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1  |   INTRODUCTION

Compressed sensing (CS) allows for a reduction in scan 
time at the cost of longer reconstruction times, which are 

a consequence of the non-linear formulation of the CS 
minimization problem: it uses �1-norm terms that pro-
mote sparsity of the image in certain transform domains. 
Examples of such sparsifying transformations are the total 

Received: 23 June 2021  |  Revised: 13 October 2021  |  Accepted: 20 October 2021

DOI: 10.1002/mrm.29073  

T E C H N I C A L  N O T E

Learning a preconditioner to accelerate compressed sensing 
reconstructions in MRI

Kirsten Koolstra1   |   Rob Remis2

1Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
2Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, Delft, 	
The Netherlands

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution-NonCo​mmercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Correspondence
Kirsten Koolstra, Division of Image 
Processing, Radiology, Leiden University 
Medical Center, Albinusdreef 2, 2333 ZA, 
Leiden, The Netherlands.
Email: K.Koolstra@lumc.nl

Funding information
Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek, Grant/
Award Number: HTSM 17104

Purpose: To learn a preconditioner that accelerates parallel imaging (PI) and 
compressed sensing (CS) reconstructions.
Methods: A convolutional neural network (CNN) with residual connections 
was used to train a preconditioning operator. Training and validation data were 
simulated using 50% brain images and 50% white Gaussian noise images. Each 
multichannel training example contains a simulated sampling mask, complex 
coil sensitivity maps, and two regularization parameter maps. The trained model 
was integrated in the preconditioned conjugate gradient (PCG) method as part 
of the split Bregman CS method. The acceleration performance was compared 
with that of a circulant PI-CS preconditioner for varying undersampling factors, 
number of coil elements and anatomies.
Results: The learned preconditioner reduces the number of PCG iterations by 
a factor of 4, yielding a similar acceleration as an efficient circulant precondi-
tioner. The method generalizes well to different sampling schemes, coil configu-
rations and anatomies.
Conclusion: It is possible to learn adaptable preconditioners for PI and CS recon-
structions that meet the performance of state-of-the-art preconditioners. Further 
acceleration could be achieved by optimizing the network architecture and the 
training set. Such a preconditioner could also be integrated in fully learned re-
construction methods to accelerate the training process of unrolled networks.
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variation operator, wavelet transformations or a combina-
tion of these.1–5 Preconditioning has been proposed in the 
past to accelerate CS reconstructions.6–9 This technique 
can reduce the number of iterations that are needed to 
converge to the optimal solution.10 Designing an efficient 
preconditioner, however, is not straightforward. It is often 
difficult to approximate the inverse operation of the sig-
nal model of interest in a computationally inexpensive 
manner.11 For CS this is especially the case when multiple 
coil sensitivity maps are taken into account, which add 
an additional level of complexity to the structure of the 
system matrix. In Ref. [8], this problem was addressed by 
approximating the CS system matrix by a block circulant 
matrix with circulant blocks, resulting in a speed up factor 
of 5 when using the conjugate gradient (CG) method in 
combination with the split Bregman (SB) reconstruction 
framework. Furthermore, Ong et al. managed to construct 
a diagonal k-space preconditioner for the primal dual 
hybrid gradient method that supports non-Cartesian tra-
jectories.9 Although these preconditioners have already 
shown to successfully reduce the number of iterations 
needed for CS reconstructions, the approximations made 
in their design process often limit the acceleration factor 
that can be achieved.

In the past decade, deep learning reconstruction ap-
proaches have also gained popularity. Once the model 
has been trained, these approaches are often inherently 
fast.12–16 An additional advantage is that regularization 
parameters and regularization functions of the CS for-
mulation can be learned during the training process,17 
potentially allowing larger undersampling factors. On 
the other hand, training a neural network requires tun-
ing many other machine learning hyperparameters in-
stead. While deep learning reconstructions have shown 
great reconstruction performance over the past years,18 
a difficulty of this class of approaches is the risk of the 
trained network not generalizing well to unseen cases or 
scans with different SNR and sampling patterns,19,20 and 
the lack of understanding and detecting corresponding 
image artifacts. For this reason, most recent deep learn-
ing approaches integrate prior (physics) knowledge into 
the training process, in this way constraining the solu-
tion space.17,18,21,22 The unrolled type of networks tend 
to be relatively large, since they follow the general struc-
ture of model-based reconstruction algorithms, such 
that each network block represents one iteration of the 
CS problem. These type of approaches could therefore 
also benefit from a preconditioner that reduces the num-
ber of network blocks and hence simplifies the network 
structure.

In this work, we integrate deep learning techniques 
into a physics-driven model-based reconstruction 
framework.23 We explore the feasibility of learning a 

preconditioner using a convolutional neural network 
(CNN) to accelerate classical CS reconstructions. Such 
a preconditioner will support reconstruction accelera-
tion without introducing uncertainty to the reconstruc-
tion quality. We learn the action of a preconditioner on 
a vector, such that the evaluation of the learned precon-
ditioner will be fast and requires little memory. We first 
analyze the training performance of the preconditioning 
model on simulated test data. We then demonstrate the 
acceleration performance of the learned preconditioner 
when integrated in CG as part of the SB reconstruction 
framework.24 The final preconditioned reconstruction 
algorithm is tested for multiple anatomies, coil configu-
rations and undersampling factors, and results are com-
pared to that obtained with the circulant preconditioner 
designed in Ref. [8].

2  |   METHODS

2.1  |  Compressed sensing

The 2D compressed sensing problem can be written as

In this formulation, x ∈ ℂ
N×1 is the unknown image, 

yi ∈ ℂ
N×1 is the acquired k-space data for coil i with 

Si ∈ ℂ
N×N the corresponding coil sensitivity map, 

R ∈ ℝ
N×N is the sampling mask and F ∈ ℂ

N×N is the uni-
form 2D Fourier transform. The finite difference operators, 
Dx ,Dy ∈ ℝ

N×N, and the wavelet transform, W ∈ ℝ
N×N, are 

used as sparsifying operations that promote sparsity of the 
unknown image solution in its transformed domain. The 
regularization parameters � and � determine the balance 
between the data consistency term and the regularization 
terms. Such a nonlinear problem can be solved iteratively 
using SB.24 This is a reconstruction framework in which the 
�2 norm terms are decoupled from the �1 norm terms, such 
that each iteration of SB solves a linear system of equations 
followed by Bregman parameter updates. In this algorithm, 
the most time-consuming step is repeatedly solving the lin-
ear system of equations

in which
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and

The Bregman parameters bk
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,bk
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,bk

w
 and the auxiliary pa-
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,dk
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w
 in Bregman iteration k are introduced by 

the Bregman scheme.

2.2  |  Preconditioner

Solving the linear system of equations in Equation (2) is 
done iteratively and can be accelerated with the help of a 
preconditioner. An efficient preconditioner M−1 reduces 
the number of iterations that are needed to solve the lin-
ear system. A reduction in iterations is typically achieved 
when the following holds:

The reduction in iterations needs to outweigh the additional 
computational costs that are introduced by incorporating 
the preconditioner into the iterative scheme. In this case, the 
total computation time of solving the preconditioned system 
is shorter than that of solving the original system. Since the 
preconditioned numerical scheme solves the same model as 
the original numerical scheme, shorter computation times 
are obtained without affecting the accuracy of the numerical 
solution.

In this work, we train a network that learns such a pre-
conditioner M−1 from a simulated training set. Specifically, 
we train a network that learns the inverse operation of 
Equation (2), M−1

≈ A−1, such that Equation (5) is satis-
fied. Instead of learning M−1 in the form of a full matrix, 
we design the model such that the network learns the ac-
tion of the preconditioner M−1 on an arbitrary vector b. 
This makes using the learned preconditioner computa-
tionally inexpensive (∼ 0.03 s per evaluation). Moreover, 
little memory storage is required.

2.3  |  Simulation of training examples

The training set was simulated in MATLAB (Mathworks 
Inc, Natick, MA) and constructed from an equal amount 
of white Gaussian complex noise images and complex 
brain images. For the complex brain images, magni-
tude brain images (70 MP-RAGE and 63 T2-weighted 
3D brain images) were downloaded from the Human 
Connectome Project25 (https://ida.loni.usc.edu/login.jsp)  	

and transformed into transverse (MPRAGE:40, T2-weighted:65) 	
and sagittal (MPRAGE:36, T2-weighted:66) slices. White 
Gaussian noise was added to the background of the im-
ages. A Gaussian-shaped phase was randomly added to 
each image, after which the resulting brain image set was 
augmented by rotating each image four times in steps of 
90◦, resulting in 53 160 images. These were used to simu-
late the actual training examples, for which a wide variety 
of undersampling factors, sampling masks, coil sensitiv-
ity maps and regularization parameters were taken into 
account. Since computing A−1 for each Ci,R, �, � com-
bination is computationally expensive, we compute the 
training examples using only the forward operator A, ac-
cording to Ax[k] = b[k]. After this, we swap the operator’s 
input and output before feeding them to the network: b[k] 
is used as the network’s input image, while x[k] is used as 
the label image. In this way, the network will learn the 
operator A−1, even though the training data were simu-
lated using the forward operator A. Note that both x[k] 
and b[k] represent image-domain vectors. Each 

(
b[k], x[k]

)
 

pair was simulated with an integer undersampling factor 
ranging between 1 and 4 and Gaussian-shaped complex 
coil sensitivity maps for a number of coil elements rang-
ing between 1 and 16. The parameters � and � were ran-
domly selected from the interval (0,5) and transformed 
into uniform regularization maps. This range was based 
on empirical tuning of the regularization parameters in 
SB reconstructions without using the learned network 
as preconditioner. The input images b[k] were normal-
ized to have a maximum magnitude value of 1 and the 
label images x[k] were accordingly scaled. The images 
(b[k], x[k]) and the coil sensitivity maps were split into real 
and imaginary components, and the resulting matrices 
were stacked (Figure 1A). If the number of coil elements 
was smaller than 16, zero-valued maps were added to the 
set of coil sensitivity maps until the number of coil sen-
sitivity maps was equal to 16. This yielded a 37 channel 
(b: 2,R: 1,C: 32, �: 1, � : 1) network input. Slices for one 
MP-RAGE and one T2-weighted volunteer were selected 
to create a model validation set.

2.4  |  Model and training

To train the preconditioner, we used a residual neu-
ral network with three residual blocks containing two 
layers each,26 schematically shown in Figure 1B. A 2D 
convolution (3 × 3 kernels, 128 features) was performed 
at every layer. ReLu activation functions were chosen 
for the hidden layers, whereas the tanh activation func-
tion was chosen for the output layer to enable positive as 
well as negative matrix element predictions: magnitude 
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values on the interval (0, 1) imply real and imaginary 
component values on the interval (− 1, 1). We mini-
mized the mean absolute error over 50 epochs using the 
Adam optimizer with an initial learning rate of 5 ⋅ 10−4

, a batch size of 16 and drop out with a probability of 
0.25. Training was performed in Tensorflow with a 24 
GB Quadro RTX 6000 gpu, resulting in a training time 
of 2 days and 20 hr.

2.5  |  MR data acquisition

Experiments were performed in three healthy volunteers 
after giving informed consent. The Leiden University 
Medical Center Committee for Medical Ethics approved 
the experiment. Undersampled and fully sampled scans 
were acquired on an Ingenia 3T dual transmit MR sys-
tem (Philips, Best, The Netherlands), equipped with a 
15-channel head coil and a 16-channel knee coil (in-
formed consent obtained). The following data were 
acquired:

brain T2-weighted turbo spin-echo (TSE): FOV = 
230 × 230 mm2; in-plane resolution 0.90 × 0.90 mm2; 4 mm 
slice thickness; 1 slice; TE/TR/TSE factor = 80 ms/3000 
ms/16; refocusing angle = 120◦; WFS = 2.5 pixels; scan 
time = 00:30 min (R = 2).

brain fluid-attenuated inversion recovery (FLAIR): 
FOV = 240 × 224 mm2; in-plane resolution 1.0 × 1.0 
mm2; 4 mm slice thickness; 1 slice; TE/TR/TSE factor 
= 120 ms/9000 ms/24; IR delay = 2500 ms; refocusing 
angle = 110◦; WFS = 2.7 pixels; scan time = 01:30 min 
(R = 2).

knee gradient echo (FFE): FOV = 160 × 160 mm2; in-
plane resolution 1.25 × 1.25 mm2; 3 mm slice thickness; 32 
slices; TE/TR = 10 ms/455 ms; FA = 90◦; WFS = 1.4 pixels; 
scan time = 1:01 min (R = 1), retrospectively undersam-
pled to R = 3.

brain T1-weighted inversion recovery turbo spin-
echo (IR TSE): FOV = 230 × 230 mm2; in-plane reso-
lution 0.9 × 0.9 mm2; 4 mm slice thickness; 24 slices; 
TE/TR/TSE factor = 20 ms/2000 ms/8; IR delay = 800 
ms; refocussing angle = 120◦; WFS = 2.6 pixels; scan 

F I G U R E  1   Model input and output and network architecture. A, Each 37-channel input contains a complex input image (b), a 
real sampling mask (R), 16 complex coil sensitivity maps and real regularization masks (� and �). The 2-channel output contains its 
corresponding complex image (x). Note that all complex matrices are first split into real and imaginary components before stacking them 
in the network’s input and output volumes. B, A convolutional neural network with residual connections is used for training. Each residual 
block contains two layers.26 A 2D convolution (3 × 3 kernels, 128 features) was performed at every layer with ReLu (hidden layers) and tanh 
(output layer) activation functions
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time = 5:50 min (R = 1), retrospectively undersampled 
to R = 4.

2.6  |  Image reconstruction

Reconstruction of the images was performed in Python 
(Python Software Foundation, Beaverton, OR) and run 
on a Linux machine with Intel Xe 6234 CPU and 256 GB 
internal memory. For each data set, the complex coil sen-
sitivity maps were estimated from the center of k-space 
using ESPIRiT27 and masked outside the object. SB was 
used as the �1-norm minimization algorithm to solve the 
compressed sensing problem, following the implementa-
tion described in Ref. [8]. The number of inner Bregman 
iterations was set to 1. The tolerance of PCG was set to 
10−2. The regularization parameters were empirically 
tuned. Reconstructions were performed with and with-
out the learned preconditioner, and compared to the 
circulant preconditioner designed in Ref. [8]. For recon-
structions with the learned preconditioner, the trained 
TensorFlow model was imported once at the beginning 

of the reconstruction pipeline and used for inference in 
every PCG iteration of SB. The methods were compared 
for three matrix sizes (128 × 128, 256 × 256 and 240 × 224
), three different undersampling factors (R = 2, R = 3 and 
R = 4 ), two different anatomies and coil configurations 
(brain and knee) and three different MR contrasts (TSE, 
FFE and FLAIR).

3  |   RESULTS

Figure 2A shows the loss function during training for the 
training data (red) and the validation data (blue). Figure 
2B,C shows that the performance of the trained network 
is not dependent on the undersampling factor and on the 
number of coil elements for the validation data. Figure 
2D, however, shows that the validation error is smallest 
for large regularization parameters, for which the inverse 
linear system is best conditioned.

Figure 3 shows the network’s input (R, �, �, coil sensitiv-
ities, and image) and output for (A) a brain and (B) a noise 
example from the validation set. The network’s prediction 

F I G U R E  2   Training and validation performance. A, The mean absolute error (MAE) loss function during training for training 
data (red) and validation data (blue) over 50 epoch plotted on a log scale. B, C, The validation error after 50 epoch does not show large 
dependence on the undersampling factor and the number of coil elements. D, The validation error after 50 epoch is smallest for large 
regularization factors, for which the inverse operation is best defined
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M−1b of the operation A−1b is close to the ground truth 
image x for both cases. This is confirmed by the low abso-
lute errors (normalized �1-norm <0.18) in the error map.

The reconstruction quality and the convergence behav-
ior with and without the learned preconditioner integrated 
in SB is shown in Figure 4 for an IR TSE brain scan (R = 4 , 
matrix size 256 × 256, 15 coil elements) and an FFE knee 
scan (R = 3, matrix size 128 × 128, 16 coil elements). The 
learned preconditioner results in an acceleration factor of 
4.0 in CG compared to the reconstruction without precon-
ditioner. This is in the same range as the acceleration factor 
of 4.3 obtained with the circulant preconditioner. The re-
construction error plotted as a function of time for the en-
tire SB algorithm shows that the learned preconditioner is 
slightly more expensive compared to the circulant precon-
ditioner in terms of computing M−1b in each CG iteration.

Similar results are presented in Figure 5 for a pro-
spectively undersampled FLAIR scan (R = 2, matrix size 
240 × 224, 15 coil elements) and a TSE scan (R = 2, ma-
trix size 256 × 256, 13 coil elements) in the brain, which 
show the ability for the learned preconditioner to slightly 
outperform the circulant preconditioner. Figure 5B also 
shows that the model trained on both brain and noise im-
ages results in a much better preconditioning performance 
than a model trained on either noise or brain images.

4  |   DISCUSSION

The results in this paper showed that it is possible to learn 
a preconditioner for CS and PI reconstructions using a 
relatively small CNN. The model was designed such that 

F I G U R E  3   The network’s prediction performance for two validation examples. The network’s prediction, M−1b, is close to the ground 
truth, x, which is confirmed by the small error values both for the brain case (A) and for the noise case (B). The brain example was simulated 
with an 8-channel receive coil and an undersampling factor of 3, whereas the noise example was simulated with a 15-channel receive coil 
and an undersampling factor of 4. A Fourier shift was applied to the sampling mask as a preprocessing step before training. The brain 
images in (A) were rotated by the data augmentation step
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F I G U R E  4   Accelerated SB reconstructions of retrospectively undersampled data using the learned and the circulant preconditioner. 
A, The CS reconstruction of an IR TSE brain scan (R = 4, 15 coil elements) is close to the fully sampled image, which is confirmed by the 
low values in the error map (magnified 10 times). The learned preconditioner reduces the number of PCG iterations by a factor of 4.0 over 
20 Bregman iterations, which is in the same order as the acceleration factor of 4.3 obtained with the circulant preconditioner. The final 
acceleration for the entire SB algorithm is slightly larger for the circulant preconditioner than for the learned preconditioner because of the 
slightly more efficient computation of M−1b for the circulant preconditioner compared to the learned preconditioner. B, Similar results are 
obtained for an FFE scan in the knee, acquired with an undersampling factor of 3 and 16 coil elements. The regularization parameters were 
set to (A): � = 4, � = 2 and (B): � = 4, � = 1. The number of outer/inner Bregman iterations was set to 60/1. The reconstruction time with the 
learned preconditioner was (A): 16.9 s and (B): 4.7 s
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F I G U R E  5   Accelerated SB reconstructions of prospectively undersampled data using the learned and the circulant preconditioner. 
A, The CS reconstructions of a FLAIR brain scan (R = 2, 15 coil elements, matrix size of 240 × 224) are close to the fully sampled image. 
Note that the relative difference (magnified 1e6 times) between de-reconstructed images obtained with the learned and the circulant 
preconditioner are neglible, since the CG tolerance level was fixed for all reconstructions. The learned preconditioner reduces the number 
of PCG iterations, yielding a similar performance as the circulant preconditioner. B, Similar results are obtained for a TSE brain scan in the 
brain, acquired with an undersampling factor of 2, 13 coil elements and a matrix size of 256 × 256. These results show that the performance 
of the preconditioner is much more stable when the preconditioner is trained on noise images only compared to when the preconditioner 
is trained on brain images only. This suggests that the distribution of the brain images from the human connectome project database is 
different than that of the acquired test images. This could be due to a difference in SNR level, image contrast or image phase, for example. 
Training the preconditioner on both brain and noise images in equal amount results in the best preconditioning performance. The 
regularization parameters were set to (A): � = 3, � = 2 and (B): � = 4, � = 1. The number of outer/inner Bregman iterations was set to 20/1. 
The reconstruction time with the learned preconditioner was (A): 5.1 s and (B): 5.6 s



      |  2071KOOLSTRA et al.

the learned preconditioner operates on a vector, which 
makes integrating the preconditioner in a numerical 
scheme computationally inexpensive and memory effi-
cient compared to learning a full preconditioning matrix. 
The learned preconditioner reduced the number of PCG 
iterations by a factor of approximately 4, hereby meeting 
the performance of an efficient circulant preconditioner.8 
The training data were simulated for a wide range of 
sampling masks, coil sensitivity maps and regulariza-
tion parameters, such that the same trained model can 
be used to reconstruct images acquired with different coil 
configurations and of different anatomies. This provides 
us with a flexible preconditioning framework, in which 
the learned preconditioner is not restricted to a certain 
structure of the system matrix, as is the case for circulant 
preconditioners.

For this proof-of-principle study, a relatively small 
CNN was chosen as network architecture, on the one 
hand to support accelerated reconstructions of varying 
matrix size and resolution and on the other hand to limit 
the inference time. With this simple network architec-
ture, the learned preconditioner was able to meet and 
sometimes slightly improve upon the performance of the 
efficient circulant preconditioner. Network, model and 
training set optimization is expected to increase the ac-
celeration factor further, although these design choices 
are not trivial. Supporting Information Figure S1 shows, 
for example, that using a deeper network does not di-
rectly lead to a better preconditioning performance. 
Furthermore, by learning the preconditioner’s action on 
a vector instead of learning the preconditioning matrix 
itself, the preconditioning performance becomes depen-
dent on the input vector. To minimize this effect, the 
input vectors should be as general as possible, with as 
little coherent structures between training examples as 
possible. Therefore, combining noise and brain images 
in the training set results in a better preconditioning per-
formance than using only noise or brain images. Further 
research is needed to investigate which image types com-
plement the current brain and noise images best for op-
timal generalizability of the preconditioner. Finally, the 
Adam optimizer has shown good performance in com-
bination with the current network architecture,26 but 
it is worth investigating whether other optimizers can 
achieve a higher preconditioning performance for the 
test data in this application.

The current method has demonstrated the feasi-
bility of learning a preconditioner for 2D CS recon-
structions. To provide the deep learning model with as 
much information about the underlying MR physics as 
possible, coil sensitivity maps and the sampling mask 
were fed to the network along with the input image 
and regularization parameters, yielding a 37-channel 

network input for each training example. Following the  	
same procedure for 3D reconstructions would in-
crease the dimensionality of the network input further  	
due to the volumetric nature of the coil sensitivity 
maps. Such a large network input may hinder efficient 
learning of the inverse operation of the SB system 
matrix. Coil compression and grouped convolutions 
could be used to overcome this limitation and coil sen-
sitivity map-independent preconditioners should be 
investigated.

This work focussed on preconditioning as a means to 
speed up classical model-based reconstructions, while 
fully learned reconstructions are often inherently fast. 
The advantage of accelerating reconstructions via precon-
ditioning compared to using fully learned reconstructions 
is that preconditioners do not affect the reconstruction 
quality, whereas the stability of fully learned reconstruc-
tions still needs refining.20 An ill-designed preconditioner 
could, in a worst-case scenario, either result in a slower 
convergence behavior than reconstruction without the 
preconditioner. We cannot guarantee that the learned net-
work leads to (fast) convergence of CG in all cases, but a 
nonconverging reconstruction is easily and automatically 
detected by monitoring the CG residual. In our work we 
observed fast convergence behavior for all studied cases. 
However, besides having short reconstruction times, the 
large degree of freedom in fully learned reconstructions 
can also help to better exploit image features such as spar-
sity,17 possibly allowing reconstructions from higher un-
dersampling factors. Systems of similar structure as the 
one described in Equations (2)–(4) are often encountered 
in such variational networks, which could therefore also 
benefit from the preconditioning technique described in 
this work. A preconditioner could potentially be learned 
simultaneously with the reconstruction model, similar 
to how ADMM-Net learns the inverse operation corre-
sponding to the system matrix.28 Integration of learned 
preconditioners in variational networks might reduce the 
number of network blocks (representing CS iterations) 
needed for convergence and hence accelerate the learned 
reconstruction process further. This could be particularly 
relevant for applications where real-time reconstructions 
are needed.

In conclusion, it is possible to learn a preconditioner 
for CS and PI reconstructions using a relatively small 
CNN. Such an approach can potentially help to further 
accelerate CS reconstructions compared to existing pre-
conditioners. Future research is needed to optimize the 
efficiency of the learned preconditioner.
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SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.
FIGURE S1 Comparison of the preconditioning perfor-
mance for different number of network layers and net-
work blocks. During training of the network, the model 
was stored for each of the 50 epoch. Afterwards, the brain 
TSE image (see Fig. 5B) was reconstructed 50 times (x-
axis), each time using the stored model from a different 
training epoch as preconditioner. The y-axis represents 
the outer Bregman iteration number. The colors represent 
the number of CG iterations needed to reach the desired 
tolerance level in each outer Bregman iteration. (A) The 
network used in this work contains 3 blocks with 2 layers 
each. The total number of CG iterations decreases as the 
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epoch number increases. The convergence behavior does 
not vary much after 40 epoch. (B) Using a larger number 
of network blocks (5 blocks, 2 layers each) results in a 
similar convergence behavior for some of the epoch, but 
shows unstable behavior for larger epoch numbers. This 
is an indication that the network starts to overfit after ap-
proximately 40 epoch. (C) When a larger number of net-
work layers is used in each block (3 blocks, 4 layers each) 
this unstable behavior is not observed, but the required 
number of CG iterations is still larger than for the small 

network used in (A). Note that the maximum number of 
CG iterations was set to 20 to detect nonconvergent behav-
ior for the early epoch
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