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Abstract
Global genome nucleotide excision repair (GG-NER) eliminates a broad spectrum of DNA lesions from genomic DNA. 
Genomic DNA is tightly wrapped around histones creating a barrier for DNA repair proteins to access DNA lesions buried 
in nucleosomal DNA. The DNA-damage sensors XPC and DDB2 recognize DNA lesions in nucleosomal DNA and initiate 
repair. The emerging view is that a tight interplay between XPC and DDB2 is regulated by post-translational modifica-
tions on the damage sensors themselves as well as on chromatin containing DNA lesions. The choreography between XPC 
and DDB2, their interconnection with post-translational modifications such as ubiquitylation, SUMOylation, methylation, 
poly(ADP-ribos)ylation, acetylation, and the functional links with chromatin remodelling activities regulate not only the 
initial recognition of DNA lesions in nucleosomes, but also the downstream recruitment and necessary displacement of GG-
NER factors as repair progresses. In this review, we highlight how nucleotide excision repair leaves a mark on chromatin to 
enable DNA damage detection in nucleosomes.
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DNA damage recognition in nucleotide 
excision repair

Cells are continually exposed to different sources of DNA 
damage including solar UV light, environmental chemicals, 
food-borne mutagens, and reactive metabolites that generate 
a wide variety of structurally diverse genomic DNA lesions 
[1, 2]. Dedicated DNA repair mechanisms recognize and 
remove genomic DNA lesions to maintain genome integrity 
and prevent disease [3]. Nucleotide excision repair (NER) is 
a versatile DNA repair pathway that eliminates a wide range 
of structurally diverse DNA lesions from genomic DNA, 

including UV-induced photolesions, such as 6–4 pyrimi-
dine–pyrimidone photoproducts (6-4PPs) and cyclobutane 
pyrimidine dimers (CPDs) [4].

DNA lesions in transcribed strands are substrates of tran-
scription-coupled repair (TC-NER) [5], while elimination of 
DNA lesions throughout the genome is carried out by global 
genome repair (GG-NER) [6, 7]. Recognition through both 
sub-pathways ultimately leads to a common mechanism of 
verification, excision and re-synthesis of the damaged DNA, 
involving the same set of core NER proteins, including the 
TFIIH complex, XPA, RPA and the endonucleases XPG and 
ERCC1-XPF (Fig. 1a) [4]. The mechanisms involved in TC-
NER initiation have been reviewed recently [5, 8, 9]. In this 
review we focus on recent insight into how GG-NER is initi-
ated and operates in a chromatin context (see Table 1,2,3).

The recognition of DNA lesions during GG-NER is 
critically dependent on the DNA damage-recognition com-
plex XPC-RAD23B, which utilizes an indirect recognition 
mechanism [10–13]. Structural studies of Rad4, the yeast 
homolog of XPC, have shown that the protein uses four 
domains for DNA and damage recognition [12, 14]. The 
BHD1 and TGD domains anchor the protein on DNA non-
specifically to allow the BHD2 and BHD3 domains to probe 
for sites of thermodynamic destabilization induced by the 
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lesion. BHD2-3 interacts with the lesion site through a bind-
ing pocket for two native bases on the undamaged strand and 
by inserting the tips of BHD3 into the duplex at the site of 
the lesion, displacing the lesion into an extrahelical position 
[14, 15] (Fig. 1b). XPC does not make any specific contacts 
with the lesion itself. This feature of XPC explains the broad 
substrate specificity of lesion binding by XPC and NER in 
general [15–17]. Furthermore, a “kinetic gating” mechanism 
for Rad4/XPC lesion binding has been proposed, which sug-
gests that lesion recognition primarily depends on the local 
destabilization of the DNA duplex and the protein's retention 
time at the lesion site rather than the presence of a particu-
lar lesion. These observations explain why the XPC protein 
binds with high affinity to helix-destabilizing DNA lesions, 
such as 6-4PPs, while its affinity for the more abundant, 

but less helix-destabilizing UV-induced CPD photolesions 
is rather low [18].

For the recognition of CPDs, XPC needs the support of the 
 CRL4DDB2 complex, consisting of DDB2, the damage-recog-
nition protein, and DDB1, which serves as a link to a CUL4A-
RBX1-based (CRL4) E3 ubiquitin ligase complex [19–21]. 
DDB2 directly associates with photolesions by extruding the 
lesion out of the helix into a hydrophobic pocket embedded in 
its WD40 domain using three residues that form a wedge to take 
the place of the lesion in the helix (Fig. 1c) [21, 22]. An overlay 
of the structures of XPC and DDB2 bound to 6-4PPs suggests 
that the two proteins cannot coexist on a lesion. Instead, DDB2 
makes the lesion more accessible for XPC by opening the DNA 
at the lesion to generate a helix-destabilizing substrate that is 
recognized by XPC [21, 22]. The recruitment of XPC is further 
dependent on direct protein–protein interactions with DDB2 [23, 

Fig. 1  DNA damage-recogni-
tion factors initiate GG-NER. 
a Model of GG-NER initiation 
by the  CRL4DDB2 complex 
(consisting of DDB2-DDB1-
CUL4A-RBX1) and the XPC 
complex (consisting of XPC, 
RAD23B, CETN2), which is 
followed by the recruitment of 
the TFIIH complex, XPA, RPA 
and the endonucleases XPG 
and ERCC1-XPF. b Structure 
of yeast Rad4/XPC bound to 
a 6-4PP lesion. The lesion 
is displaced from the helix 
stack using the hairpins of the 
BHD2 and BHD3 domains. 
The BHD2/3 domains form a 
tight binding pocket for the dA 
residues in the non-damaged 
strand, but do not contact the 
lesion directly. The BHD1-
TGD domains of Rad4/XPC 
bind in a damage and sequence 
non-specific manner and anchor 
the protein on DNA during the 
lesion search process. Figure 
generated using PDB 6CFI with 
PyMol. c Structure of UV-
DDB (consisting of DDB2 and 
DDB1) bound to a 6-4PP in a 
nucleosome. The DDB2 protein 
binds to the nucleosome at a 60° 
angle and pushes the 6-4PP into 
a lesion-binding pocket using 
wedge residues (F334, Q335 
and H336). Figure generated 
using PDB 6R8Y with PyMol
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24]. These findings suggest that DDB2 is needed to bring XPC 
in proximity of the lesion, but that the binding of XPC opposite 
of the DNA lesion requires the displacement of DDB2 to prevent 
steric clashes between the two damage-recognition proteins.

DNA damage detection in nucleosomes

The process of GG-NER has been fully reconstituted 
in  vitro with recombinant purified components and is 
independent of DDB2 under these conditions [25, 26]. 

While reconstituted GG-NER operates well on naked 
DNA, genomic DNA is tightly wrapped around histones 
creating a barrier for DNA repair proteins to access DNA 
lesions buried in nucleosomal DNA [27, 28]. Earlier bio-
chemical studies showed that chromatin remodelers can 
alleviate the chromatin barrier to repair proteins, thereby 
making lesions accessible to NER [29, 30]. Before any 
mechanisms of chromatin rearrangements were known, the 
repair of DNA lesions was envisioned to occur through 
an access-repair-restore model [31, 32]. It is now becom-
ing clear that DDB2 has a key role in facilitating DNA 

Table 1  Chromatin changes triggered by DDB2

Protein Modification Impact on chromatin References

ALC1 Chromatin remodeler DDB2 stimulates the recruitment of the ATP-dependent chromatin remodeler ALC1 
to UV damage

[69]

ASH1L Histone methyltransferase DDB2 interacts with and recruits ASH1L to UV-induced DNA lesions resulting in 
increased H3K4 tri-methylation levels in chromatin containing DNA lesions. Loss 
of ASH1L leads to a CPD repair defect

[130]

H2A Ubiquitylation DDB2 forms a complex with CUL4B-RING1B that ubiquitylates H2A at K119. 
Ubiquitylated H2A is a docking platform for ZRF1

[55]

H3, H4 Ubiquitylation DDB2 forms complex with CUL4A-RBX1 that ubiquitylates H3 and H4 in response 
to UV

[37, 55]

HBO1 Acetylation (HAT) DDB2 interacts with phosphorylated HBO1 which acetylates H3K14. HBO1 recruits 
the chromatin remodeler ACF1-SNF2H. DDB2 ubiquitylates HBO1 triggering its 
degradation at late time-points

[102]

HDAC1, HDAC2 Deacetylation (HDAC) DDB2 interacts with HDAC1 and HDAC2 resulting in H3K56 deacetylation [122]
INO80 Chromatin remodeler INO80 interacts with DDB1 and associates with UV-induced lesions, suggesting that 

its recruitment is mediated by DDB2. Loss of INO80 leads to a CPD repair defect
[67]

p300 Acetylation (HAT) DDB2-DDB1 interacts with p300 (through DDB1) [105, 106]
PARP1 PARylation PARP1 interacts with DDB2, which PARylates DDB2 to regulate its ubiquitylation 

and chromatin retention
[69, 70]

SIRT6 Deacetylation (HDAC) SIRT6 interacts with DDB2 and deacetylates lysines K35 and K77 in response to 
UV. Deacetylation promotes ubiquitylation and VCP/p97-mediated chromatin 
extraction

[44]

STAGA Acetylation (HAT) STAGA interacts with DDB1, and thus indirectly with the DDB2-DDB1 complex. 
The STAGA complex acetylates H3

[107]

Table 2  Proteins that affect the recruitment of XPC to DNA lesions

Protein Impact on XPC recruitment to DNA lesions References

ASH1L ASH1L-mediated H3K4 tri-methylation stimulates the association of XPC with nucleosomes. This involves a short 
β-turn motif (XPC residues 741–757) located between the two well-characterized β-hairpin domains BHD2 and BHD3 
involved in DNA binding

[130]

DDB2 DDB2 stimulates chromatin unfolding and XPC recruitment to photolesions [34, 36]
DOT1L DOT1L stimulates XPC recruitment in part through depositing H3K79 tri-methylation to trigger XPC binding and in part 

through a direct protein–protein interaction between XPC and DOT1L
[132]

HDAC3 HDAC3 deacetylates H3K12, which facilitates the recruitment of XPC. There are no detectable interactions between 
HDAC3 and XPC

[127]

HDAC4 HDAC4 interacts with XPC. The recruitment of XPC to photolesions is stimulated by HDAC4-mediated deacetylation [126]
INO80 XPC recruitment is stimulated by the DDB1-mediated interaction with the chromatin remodeler INO80 [67]
PARP1 XPC and PARP1 interact. The recruitment of XPC to DNA lesions is stimulated by PARP1-mediated PARylation [34, 71]
DDB2 The SUMOylation of DDB2 at K309 stimulates XPC recruitment to sites of local UV damage [41]
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lesion-recognition in a chromatin context [22, 33, 34]. 
DDB2 directly binds photolesions embedded in nucleo-
somal DNA (Fig.  1c) and mediates slide-assisted site 
exposure of buried lesions that face the nucleosome core 
[22, 35]. Additionally, as discussed extensively below, 
DDB2 plays a key role in regulating the recruitment and 
the activity of several chromatin remodelling and modi-
fying enzymes to regulate downstream steps during GG-
NER. These findings provide a mechanistic explanation 
for why DDB2 is essential for the repair of CPDs, while 
the repair of 6-4PPs is enhanced by, but not dependent on 
DDB2 [36].

The emerging picture is that the interplay between XPC 
and DDB2 is tightly regulated by post-translational modifi-
cations (PTMs) on the damage-recognition proteins them-
selves as well as on chromatin containing DNA lesions. 
The tight interplay between these DNA lesion-recognition 
proteins, their interconnection with PTMs such as ubiqui-
tylation, SUMOylation, methylation, poly(ADP-ribos)yla-
tion, acetylation, and the functional links with chromatin 
remodelling activities regulate not only the initial recogni-
tion of DNA lesions in chromatin, but also the downstream 
recruitment and necessary displacement of NER factors as 
repair progresses.

DNA damage‑recognition proteins and their 
interconnection with ubiquitylation

The  CRL4DDB2 ligase and histone H3 and H4 
ubiquitylation in response to UV

The E3 ubiquitin ligase activity of the  CRL4DDB2 complex 
has been linked to histone ubiquitylation during GG-NER. 
One study reported that the  CRL4DDB2 complex mediates 

the UV-induced ubiquitylation of histone H3 and H4, 
resulting in a weakened interaction between histones and 
DNA thereby facilitating XPC recruitment (Fig. 2a, b) 
[37]. Although these findings suggest a link between H3 
and H4 ubiquitylation and GG-NER, it will be important 
to identify the precise residues that are targeted for ubiq-
uitylation and determine the mechanistic basis for XPC 
recruitment to these ubiquitylated histones.

XPC and DDB2 ubiquitylation and SUMOylation 
facilitate DNA‑lesions recognition

Regulating the interplay and handover between lesion-rec-
ognition proteins DDB2 and XPC is crucial to initiate GG-
NER in chromatin. The catalytic activity of the  CRL4DDB2 
ubiquitin ligase complex has a key role during these early 
transactions. The  CRL4DDB2 complex ubiquitylates XPC in 
response to UV irradiation (Fig. 2b). However, this does not 
result in its proteasomal degradation but rather stabilizes the 
association of the protein with DNA [23, 38].  CRL4DDB2 
also auto-ubiquitylates DDB2 triggering its degradation 
[39, 40]. It is believed that the differential impact of ubiq-
uitylation of the two damage sensors stimulates the hando-
ver from DDB2 to XPC, a process required for GG-NER 
progression. In addition, DDB2 becomes conjugated with 
SUMO-1 at lysine residue K309 in response to UV irradia-
tion. This modification was shown to stimulate XPC recruit-
ment and regulate efficient repair of CPDs [41].

DDB2 ubiquitylation regulates its chromatin 
extraction

The handover of DNA lesions from DDB2 to XPC is tightly 
regulated at multiple levels. First, the initial transient 

Table 3  Proteins and modification that regulate XPC retention at DNA lesions

Protein Modification Impact on XPC retention at DNA lesions References

CHD1 Recruitment XPC recruits the chromatin remodeler CHD1 to nucleosomes to stimulate XPC displacement 
and TFIIH recruitment

[80]

DDB2 Ubiquitylation DDB2 ubiquitylates XPC which stimulates its binding to DNA [23]
RNF111/Arkadia Ubiquitylation RNF111 ubiquitylates SUMOylated XPC. RNF111-mediated ubiquitylation stimulates chro-

matin extraction and promotes XPG and ERCC1/XPF recruitment
[47, 51]

SUMO-1 SUMOylation XPC is SUMOylated by SUMO-1 at residues K81, K89, K183. XPC SUMOylation stimulates 
XPC ubiquitylation

[45, 52]

TFIIH Protein TFIIH recruitment by XPC promotes DDB2 dissociation and stabilizes XPC chromatin bind-
ing

[42]

USP11 Deubiquitylation USP11 deubiquitylates XPC to prevent the VCP/p97-mediated extraction of XPC from chro-
matin

[50]

USP7 Deubiquitylation USP7 deubiquitylates XPC to prevent the VCP/p97-mediated extraction of XPC from chro-
matin

[49]
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Fig. 2  The role of ubiqui-
tylation and SUMOylation in 
GG-NER. a DDB2 is part of 
the  CRL4DDB2 ubiquitin ligase 
complex together with DDB1, 
CUL4A and RBX1 that binds to 
photolesions. b The  CRL4DDB2 
ligase ubiquitylates H3 and H4 
leading to chromatin decompac-
tion through an unknown mech-
anism, which stimulates XPC 
recruitment. DDB2 also ubiquit-
ylates XPC, which increases its 
affinity for DNA lesions. DDB2 
becomes SUMOylated at K309, 
which stimulates XPC recruit-
ment and promotes CPD repair. 
c DDB2 must dissociate to 
allow stable XPC binding to the 
DNA lesion. The displacement 
of DDB2 is stimulated by the 
recruitment of TFIIH by XPC. 
The ubiquitin-selective segre-
gase VCP/p97 further stimu-
lates the dissociation of DDB2 
through extraction of ubiqui-
tylated DDB2 from chromatin. 
XPC is SUMOylated at K81, 
K89 and K183, which was sug-
gested to stimulate the handover 
between XPC and DDB2. d The 
SUMO-dependent E3 ubiquitin 
ligase RNF111 recognizes and 
ubiquitylates the SUMOylated 
form of XPC. e The ubiqui-
tylated form of XPC may also 
be extracted from chromatin 
by VCP/p97 to enable efficient 
recruitment of the endonuclease 
XPG. This is important because 
XPG and XPC cannot coexist in 
the same NER complex
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XPC-mediated recruitment of the TFIIH complex stimulates 
DDB2 dissociation thereby promoting the formation of a 
stable XPC-TFIIH complex [42] (Fig. 2c). Furthermore, the 
ubiquitin-selective segregase VCP/p97 is involved in extract-
ing ubiquitylated DDB2 from damaged DNA to reduce its 
chromatin dwell time [43] (Fig. 2c). The inability to extract 
DDB2 from chromatin interferes with the stable binding of 
XPC and TFIIH to DNA lesions [42], suggesting that while 
the initial binding of DDB2 stimulates XPC recruitment, 
its prolonged binding actually inhibits subsequent GG-
NER progression. The interaction between VCP/p97 and 
DDB2 is stimulated by the deacetylase SIRT6, suggesting 
that the UV-induced deacetylation of DDB2 promotes its 
ubiquitylation and subsequent extraction from chromatin 
[44]. Interestingly, the UV-induced SUMOylation of XPC 
at lysine residues K81, K89 and K183 was suggested to 
regulate the release of DDB2 in trans. More specifically, 
an XPC mutant that cannot be SUMOylated (3KR) shows 
a stronger UV-induced immobilization on chromatin and a 
more pronounced DNA repair defect, which was partially 
alleviated by the loss of DDB2 [45]. These findings suggest 
that XPC SUMOylation promotes efficient DDB2 dissocia-
tion and DNA damage handover to XPC. While this is an 
interesting possibility, an alternative—but not necessarily 
mutually exclusive—function for XPC SUMOylation is dis-
cussed in Section XPC extraction from chromatin requires 
SUMOylation .

XPC ubiquitylation may regulate its chromatin 
extraction

XPC is possibly also extracted from chromatin by VCP/p97, 
but conflicting data exists as siRNA-mediated depletion of 
VCP was found to increase XPC binding to local DNA dam-
age in one study [43], while treatment of cells with VCP 
inhibitor was found to reduce XPC binding in another study 
[42]. Extraction of ubiquitylated XPC may facilitate the 
assembly of the NER pre-incision complex (Fig. 2d, e). In 
particular the XPG endonuclease and XPC cannot coexist 
in the same NER complex [46–48]. Importantly, ubiquity-
lated XPC needs to remain bound long enough to recruit the 
TFIIH complex, which may be regulated by two deubiqui-
tylases, USP11 and USP7, that each interact with and deu-
biquitylate XPC to prevent its untimely extraction [49, 50].

XPC extraction from chromatin requires 
SUMOylation

Although DDB2 was reported to ubiquitylate XPC [23], 
another E3 ligase known as RNF111 (Arkadia) was also 
shown to act on XPC [47, 51]. RNF111 is a so-called 
SUMO-targeted ubiquitin E3 ligase (STUbL) that selectively 

ubiquitylates substrates that were previously conjugated with 
SUMO (Fig. 2d). Indeed, XPC is modified by SUMO-1 at 
lysine residues K81, K89, K183 and by SUMO-2 under 
unchallenged conditions [45, 47], although one study 
reported the UV-induced SUMOylation of XPC [52]. These 
studies showed that while SUMOylation of XPC did not 
affect its initial binding to lesions, it was required for the 
extraction of XPC from chromatin, in conjunction with ubiq-
uitylation by RNF111 [43, 45, 47, 51]. Consistent with XPC 
and XPG being mutually exclusive in NER complexes, the 
RNF111-mediated ubiquitylation of XPC is required for effi-
cient XPG recruitment [47] (Fig. 2e). As described above, an 
XPC-3KR SUMOylation-deficient mutant becomes strongly 
immobilized on chromatin after UV irradiation in a DDB2-
dependent manner. This suggests that SUMOylated XPC 
may regulate the release of DDB2 in trans [45]. An alterna-
tive explanation, which is more in line with results from 
these other studies [47] is that the XPC-3KR mutant itself is 
not extracted from chromatin in a timely manner and blocks 
the NER reaction. It is possible that this effect is exacerbated 
by DDB2, which stimulates XPC recruitment to chromatin 
after UV irradiation [53], resulting in even higher levels of 
XPC on chromatin.

The  CRL4DDB2 ligase and histone H2A ubiquitylation 
in response to UV

The ubiquitylation of histone H2A has also been linked to 
GG-NER [54–57], although general consensus about the 
underlying mechanism is lacking. One study observed a 
reduction of H2A ubiquitylation within the first 30 min after 
UV irradiation followed by a DDB2-mediated restoration of 
H2A mono-ubiquitylation at 2 h post UV to levels similar as 
before UV irradiation [56]. Whether this reflects the canon-
ical H2A ubiquitylation at K119 [58] or perhaps another 
residue detected by the same antibody is currently unclear. 
Conceptually, it is not clear how reducing H2A ubiquityla-
tion levels after UV and restoring these levels in a DDB2-
dependent manner could facilitate GG-NER. Another study 
did not observe a decrease in H2A ubiquitylation levels, but 
did report increased levels in the first 30 min after UV in a 
manner dependent on DDB2 and the canonical H2A ligase 
RING1B [55].

To complicate matters further, not  CRL4DDB2 but the E3 
ubiquitin ligase RNF8 was shown to catalyze H2A ubiqui-
tylation as a late DNA damage signalling event during GG-
NER [57]. This is consistent with an earlier study showing 
that H2A ubiquitylation after UV is dependent on functional 
GG-NER and subsequent ATR activation [54, 59], which is 
required for H2AX phosphorylation and RNF8 recruitment 
[57]. These findings suggest a mechanism in which dam-
age excision exposes single-stranded DNA that, probably 
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following gap extension by exonuclease EXO1 [60], triggers 
ATR activation and subsequent DNA damage signalling that 
is similar to the DNA double-strand break (DSB) response. 
In the DSB response, RNF8 was shown to target histone H1 
[61], while the subsequent recruitment of RNF168 targets 
histone H2A at K13/K15 [62]. Taken together, the available 
data suggests that H3/H4 ubiquitylation by  CRL4DDB2 com-
plex facilitates GG-NER [37] (see The  CRL4DDB2 ligase and 
histone H3 and H4 ubiquitylation in response to UV), while 
a potential role of H2A ubiquitylation by  CRL4DDB2 during 
early GG-NER remains more enigmatic.

An alternative E3 ubiquitin ligase complex 
containing DDB2

One study proposed that the ubiquitylation of H2A dur-
ing early GG-NER is not carried out by the canonical 
 CRL4DDB2 ubiquitin complex, but rather by an alternative 
E3 ubiquitin ligase complex consisting of DDB2-DDB1-
CUL4B-RING1B (CUL4B/RING1BDDB2) [55]. RING1B is 
the catalytic subunit of the polycomb-repressive complex 
1 involved in gene silencing during differentiation [63]. 
The initial recruitment of CUL4B/RING1BDDB2 to DNA 
lesions by DDB2 was suggested to deposit H2A ubiquityla-
tion, which is recognized by the ubiquitin-binding domain 
of ZRF1. Upon recruitment to DNA lesions, ZRF1 was sug-
gested to remodel the CUL4B/RING1BDDB2 complex and 
exchange CUL4B-RING1B with CUL4A-RBX1, to turn the 
CUL4B/RING1BDDB2 complex into the canonical CUL4A/
RBX1DDB2 complex [55]. Instead of targeting histones, the 
CUL4A/RBX1DDB2 complex was found to ubiquitylate XPC 
[55], consistent with previous reports [23] (see XPC and 
DDB2 ubiquitylation and SUMOylation facilitate DNA-
lesions recognition).

Although the involvement of ZRF1 and the potential 
remodelling of a DDB2 containing E3 ubiquitin ligase 
complex with two functional modules—CUL4B/RING1B 
and CUL4A/RBX1—in GG-NER is very intriguing, these 
findings have not been verified by other groups yet and also 
raise many conceptual questions. For instance, proteomics 
approaches have identified the presence of the  CRL4ADDB2 
complex containing RBX1 in unirradiated cells [20, 42, 56], 
which will be recruited to DNA lesions through DDB2. It 
is, therefore, unclear what the added advantage of local-
ized remodelling of a  CRL4DDB2 complex is. Also, how is 
the relative recruitment of the CUL4B/RING1BDDB2 and 
CUL4A/RBX1DDB2 complexes regulated? Answering these 
questions will provide a better understanding of the role of 
the E3 ubiquitin ligase complexes containing DDB2 during 
early GG-NER.

Chromatin remodelling during the DNA 
damage‑recognition step in GG‑NER

The binding of DDB2 triggers chromatin unfolding and 
opening in response to UV irradiation [33, 34], which is 
thought to facilitate XPC recruitment. Interestingly, while 
DDB2 recruitment occurs independently of ATP hydrolysis, 
the recruitment of XPC is inhibited when ATP is depleted 
[34], suggesting that chromatin accessibility is likely 
increased by the activity of ATP-dependent chromatin 
remodelers. In the following sections, we discuss the role 
of chromatin remodelers during the initiation of GG-NER.

The INO80 complex stimulates XPC recruitment

The INO80 remodeler consists of 10–15 polypeptides and 
exhibits ATP-dependent chromatin remodelling activ-
ity [64]. Besides its role in DSB repair [65] and possibly 
interstrand crosslink repair [66], the INO80 complex is 
also implicated in GG-NER [67]. Both the INO80 and the 
ARP5 subunits were shown to associate with and stimulate 
the removal of UV-induced DNA lesions. INO80 interacted 
with DDB1 and cells depleted of INO80 showed decreased 
XPC recruitment, suggesting that INO80 may be recruited 
by  CRL4DDB2 upstream of XPC [67] (Fig. 3a). Because 
formal proof for this scenario is still lacking, it will be 
important to establish whether DDB2 is indeed required for 
INO80 recruitment. Interestingly, yeast INO80 interacts with 
Rad4—the yeast orthologue of XPC- and INO80-deficient 
yeast strains are sensitive to UV irradiation [68]. Neverthe-
less, in yeast INO80 was implicated in restoring chromatin 
after repair rather than facilitating lesion removal, making it 
currently unclear whether INO80 has an evolutionary con-
served role or possibly multiple roles in GG-NER.

PARP1, DDB2 and XPC: A ménage à trois

Poly(ADP-ribose) polymerase 1 (PARP1) has been linked 
to the early stages of GG-NER through its interaction with 
both DDB2 [69, 70] and XPC [71] (Fig. 3b). PARP1 uses 
NAD + as a substrate to add poly-ADP-ribose (PAR) chains 
to target proteins. Such PAR chains can contain up to 200 
ADP-ribose units [72] and form highly branched structures 
[73] thereby adding a strong negative charge to target pro-
teins. Interestingly, PARP1 associates with UV-induced 
DNA lesions independently of XPC and DDB2 [71], sug-
gesting that PARP1 may be a third independent sensor of 
photolesions [74, 75]. The interaction between PARP1 and 
DDB2 was suggested to stimulate the catalytic activity of 
PARP1 resulting in PARylation of DDB2, which increased 
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its chromatin retention by inhibiting its ubiquitin-mediated 
proteasomal degradation [69]. By preventing untimely deg-
radation of DDB2, the PARP1-dependent modification of 
DDB2 stimulates XPC recruitment to DNA lesions [69, 70]. 

This illustrates that the chromatin dwell time of DDB2 is 
tightly controlled to ensure that it is sufficiently long to stim-
ulate XPC recruitment [69, 70], without inhibiting full XPC 
engagement and subsequent TFIIH recruitment [42, 43].

Fig. 3  The role of chromatin 
remodelers and PARylation in 
GG-NER. a Lesion recognition 
by DDB2 may recruit the ATP-
dependent chromatin remodeler 
INO80. While INO80 was 
shown to be recruited by DDB1, 
we speculate that this is also 
dependent on DDB2. b DDB2 
interacts with PARP1 and stim-
ulates its catalytic activity. Note 
that PARP1 binds to photole-
sions independently of DDB2 or 
XPC. PARP1 modifies itself and 
DDB2 with PAR chains. The 
PAR-binding chromatin remod-
eler ALC1 is recruited and 
stimulates GG-NER. PARP1 
also interacts with XPC already 
in the absence of DNA damage 
and facilitates its recruitment to 
photolesions, particularly at low 
damage load. c XPC recruits the 
chromatin remodeler CHD1. d 
CHD1 facilitates the displace-
ment of XPC to stimulate TFIIH 
recruitment
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Independently of this PARP1-DDB2 mechanism, PARP1 
also directly interacts with XPC in the nucleoplasm of 
unchallenged cells and stimulates its recruitment to DNA 
lesions. While the catalytic activity of PARP1 was not 
required to form the PARP1-XPC complex, it did stimu-
late the recruitment of XPC to DNA lesions in a DDB2-
independent manner [71]. These findings reveal that PARP1 
is tightly linked to early DNA damage recognition by both 
DDB2 and XPC (Fig. 3b). What the exact mechanism of 
PARP1 in damage recognition is, whether XPC is involved 
in stimulating the catalytic activity of PARP enzymes and 
whether other PARP enzymes, such as PARP2 and PARP3, 
are involved in GG-NER remain open questions for future 
research.

The poly‑ADP‑ribose‑dependent chromatin 
remodeler ALC1 regulates GG‑NER

The ATP-dependent chromatin remodeler ALC1, also 
called CHD1L, becomes activated upon binding PAR 
chains through its macrodomain [76], resulting in increased 
chromatin accessibility through nucleosome sliding [77]. 
ALC1 is recruited to UV-induced DNA lesions in a PARP1-
dependent manner and stimulates CPD repair [69] (Fig. 3b). 
Given the intricate interplay between PARP1, DDB2 and 
XPC [34, 69–71], these DNA damage sensors are likely 
involved in regulating ALC1 recruitment or activation in 
response to UV irradiation (Fig. 3b). Depletion of DDB2 
was indeed shown to affect the recruitment of ALC1 to sites 
of UV-induced DNA lesions in XPA-deficient cells [69]. It 
is important to note that the detection of the PAR response 
during GG-NER initiation in these studies often required 
the depletion of the PARG glycohydrolase, which catalyses 
removal of PAR chains, in GG-NER-deficient cells to boost 
PAR levels. Now that more sensitive tools have been devel-
oped in the last few years, such as recombinant antibody-like 
ADP-ribose binding proteins [78], it will be important to 
confirm these earlier findings and re-evaluate conclusions 
under more physiological settings.

CHD1 stimulates the XPC to TFIIH handover

CHD1 belongs to the CHD family of ATP-dependent chro-
matin remodelers and contains a central SNF2-like ATPase 
domain, a DNA-binding domain in its C-terminal and two 
tandem chromodomains in its N-terminus [79]. CHD1 was 
reported to be recruited to nucleosomes after UV irradia-
tion in an XPC-dependent manner and to stimulate efficient 
XPC displacement and subsequent TFIIH recruitment [80] 
(Fig. 3d). Although clearly detectable, the impact on TFIIH 
recruitment was rather modest and resulted in delayed CPD 
repair kinetics in CHD1-depleted cells [80]. Although 
these findings suggest that CHD1 acts on XPC to promote 

its displacement or that subsequent TFIIH recruitment may 
require a different chromatin configuration, these ideas are 
difficult to reconcile with NER models in which XPC forms 
a stable DNA damage verification complex together with 
TFIIH [17, 42, 81]. Thus, the precise mechanism under-
lying CHD1 function in GG-NER and requirement of its 
ATP-dependent chromatin remodelling activity remain to be 
further verified and established. Also, whether other CHD 
family members, including CHD2, CHD3 and CHD4 which 
have been found to be important to DSB repair pathways in 
different chromatin environments [82–88], function in NER 
remains to be investigated.

The role of SWI/SNF remodelers in GG‑NER: 
a confusing affair

The SWI/SNF chromatin remodelers incorporate either 
BRM or BRG1 as ATPase subunit to confer ATP-depend-
ent chromatin remodelling activity [89]. The loss of either 
BRM or BRG1 results in a NER defect, highlighting an 
involvement in GG-NER [90–93]. One study reported a 
UV-induced interaction between BRG1 and DDB2 and sug-
gested that BRG1 stimulates the recruitment of XPC to DNA 
lesions early during GG-NER [92]. Somewhat confusingly, 
BRG1 was found to accumulate at sites of UV-induced DNA 
lesions only at very late time-points after UV (8 h) when 
DDB2 and XPC are no longer bound to damage sites [92], 
arguing against direct recruitment of BRG1 by DDB2 to 
sites of DNA damage. Another study showed that BRG1 
can interact with XPC in co-IP experiments and that BRG1 
stimulates XPG recruitment without affecting XPC recruit-
ment [93].

More recent work demonstrates that these remodel-
ers likely affect GG-NER through an indirect mechanism 
[91]. The SWI/SNF ATPases BRM and BRG1 were found 
to promote the transcription of the GTF2H1 gene encod-
ing the p62 core subunit of the TFIIH complex by binding 
to its promoter. Depletion of either BRM or BRG1 indeed 
downregulates p62 expression and therefore compromises 
TFIIH stability and the recruitment of GG-NER proteins 
that bind downstream of TFIIH, including XPG [91]. This is 
consistent with reduced XPA and XPG recruitment reported 
earlier [93, 94]. Importantly, the DNA damage sensitivity of 
BRM/BRG1-depleted cells correlates with p62 levels and 
re-expression of p62 restores their phenotype [91], revealing 
an indirect involvement of SWI/SNF chromatin remodelers 
rather than a direct role during DNA damage recognition in 
GG-NER. Loss of SWI/SNF subunits was also found to con-
fer UV hypersensitivity in yeast and C. elegans, suggestive 
of functional evolutionary conservation [95, 96]. Although 
the reported interaction of two subunits with Rad4 in yeast 
may point to a more direct role in GG-NER in this species, 
mapping of genome-wide repair in yeast lacking SWI/SNF 
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subunits shows that this complex is only required for GG-
NER in a small subset of genes [97]. Instead, the related 
RSC ATP-dependent remodeling complex was found to pro-
mote GG-NER in both nucleosomal and non-nucleosomal 
DNA throughout the yeast genome.

DNA damage‑recognition proteins and their 
interconnection with histone modifications

DDB2 triggers histone acetylation in response to UV 
irradiation

The acetylation of histones at various lysine residues is asso-
ciated with increased chromatin accessibility [98] due to a 
weakened electrostatic interaction between DNA and histone 
tails [99, 100]. In response to UV irradiation there is a strong 
increase in global H3 and H4 acetylation, suggesting that 
this modification acts to stimulate DNA repair in chromatin 
[101, 102]. However, the precise roles of histone acetylation 
in response to UV irradiation are not yet fully understood. 

For instance, there is a strong increase in H3 and H4 acety-
lation immediately as well as several hours after UV [101, 
103], while cycling cells also degrade acetylated histones 
independently of NER in response to replication stress [104].

Histone acetyltransferases (HATs) transfer an acetyl-
group from acetyl-coenzyme A onto acceptor proteins such 
as histones. DDB2 interacts with a number of HATs and 
targets their histone acetyltransferase activity to chromatin 
containing DNA lesions. Earlier studies revealed that DDB2 
interacts with the HATs p300 [105, 106] and the STAGA 
complex [107], containing the GCN5 catalytic subunit, 
which predominantly acetylates H3 [108] (Fig. 4). In addi-
tion, DDB1 was found to interact with a GCN5-containing 
complex that acetylates H3 [109]. Although GCN5 has been 
implicated in promoting NER via acetylation of H3K9 in 
both yeast and mammals [110–112], the exact roles of these 
HATs in GG-NER requires further investigation. Nonethe-
less, these findings clearly highlight the connection between 
DDB2 and histone acetyltransferase activities. In further 
support of such a connection, DDB2 itself was found to be 

Fig. 4  A model of the role of 
acetylation, deacetylation and 
methylation in GG-NER. a 
UV-induced lesions in chro-
matin are recognized by DDB2 
resulting in the recruitment of 
three histone acetyltransferases 
(STAGA, p300 and phosphoryl-
ated HBO1). b These enzymes 
catalyse histone acetylation 
leading to increased chromatin 
accessibility. Phosphorylated 
HBO1 recruits the chromatin 
remodeler SNF2H. c Effi-
cient recruitment of XPC also 
requires histone deacetylation, 
which is facilitated by DDB2 
through the proteolytic degrada-
tion of p300 and HBO1, as well 
as through the recruitment of 
histone deacetylases (HDAC1-
4). Finally, DDB2 also recruits 
the methyltransferase ASH1L 
and possibly DOT1L, which 
methylate H3K4 and H3K79, 
respectively. XPC preferentially 
associates with nucleosomes 
containing methylated histones
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acetylated [113] and deacetylated by SIRT6 in response to 
UV irradiation [44].

More recent findings suggest that DDB2 interacts with 
the histone acetyltransferase HBO1, also called KAT7, from 
the MYST family in a UV-dependent manner and facilitates 
its recruitment to CPDs [102]. Once recruited by DDB2, the 
HBO1 enzymatic activity stimulates acetylation of H4 and 
H3K14 and recruits the ATP-dependent chromatin remod-
eler ACF1-SNF2H through protein–protein interaction in 
response to UV irradiation, which facilitates XPC recruit-
ment to photolesions [102] (Fig. 4). It should be mentioned, 
however, that an earlier study found that ACF1-SNF2H 
functions in TC-NER without an apparent role in regu-
lating GG-NER efficiency [114]. DDB2 was suggested to 
specifically interact with and recruit phosphorylated HBO1 
to sites of DNA damage, which is a substrate of the ATR 
protein kinase [115]. It is, however, unclear precisely how 
HBO1 can be phosphorylated by ATR. While ATR has been 
implicated during the damage recognition step [116, 117], 
multiple studies have shown that ATR activation is triggered 
later in NER in a manner that is dependent on dual incision 
[57, 59, 118–120]. One potential explanation could be that 
successful repair of 6-4PP triggers ATR activation, which 
would stimulate the HBO1-DDB2 interaction and facilitate 
CPD repair.

Histone deacetylation stimulates XPC recruitment

While DDB2 may stimulate UV-induced histone acetylation 
during early repair, DDB2 may also promote the reversal 
of this chromatin mark at later time-points by regulating 
the proteolytic degradation of HATs and the recruitment of 
histone deacetylases (HDACs). DDB2 is incorporated in 
the  CRL4DDB2 E3 ubiquitin ligase complex [20] that ubiq-
uitylates phosphorylated HBO1 leading to its proteasomal 
degradation after UV irradiation [115]. Similarly, p300 is 
also degraded by the proteasome in a UV-dependent manner 
[121], but to what extent this is regulated by DDB2 remains 
to be determined.

DDB2 was also reported to facilitate recruitment of his-
tone deacetylases HDAC1 and HDAC2 to UV-induced DNA 
lesions resulting in deacetylation of H3K56 [122]. Indeed, 
acetylation levels of both H3K56 and H3K9 were reduced 
in response to UV irradiation [123]. At late time-points after 
UV H3K56 acetylation was increased, a step suggested to 
shut-down the UV-induced cell cycle checkpoint [124]. The 
precise function of H3K9 and H3K56 deacetylation during 
the early steps of GG-NER remains to be elucidated.

Besides HDAC1 and HDAC2 [122], additional histone 
deacetylation steps by HDAC3 and HDAC4 have been impli-
cated in GG-NER. In fact, all four HDACs were found to 
stimulate recruitment of XPC to UV-induced DNA lesions 
[125–127], possibly by lowering the inhibitory impact of 

histone acetylation on XPC binding to nucleosomes [125] 
(Fig. 4). Although the precise recruitment mechanism of 
HDAC3 and HDAC4 and the potential involvement of 
DDB2 are currently unclear, HDAC3 was specifically 
linked to H3K14 deacetylation in response to UV irradia-
tion, which was found to stimulate CPD repair in chromatin 
[126, 127]. How the HBO1-dependent H3K14 acetylation 
and the HDAC3-dependent H3K14 deacetylation are orches-
trated and synergize to stimulate CPD repair remains to be 
elucidated. Although current literature suggests that DDB2 
stimulates recruitment of HDAC1, HDAC2 and possibly 
other deacetylases resulting in local histone deacetylation 
(H3K9, H3K14, H3K56, H3K27) necessary for efficient 
XPC recruitment, further studies are needed to confirm 
these findings and provide a mechanistic basis for how his-
tone deacetylation facilitates XPC binding. Importantly, it 
remains to be determined how a combinatorial chromatin 
code involving specific acetylated and deacetylated histone 
tails shapes the optimal chromatin landscape for GG-NER. 
Considering that UV irradiation also triggers replication 
stress that causes proteasomal degradation of acetylated 
histones [104] and that both DDB2 and XPC are rapidly 
recruited to DNA damage sites within seconds [40, 128], 
it will be important to determine the histone PTM code 
immediately after UV irradiation and independently of DNA 
replication.

Histone methylation stimulates the DDB2–XPC 
handover

Histone methylation is catalysed by histone methyltrans-
ferases that mono, di or tri-methylate histone tails [129]. 
DDB2 was found to interact with and recruit the ASH1L his-
tone methyltransferase to UV-induced DNA lesions result-
ing in increased H3K4 tri-methylation levels in chromatin 
containing DNA lesions, which is required for the repair 
of CPDs [130]. H3K4 tri-methylation, in turn, stimulates 
the association of XPC with nucleosomes involving a short 
β-turn motif (XPC residues 741–757) located between the 
two well-characterized β-hairpin domains BHD2 and BHD3 
involved in DNA binding [130] (see Fig. 1b). Conversely, 
DDB2 preferentially associates with unmethylated nucle-
osomes, suggesting that H3K4 tri-methylation may stimu-
late the DDB2–XPC handover at CPDs (Fig. 4). The tri-
methylation of H3K4 is associated with active transcription 
and serves as a binding platform for chromatin remodelers 
[131]. Thus, UV-induced histone methylation could possibly 
trigger chromatin remodelling to facilitate GG-NER besides 
directly influencing XPC binding as well.

In addition to H3K4 tri-methylation, UV irradiation was 
also found to trigger increased H3K79 tri-methylation by meth-
yltranferase DOT1L [132]. In contrast to K4 which is located 
in the H3 tail, the K79 residue is located in the H3 core. The 
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action of DOT1L is thought to facilitate XPC recruitment in 
part through depositing H3K79 tri-methylation to trigger XPC 
binding and in part through a direct protein–protein interac-
tion between XPC and DOT1L [132]. Similarly, yeast DOT1L 
was found to promote GG-NER via H3K79 tri-methylation 
[133, 134]. However, unlike in mammalian cells, which show 
increased H3K79 tri-methylation [132], UV irradiation does 
not appear to increase H3K79 tri-methylation in yeast [134, 
135]. By contrast, another study in mouse embryonic fibro-
blasts challenged the view that DOT1L is important for GG-
NER, suggesting it rather acts in transcription recovery after 
UV [136]. Interestingly, mice genetically deleted for DOT1L 
develop melanomas upon UV irradiation, consistent with the 
frequent deletion of DOT1L observed in human melanomas 
[132]. Thus, how the XPC-DOT1L interaction contributes 
to GG-NER and whether DNA damage detection by XPC is 
directly influenced by its interaction with histones needs con-
firmation and further investigation.

The spatial organization of GG‑NER 
in distinct chromatin domains

The cell nucleus is a highly compartmentalized structure that 
contains distinct structural domains. Chromosomes consists 
of several dense chromatin domains of about 100–500 nm 
that each consist of several megabase pairs of DNA. An 
approximately 100-nm-wide shell at the surface of con-
densed chromatin domains—known as the perichromatin 
region—contains partly decondensed chromatin where GG-
NER was shown to mainly take place [137, 138]. Electron 
microscopy experiments revealed that XPC is only moder-
ately enriched in condensed chromatin domains, while both 
XPC and XPA became strongly enriched in the perichroma-
tin region following UV irradiation. These findings suggest 
that DNA lesions are recognized in condensed chromatin 
domains and subsequently relocate to the perichromatin 
region to be repaired. Indeed, electron microscopy experi-
ments show that UV-damaged chromatin domains undergo 
significant expansion, which might promote this transloca-
tion [138]. Similarly, DNA double-strand breaks in hetero-
chromatin were also found to relocate to the periphery of 
condensed chromatin domains to be repaired [139, 140].

In line with these findings, the repair of CPDs in het-
erochromatin is slower than in euchromatin and strongly 
depends on DDB2 for efficient repair [141, 142]. Live-cell 
imaging revealed that DDB2 mediates extensive heterochro-
matin decompaction that is accompanied by linker histone 
displacement [143]. Interestingly, the UV-induced rapid het-
erochromatin decompaction occurred within 30 min, is fully 
compatible with the recruitment of GG-NER proteins within 
heterochromatin domains, and was followed by a much slower 
heterochromatin recompaction phase within 12 h [143].

While CPDs form in both eu- and heterochromatin, it 
appears that UV irradiation selectively triggers 6–4 PP forma-
tion in euchromatin [142], with a preference for internucleo-
somal regions over nucleosome core particles [144]. Interest-
ingly, DDB2 preferentially associates with internucleosomal 
regions and directs XPC to these sites in an ubiquitin-depend-
ent manner to suppress the association of XPC with nucleo-
some core particles [144]. According to this model, DDB2 
prioritizes GG-NER in internucleosomal regions to ensure 
rapid repair of 6–4 PPs and CPDs in these genomic regions, 
while the repair of CPDs in nucleosome core particles is 
stimulated by protein–protein interactions between DDB2 and 
XPC in an ubiquitin-independent mechanism [144].

Concluding remarks

The last few years have witnessed the identification of many 
new links between chromatin modulators and GG-NER. 
This review focused on recent insights into the coordi-
nated DDB2-dependent recruitment of histone acetyltrans-
ferases [102, 105] and histone methyltransferases [130] 
that together with the DDB2-associated E3 ubiquitin ligase 
[37, 55] extensively modify histone tails to create a local 
chromatin environment that facilitates early XPC recruit-
ment. Identifying the specific histone tail residues that are 
modified during GG-NER and their interconnections will 
be important future goals, together with mechanistic studies 
to unravel how exactly histone PTMs influence the binding 
of XPC to DNA and its detection of DNA lesions. These 
events are aided by the association of a number of ATP-
dependent chromatin remodelers that probably mediate fur-
ther chromatin opening to facilitate not only early recogni-
tion of DNA lesions [67, 69, 102], but possibly also DNA 
damage handover to promote progression of the GG-NER 
reaction [80]. To better understand their precise involve-
ment, it will be necessary to study histone and nucleosome 
occupancy and dynamics in response to UV-induced DNA 
lesions, which has, thus, far been difficult because NER 
lesions cannot be induced at a predefined location. Elec-
tron and fluorescence microscopic techniques have found 
clear evidence for chromatin expansion, histone eviction 
and chromatin restoration during and after completion of 
GG-NER [33, 34, 138, 145–147]. However, the specific 
ATP-dependent chromatin remodelers involve in mediat-
ing these GG-NER steps remain elusive. The development 
of techniques to map the nucleosomal landscape at single 
nucleotide resolution following UV irradiation in both yeast 
and mammalian cells [148, 149] will be a powerful new tool 
to better understand chromatin dynamics during GG-NER. 
A third seemingly independent DNA lesion-recognition pro-
tein—PARP1—also acts in GG-NER [34, 69–71], but its 
precise links with XPC and DDB2 need further exploration.
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An emerging theme is that DNA lesion-recognition 
factors also need to dissociate in a timely fashion to pre-
vent them from inhibiting subsequent repair steps. Timely 
removal from chromatin is tightly coordinated through 
ubiquitylation of both XPC and DDB2 and their subsequent 
ubiquitin-dependent extraction by the VCP segregase [42, 
43]. These ubiquitylation events, in turn, are also subjected 
to tight regulation and require prior SUMOylation of XPC 
[47, 51] or can be prevented by competitive PARylation of 
DDB2 [69]. Powerful new methods including sensitive pro-
teomic approaches [150] and genome-wide CRISPR screens 
[151] will not only identify the full repertoire of chromatin 
modulators of GG-NER, but will also facilitate subsequent 
structural studies of how GG-NER operates in nucleosomes 
by cryo-EM [22]. New developments now allow the study of 
GG-NER in intact organisms [152], providing insights into 
developmentally regulated chromatin modulators. A better 
understanding of how these post-translational modifications 
and remodelers progressively modify chromatin in a step-
wise fashion during the different stages of repair will further 
reveal how GG-NER leaves it mark on chromatin.
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