
Prognostic value of quantitative [F-18]FDG-PET features in patients
with metastases from soft tissue sarcoma
Kalisvaart, G.M.; Grootjans, W.; Bovee, J.V.M.G.; Gelderblom, H.; Hage, J.A. van der;
Sande, M.A.J. van de; ... ; Geus-Oei, L.F. de

Citation
Kalisvaart, G. M., Grootjans, W., Bovee, J. V. M. G., Gelderblom, H., Hage, J. A. van der,
Sande, M. A. J. van de, … Geus-Oei, L. F. de. (2021). Prognostic value of quantitative
[F-18]FDG-PET features in patients with metastases from soft tissue sarcoma. Diagnostics,
11(12). doi:10.3390/diagnostics11122271
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3270958
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3270958


diagnostics

Article

Prognostic Value of Quantitative [18F]FDG-PET Features in
Patients with Metastases from Soft Tissue Sarcoma

Gijsbert M. Kalisvaart 1,* , Willem Grootjans 1 , Judith V. M. G. Bovée 2 , Hans Gelderblom 3 ,
Jos A. van der Hage 4 , Michiel A. J. van de Sande 5 , Floris H. P. van Velden 1 , Johan L. Bloem 1 and
Lioe-Fee de Geus-Oei 1,6

����������
�������

Citation: Kalisvaart, G.M.; Grootjans,

W.; Bovée, J.V.M.G.; Gelderblom, H.;

van der Hage, J.A.; van de Sande,

M.A.J.; van Velden, F.H.P.; Bloem, J.L.;

de Geus-Oei, L.-F. Prognostic Value of

Quantitative [18F]FDG-PET Features

in Patients with Metastases from Soft

Tissue Sarcoma. Diagnostics 2021, 11,

2271. https://doi.org/10.3390/

diagnostics11122271

Academic Editor: Giorgio Treglia

Received: 30 October 2021

Accepted: 2 December 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
W.Grootjans@lumc.nl (W.G.); F.H.P.van_Velden@lumc.nl (F.H.P.v.V.); J.L.Bloem@lumc.nl (J.L.B.);
L.F.de_Geus-Oei@lumc.nl (L.-F.d.G.-O.)

2 Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
J.V.M.G.Bovee@lumc.nl

3 Department of Medical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
A.J.Gelderblom@lumc.nl

4 Department of Surgical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
J.A.van_der_Hage@lumc.nl

5 Department of Orthopaedic Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
M.A.J.van_de_Sande@lumc.nl

6 Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
* Correspondence: g.m.kalisvaart@lumc.nl

Abstract: Background: Prognostic biomarkers are pivotal for adequate treatment decision making.
The objective of this study was to determine the added prognostic value of quantitative [18F]FDG-PET
features in patients with metastases from soft tissue sarcoma (STS). Methods: Patients with metastases
from STS, detected by (re)staging [18F]FDG-PET/CT at Leiden University Medical Centre, were
retrospectively included. Clinical and histopathological patient characteristics and [18F]FDG-PET
features (SUVmax, SUVpeak, SUVmean, total lesion glycolysis, and metabolic tumor volume) were
analyzed as prognostic factors for overall survival using a Cox proportional hazards model and
Kaplan–Meier methods. Results: A total of 31 patients were included. SUVmax and SUVpeak were
significantly predictive for overall survival (OS) in a univariate analysis (p = 0.004 and p = 0.006,
respectively). Hazard ratios (HRs) were 1.16 per unit increase for SUVmax and 1.20 per unit for
SUVpeak. SUVmax and SUVpeak remained significant predictors for overall survival after correc-
tion for the two strongest predictive clinical characteristics (number of lesions and performance
status) in a multivariate analysis (p = 0.02 for both). Median SUVmax and SUVpeak were 5.7 and
4.9 g/mL, respectively. The estimated mean overall survival in patients with SUVmax > 5.7 g/mL
was 14 months; otherwise, it was 39 months (p < 0.001). For patients with SUVpeak > 4.9 g/mL, the
estimated mean overall survival was 18 months; otherwise, it was 33 months (p = 0.04). Conclusions:
In this study, SUVmax and SUVpeak were independent prognostic factors for overall survival in
patients with metastases from STS. These results warrant further investigation of metabolic imaging
with [18F]FDG-PET/CT in patients with metastatic STS.

Keywords: metastatic soft tissue sarcoma; [18F]FDG-PET; prognosis

1. Introduction

Approximately 14% of patients with a soft tissue sarcoma (STS) present with metastatic
disease [1]. Additionally, up to 34% of high-grade STS patients develop distant metastases
within 5 years after resection of localized STS [2,3]. While several studies show an improve-
ment in the survival of patients with metastatic STS over the last decades, the two-year
survival rate remains less than 50% [4–6]. Indeed, treatment of these patients is complex
due to the heterogeneous and aggressive nature of these tumors. Generally, therapies can
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consist of combinations of surgery, radiotherapy, and systemic treatment. Personalized
decision making is important in designing treatment strategies, and a multitude of param-
eters is used for this purpose [7]. Prognostic factors play an important role among these
parameters, and several studies have identified a group of characteristics that is associ-
ated with prognosis in these patients [4–6,8–10]. These studies strike the consensus that
patient age, performance status, disease-free interval, and histological subtype are strong
predictors for overall survival (OS). Nevertheless, stratification of patients on an individual
level remains a difficult challenge and requires further insight in the link between tumor
characteristics and prognosis.

The use of 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) for
the characterization of malignant lesions is widely studied [11]. In STS patients, [18F]FDG-
PET imaging is regularly performed for (re)staging and follow-up [12]. Furthermore, in
metastatic STS, specifically, a recent study has shown value of [18F]FDG-PET in monitoring
the response to systemic treatment [13]. The uptake of [18F]FDG, as expressed by the
standardized uptake value (SUV), reflects the degree of glucose metabolism of a lesion.
High [18F]FDG-uptake has shown to be connected to increased tumor aggressiveness in
many STS subtypes. Especially in localized STS, several [18F]FDG-PET features, such
as maximum SUV (SUVmax), peak SUV (SUVpeak), metabolic tumor volume (MTV),
and total lesion glycolysis (TLG), are found to have significant prognostic value [14,15].
Moreover, in other tumor types, these parameters have shown to be predictive for survival
in metastatic disease and demonstrated to be valuable for the personalization of treatment
decisions [16]. While the metabolic properties of lesions, as indicated by quantitative
[18F]FDG-PET features, might also provide valuable information for the prognosis of
metastatic STS patients, no literature is readily available on the correlation between these
features and survival. In the current study, we assessed the prognostic value of quantitative
[18F]FDG-PET features in patients diagnosed with metastases from STS.

2. Materials and Methods
2.1. Patients

Patients with biopsy-proven STS, who underwent a [18F]FDG-PET/CT for (re)staging
purposes on which metastatic disease was detected, were retrospectively included. Metastatic
disease was defined as radiological evidence of systemic spread of tumor outside the pri-
mary tumor bed. Patients with GISTs (gastrointestinal stromal tumor) and primary uterine
or retroperitoneal sarcomas were excluded to guarantee a relatively homogeneous pop-
ulation regarding tumor biology and treatment. Patients who received radiotherapy or
systemic therapy for metastatic disease before [18F]FDG-PET/CTs acquisition were also
excluded. Furthermore, all [18F]FDG-PET/CTs had to be performed between January 2017
and January 2021 at Leiden University Medical Center, which is a tertiary referral center
for sarcoma care. Requirement to obtain patient consent was waived by the local ethical
board, since clinical data were retrospectively collected and pseudo-anonymized.

2.2. Patient Characteristics

Clinical and histopathological characteristics, which were reported as independent
prognostic factors of survival in previous studies, were collected for all included patients
(Table 1). Primary tumor location was categorized based on the results of Lochner et al. to
realize substantial group sizes for analysis [4]. Primary tumor localization in the deep trunk
or upper extremity was categorized as high risk for impaired survival, while other locations
were considered to be low risk. Since some patients were diagnosed with metastatic disease
at first diagnosis of STS, the disease-free interval after resection of the primary tumor was
not analyzed as a continuous variable but categorized in three groups based on the methods
of Italiano et al. and Lochner et al. [4,5]. Patients who were diagnosed with metastatic
disease at first diagnosis were categorized as ‘synchronous’. Patients who developed
metastases after resection of the primary tumor were dichotomized around the median
number of months of the disease-free interval. Reported World Health Organization (WHO)
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scale and the Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system
scores were collected from patient files and used for analysis of performance status and
tumor grade, respectively [17].

Table 1. Patient characteristics expressed as mean and standard deviation, median and quartile range, or as number and
percentages of the whole population. * FNCLCC grade such as reported in pathologic reports. For round cell sarcoma,
rhabdomyosarcoma, angiosarcoma, and intima sarcoma, grade was not reported in pathologic reports. These highly
aggressive tumors were categorized as grade 3 in this study. In one patient with a morphologic myxoid liposarcoma, no
FNCLCC classification was performed (not applicable), and this patient was excluded from the univariate analysis for
FNCLCC grade. † Morphologically, this tumor resembled a myxoid liposarcoma, but a characteristic translocation could
not be demonstrated.

Characteristics, n = 31

Age 59 ± 18 Histologic subtype
Sex Undifferentiated soft tissue sarcoma 8 (26%)

Male 20 (65%) Myxofibrosarcoma 6 (19%)
Female 11 (35%) MPNST 5 (16%)

WHO performance status Leiomyosarcoma 3 (10%)
Unknown 8 (26%) Dedifferentiated liposarcoma 2 (6%)

0 10 (32%) Synovial sarcoma 2 (6%)
1 11 (35%) Myxoid liposarcoma † 1 (3%)
2 2 (7%) Round cell sarcoma 1 (3%)

Location of primary tumour Rhabdomyosarcoma 1 (3%)
Lower extremity 18 (58%) Angiosarcoma 1 (3%)
Upper extremity 3 (10%) Intima sarcoma 1 (3%)

Trunk wall 3 (10%) FNCLCC Grade *
Deep trunk 6 (19%) 1 1 (3%)
Head/neck 1 (3%) 2 15 (48%)

Disease free interval 3 14 (45%)
Synchronous 7 (23%) Not applicable 1 (3%)
<14 months 12 (39%) Location of metastases
>14 months 12 (39%) Lung 7 (23%)

Number of lesions 3.3 ± 2.8 Lung and other 11(35%)
Sum of lesion diameters per patient (cm) 7.5 (6.0–17.5) Soft tissue only 9 (29%)

Bone only 4 (13%)

2.3. [18F]FDG-PET/CT

All scans were acquired on a digital Vereos PET/CT scanner (Philips Healthcare, Best,
The Netherlands) according to the most recent European Association for Nuclear Medicine
(EANM) procedure guidelines for tumor imaging [18]. The PET/CT scanner was accredited
by the Research4Life (EARL) initiative for quantitative PET/CT imaging. Patients fasted
at least 6 h before imaging and were hydrated with 500 mL of water. [18F]FDG was
administered 60 min before the acquisition of the PET scan. A low-dose CT scan (52 mAs,
120 kVp) was acquired prior to PET acquisition for the purpose of attenuation correction
and anatomical reference. Standard [18F]FDG PET/CT scans were acquired from the
skull base to mid-thigh or toes depending on the location of the primary tumor. Image
acquisition time was 2 min per bed position. Image reconstruction was performed using
a blob-based 3D iterative reconstruction algorithm (blobTOF; 3 iterations and 9 subsets)
followed by a 5.5 mm full-width at half maximum (FWHM) post-reconstruction Gaussian
filter. The image voxel size was 4 × 4 × 4 mm3. After reconstruction, all PET images were
expressed in SUV by normalizing voxel radioactivity concentrations [kBq·mL−1] to the
injected dose of [18F]FDG [MBq] and the patient’s body weight (kg).

2.4. [18F]]FDG-PET Features

Image analysis was performed using Philips Intellispace Portal software v10.1 (Philips
Healthcare, Best, The Netherlands). Segmentation of all STS lesions was performed using an
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adaptive threshold algorithm. A segmentation threshold of 50% of the SUVpeak corrected
for local background was used (Figure 1) [19]. After image segmentation, the resulting
volumes of interest (VOIs) were used to calculate relevant uptake parameters in the PET
images. For VOIs that covered normal tissue surrounding tumor lesions due to relatively
high FDG uptake (e.g., heart tissue or urinary bladder), manual adjustment was performed
to exclude normal tissue from the VOI. For every patient, the SUVmax and SUVpeak
were calculated on the lesion with the highest SUVmax and with the highest SUVpeak,
respectively. The SUVmax is defined as the voxel with the highest intensity within a tumor.
The SUVpeak is defined as the largest mean value of a 1 cm3 sphere positioned within a
tumor. Furthermore, SUVmean, MTV, and TLG were calculated for all lesions combined
per patient (whole body). The SUVmean is defined as the mean of all pixel values within
all tumor lesions in a patient. The MTV is defined as the sum of the volume of all tumor
lesions in a patient. The TLG is defined as the sum of the products of the SUVmean and its
corresponding MTV of each lesion.
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Figure 1. (A,B): [18F]FDG-PET of a man 8 months after resection of a primary undifferentiated soft
tissue sarcoma (grade 3). (A): Coronal view of a maximum-intensity projection (MIP) showing two
metabolically active lesions in the right lung. (B): Axial plane showing two metastases in the right
middle lobe and their VOIs outlined in red. (C–F): [18F]FDG-PET of a man with three known tumor
locations 6 months after resection of a primary myxofibrosarcoma (grade 2). (C): Coronal projection of
a MIP showing two FDG-avid lesions in the right upper leg. (D): Axial plane showing a histologically
proven metastasis in the left iliac bone and the corresponding VOI outlined in red. (E): Axial plane
showing a tumor lesion and the corresponding VOI outlined in red in the adductor compartment of
the right thigh just cranial of the primary tumor bed. (F): Axial plane showing local recurrence and
corresponding VOI outlined in red in the adductor compartment of the right thigh.
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2.5. Statistical Analyses

An univariate Cox proportional hazard model was used to determine the predictive
value of clinical parameters and [18F]FDG-PET features for OS. No analysis of histologic
subtypes was performed in this heterogeneous population due to the small number of
patients per subtype and previous studies reporting variable histologic subtypes to be
correlated to survival. Due to the limited cohort size, not all variables were tested in
the multivariate cox analysis. Therefore, multivariate Cox analysis was first performed
using the 2 strongest prognostic clinical factors. Subsequently, the prognostic value of
adding [18F]FDG-PET features that were significant in univariate analysis was determined
for each [18F]FDG-PET feature separately. The [18F]FDG-PET features that significantly
added prognostic value to clinical parameters were stratified through the median and the
Kaplan–Meier method, and log-rank test were used to estimate survival for the different
groups. Statistical significance was defined as p < 0.05. The analysis was performed with
IBM SPSS v.25 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Patients and Follow-Up

A total of 31 patients were included in this study, and segmentation of all STS lesions
was performed (Figure 1). Patient characteristics are shown in Table 1. Median follow-up
in survivors was 32 months. The two-year survival rate was 37%.

3.2. Univariate Analysis

The number of lesions was the only clinical parameter that was significantly predictive
for survival in this population (p = 0.006) (Table 2). Furthermore, analysis of the [18F]FDG-
PET features showed SUVmax and SUVpeak to be significantly predictive for survival
(p = 0.004 and 0.006, respectively) (Figure 2). Hazard ratios (HRs) were 1.16 per unit
increase for SUVmax and 1.20 per unit increase for SUVpeak in univariate analysis.

3.3. Multivariate Analysis

The two strongest predictive clinical parameters were the number of lesions and
the performance status. Adding SUVmax and SUVpeak separately to the multivariate
model with these clinical parameters showed that both SUVmax and SUVpeak significantly
improved the prediction (p = 0.005 and 0.004, respectively), independent of these clinical
parameters. HRs were 1.29 per unit increase for SUVmax and 1.36 per unit increase for
SUVpeak, independent of the number of lesions and the performance status.

Table 2. Clinical variables and PET features in univariate Cox proportional hazard analyses.

Variable Overall Survival p-value

Clinical variables Hazard ratio 95% CI
Age (years) 1.02 0.99–1.04 0.2

Grade (3 versus 2) 1.26 0.50–3.21 0.6
Location (Deep trunk or upper extr. versus other) 0.91 0.34–2.40 0.8

Number of lesions
WHO performance status (≥1 versus 0)

1.28
2.72

1.07–1.52
0.73–10.07

0.006
0.1

Disease free interval 0.2
Synchronous versus >14 months 3.36 0.94–12.0
<14 months versus >14 months 1.44 0.47–4.47

PET features
SUVmax 1.16 1.05–1.29 0.004
SUVpeak 1.20 1.05–1.37 0.006
SUVmean 1.23 0.99–1.54 0.07

MTV 1.001 0.999–1.003 0.2
TLG 1.001 1.000–1.001 0.1



Diagnostics 2021, 11, 2271 6 of 12
Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Examples of lung metastases with different metabolic characteristics. Axial planes of 
[18F]FDG-PET/CTs of four patients with lung metastases are shown with the corresponding VOIs 
outlined in orange. (A): A metastasis with a SUVmax of 6.1 detected 22 months after resection of an 
undifferentiated soft tissue sarcoma in the right deltoid muscle. (B): A metastasis with a SUVmax of 
9.0 detected 34 months after resection of an undifferentiated soft tissue sarcoma in the right gluteus 
maximus. (C): A metastasis with a SUVmax of 5.2 detected synchronous with a myxofibrosarcoma 
originating from the left thoracic wall. (D): A metastasis with a SUVmax of 7.2 detected synchronous 
with local recurrence of a leiomyosarcoma in the right lower leg. 

3.3. Multivariate Analysis 
The two strongest predictive clinical parameters were the number of lesions and the 

performance status. Adding SUVmax and SUVpeak separately to the multivariate model 
with these clinical parameters showed that both SUVmax and SUVpeak significantly 
improved the prediction (p = 0.005 and 0.004, respectively), independent of these clinical 
parameters. HRs were 1.29 per unit increase for SUVmax and 1.36 per unit increase for 
SUVpeak, independent of the number of lesions and the performance status. 

3.4. Survival Estimates 
Median SUVmax and SUVpeak were 5.7 and 4.9 g/mL, respectively. The estimated 

mean overall survival in patients with SUVmax > 5.7 g/mL was 14 months, and that for 
patients with SUVmax < 5.7 g/mL was 39 months (p < 0.001). For patients with SUVpeak 
> 4.9 g/mL, the estimated mean overall survival was 18 months, while for those with 
SUVpeak < 4.9 g/mL, it was 33 months (p = 0.04) (Figure 3). 

 
Figure 3. Survival curves with the cohort dichotomized at the median SUVmax (A) and median 
SUVpeak (B). The grey line represents the survival curve of the entire cohort. The estimated mean 
overall survival in patients with SUVmax > 5.7 g/mL was 14 months, and that for patients with 

Figure 2. Examples of lung metastases with different metabolic characteristics. Axial planes of [18F]FDG-PET/CTs of
four patients with lung metastases are shown with the corresponding VOIs outlined in orange. (A): A metastasis with a
SUVmax of 6.1 detected 22 months after resection of an undifferentiated soft tissue sarcoma in the right deltoid muscle.
(B): A metastasis with a SUVmax of 9.0 detected 34 months after resection of an undifferentiated soft tissue sarcoma
in the right gluteus maximus. (C): A metastasis with a SUVmax of 5.2 detected synchronous with a myxofibrosarcoma
originating from the left thoracic wall. (D): A metastasis with a SUVmax of 7.2 detected synchronous with local recurrence
of a leiomyosarcoma in the right lower leg.

3.4. Survival Estimates

Median SUVmax and SUVpeak were 5.7 and 4.9 g/mL, respectively. The estimated
mean overall survival in patients with SUVmax > 5.7 g/mL was 14 months, and that
for patients with SUVmax < 5.7 g/mL was 39 months (p < 0.001). For patients with
SUVpeak > 4.9 g/mL, the estimated mean overall survival was 18 months, while for those
with SUVpeak < 4.9 g/mL, it was 33 months (p = 0.04) (Figure 3).
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Figure 3. Survival curves with the cohort dichotomized at the median SUVmax (A) and median SUVpeak (B). The
grey line represents the survival curve of the entire cohort. The estimated mean overall survival in patients with
SUVmax > 5.7 g/mL was 14 months, and that for patients with SUVmax < 5.7 g/mL was 39 months (p < 0.001). For patients
with SUVpeak > 4.9 g/mL, the estimated mean overall survival was 18 months, while for those with SUVpeak < 4.9 g/mL,
it was 33 months (p = 0.04).

4. Discussion

In patients with STS, [18F]FDG-PET/CTs are often acquired for staging. Next to the
identification of metastatic lesions, these scans provide quantitative information on the
metabolic activity of the tumor tissue. The results in this study show that this biological
characteristic has a prognostic value and turned out to be an independent predictor of
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overall survival in the soft tissue sarcoma patient group with metastatic disease. This
information on tumor biology adds to the already known prognostic clinical parameters
reported in the literature by Billingsley et al., Italiano et al., and Lochner et al., such
as patient age, disease-free interval, number of lesions, FNCLCC grade, and histologic
subtype [4–6].

In a systematic search that was conducted in preparation of this study, no report was
found on the value of [18F]FDG-PET features in metastatic STS patients (Appendix A),
while prognosis is especially relevant in a cohort where cure might not be the primary
goal of treatment. The prognostic value of [18F]FDG-PET features in non-metastatic STS
is studied more extensively. Original investigations focusing on this topic in patients
with localized disease have found [18F]FDG-PET features to be significantly predictive for
progression-free and overall survival [20–23]. Nevertheless, in some of these studies, the
added value of the features is not corrected for clinical parameters, such as resectability of
the tumor, neoadjuvant treatment, etc., leaving the effect of [18F]FDG-PET features difficult
to interpret on an individual level. In studies performing multivariate analyses, results are
variable and partly clouded due to the limited statistical power caused by small cohort
sizes [24–26].

In the current study, the overall survival of the whole cohort was comparable with
survival in recent larger studies, suggesting the current study population is representative,
and our findings might add to the ability to accurately predict survival in patient with
metastases from STS [4,5]. Our results show both SUVmax and SUVpeak to have prog-
nostic value, and therefore, are in line with the results in patients with localized disease.
For SUVmean, TLG, and MTV, however, studies in localized STS patients typically find
significant correlations with overall survival, while no predictive value was found in the
metastatic cohort in our study [22,23,25]. Partially, this could be caused by the limited
cohort size. Another plausible reason for this discrepancy is found in the composition of
these features and the biological background they resemble. All [18F]FDG-PET features
investigated in this study, i.e., SUVmax, SUVpeak, SUVmean, TLG, and MTV, quantify
the metabolism in selected tumor tissue, but SUVmean and inherently TLG and MTV are
strongly dependent on tumor size next to metabolism and thus altered after resection of
the primary tumor. In contrast, SUVmax and SUVpeak are not dependent on lesion size
and thus resemble the metabolic potential of tumor cells accurately, even after surgical
volume reduction. Thus, the results suggest that the prognosis of a metastatic STS patient
is determined by the most aggressive tumor clone in the body.

Research in other tumor types, such as breast, colorectal, and lung carcinoma, also
shows added prognostic value of [18F]FDG-PET features next to clinical parameters in
cohorts of patients with metastasized disease [16,27,28]. In contrast with the current results,
TLG and MTV generally also show a correlation to survival in these cohorts. An explanation
for this discrepancy is the relative heterogeneous population in our study, including both
patients with synchronous diagnosis of the primary tumor and metastasis and patients
with diagnosis of metastasis after resection of the primary tumor. In addition, differences
in tumor biology, such as pattern and interval of spread, might cause deviation between
results in different tumor types.

A strength of this study is the use of a multivariate analysis to determine the added
value of the PET features in addition to prognostic clinical parameters that are readily
available. This multiparametric analysis showed that both SUVmax and SUVpeak provide
prognostic value, next to the two strongest predictive clinical characteristics. Furthermore,
the [18F]FDG-PET scans are often performed in standard clinical practice for staging of
disease, and therefore, the features can be determined without extra costs and distress for
the patients [7]. There are some limitations to this study. Due to the retrospective nature,
the performance status of some patients could not be determined accurately. Moreover,
the limited cohort size and the heterogeneity in tumor subtypes prohibited definitive
conclusions about [18F]FDG-PET features when correcting for all known clinical parameters.
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In this regard, especially the link with the wide variety of histological subtype remains
unexplored to some extent.

In larger studies investigating prognosis in metastatic STS patients, correlations with
subtype are typically found [4–6]. These results are, however, partly contradicting regard-
ing which subtypes are causing poor survival rates. With metastatic leiomyosarcoma as a
reference, both Italiano et al. and Lochner et al. concluded that patients with metastatic
undifferentiated soft tissue sarcoma or malignant peripheral nerve sheath tumors have
an impaired survival but reported conflicting results regarding liposarcoma and synovial
sarcoma patients [4,5]. This leads to the conclusion that a correlation between histologic
subtype and survival in metastatic patients exists but is difficult to define. Several rea-
sons for this complexity are rarity of subtypes, heterogeneity within sarcoma subtypes,
and shifts in histologic definitions of subtypes over the years. In the current study, the
biological differences between histologic subtypes might have amplified the predictive
value of quantitative [18F]FDG-PET features on survival. In literature, relatively aggressive
subtypes, such as undifferentiated soft tissue sarcoma, are found to show high FDG avidity.
Other specific subtypes, such as (myxoid) liposarcomas, tend to show relatively low avid-
ity [29,30]. Nevertheless, these studies report varying and non-specific SUVmax values
within subtypes, suggesting [18F]FDG-PET features could provide additional prognostic
information. Figure 2 presents examples of differences in SUVmax between and within
STS subtypes. Future studies validating the prognostic value of quantitative [18F]FDG-PET
features in metastatic STS patients should aim to address the link with histologic subtypes.

Furthermore, the use of multimodality imaging should be considered in research
aiming to identify more prognostic biomarkers in patients with metastatic STS. Mag-
netic resonance (MR) imaging is widely used for the characterization of localized soft
tissue tumors. Quantitative diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) MR features are linked to tumor grade, response to treatment, and sur-
vival [31,32]. Multimodality imaging with [18F]FDG-PET/MR showed increased usefulness
over [18F]FDG-PET alone in several studies on localized STS [33,34]. This raises the hy-
pothesis that the addition of quantitative MR parameters to clinical and [18F]FDG-PET
parameters could improve the characterization of tumor biology in patients with metastases
from STS even further.

Personalized treatment in patients with metastases from STS is complex, and prognos-
tic factors are important for multiple considerations during the development of treatment
strategies. For example, factors linked to an impaired prognosis support the addition
of chemotherapy to surgery in patients with resectable metastases. A high number of
tumor lesions and a short recurrence-free interval are factors that are typically used for this
purpose, as stated in the recent ESMO-EURACAN-GENTURIS guidelines [7]. The current
study shows added value of [18F]FDG-PET features to these clinical factors. Moreover, in
treatment strategies with a palliative intent specifically, periods without active treatment
can be desirable to warrant the quality of life of patients. Prognostic factors are decisive in
the timing of these treatment-free periods, as they are partly guided by the expected time
to progression of disease [35].

5. Conclusions

In conclusion, personalized medicine is especially challenging and important in this
patient group with strongly impaired survival rates. Therefore, accurate information about
individual patient prognosis should be pursued before individual patient management
decision making. Next to clinical and pathological characteristics, biological tumor charac-
teristics such as metabolic parameters on [18F]FDG-PET scans can be considered for this
purpose. In this regard, the current study finds SUVmax and SUVpeak to be significantly
predictive for overall survival in patients with metastases from STS. Furthermore, both
features add prognostic value to the best performing clinical parameters.
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Appendix A. Literature Search

A systematic literature search was performed to identify available articles describing
original research attending to our hypothesis. A search strategy based on our hypoth-
esis was designed with the assistance of a medical librarian and conducted in PubMed
on 1 September 2021. A total of 182 records were identified. After screening the titles,
32 records were excluded. In addition, after reading the abstracts and/or full articles,
another 150 records were excluded. No articles that investigated our hypothesis were
found (Figure A1).

Search strategy: ((“advanced soft tissue sarcoma”[tw] OR “advanced soft tissue sar-
comas”[tw] OR “advanced sarcoma”[tw] OR “advanced sarcomas”[tw] OR “metastatic
soft tissue sarcoma”[tw] OR “metastatic soft tissue sarcomas”[tw] OR “metastatic sar-
coma”[tw] OR “metastatic sarcomas”[tw] OR “metastasized sarcoma”[tw] OR ((“soft
tissue sarcomas”[tw] OR “soft tissue sarcoma”[tw] OR ((“Sarcoma”[Mesh:NoExp] OR
“sarcoma”[tw] OR “sarcomas”[tw]) AND (“soft tissue”[tw] OR “soft tissues”[tw])) OR
“Adenosarcoma”[mesh] OR “Carcinosarcoma”[mesh] OR “Fibrosarcoma”[mesh] OR “He-
mangiosarcoma”[mesh] OR “Histiocytoma, Malignant Fibrous”[mesh] OR “Leiomyosar-
coma”[mesh] OR “Liposarcoma”[mesh] OR “Lymphangiosarcoma”[mesh] OR “Mixed
Tumor, Mesodermal”[mesh] OR “Myosarcoma”[mesh] OR “Myxosarcoma”[mesh] OR
“Sarcoma, Alveolar Soft Part”[mesh] OR “Sarcoma, Clear Cell”[mesh] OR “Sarcoma,
Myeloid”[mesh] OR “Sarcoma, Small Cell”[mesh] OR “Sarcoma, Synovial”[mesh] OR
“Adenosarcoma”[tw] OR “Adenosarcomas”[tw] OR “Alveolar Soft Part Sarcoma”[tw]
OR “Alveolar Soft Part Sarcomas”[tw] OR “Carcinosarcoma”[tw] OR “Carcinosarco-
mas”[tw] OR “Clear Cell Sarcoma”[tw] OR “Clear Cell Sarcomas”[tw] OR “Dermatofi-
brosarcoma”[tw] OR “Dermatofibrosarcomas”[tw] OR “Fibrosarcoma”[tw] OR “Fibrosar-
comas”[tw] OR “Hemangiosarcoma”[tw] OR “Hemangiosarcomas”[tw] OR “Leiomyosar-
coma”[tw] OR “Leiomyosarcomas”[tw] OR “Liposarcoma”[tw] OR “Liposarcomas”[tw]
OR “Lymphangiosarcoma”[tw] OR “Lymphangiosarcomas”[tw] OR “Malignant Fibrous
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Histiocytoma”[tw] OR “Malignant Fibrous Histiocytomas”[tw] OR “Mesodermal Mixed
Tumor”[tw] OR “Mesodermal Mixed Tumors”[tw] OR “Mesodermal Mixed Tumour”[tw]
OR “Mesodermal Mixed Tumours”[tw] OR “Myeloid Sarcoma”[tw] OR “Myeloid Sarco-
mas”[tw] OR “Myosarcoma”[tw] OR “Myosarcomas”[tw] OR “Myxosarcoma”[tw] OR
“Myxosarcomas”[tw] OR “Neurofibrosarcoma”[tw] OR “Neurofibrosarcomas”[tw] OR
“Rhabdomyosarcoma”[tw] OR “Rhabdomyosarcomas”[tw] OR “Small Cell Sarcoma”[tw]
OR “Small Cell Sarcomas”[tw] OR “Synovial Sarcoma “[tw] OR “Synovial Sarcomas”[tw]
OR “Walker Carcinoma 256”[tw]) AND (“Neoplasm Metastasis”[Mesh] OR “Metasta-
sis”[tw] OR “metasta*”[tw] OR “advanced”[tw]))) AND (“FDG-PET”[tw] OR “FDG-
PET”[tw] OR “18FDG-PET”[tw] OR “18FDGPET”[tw] OR “Positron-Emission Tomog-
raphy”[Mesh] OR “Positron-Emission Tomography”[tw] OR “Positron-Emission”[tw] OR
“PET”[tw] OR “PETCT”[tw] OR “Fluorodeoxyglucose F18”[Mesh] OR “Fluorodeoxyglu-
cose F18”[tw] OR “FDG”[tw] OR “18F-FDG”[tw] OR “Fluorodeoxyglucose F 18”[tw]
OR “Fludeoxyglucose F 18”[tw] OR “Fluorine 18 fluorodeoxyglucose”[tw] OR “18F Fluo-
rodeoxyglucose”[tw] OR “18FDG”[tw] OR “2 Fluoro 2 deoxy D glucose”[tw] OR “2 Fluoro
2 deoxyglucose”[tw] OR “4-fluoro-4-deoxyglucose”[Supplementary Concept]) AND (“Mor-
tality”[Mesh] OR “mortality”[Subheading] OR “Disease-Free Survival”[Mesh] OR “Sur-
vival Analysis”[Mesh] OR “Survival Rate”[Mesh] OR “Progression-Free Survival”[Mesh]
OR “mortality”[tw] OR “survival”[tw] OR “death”[tw] OR “deaths”[tw] OR “Progno-
sis”[Mesh] OR “Prognosis”[tw] OR “prognos*”[tw] OR “outcome”[tw] OR “outcomes”[tw])
NOT ((“Case Reports”[ptyp] OR “case report”[ti]) NOT (“Clinical Study”[ptyp] OR “trial”[ti]
OR “RCT”[ti]))).
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