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We investigate the emergence of orientational order among þ1=2 disclinations in active nematic liquid
crystals. Using a combination of theoretical and experimental methods, we show that þ1=2 disclinations
have short-range antiferromagnetic alignment, as a consequence of the elastic torques originating from their
polar structure. The presence of intermediate −1=2 disclinations, however, turns this interaction from
antialigning to aligning at scales that are smaller than the typical distance between like-sign defects. No
long-range orientational order is observed. Strikingly, these effects are insensitive to material properties and
qualitatively similar to what is found for defects in passive nematic liquid crystals.
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Topological defects are one of the hallmarks of liquid
crystals and have represented a central research topic since
Frank’s pioneering work on nematic disclinations [1]. In
nematics, these are point or line singularities where
molecules have undefined orientation and around which
the nematic director winds by an integer multiple of π [2].
In planar nematic textures, it has long been known that,
analogous to charged particles in two dimensions, discli-
nations interact with each other via long-ranged Coulomb-
like forces arising from the distortion of the nematic
director. As a consequence, like-sign disclinations repel,
whereas oppositely signed disclinations attract and even-
tually annihilate [2,3].
By contrast, only recently has it become evident that

most two-dimensional disclinations have a well-defined
polarity, which affects how defects move and interact [4].
Despite being a purely geometrical property of the director
configuration, thus independent of the specific physical
mechanisms governing the dynamics of the underlying
nematic phase, such a polarity was first discussed in the
context of active nematics [5,6], namely, nematic liquid
crystals consisting of self- or mutually-propelled rodlike
molecules. In active nematics, polarity determines the
propulsion direction of þ1=2 disclinations [7,8], affects
the attractive and repulsive interactions of defect pairs
[9,10], and renders their motion periodic when confined on
a sphere [5,11]. Furthermore, polarity can be manipulated
via inhomogeneous [12,13] or anisotropic [14–17] sub-
strates. Perhaps even more remarkably, chaotic active
nematics at the water-oil interface have been reported to
exhibit long-ranged nematic order among the defects

themselves, resulting from the alignment of the micro-
scopic polarity of individual þ1=2 disclinations over the
length scale of the entire sample [6]. The physical origin of
this behavior has, however, remained elusive, despite the
efforts to decipher the mechanism behind this exotic
example of super orientational order [9,18–24].
In this Letter we investigate the mechanisms under-

pinning collective defect ordering in passive and active
nematic liquid crystals. Using nematic hydrodynamics and
experiments with microtubule-kinesin-based active nem-
atics, we demonstrate that the elastic torques arising from
the polarity of þ1=2 disclinations drive the emergence of
short-ranged antiferromagnetic alignment. Having an elas-
tic origin, such an ordering effect occurs in passive and
active nematics alike. However, in active nematics the
continuous creation and annihilation of defects renders
defect ordering stationary, whereas in passive nematics this
occurs only as a transient phenomenon during defect
coarsening. Furthermore, we demonstrate that−1=2 defects
can mediate these orientational interactions by promoting
ferromagnetic alignment at short distances.
Let us consider a two-dimensional nematic liquid crystal

whose average orientation is characterized by the director
n ¼ ðcos θ; sin θÞ. In the presence of a disclination of
strength s ¼ �1=2 located at the origin of the xy plane
and oriented in the direction p ¼ ðcosψ ; sinψÞ, the local
orientation is given by θ ¼ sϕþ ð1 − sÞψ, with ϕ ¼
arctanðy=xÞ the polar angle [4] [Fig. 1(a)]. Since the free
energy of nematic liquid crystals is O(2) symmetric [2],
there is no preferential ψ value for an isolated defect.
Conversely, textures comprising multiple defects are
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sensitive to their relative orientation and attain the lowest
energy configuration for specific alignment patterns
[4,10,20,25–27]. In particular, pairs of þ1=2 disclinations
embedded in an otherwise defect-free nematic texture, tend
to antialign in order to minimize the system free energy
[4,10,20,25–27]. In passive and active nematic liquid
crystals featuring multiple defects, one may expect these
orientational interactions among pairs of þ1=2 defects to
cooperatively give rise to orientational order among the
defects themselves, possibly leading to long-ranged defect
ordering [6].
In order to test this hypothesis and decouple the effects of

orientational elasticity and hydrodynamics, we start from
the case of a two-dimensional passive nematic relaxing
toward the minimum of the Landau-de Gennes free energy
FLdG ¼ K=2

R
dA½j∇Qj2 þ 1=ð2ϵ2ÞtrQ2ðtrQ2 − 1Þ�, with

Q the two-dimensional nematic tensor [2] and ϵ a length
scale setting the defect core radius. Thus

∂Q
∂t ¼ 1

γ
H; ð1Þ

where γ is the rotational viscosity and H ¼ −δF=δQ.
Equation (1) is numerically integrated using finite
differences on a periodic square domain of size L, sub-
divided in 256 × 256 collocation points, starting from a
random configuration [Fig. 2(a) inset]. In all our simulations
we set K ¼ 10−8 Nm, γ ¼ 10−3 kg s−1 and ϵ ¼ 10−2L (see
Ref. [28] for details about the choice of material parameters).
As the system is allowed to relax, pairs of �1=2 defects

attract and annihilate toward a defect-free and uniformly
aligned configuration and the number of defects Nd then
decreases in time [Fig. 2(a)]. To characterize defect order-
ing, we store configurations at four different times, corre-
sponding to Nd ¼ 300, 500, 700, 900 defects [horizontal
lines in Fig. 2(a)]. We then measure the probability
distribution of the defect local orientation ψ to find that
it is prominently uniform in the interval 0 ≤ ψ ≤ 2π [inset
in Fig. 2(b)], indicating the absence of long-range polar or
nematic order.

To verify whether the elastic interactions give rise to quasi-
long-range nematic order, we measure the scale-dependent
nematic order parameter SdðlÞ¼ ½hcos2ψi2lþhsin2ψi2l�1=2,

100 μm

(b)(a)

FIG. 1. (a) Schematic representation of a planar nematic
featuring a þ1=2 disclination with polarity p. (b) Typical con-
figuration of a microtubule-kinesin-based active nematic. þ1=2
and −1=2 disclinations are indicated with red and blue arrows.

(h)

(a)

(b)

(d)

(e)

(f)

(g)(c)

FIG. 2. Numerical Results. (a) Number of defectsNd versus time
in coarsening passive nematics. The horizontal lines mark con-
figurations featuring Nd ¼ 300, 500, 700, 900 defects. Inset:
snapshot of a typical configuration. (b) Scale-dependent defect
nematic order parameter, showing the characteristic scaling behav-
ior of systems with no long- or quasi-long-ranged order: SdðlÞ∼
l−1. Inset: polar histogram of the orientation of Nd ¼ 100, þ1=2
defects. (c) Polar correlation function CppðrÞ ¼ hpðrÞ · pð0Þi.
Inset: the same function versus r=r0, with r0 ∼ 1=

ffiffiffiffiffiffi
Nd

p
the average

defect spacing. The data collapse on the same master curve.
(d) Topological charge density correlation functions for Cþ−
(Cþþ), showing a local depletion (accumulation) of like-sign
(opposite-sign) defects at short distances. Inset: the same
functions versus r=r0. (e)–(h) Same quantities as in (a)–(d) but
for an active nematic whose dynamics are governed by Eqs. (3).
The prominently different behaviors of Cþ− in the passive (d)
and active (h) cases r ≈ 0, originate from the random creation
of defect pairs and subsequent self-propulsion of þ1=2 defects
in active nematics, which temporarily results in �1=2 pairs
at short distances. In all numerical simulations we have set
λ ¼ 0.1, ρ ¼ 10−2 kgm−2, η ¼ 10−4 kg s−1 and α ¼ f−6.25;
−12.50;−25.00;−50.00g × 10−2 kg s−2 [28].
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where h� � �il denotes a spatial average over a square sub-
domain of size l. The procedure is repeated 100 times to
obtain the statistically averaged SdðlÞ values displayed in
Fig. 2(b). In case of long-ranged order, this parameter
converges to a finite limit for large l. Conversely, in quasi-
long-ranged ordered samples,SdðlÞ ∼ l−ηd=2, with ηd < 1=4
a positive nonuniversal exponent [31]. Finally, for randomly
oriented defects SdðlÞ ∼ l−1. The data presented in Fig. 2(b)
is consistent with this latter scenario, thus indicating that
when passive defects coarsen from a random configuration of
the nematic tensor they exhibit neither long-ranged nor quasi-
long-ranged orientational order. In spite of this, the orienta-
tional interactions among the defects leave a well-defined
signature in the orientational correlation function CppðrÞ ¼
hpðrÞ · pð0Þi displayed in Fig. 2(c). Before vanishing at large
distances, this correlation function exhibits a prominent
minimum at small r values, indicating the preference for
local antiferromagnetic alignment. Remarkably, all curves
collapse to the samemaster curve upon rescaling distances by
the average defect spacing r0 ∼ 1=

ffiffiffiffiffiffi
Nd

p
[Fig. 2(c) inset].

Similarly, Fig. 2(d) shows the topological charge density
correlation function

CabðrÞ ¼
hρaðrÞρbð0Þi
hρað0Þihρbð0Þi

− 1; ð2Þ

where ða; bÞ ∈ fþ;−g and ρ� represent the topological
charge density of �1=2 disclinations. For small r values,
CþþðrÞ ≈ −1 (blue dotted lines), indicating that the space
surrounding a positive defect is depleted of like-sign
defects. Starting from r=r0 ≈ 0.25 [Fig. 2(d) inset], the
same function exhibits a monotonic increase, until plateau-
ing atCþþðrÞ ≈ 0 for r=r0 > 1. The same behavior is found
for C−− [28]. By contrast, Cþ−ðrÞ (blue lines) exhibits a
prominent peak at r=r0 ≈ 0.25, indicating a local concen-
tration of oppositely charged defects. This is again followed
by a rapid convergence toward Cþ−ðrÞ ≈ 0 for r=r0 > 1
[Fig. 2(d) inset]. The combination of these results demon-
strates that, analogous to Debye screening in electrolytes
and consistently with the classic Coulomb gas picture of
disclinations in liquid crystals [32], positive defects are
surrounded by clouds of negative defects and vice versa,
but that they are not endowed of positional order of
any kind.
Next, we explore the effect of activity on defect ordering.

As demonstrated in Refs. [7,8] and later recovered in
various experiments on active nematics of biological origin
[5,33–37], in the presence of active stresses, the strong
distortion introduced by topological defects gives rise to
hydrodynamic flows, whose structure depends solely on
the local geometry of the nematic director in the proximity
of the core. These active flows, in turn, can affect
the relative alignment of the defects via hydrodynamic
torques [22]. In order to test whether these activity-driven
hydrodynamic torques influence defect ordering, we have

numerically integrated the hydrodynamic equations of an
incompressible two-dimensional active nematic (e.g.,
Ref. [38]):

DQ
Dt

¼ λSuþ Q · ω − ω · Qþ 1

γ
H; ð3aÞ

ρ
Dv
Dt

¼ η∇2vþ∇ · ðσp þ αQÞ; ∇ · v ¼ 0: ð3bÞ

Here D=Dt ¼ ∂=∂tþ v ·∇ is the material derivative, λ is
the flow-aligning parameter of the nematic fluid, u ¼
½∇vþ ð∇vÞT�=2 andω ¼ ½∇v − ð∇vÞT�=2 are, respectively,
the strain-rate and vorticity tensors, ρ the density, here
assumed to be constant, η the shear viscosity and
σp ¼ −P1 − λSH þ Q ·H −H · Q, with P the pressure,
is the passive reactive stress tensor. The final term in
Eq. (3b) is the active stress originating from local con-
tractile (α > 0) or extensile (α < 0) forces exerted by the
active nematogens.
When the system size is much larger than the intrinsic

length scale la ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=jαjp

, resulting from the balance of
active and passive torques, two-dimensional active nem-
atics self-organize in a turbulentlike steady-state compris-
ing a stationary density (∼1=l2

a) of �1=2 defects [39]
[Fig. 2(e) inset]. Analogous to the case of passive defects
coarsening from a highly defective configuration, the scale
dependent nematic order parameter ofþ1=2 defects decays
as SdðlÞ ∼ l−1, indicating the lack of long- or quasi-long-
ranged order [Fig. 2(f)]. Instead, defect ordering emerges

(a) (b)

(d)(c)

FIG. 3. Experimental results. (a) Number of defects versus time
in a microtuble-kinesin-based active nematic. Each color repre-
sents a different experimental sample, grouped into two sets with
different Nd. (b) Scale-dependent nematic order parameter of the
þ1=2 defects. Inset: polar histogram of the orientation of the
þ1=2 defects. (c) Polar correlation function Cpp ¼ hpðrÞ · pð0Þi.
(d) Correlation functions Cþ− and Cþþ. Insets: same functions
versus r=r0.
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again in the form of short-ranged antiferromagnetic align-
ment [Fig. 2(g)], coupled to local Debye-like screening of
the topological charge [Fig. 2(h)].
A comparison between our results for the passive

[Figs. 2(a)–(d)] and active [Figs. 2(e)–(h)] cases suggests
that, unlike what was previously thought, defect ordering
ultimately originates from passive mechanisms and can be
found in passive and active liquid crystals alike. This
consideration is further supported by the fact that, as
demonstrated by Figs. 2(c) and 2(d), and 2(g) and 2(h),
defect spatial and orientational correlations support a
common scaling variable with respect to data collapse.
The latter scenario is common in near-equilibrium systems
subject to a gradient-descent dynamics, such as that
embodied in Eq. (1), but generally violated in far from
equilibrium systems [40]. Our data therefore strengthens
the idea that, despite chaotic active nematics representing
one of the most iconic examples of out of equilibrium
systems, many of their structural features, including the
statistics of vortices [39] and topological defects, follow
from the same passive mechanisms found in equilibrium
and near-equilibrium systems.
Finally, we note that the magnitude of the orientational

correlation function at the antiferromagnetic minimum is
smaller for active nematics than for passive nematics
[Figs. 2(c) and 2(g)]. Hence, active flows collectively
hinder defect ordering rather than enhance it. This can
be intuitively understood by noticing that, whereas the
relaxational dynamics of passive nematics is solely dictated
by elastic interactions, in active nematics director orienta-
tions are randomized by the flow due to the persistent
injection of active stress. This effect contrasts the ordering
effect of the elastic interactions, but without completely
destroying it, as increasing activity leads to an increase in
defect density, which, in turn, enhances elastic interactions
by decreasing the distance between defects. In addition,
our numerical data show no evidence of a correlation
between extensile (contractile) activity and aligning (anti-
aligning) interactions between defects [28], as that reported
in Ref. [41].
To assess the significance of our predictions, we carry out

experiments on active nematic suspensions of microtubules
(MTs) [42]. The system is driven out of equilibrium by the
action of kinesin-streptavidin motor protein complexes,
which induce relative motion between the MT bundles
utilizing adenosine triphosphate (ATP) as the energy source.
A typical snapshot of a confocal frame is shown in Fig. 1(b).
We perform several experimental replicas for two different
activities, which we vary through the ATP concentration
(72 μM and 144 μM). We then extract defect positions and
orientations using computer vision techniques [28,43].
Consistent with our numerical simulations, we find that
the average number of defects for each experiment is
constant over time [Fig. 3(a)], while defect polarity is
isotropically distributed [Fig. 3(b) inset]. Moreover, both

the scale-dependent nematic order parameter [Fig. 3(b)]
and the correlation functions [Figs. 3(c) and 3(d)] confirm
that the orientational order among þ1=2 defects is short-
ranged and that the order parameter approximately decays as
SdðlÞ ∼ l−1. Scaling by the average defect spacing r0, the
curves approximately collapse onto the same master curve
[inset of Figs. 3(c) and 3(d)].
Importantly, we observe that at long distances (r > r0),

þ1=2 defects are randomly aligned and have nearly
vanishing correlation, as expected in the absence of
orientational order. For r ≈ r0, however, the defects anti-
align on average [Fig. 4(a)]. Yet, as it was also noticed in
actomyosin films [9], the presence of oppositely charged
−1=2 defects can mediate this short-range interaction,
eventually favoring the polar alignment between two
þ1=2 defects at distances shorter than r0 [Fig. 4(b)]. To
further shed light on this crossover, we have numerically
computed the elastic free energy Fel ¼ K=2

R
dAj∇Qj2 of

two configurations consisting of two þ1=2 disclinations in
the absence [Fig. 4(c)] and in the presence [Fig. 4(d)] of an
intermediate −1=2 disclination. The free energy is plotted
in Fig. 4(e) as a function of the angle Δψ between þ1=2
defects. Consistent with our experimental observations, the
þ1=2 defects are energetically favored to be antialigned
while separated by a defect free patch and aligned in the

(c) (d)

(b)(a)

(e)

FIG. 4. (a),(b) Snapshots illustrating the (a) antiferromagnetic
alignment between þ1=2 defects, and (b) ferromagnetic align-
ment between þ1=2 defects in the presence of an intermediate
−1=2 defect. These effects determine the orientational correla-
tion, for r < r0, and anticorrelation, for r > r0, in Figs. 2(g)
and 3(c). (c),(d) Example of configurations consisting of two
þ1=2 disclinations in the absence (c) and in the presence (d) of an
intermediate −1=2 disclination. (e) Elastic free energy of the
configurations displayed in panels (c) and (d) as a function of the
angular separation Δψ between þ1=2 defects. These are ener-
getically favored to be antialigned while separated by a defect
free patch (red curve) and aligned in the presence of an
intermediate −1=2 defect (blue curve).
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presence of a −1=2 defect. Thus, we conclude that −1=2
defects mediate the orientational interactions between
þ1=2 defects at distances r < r0, by promoting alignment.
In conclusion, we have demonstrated that in both passive

and active nematics þ1=2 disclinations exhibit short-
ranged orientational correlations in the form of antiferro-
magnetic alignment, at distances comparable to the mean
interdefect spacing, and ferromagnetic alignment at even
smaller distances. The latter is enabled by the presence of
nearby oppositely charged excitations, which screen the
repulsion between like-charge defects, in a way reminiscent
of ionic screening in electrolyte solutions. Crucially, we
find no signature of long or quasi-long-ranged order among
defects. Our finding is consistent with other experimental
studies using microtubule-kinesin active nematics [28],
including Ref. [6], where the order parameter SdðlÞ has
likely been overestimated. This lack of long-ranged order
could nonetheless play a functional role in biological active
nematics, such as specific embryonic tissues, where defects
have been likened to “topological morphogens” [44,45]. In
this respect, the absence of a preferential direction, result-
ing from an organism-wide breakdown of rotational sym-
metry, could guarantee this mechanism a certain amount
of versatility. Finally, our results clearly show that the
observed effects have an elastic origin even in the active
case, where the nematogens are driven out of equilibrium
by local energy input.
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