD.

Five population PK studies were identified for everolimus
(Table S2 in the supplemental information online).26–30 These
studies included 12–673 renal transplant recipients 0–38 years
after transplantation, who received 0.75–3.0 mg everolimus
twice daily, with concomitant prednisolone, tacrolimus, or
cyclosporine and prednisolone, or MMF and prednisolone.

Everolimus PK was described using two-compartmental26,28–30

or one-compartmental27 model structures (Table S3 in the sup-
plemental information online). None of the studies included
intravenous data, and all fixed bioavailability to 100%.26–30

Absorption was described using standard first-order,27 time-
lagged first-order,26,28 Erlang,30 or double-gamma absorption.29

All models included first-order elimination. Mean weighted
apparent clearances for everolimus without or with cyclosporine
were 17.0 l/h (range, 14.7–17.9) and 8.82 l/h, and central distri-
bution volumes 151 l (range, 140–269) and 110 l, respectively
(Fig. 2, Table 1. Everolimus absorption displayed extensive
between-subject (mean, 110%; range, 109–111%)26,28 and
within-subject variability (mean, 124%; range, 110–
136%).26,28,30 Between-subject variabilities in clearance (mean,
31.8%; range, 26.2–43.2%)26–30 and distribution (mean, 35.0%;
range, 27.7–40.6%)26–30 were less pronounced. Of note, Ter
Heine et al. used semi-mechanistical modelling, utilising a stirred
liver model and erythrocyte-binding kinetics to describe everoli-
mus plasma PK.30 Alternatively, Robertsen et al. included a
peripheral blood mononuclear cell (PBMC) compartment to cap-
ture everolimus PBMC PK, relying on paired whole-blood and
PBMC observations.29

Four studies reported body composition to affect everolimus
distribution, using ideal bodyweight,26,28 total bodyweight,27 or
fat-free mass (Fig. 3).30 Two studies found clearance to increase
with total bodyweight and fat-free mass,27,30 whereas others
observed no such effects. Two studies reported concomitant
high-dose prednisolone (>20 mg/day) to yield 31% higher clear-
ance,30 and 19% lower clearance in patients receiving azithromy-
cin or erythromycin.27 Of note, the straightforward
immunosuppressant regimens in these studies rendered evalua-
tion of influences of cyclosporine impossible. However, cyclos-
porine affects everolimus PK notoriously.2 In addition, Kovarik
et al. reported everolimus PK to differ between ethnicities, with
black subjects showing 20% higher clearance than nonblack sub-
jects, and clearance to decrease with age,27 but others found no
such effects for age26,28,29 or ethnicity.26,28 Three studies
observed dose-dependent everolimus bioavailability27 or clear-
ance.26,28 However, these effects were likely induced by TDM,
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in which patients with high clearance receive higher dosages.26

Most studies found no effects of haematocrit26,28,29 and/or serum
albumin.26,29 Contrarily, Ter Heine et al. accounted for everoli-
mus erythrocyte-partitioning using a saturable binding model.30

This model relies on binding constants from in vitro experiments
and paired observations of everolimus whole-blood concentra-
tions and haematocrit to estimate everolimus plasma PK.30 Phar-
macogenetic variants in CYP3A5,26,28,29 CYP3A4,28,29 POR,29

ABCB1,26,29 CYP2C8,26 PXR,26 and PPARa29 did not affect evero-
limus PK. Similarly, gender26–29 and underlying diseases26,28 were
not associated with everolimus PK.

The population PK studies for everolimus were of high qual-
ity, with quality scores of 12–15 (Fig. 1). However, model valida-
tion was limited, with one study using no validation27 and the
other four studies relying solely on internal validation tech-
niques.26,28–30 Of note, the model by Ter Heine et al. was evalu-
ated externally in a separate study based on 4123 everolimus
concentrations from 173 renal transplant recipients.31 Zwart
et al. demonstrated that, with a posteriori Bayesian forecasting
relying on one previous C0 or AUC0–12, the model predicted a
subsequent C0 or AUC0–12 with biases of <15% and <10% and
imprecisions of �30% and <15%, respectively.31

Moes and Robertsen et al. evaluated Bayesian estimators
intended for everolimus AUC0–12 prediction (Fig. 4; Table S4 in
the supplemental information online).26,29 Moes et al. demon-
strated adequate predictive performance (MPPE, –3.63%; RMSE,
15.3%) (Box 2) with a Bayesian estimator based on C0, and the
concentrations at 1 h and 3 h after everolimus intake. Robertsen
et al. reported considerably higher predictive performance with
this sampling schedule (MPPE, –0.31%; RMSE, 5.60%). Although
this schedule showed promising results, its validation was lim-
ited. Moes et al. evaluated its predictive performance only in
their development cohort, whereas Robertsen et al. used a valida-
tion cohort of only two patients.

So, considerable high-quality evidence is available on the pop-
ulation PK of everolimus in renal transplantation. Several a poste-
riori MIPD models are available that rely on previous PK
assessments and covariate information, with body composition
and concomitant prednisolone therapy being particularly influ-
ential factors to consider when individualising everolimus ther-
apy. The model by Ter Heine et al.30 has undergone thorough
external validation and, thus, appears preferable to consider for
clinical application, provided additional local validation before
implementation. In addition, a few Bayesian estimators for
enabling pragmatic everolimus AUC0–12 assessment have been
developed and have shown promising predictive abilities, but
require additional external validation before being considering
for routine clinical application. Lastly, alternative everolimus
monitoring approaches based on intracellular PK and estimated
plasma PK have been proposed, which warrant further
investigation.

Mycophenolic acid
MPA displays substantial PK variability, a narrow therapeutic
index, and an increasingly clear exposure–effect relationship.4

This has driven the personalisation of MPA therapy, with the
consensus shifting toward AUC-guided TDM.4,32,33 The MPA C0

is uninformative for its AUC (R2 = 0.16–0.45),34 rendering it an
unreliable marker for exposure assessment. Unfortunately, MPA
AUC target attainment is often disappointing. This could render
patients exposed to subtherapeutic MPA exposure, which is asso-
ciated with an increased risk for allograft rejection. By contrast,
supratherapeutic MPA exposure can occur, which can give rise
to infections and toxicity, including gastrointestinal toxicity,
haematological toxicity, and malignancies.33 Pharmacometrics
could aid optimisation of MPA therapy by enabling pragmatic
AUC monitoring using Bayesian forecasting with limited sam-
pling, increasing AUC target attainment through a posteriori
MIPD, and/or accelerating its initial dose titration with a priori
MIPD.

Thirty-one population PK studies were identified for MPA, of
which 24 focussed on MMF,35–59 three on enteric-coated
mycophenolate sodium (EC-MPS),60–62 and three on both formu-
lations (Table S2 in the supplemental information online).63–65

These studies included 14–468 renal transplant recipients, 0–
21 years after transplantation, who received MPA therapy with
concomitant cyclosporine, tacrolimus, everolimus, or sirolimus,
with or without prednisolone.

MPA PK was modelled using a variety of model structures
(Table S3 in the supplemental information online), owing pre-
dominantly to its complicated absorption profile, which includes
enterohepatic cycling (EHC) of its main metabolite, MPA glu-
curonide (MPAG). Most studies used standard two-
compartmental model structures,35,36,38–42,44,48,49,51,54,56,59,61–65

with one also proposing a one-compartmental model.38 Six used
two-compartmental models for MPA, combined with metabolite
compartments to describe the PK of either MPAG37,45,47 or MPAG
and a second metabolite, MPA acyl-glucuronide
(AcMPAG),50,55,60 coupled to additional intestinal compartments
to capture EHC. Given that MPA displays extensive protein bind-
ing, six others parameterised their models with the free MPA frac-
tion (fMPA), relying on protein-binding kinetics.43,46,52,53,57,58

These included two fMPA compartments, combined with a
MPAG,46 EHC,52 PBMC,58 or MPAG and EHC43,57 compartment
(s). One study described a one-compartmental fMPA model, cou-
pled to MPAG, AcMPAG, and EHC compartments.53 MPA/fMPA
absorption was modelled using time-lagged first-order,35,40–43,45,
47,49,50,52,54,57,59,61–63 standard first-order,37,39,51,53,55,56,60,65 time-
lagged zero-order,46 standard zero-order,36,48,58 Erlang,64 or
single-gamma38 or double-gamma absorption.38,44 In most stud-
ies, MPA/fMPA elimination was modelled using first-order elimi-
nation,35–38,40–51,53,55–59,61–65 whereas some used zero-
order52,54,60 or bi-exponential elimination.39 Mean weighted
apparent clearances for MMF without or with concomitant
cyclosporine were 13.2 l/h (range, 2.87–19.4) and 21.7 l/h (range,
1.70–37.2), and central distribution volumes 41.1 l (range, 13.2–
106) and 60.6 l (range, 8.00–97.7), respectively (Fig. 2, Table 1).
For EC-MPS, mean weighted apparent clearance and central dis-
tribution volume were 9.72 l/h (range, 9.30–10.6) and 32.7 l
(range, 25.9–42.0) under concomitant cyclosporine therapy
(Fig. 2, Table 1. Between-subject variabilities in MPA/fMPA
absorption (mean, 107%; range, 10.9–296%)36,37,39–44,46,49,51,53,5
4,57,58,61–65 and distribution (mean, 79.1%; range, 3.2–161%)35–3
7,40–46,48–57,59–63,65 were considerable, but moderate for clearance
(mean, 48.0%; range, 19.9–246%).35–37,39–43,46,48–65 Similarly,
within-subject variabilities in MPA/fMPA absorption (mean,
www.drugdiscoverytoday.com 2535
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110%; range, 60.0–184%)35,40–42,45,46,48,49,51,58 and distribution
(mean, 64.2%; range, 13.7–138%)35,40–42,45,49,51,52 were consider-
able, but limited for clearance (mean, 22.4%; range, 3.80–
47.0%).35,39–42,45,46,48,49,51,52,58

Cyclosporine notoriously inhibits MPAG EHC, yielding mark-
edly higher MPA clearance in patients on concomitant
cyclosporine.32 Most studies reported cyclosporine to affect
MPA PK (Fig. 3).37,39–43,45,46,49,50,52,53,62 Three studies found no
significant effect of cyclosporine, possibly owing to limited sam-
ple size60 or the absence of EHC compartments.51,63 Total body-
weight was used to describe MPA PK in several
studies,36,45,48,51,57,59 but others found no effect of body compo-
sition.35,37,39–42,46,50,52,54–56,58,60–62,64 Consistent with the general
consensus that MPA is predominantly excreted renally,33 renal
function as assessed by either estimated or measured GFR was
found to affect MPA/fMPA clearance,40,41,53,58 distribution,40–
42,58 protein binding,46,52 and/or metabolite PK.37,43,45,46,50,57,60

However, others found no such effects.36,39,54–56,59,61,62,64 Clear-
ance increased with serum creatinine in one study,51 but others
found no relation with MPA PK.35,36,39,54–57,61,62,64 Five studies
that modelled fMPA reported protein binding to increase with
serum albumin,43,46,48,57,58 whereas a similar study found no
such relationship.52 In four models without protein binding,
serum albumin was reported to reduce MPA clearance or distribu-
tion directly,39–42 but others reported no relation-
ship.45,50,51,54,60–62 Both studies that evaluated MPA PK across
formulations reported divergent absorption between EC-MPS
and MMF.63,64 Evidence for other covariates is limited and, in
some cases, contradictory. Pharmacogenetic variation in
UGT1A9 has been related to MPA absorption61 and distribu-
tion,56 whereas UGT2B7 variants were reported to affect MPA dis-
tribution51 and its metabolisation to AcMPAG.55 However,
others found no associations between UGT1A9,51 UGT1A8,56

UGT1A7,61 or UGT2B756,61 variants and MPA PK. One study
reported an association between SLCO1B1 and MPA clearance.61

Another study found SLCOB13 to affect MPAG distribution55,
but three others found no association with MPA PK.56,57,61 One
study reported ABCC2 variants to affect MPA PK,64 but this was
not replicated in five other studies.50,52,56,58,61 One study
reported an association of ABCB1 with MPA PK,58 whereas
another did not.64 Albeit physiologically unlikely, one study
reported MPAG clearance to vary between genetic variants of
IMPDH1.53 These authors also reported HNF1A variants to affect
MPAG EHC,53 which has not been replicated. One study reported
MPA bioavailability to decrease with increasing dose,49 but four
others reported no dose dependencies in MPA PK.40–42,59 Most
studies found no relation of MPA PK with gender,35,36,39–42,45,46,
48,50–52,54–57,59,61,62,64 haemoglobin,37,40,45,46,50,52,56,57,61,62 blood
urea nitrogen,51,61,62 uric acid,51,62 time after transplanta-
tion,35,39,50,52,54,56,57,62 or underlying disease,39–42,46,59,60 whereas
one,40 two,41,42 one,56 one,56 one,49 and one53 studies did report
such effects, respectively. Age,35–37,39–42,45,46,48,50–52,54–62,64 ala-
nine aminotransferase,36,40–42,45,46,50–52,57,60–62,64 alkaline phos-
phatase,41,42,51,61,64 aspartate aminotransferase,36,40,45,46,50–
52,57,60–62,64 bilirubin,36,40–42,45,46,50–52,60–62,64 cholesterol,61 cold
ischaemia time,59 delayed graft function,41,42,46 donor age,59

donor status,35,39,56,59 erythrocyte count,41,42,62 ethnicity,40–
42,45,60,64 gamma-glutamyltransferase,51,64 glucose,56 haemat-
2536 www.drugdiscoverytoday.com
ocrit,51,52,55,56,61,62,64 lymphocyte count,59 pretransplant renal
replacement therapy,59 serum urea,56,64 or total plasma pro-
tein61,64 did not affect MPA PK.

The population PK studies for MPA were of variable quality,
with quality scores of 8–16 (Fig. 1). In particular, model valida-
tion and evaluation were limited, with only 12.9% of studies
evaluating their model in a validation subgroup or external
cohort and only 45.2% of studies providing at least goodness-
of-fit plots, simulation-based diagnostics, and parameter estimate
precision. De Winter et al. evaluated their model in an external
cohort (N = 289) using a goodness-of-fit plot, Colom et al. con-
ducted a fit-for-purpose validation in a small external cohort
(N = 39), and Yu and Chen et al. used a data-split to validate their
model.49,51,52,62 Of note, several of these population PK models
were evaluated externally in a separate study.66 Zhang et al. eval-
uated the models by Cremers et al.,37 Staatz et al.,39 De Winter
et al.,43 Colom et al.,50 Yu et al.,51 and Colom et al.,52 based on
single-occasion ten-point MPA curves from 45 renal transplant
recipients.66 Substantial variability in the a priori predictive per-
formances was apparent, with the models by Cremers et al.37

and De Winter et al.43 showing slightly preferable results with
biases less than ±20% and imprecisions less than 30%.66 An addi-
tional fit-for-use validation based on recurrent PK assessments
would provide important additional information on the a poste-
riori predictive performances of these models.

Le Guellec et al.,36 Hulin et al.,44 Musuamba et al.,45,65 and
Chen et al.62 also evaluated Bayesian estimators intended for
MPA AUC0-12 estimation (Fig. 4, Table S4 in the supplemental
information online). In addition, Prémaud et al. developed Baye-
sian estimators for their population PK model,38 in a separate
study based on 10- or 11-point MPA curves from 44 renal trans-
plant recipients.67 Marquet et al. also applied the model and a
selection of Bayesian estimators by Prémaud et al.38,67 in a sepa-
rate study based on 894 MPA concentrations from 64 solid organ
transplant recipients.68 Most studies relied on internal validation
techniques to evaluate the predictive performance of their Baye-
sian estimators,36,45,62,65,67 whereas Hulin et al. did conduct an
external validation (N = 73).44 For MMF, most Bayesian estima-
tors comprised 3-point schedules within 2–3 h post-dose, show-
ing biases of –8.16–12.20%36,44,45,67,68 and imprecisions of 11.0–
20.5%.36,45,67 For EC-MPS, a 3-point schedule within 4 h post-
dose showed adequate performance (MPPE, –6.52%; RMSE,
20.8%), which was further improved with a 4-point schedule
up to 6 h post-dose (MPPE, –5.15%; RMSE, 18.3%).62 Musuamba
et al. proposed a 2-point schedule for either MMF or EC-MPS,
with 12.2% bias and 11.0% imprecision.65

Thus, evidence of variable quality is available for the popula-
tion PK of MPA. Modelling MPA absorption has posed a persis-
tent challenge and necessitates the use of advanced model
structures and extended sampling. Various population PK mod-
els intended for MMF and EC-MPS MIPD have been proposed,
for which information on concomitant cyclosporine therapy,
renal function, and serum albumin was found to be most infor-
mative for guiding personalised MPA therapy. Given that only
a few of these models have been evaluated externally, their clin-
ical application should be considered carefully and preceded by
thorough local validation. For MMF, the model by Colom et al.52

did show adequate predictive abilities in a small a posteriori fit-
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for-use validation, rendering this model preferable when consid-
ering a posterioriMIPD for MMF. Additionally, the models by Cre-
mers et al.37 and De Winter et al.43 have been shown to be
somewhat preferable when considering strictly a priori MIPD to
optimise the initial dose titration for MMF. None of the EC-
MPS models has been thoroughly validated externally. In addi-
tion, several Bayesian estimators to enable clinically feasible
MMF or EC-MPS AUC0-12 monitoring have been proposed. Baye-
sian estimation based on three samples within 3 h after adminis-
tration rendered adequate estimation reliability for the MMF
AUC0-12, whereas 3–4 samples up to 4 h are required for EC-
MPS. Of note, clinical application of these Bayesian estimators
should be considered carefully, because most authors relied
strictly on internal validation techniques.

Sirolimus
Sirolimus displays substantial PK variability, a narrow therapeu-
tic index, and a clear exposure–effect relationship.2 Hence, siroli-
mus therapy is personalised, typically using C0-guided TDM.2

The sirolimus C0 is particularly informative for its AUC
(R2 = 0.83),69 rendering it a reliable marker for exposure assess-
ment. Unfortunately, sirolimus C0 target attainment is often dis-
appointing.70 This can result in patients being exposed to
subtherapeutic sirolimus exposure, which has been associated
with an increased risk for allograft rejection.2 By contrast,
supratherapeutic sirolimus exposure can occur, which is associ-
ated with infections and toxicity, including anaemia, leukope-
nia, thrombocytopenia, hypertriglyceridaemia, and non-
infectious pneumonia.2 Pharmacometrics could aid optimisation
of sirolimus therapy by increasing C0 target attainment through
a posteriori MIPD, and/or accelerating initial dose titration with a
priori MIPD.

Two population PK studies were identified for sirolimus
(Table S2 in the supplemental information online).71,72 Ferron
et al. included 36 renal transplant recipients, who received 3–
15 mg sirolimus/m2 body surface area once daily, with concomi-
tant cyclosporine and prednisolone with or without azathio-
prine.71 Djebli et al. included 22 patients 0–3 months after
transplantation who received 10–15 mg sirolimus once daily
for the first 10 days after transplantation with subsequent
TDM-guided dose adaptation, under concomitant MMF and
prednisolone.72

Sirolimus PK was described using two-compartmental model
structures, using time-lagged first-order71 or Erlang72 absorption,
and first-order elimination (Table S3 in the supplemental infor-
mation online). Neither study included intravenous data, and
both fixed bioavailability to 100%. Mean weighted apparent
clearances for sirolimus without and with concomitant cyclos-
porine were 17.0 l/h and 8.91 l/h, and central distribution vol-
umes 211 l and 113 l, respectively (Fig. 2, Table 1. Sirolimus
displayed moderate between-subject PK variability in absorption
(mean, 42.0%; range, 41.3–42.7%), distribution (mean, 43.8%;
range, 38.2–49.3%), and clearance (mean, 42.3%; range, 31.8–
52.7%).71,72 Neither model included within-subject PK
variability.

Sirolimus intercompartmental clearance and peripheral distri-
bution volume were reported to increase with total bodyweight
in one study,71 but not in the other (Fig. 3).72 Djebli et al. demon-
strated CYP3A5 variants to explain 8.8% of the between-subject
variability in sirolimus clearance, with homozygotes for the non-
functional CYP3A5*3 variant (rs776746) showing 50% lower
clearance compared with CYP3A5 expressors (CYP3A5*1/*3 or
CYP3A5*1/*1).72 Genetic polymorphisms in CYP3A4 and
ABCB1,72 age,71,72 gender,72 body mass index,72 body surface
area,71,72 height,71,72 comedication,71 sirolimus dose,71 alanine
aminotransferase,72 aspartate aminotransferase,72 serum crea-
tinine,72 serum urea,72 serum albumin,72 erythrocyte count,72

haematocrit,72 haemoglobin,72 total protein,72 total choles-
terol,72 triglycerides,72 thrombocyte count,72 or leukocyte
count72 did not affect sirolimus PK. Of note, the straightforward
immunosuppressant regimens in these studies rendered evalua-
tion of the influences of cyclosporine impossible. However,
cyclosporine affects sirolimus PK notoriously.2

The population PK studies for sirolimus were of variable qual-
ity, with quality scores of 8–13 (Fig. 1). Model evaluation and val-
idation were limited for the model by Ferron et al. By contrast,
Djebli et al. provided parameter estimate precision, goodness-
of-fit plots, and internal validation, but conducted no external
validation.

Djebli et al. developed Bayesian estimators for sirolimus
AUC0-24 estimation (Fig. 4, Table S4 in the supplemental infor-
mation online). A Bayesian estimator based on C0 and the con-
centrations at 1 h and 3 h post-dose showed the best predictive
ability, with –2.1% bias and 10.3% imprecision. Of note, these
authors relied solely on internal validation techniques for evalu-
ating the predictive performance of their Bayesian estimators.

So, limited evidence of variable quality is available on the
population PK of sirolimus in renal transplantation. The avail-
able population PK models and a Bayesian estimator based on
C0 and the concentrations at 1 h and 3 h post administration
show promising predictive abilities, but additional confirmatory
and validation studies are warranted before considering these for
routine clinical application.

Tacrolimus
Tacrolimus displays substantial PK variability, a narrow thera-
peutic index, and a clear exposure–effect relationship.3 Hence,
tacrolimus therapy is personalised, typically using C0-guided
TDM.3 The tacrolimus C0 is informative for its AUC (R2 = 0.63–
0.76),73,74 rendering it a reliable marker for exposure assessment.
Unfortunately, tacrolimus C0 target attainment is often disap-
pointing.75 In addition, patient subpopulations display variable
C0–AUC relationships, for whom the C0 is less informative.3 This
can result in patients being exposed to subtherapeutic tacrolimus
exposure, which has been associated with an increased risk for
allograft rejection.3 By contrast, supratherapeutic tacrolimus
exposure can occur, which is associated with infections and tox-
icity, including nephrotoxicity, neurotoxicity, cardiovascular
toxicity, and malignancies.3 Pharmacometrics could aid the opti-
misation of tacrolimus therapy by enabling pragmatic AUCmon-
itoring using Bayesian forecasting with limited sampling,
increasing C0 or AUC target attainment through a posteriori
MIPD, and/or accelerating its initial dose titration with a priori
MIPD.

Twenty-nine population PK studies were identified for tacroli-
mus, of which 24 focussed on Prograf�,28,55,59,64,65,76–94 three and
www.drugdiscoverytoday.com 2537



FO
U
N
D
A
TIO

N

FOUNDATION (PURPLE) Drug Discovery Today d Volume 26, Number 11 d November 2021
one studies on Advagraf�95–97 and Envarsus�,98 and one on both
Prograf� and Advagraf� (Table S2).99 These studies included 12–
337 renal transplant recipients 0–17 years after transplantation,
who received tacrolimus once daily or twice daily with concomi-
tant prednisolone, mycophenolic acid, or both.

Tacrolimus PK was modelled using two-
compartmental,28,55,59,64,65,76–79,81–83,85–87,89,91–95,97,99) one-
compartmental,84,88,90,96,98 or three-compartmental model struc-
tures (Table S3 in the supplemental information online).80 None
of the studies included intravenous data, and bioavailability was
fixed to either 100%55,59,64,65,77,79,81–85,87–99 or 23%.28,76,78 Alter-
natively, two studies used a relative bioavailability parame-
ter.80,86 Absorption was modelled using time-lagged first-
order,28,55,59,64,65,76,79,80,82–86,89,91–94,97 Erlang,77,81,87,95,99 or stan-
dard first-order absorption.78,88 Three nonparametric studies
described absorption using double-gamma distributions.90,96,98

All models included first-order elimination. Mean weighted
apparent tacrolimus clearances for Prograf� and Advagraf� were
19.4 l/h (range, 3.85–30.2) and 17.1 l/h (range, 17.0–17.2), and
central distribution volumes of 229 l (range, 5.02–692) and
288 l (range, 28.2–530), respectively (Fig. 2, Table 1. Tacrolimus
displayed pronounced between-subject variability in absorption
(mean, 62.4%; range, 11.7–199%)64,65,77,79,81,83,84,87,91,93,95,97,99

and distribution (mean, 59.7%; range, 7.7–157%),28,55,59,64,65,77–
79,81–86,88,91–93,95,97,99 whereas between-subject variability in
clearance (mean, 44.1%; range, 19.5–185%)28,55,59,64,65,77–79,81–8
9,91–93,95,97,99 was less pronounced. Similarly, within-subject vari-
ability in absorption (mean, 60.8%; range, 24–120%)77,85,86,99

and distribution (mean, 88.5%; range, 68.0–127%)77,83,99 were
substantial, whereas within-subject variability in clearance
(mean, 27.8%; range, 13.6–36.8%)77,83,87,89,92,99 was limited. Of
note, Andrews et al. also slightly adjusted their a posteriori MIPD
model to derive a population PK model intended specifically for
a priori MIPD.92 Their a priori MIPD model relies on CYP3A5 and
CYP3A4 genotype information, age, and body surface area to pre-
dict the optimal individual tacrolimus starting dose.92

The influence of genetic polymorphisms in CYP3A5 on tacro-
limus clearance is particularly well established, with CYP3A5
nonexpressors, homozygous for the nonfunctional CYP3A5*3
variant (rs776746), showing lower clearance and ~50% higher
dosage requirements compared with CYP3A5 expressors
(CYP3A5*1/*3 or CYP3A5*1/*1).3,100 All studies that evaluated
CYP3A5 rs776746 included it as covariate on clearance
(Fig. 3).28,55,64,78,80,82–85,91,92,95,99 Additionally, CYP3A4 polymor-
phisms can explain PK in CYP3A5 nonexpressors, in whom
tacrolimus is predominantly metabolised by CYP3A4.100 Thus,
a CYP3A5-CYP3A4 cluster approach appears most informative
to guide tacrolimus therapy.3 Three studies found a CYP3A5-
CYP3A4 cluster89,90 or a combination of CYP3A5 and CYP3A492

to best explain between-subject variability in tacrolimus PK,
but others reported no added value of including CYP3A4*22
(rs35599367) in addition to CYP3A5*3.28,78,82 Studies on other
pharmacogenetic variants have yielded conflicting results. One
study showed ABCB1 variants to affect tacrolimus clearance,64

whereas six others found no such association.78,82,84,90–92 Two
studies evaluated ABCC2 variants, with one supporting82 and
2538 www.drugdiscoverytoday.com
one refuting64 relationships with tacrolimus PK. POR,90,92

PXR,77,78 PPARa,90 or ABCG282 variants did not affect tacrolimus
PK. Prednisolone, a CYP3A inducer, was found to decrease tacro-
limus bioavailability or distribution in four studies.28,78,83,85

However, others found no effects of prednisolone or other
comedication on tacrolimus PK.80,82,84,86,88,91–93,95,99 Of note,
none of the studies evaluated influences of strong CYP3A inhibi-
tors, likely because these are generally avoided in patients receiv-
ing tacrolimus.3 Furthermore, tacrolimus clearance gradually
decreases over the first weeks after renal transplantation. Studies
have partly linked this phenomenon to erythrocyte partitioning
by tacrolimus, because the haematocrit drops profoundly during
transplantation and gradually returns to baseline over the follow-
ing weeks. Some authors used empirical approaches to capture
this behaviour, including time-varying haematocrit,64,77,92,99

time after transplantation,84 or a combination of both83 as
covariates. Others have used mechanistic modelling, incorporat-
ing in vitro binding constants in an erythrocyte-binding model to
describe tacrolimus plasma PK, relying on paired haematocrit
and tacrolimus whole-blood observations.80,85,86,94 These
authors also identified independent effects of time after trans-
plantation on tacrolimus bioavailability or absorption.80,85,86,94

Others found no effect of haematocrit28,55,78,81,82,84,87,89,91,95,98

and/or time after transplantation.79,82,88,91–93,98,99 Body composi-
tion was used to describe tacrolimus PK in several studies, using
either total59,81,83,91 or lean92 bodyweight, fat-free mass,85,86 or a
combination of fat-free mass and body mass index.80,94 However,
others found no effect of body composition on tacrolimus
PK.28,55,64,77–79,82,84,87–90,93,95,99 Two studies suggested dose-
dependent tacrolimus clearance,78,79 but this has not been con-
firmed in other studies.28,59 As also highlighted by Press et al.,78

any apparent dose dependency is likely induced by TDM,
because subjects with higher tacrolimus clearance receive higher
dosages. Most studies reported no influences of age,28,55,59,64,77–
81,83–85,87,90,91,93,95,98,99 although three studies reported tacroli-
mus clearance to decrease with age82,89,92 and one found its
bioavailability to increase with age.86 One study reported lower
bioavailability in females,86 but most studies found no influences
of gender.28,55,59,64,77–80,82,84–85,87,89–93,95,99 In addition, one
study reported slower tacrolimus absorption in patients with dia-
betes mellitus,82 whereas others found no effects of diabetes mel-
litus or other underlying diseases.28,59,84,91,92 One study reported
higher tacrolimus clearance with increasing serum albumin,92

but others reported no such association.78,80–88,91,93 In addition,
one study found tacrolimus clearance to decrease with increasing
haemoglobin,88 but this has not been repli-
cated.77,82,84,87,89,91,95,99 Consistent with the general consensus
that tacrolimus is predominantly cleared hepatically, most stud-
ies found no effects of renal function as assessed with estimated
GFR,55,59,64,82,83,87–93 albeit one study suggested tacrolimus clear-
ance to decrease with increasing eGFR.93 One study demon-
strated food intake and circadian variation to affect tacrolimus
PK.94 Although consistent with the general consensus on these
covariates from nonpharmacometric studies, no other popula-
tion PK studies evaluated these, likely owing to the clinical
impracticality of extended blood collection and dietary restric-
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tions. Acute rejection episodes,86 aspartate aminotrans-
ferase,64,80–87,89,92 alanine aminotransferase,64,80–82,84–87,89 alka-
line phosphatase,64,80,83,85,86 bilirubin,80,82–87,92 gamma-
glutamyltransferase,64,83 cholesterol,78,91 cold ischaemia time,59

C-reactive protein,80,86,92 donor age,59,83 donor status (living/de-
ceased),59,83,84 graft weight,84 delayed graft function,92 ethnic-
ity,28,64,82,83,91,92 erythrocyte count,77,87,89 thrombocyte
count,91 leukocyte count,77,91 lymphocyte count,59 glucose,82,91

human leukocyte antigen mismatches,92 panel reactive antibod-
ies,92 prior renal transplantation(s),92 prior renal replacement
therapy,59,92 serum creatinine,55,64,77,81–86,91–93,95,99 serum
urea,64,83 blood urea nitrogen,82 total serum protein,64,84,92 or
triglycerides,91 did not affect tacrolimus PK.

The population PK studies for tacrolimus were of variable
quality, with quality scores of 6–16 (Fig. 1). Model validation
was limited, with only 24.1% of studies evaluating their models
in an external cohort or validation subgroup. Additionally, only
62.1% provided at least goodness-of-fit plots, simulation-based

diagnostics, and parameter estimate precision. Åsberg et al.,
Størset et al., Andreu et al., and Andreu et al.80,85,87,89 conducted
external a priori or a posteriori fit-for-use validations in 59–91 sub-
jects relying on C0 assessments exclusively, whereas Andrews
et al. externally evaluated the appropriateness of their model
across the entire tacrolimus PK profile (N = 304).92 Benkali et al.95

and Woillard et al.99 used a data-split, and Benkali et al.77 and
Gaïes et al.81 relied on resampling techniques for model valida-
tion. Of note, several of these models have been evaluated exter-
nally in separate studies. Størset et al. confirmed their model
appropriateness85 in a study based on 1999 tacrolimus concen-
trations from 79 renal transplant recipients.101 Additionally,
Zhao et al. evaluated the models by Press et al.,78 Grover et al.,79

Woillard et al.,99 Musuamba et al.,64 Gaïes et al.,81 Ogasawara
et al.,82 Han et al.,84 Størset et al.,85 and Andreu et al.,87 in a study
based on 609 C0 from 52 renal transplant recipients.102 Evalua-
tion of the a priori predictive performances of these models con-
firmed the need for previous PK information to guide model
predictions, with all models showing P30 values <50%.102 With
a posteriori Bayesian forecasting relying on one previous PK obser-
vation, these models showed biases of –58–0% and imprecisions
of 22–59%, which improved slightly with the inclusion of one or
two additional observations.102 Overall, the model by Størset
et al.85 showed slightly preferable results.102 Similarly, Hu et al.
evaluated the models by Han et al.84 and Vadcharavivad et al.,88

in a study based on 1715 C0 assessments from 174 renal trans-
plant recipients.103 With a posteriori Bayesian forecasting relying
on one previous PK observation, these models showed biases of –
43.6 to –9.63% and imprecisions of 28.7–53.4%, which
improved slightly with one to three additional observations.103

Scholten et al.,76 Benkali et al.,77,95 Saint-Marcoux et al.,96

Woillard et al.,99 Gaïes et al.,81 Musuamba et al.,65 Han et al.,84

Andreu et al.,87 andWoillard et al.98 also developed Bayesian esti-
mators, intended for tacrolimus AUC0–12 or AUC0–24 estimation
(Fig. 4, Table S4). Additionally, Barraclough et al. used the models
by Press et al.78 and Benkali et al.77 to evaluate Bayesian estima-
tors based on 13-point tacrolimus curves from 20 renal trans-
plant recipients.104 In addition, Campagne et al. used their
model91 to evaluate Bayesian estimators in a separate study based
on 9-point tacrolimus curves from 67 renal transplant recipi-

ents.105 Gustavsen et al. used the model by Åsberg et al.80 to eval-
uate Bayesian estimators based on 14-point tacrolimus curves
from 27 renal transplant recipients106 and then applied these
with their own model in another study.94 These authors
expressed the predictive performance of their Bayesian estima-
tors using alternative agreement statistics, showing adequate pre-
dictive abilities but thwarting a direct comparison with the other
studies. Last, Marquet et al. evaluated Bayesian estimators in a
study based on 9-point generic tacrolimus (Adoport�) curves
from 29 renal transplant recipients,108 with a nonparametric
PK model based on previous models.96,98 For validation, Scholten
et al.76 and Stifft et al.97 evaluated the predictive performances of
their Bayesian estimators in external cohorts of 26 and 24 sub-
jects, respectively. Benkali et al.,95 Woillard et al.,98,99 and
Musuamba et al.,65 applied a data-split, and Benkali et al.77 and
Marquet et al.108 relied on resampling-based validation tech-
niques. In addition, Op den Buijs et al. externally evaluated the
Bayesian estimator by Scholten et al.76 in a study based on 9-
point tacrolimus curves from 37 renal transplant recipients.107

Overall, a schedule based on C0 and the concentrations at 1 h
and 3 h post-dose appears to comprise an optimal trade-off
between predictive performance and clinical feasibility across
several studies on Prograf�, Advagraf�, and Adoport�, showing
AUC0–12 or AUC0–24 predictions with �5.2–3.7% bias and 4.5–
11% imprecision.76,77,81,91,95–97,99,108 For Envarsus�, Woillard
et al. proposed a schedule based on C0 and the concentrations
at 8 h and 12 h post-dose for AUC0–24 prediction, with 0.3–
3.4% bias and 6.9–13% imprecision.98

Thus, substantial evidence of variable quality is available for
the population PK of tacrolimus. Various population PK models
intended for a priori and a posteriori MIPD of Prograf� and, to a
lesser extent, Advagraf� have been proposed, whereas evidence
for Envarsus� remains limited. Overall, genetic polymorphisms
in CYP3A5 and, to a lesser extent, CYP3A4 were shown to be par-
ticularly informative to guide personalised tacrolimus therapy,
whereas body composition, haematocrit, and time after trans-
plantation were also considered important covariates. Given that
only a few of these models have been evaluated externally, their
clinical application should be considered carefully and preceded
by thorough local validation. Overall, themodel by Størset et al.85

has shown particularly consistent predictive abilities for Prograf�

across several studies, whereas none of the models for Advagraf�

has undergone external validation. Additionally, several Baye-
sian estimators for pragmatic tacrolimus AUC0–12 and AUC0–24

estimation have been proposed. For Prograf� and Advagraf�, sub-
stantial experience has been established for a schedule based on
C0 and the concentrations at 1 h and 3 h after administration,
which can be applied in the clinic after local validation. For
Envarsus�, a schedule based on C0 and the concentrations at
8 h and 12 h after administration has been suggested, but
requires additional validation. Last, alternative tacrolimus moni-
toring strategies have been proposed, using haematocrit-
corrected whole-blood PK or estimated plasma PK, which war-
rant further investigation.
www.drugdiscoverytoday.com 2539



FO
U
N
D
A
TIO

N

FOUNDATION (PURPLE) Drug Discovery Today d Volume 26, Number 11 d November 2021
Discussion
The renal transplantation field has experienced a continuing
increase in pharmacometrics solutions aimed at optimising the
initial and subsequent dosing of immunosuppressive therapy.
These efforts have focussed predominantly on the maintenance
regimens, in particular tacrolimus and MPA. Population PK mod-
els for tacrolimus have been more-or-less straightforward,
although recent semi-mechanistical modelling efforts to capture
erythrocyte partitioning and models incorporating pharmacoge-
netic information have been particularly successful. By contrast,
the complex absorption profile of MPA has driven the develop-
ment of advanced multicompartmental models, with various
success in characterising MPA PK. Less substantial evidence is
available for everolimus, sirolimus, and belatacept. For induction
therapies, pharmacometric studies have supported fixed-dosing
approaches for basiliximab, whereas the evidence is limited for
ATG and alemtuzumab. Of note, large variability in model qual-
ity was discernible across all agents. Model evaluation and partic-
ularly model validation were superficial or lacking for most
models, with only a handful of models and Bayesian estimators
for tacrolimus and MPA, and, to a lesser extent, everolimus,
showing persistent predictive abilities across several studies.
Whereas model validation might have limited added value for
exploratory population PK analyses, it comprises a pivotal ele-
ment for MIPD implementation. Specifically, model appropriate-
ness and its a priori and/or a posteriori predictive performance
should be evaluated in a representative independent cohort.9

Moreover, it is advisable to conduct such a fit-for-purpose valida-
tion locally and adjust the model parameters accordingly before
model implementation, because model performance can vary
across institutions.9 In addition, model validation can be applied
in an iterative fashion, evaluating and updating the model over
time as more local PK information becomes available.9

Although numerous population PK models are available, the
clinical application of pharmacometrics remains limited. One
factor curtailing its clinical application is the abiding absence
of conclusive evidence that computer-aided immunosuppressant
dosing does yield improved target attainment, and ultimately,
superior clinical outcomes compared with conventional TDM,
albeit efforts to provide this evidence have yielded encouraging
results regarding the former.75,109–111 In this context, results from
an online pharmacometric tool have been particularly reassur-
ing, demonstrating improved tacrolimus target attainment with
computer-aided dosing.74,112 In addition, model development
is not seldomly conducted in a predominantly self-contained
manner, with little attention for previous evidence and limited
efforts at demonstrating model validity and clinical utility.
Lastly, clinical implementation can be hampered by the absence
of adequate supportive platforms. Routine clinical pharmaco-
metrics demands high-throughput capacity with short turn-
around times, necessitating application in automated, highly
standardised, and end user-friendly IT solutions, integrated with
local electronic medical record (EMR) software to ensure updated
PK and covariate information. Regarding the latter aspect, Kan-
tasiripitak et al. identified 28 IT solutions that can be used for
MIPD purposes.113 These authors evaluated ten of these MIPD
2540 www.drugdiscoverytoday.com
tools on eight categories: user-friendliness and utilisation, user
support, computational aspects, population models, quality
and validation, output and report generation, privacy and data
security, and costs. Overall, all tools performed well on all
aspects, with mean category scores ranging from 7.2 to 8.5 out
of a maximal score of 10.113 When ranked according to the per-
centage of their total fulfilment of all categories, the following
descending order of tool performances was established:
InsightRX Nova (83%), MwPharm++ (82%), DoseMeRx (78%),
PrecisePK (77%), ID-ODS (74%), AutoKinetics (68%), NextDose
(66%), Tucuxi (57%), TDMx (56%), and BestDose (54%).113 Of
these, InsightRx Nova, DoseMeRx, and NextDose offer ready-
to-use immunosuppressive drug modules for clinical application.
However, considerations for MIPD tool selection might vary
among centres, depending on the local situation and intended
MIPD application.

The ultimate success of a pharmacometrics approach in opti-
mising treatment outcomes also depends on the informative-
ness of the applied markers. Historically, the C0 has provided
a convenient marker for tacrolimus, everolimus, and sirolimus
monitoring, but encompasses only a surrogate measure for their
AUC. Bayesian estimators have proven helpful to enable clini-
cally feasible AUC-guided TDM, which could provide a more
informative marker, especially for those patient subpopulations
that display unreliable or highly variable C0–AUC relationships.
Particularly for patients taking combination immunosuppres-
sive regimens, blood draw alignment across Bayesian estimators
might then help to minimise sampling intensity for simultane-
ous immunosuppressant monitoring. Moreover, combining
synchronized Bayesian estimators with remote blood collection
by means of microsampling could allow for more frequent and
more flexible AUC-based monitoring with minimal patient dis-
comfort. Dried blood spots and volumetric absorptive
microsampling tips have gained particular interest as alternative
sampling matrices for enabling remote immunosuppressant
monitoring.3,4 In this context, development of diagnostic tools
to identify those patients who would benefit most from AUC-
based MIPD over standard C0-based MIPD might also help to
achieve more efficient monitoring strategies. Application of
alternative markers could also aid in optimising patient out-
comes. Whereas computer-aided dosing likely aids to increase
C0 or AUC target attainment, its added value on treatment out-
comes remains limited when patients with on-target PK expo-
sure might still develop allograft rejection or toxicity. Efforts
to find more informative markers have focussed mainly on
intracellular immunosuppressant PK assessment and pharmaco-
dynamic monitoring, as alternatives to conventional whole
blood or plasma PK assessment.3,4,24 In addition, the combined
PK exposure of combination immunosuppressive treatment reg-
imens is likely more informative for treatment outcome. How-
ever, because widespread routine application of intracellular
PK114 and pharmacodynamic monitoring remain distant pro-
spects, monitoring estimated plasma PK might constitute the
most promising approach to further optimise immunosuppres-
sive therapy currently available. Nevertheless, these advances
require further investigation, validation, and evidence that they
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do yield a more informative marker for outcomes after renal
transplantation.

Although beyond the scope of this review, it is important to
acknowledge that evidence from similar populations or related
modelling approaches is also available. These include a sub-
stantial number of population PK models for tacrolimus and
sirolimus that have been developed based on C0 assessments,
exclusively. Whereas such one-compartmental models can be
used for a priori and a posteriori MIPD for these agents, their
application is strictly limited to C0-based approaches. Similarly,
some authors have proposed two-compartmental models for
tacrolimus, sirolimus, and MPA, using solely C0 PK assessments
with fixation of all absorption-related parameters to literature
values. Although this might pose a justifiable strategy for some
centres, thorough local validation across the entire PK profile is
advisable before considering these models for routine AUC-
based MIPD. By contrast, population PK models that have
been developed using richly sampled PK curves covering the
entire dosing interval could be used for a priori and a posteriori
C0- and AUC-based MIPD, allowing for more versatile and
more widespread application. Additional evidence from other
populations and modelling approaches includes population
PK models in paediatric renal transplantation, population PK
metamodels across transplantation populations,115–117 more
complex physiology-based PK approaches,118,119 and even arti-
ficial intelligence solutions.120,121

Concluding remarks
In conclusion, pharmacometrics has gradually evolved from a
theoretical promise to a clinically feasible means of personalising
and optimising immunosuppressive therapy in renal transplan-
tation. Building on the available evidence, developing har-
monised models, finding informative and easily accessible
markers, and realising reliable, user-friendly supportive platforms
comprise key factors to further aid its implementation in routine
clinical care.
Box 1 . Population PK modelling.Model components.
Population PK models comprise mathematical components,

including a structural, stochastic, and often a covariate model.

The structural model describes the course of a dependent vari-

able over an independent variable, usually a drug concentration

over time. Dependent of its structural design, models can include
various flow parameters, volume parameters, and constants.

Together, these capture drug absorption, distribution, metabo-

lism, and/or elimination. Population PK models incorporate

‘fixed’ and ‘random’ effects, which are defined in the stochastic

model.
The fixed effects, or ‘thetas’, describe the population parame-

ters, defining the typical drug behaviour in the population. The
random effects, or ‘etas’, account for the divergence of individual

parameter values from the typical population values. The vari-

ance of eta, or ‘omega’, summarises the between- and within-

subject variability for each parameter across the population.

The stochastic model describes the residual unexplained variabil-

ity, or ‘epsilon’, which captures the differences between the

observed and model-predicted data and is summarised by its

variance, ‘sigma’. Last, population PK models can include a
covariate model to investigate whether certain patient character-

istics explain PK variability.

Model development, evaluation, and validation.
Population PK models are typically developed using nonlinear

mixed-effects modelling software. It encompasses finding the

best fit for the concentration–time data, using a stepwise mod-

elling approach. The design and selection of candidate models

are typically guided by previous evidence, biological plausibility,
model stability, predictive performance, and comparative statis-

tics. Various model evaluation techniques are available, of which

goodness-of-fit plots and visual predictive checks (VPCs) are

most commonly applied. Goodness-of-fit plots are generally used

to compare model predictions and observations, and inspect

trends in prediction errors. VPCs comprise a graphical depiction

of model-simulated concentration–time data plotted over the

observed concentration–time data, allowing for visual inspection
of their concordance. Ultimately, internal and external evaluation

techniques can be used to demonstrate model validity. Internal

validation techniques, aimed specifically at evaluating the

robustness of model parameters, typically rely on resampling

of the concentration–time data of the development cohort. By

contrast, external validation techniques aim to establish the pre-

dictive ability and generalisability of the model, relying on con-

centration–time data from an independent cohort.
Model application.
Population PK models can serve various clinical purposes.

Exploratory population PK analyses are often aimed at describing

the PK characteristics of an agent of interest, quantifying its PK

variability, and informing dosing strategies. By contrast, popula-

tion PK models can be used for MIPD purposes, aimed at guiding

individual dosing decisions. Population PK models aimed at a pri-

ori MIPD can guide dosing decision for single-dosed drugs or ini-
tial doses of chronically prescribed agents, relying strictly on

baseline clinical information. Alternatively, population PK models

intended for a posteriori MIPD can guide dosing decisions for

recurrent dosing occasions, relying on collected PK and covariate

information from previous dosing instances. In addition, popula-

tion PK models can be used to enable pragmatic AUC-based

exposure assessment, relying on a limited number of PK observa-

tions early after drug intake and a posteriori Bayesian forecasting
to predict the full AUC.
www.drugdiscoverytoday.com 2541
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Box 2 . Methods.Literature search.
The PubMed, Embase, Web of Science, Cochrane Library and

Emcare databases were explored from inception up to and

including March 31, 2021. The search queries included ‘alem-

tuzumab’, ‘antithymocyte globulin’, ‘basiliximab’, ‘belatacept’,

‘everolimus’, ‘mycophenolate’, ‘sirolimus’, ‘tacrolimus’,

‘pharmacometrics’, ‘pharmacokinetics’, ‘nonlinear mixed-effects

modelling’, ‘Bayesian estimation’, and related terms (Supporting

Information S1 in the supplemental information online). Initial

article selection was performed based on title and abstract,
and final selection by full-text assessment. English primary arti-

cles on the development or validation of population PK models

with or without Bayesian estimators for the selected immunosup-

pressants in adult renal transplant recipients were eligible for

inclusion. Any non-English articles, articles on paediatric renal

transplantation, or other fields of transplantation or nonpharma-

cometric approaches, were excluded. Additionally, articles

describing the development or validation of population PK mod-
els using exclusively C0 were excluded. Reference lists of selected

articles were screened for additional articles, and a selection of

miscellaneous articles was added to supply background informa-

tion. The search generated 684 unique articles, of which 88 were

included in this review (Fig. S1 in the supplemental information

online).

Quality assessment.
Population PK study quality was assessed using a systematic

approach. Studies were evaluated on nine quality items: ‘popula-

tion description’, ‘data description’, ‘data validity’, ‘statistical

approach’, ‘structural model’, ‘stochastic model’, ‘covariate

model’, ‘model evaluation’, and ‘model validation’, as derived

from the European Medicines Agency (EMA) guideline on report-

ing the results of population PK analyses.122 The EMA require-

ments for each item were translated into a scoring algorithm

(Table S1 in the supplemental information online). The resultant
score ranges from 0 to 16, providing an indication of the concor-

dance of the study with ‘good pharmacometric modelling prac-

tices’ (Fig. 1).

Data extraction.
Information was extracted systematically. For study character-

istics, the drug, formulation, dose, concomitant immunosuppres-

sive therapy, sample size, number of PK observations, sampling

schedule, bioanalytical assay(s), and post-transplant time were
42 www.drugdiscoverytoday.com
collected. For models, the software, model structure, parameter

estimates, evaluated covariates, and model evaluation tech-

niques were collected. For Bayesian estimators, sampling

schemes, reference exposure measures, prediction bias (MPPE

or MPE), prediction imprecision (root mean squared prediction

error; RMSE, or mean absolute prediction error; MAPE), Pearson’s
correlation coefficient (R2), percentage of predictions exceeding

±15–20% (P15–P20) of the reference exposure, and evaluation

technique(s) were collected.

Statistics and software.
To compare parameter estimates across studies, clearance

and central distribution volume were selected as primary PK

model parameters. These were standardised and converted to

means, weighted according to the development cohort sample

size. If possible, uncertainty measures were standardised to stan-

dard errors. Stratification to formulation and concomitant cyclos-

porine was applied, because these can affect

immunosuppressant PK. Owing to model heterogeneity across
studies, parameters other than clearances and central distribu-

tion volumes are referred to as nonweighted means and/or

ranges. Additionally, we compared Bayesian estimator predictive

performances. The MPPE and RMSE (or MAPE) were selected for

prediction bias and imprecision, respectively. The maximal toler-

able bias and imprecision were set at ±10% and 25%, respec-

tively. Visualisation and statistics were performed in R 3.6.1 (R

Foundation for Statistical Computing, Vienna, Austria) and RStu-
dio 1.2.5019 (RStudio Inc., Boston, USA).
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Glossary

Alemtuzumab: a humanised monoclonal antibody targeting CD52 on lymphocytes,

yielding profound immune cell depletion. Alemtuzumab is applied as induction
and anti-rejection immunosuppressive therapy in renal transplantation by means
of an off-label construction.

Antithymocyte globulin: rabbit- or horse-derived polyclonal antilymphocyte antibodies,
yielding profound immune cell depletion upon administration. Antithymocyte
globulin is applied as induction and antirejection immunosuppressive therapy in
renal transplantation.

Basiliximab: a humanised monoclonal antibody targeted at CD25 on the interleukin-2
(IL-2) receptor on T cell progenitors, preventing IL-2-induced T cell proliferation.
Basiliximab is applied as induction immunosuppressive therapy in renal
transplantation.

Bayesian estimator: a certain combination of consecutive PK observations used as
input in a population PK model to predict a full area under the concentra-
tion–time curve, the gold standard marker for the total amount of drug in the
body.

Belatacept: a fusion protein of human cytotoxic T lymphocyte-associated protein
4 extracellular domain and a modified human immunoglobulin 1 Fc, targeted
at CD80/CD86 on antigen-presenting cells to block T cell activation. Belata-
cept is applied as maintenance immunosuppressive therapy in renal
transplantation.
Everolimus: a mTOR inhibitor, yielding cell cycle arrest resulting in the inhibition of
lymphocyte proliferation. Everolimus is applied as maintenance immunosup-
pressive therapy in renal transplantation.

Mycophenolic acid (MPA): an inhibitor of inosine-5-monophosphate dehydrogenase
type 2, which converts inosine monophosphate to guanosine monophosphate in
lymphocytes, inhibiting the formation of key factors for DNA and RNA synthesis.
MPA is applied as maintenance immunosuppressive therapy in renal
transplantation.

Pharmacometrics: the science of describing the xenobiotic–biotic interplay in its
broadest sense using computer-aided mathematical modelling.

Population pharmacokinetic (PK) model: a mathematical model which describes the
typical PK behaviour of a drug in a specific population, and characterises the
between-subject and within-subject variability in that PK behaviour across the
population.

Sirolimus: a mTOR inhibitor, yielding cell cycle arrest resulting in the inhibition of
lymphocyte proliferation. Sirolimus is applied as maintenance immunosuppres-
sive therapy in renal transplantation.

Tacrolimus: a calcineurin inhibitor interacting with transcription factor dephospho-
rylation, inhibiting the production of key factors for T helper cell activation and
proliferation. Tacrolimus is applied as maintenance immunosuppressive therapy
in renal transplantation.
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