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A B S T R A C T

Background. Metabolic acidosis accelerates progression of chronic
kidney disease, but whether this is also true for autosomal dominant
polycystic kidney disease (ADPKD) is unknown.
Methods. Patients with ADPKD from the DIPAK (Developing
Interventions to halt Progression of ADPKD) trial were included

[n¼ 296, estimated glomerular filtration rate (eGFR) 50 6 11 mL/
min/1.73 m2, 2.5 years follow-up]. Outcomes were worsening kidney
function (30% decrease in eGFR or kidney failure), annual eGFR
change and height-adjusted total kidney and liver volumes (htTKV
and htTLV). Cox and linear regressions were adjusted for prognostic
markers for ADPKD [Mayo image class and predicting renal
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outcomes in ADPKD (PROPKD) scores] and acid–base parameters
(urinary ammonium excretion).
Results. Patients in the lowest tertile of baseline serum bicarbonate
(23.1 6 1.6 mmol/L) had a significantly greater risk of worsening
kidney function [hazard ratio ¼ 2.95, 95% confidence interval (CI)
1.21–7.19] compared with patients in the highest tertile (serum bi-
carbonate 29.0 6 1.3 mmol/L). Each mmol/L decrease in serum bi-
carbonate increased the risk of worsening kidney function by 21%
in the fully adjusted model (hazard ratio¼ 1.21, 95% CI 1.06–1.37).
Each mmol/L decrease of serum bicarbonate was also associated
with further eGFR decline (�0.12 mL/min/1.73 m2/year, 95% CI
�0.20 to �0.03). Serum bicarbonate was not associated with
changes in htTKV or htTLV growth.
Conclusions. In patients with ADPKD, a lower serum
bicarbonate within the normal range predicts worse kidney
outcomes independent of established prognostic factors for
ADPKD and independent of urine ammonium excretion.
Serum bicarbonate may add to prognostic models and should
be explored as a treatment target in ADPKD.

Keywords: ammonium, end-stage kidney disease, glomerular
filtration rate, total kidney volume

I N T R O D U C T I O N

The combination of a typical Western diet and endogenous me-
tabolism generates a non-volatile acid load of 70 mEq/day,

which is excreted by the kidney primarily as ammonium, but
also as free hydrogen ions, and titratable acid [1]. As chronic
kidney disease (CKD) progresses, per-nephron ammonium ex-
cretion eventually fails to excrete the daily acid load and meta-
bolic acidosis ensues [2]. The prevalence of metabolic acidosis
(defined as serum bicarbonate <22 mmol/L) increases from 2%
in patients with estimated glomerular filtration rate (eGFR) of
60–90 mL/min/1.73 m2 to 39% in patients with eGFR<20 mL/
min/1.73 m2 [3]. In CKD patient cohorts, several studies have
identified an association between a lower serum bicarbonate
and accelerated eGFR decline [4–9]. Potential mechanisms in-
clude increased synthesis of angiotensin II, aldosterone and
endothelin-1, which are produced to facilitate acid excretion,
but also promote inflammation and fibrosis [10]. Of note, the
association between serum bicarbonate and accelerated eGFR
decline was not found in patients with diabetic kidney disease,
suggesting differences between kidney disease aetiologies [11].
Several clinical trials found that bicarbonate supplementation
reduces or stabilizes eGFR decline [12, 13], although this has
not been a universal finding [14].

Autosomal dominant polycystic kidney disease (ADPKD) is
the most common inherited kidney disease and represents
�3% of the CKD aetiology [15]. Torres et al. showed that
patients with ADPKD and normal GFR excrete less ammonium
than healthy controls after an acid load [16]. This reduction in
urinary ammonium excretion was not explained by lower pro-
duction of ammonia or impaired proton secretion. Instead,
they attributed the lower urinary ammonium excretion to struc-
tural changes associated with ADPKD [16]. In a rat model of
PKD, acid loading with ammonium chloride caused acidosis,
ammoniagenesis, GFR loss and increased kidney weight, cystic
dilatation and interstitial inflammation [17]. Another study
showed that in these rats potassium citrate completely pre-
vented the decline in GFR and reduced cyst size and interstitial
damage [18]. Although these preclinical data suggest that acido-
sis also promotes disease progression in ADPKD, clinical data
are lacking.

Therefore, here, our hypothesis was that serum bicarbonate
is associated with kidney outcomes in patients with ADPKD.
To address this hypothesis, we used data from the DIPAK
(Developing Interventions to halt Progression of ADPKD) in-
tervention trial to analyse whether a lower serum bicarbonate at
baseline predicts eGFR decline, and an increase in total kidney
or liver volume [19]. We show that serum bicarbonate predicts
kidney outcomes independent of established ADPKD prognos-
tic factors and independent of urinary ammonium excretion.

M A T E R I A L S A N D M E T H O D S

Setting and subjects

We included subjects from the DIPAK intervention trial, an
open-label randomized clinical trial to examine the effect of lan-
reotide on disease progression in later-stage ADPKD (n¼ 309)
[19]. The study protocol and outcomes of the DIPAK interven-
tion trial have been published previously [19, 20]. Briefly,
patients with ADPKD aged between 18 and 60 years and with
an eGFR 30–60 mL/min/1.73 m2 were randomized to standard

KEY LEARNING POINTS

What is already known about this subject?

• in patients with chronic kidney disease (CKD), meta-
bolic acidosis accelerates loss of kidney function; and

• experimental data suggest that acidosis also promotes
disease progression in autosomal dominant polycystic
kidney disease (ADPKD), but clinical data are lacking.

What this study adds?

• in patients with ADPKD, a lower serum bicarbonate
within the normal range is associated with worse kid-
ney outcomes; and

• this association is independent of established prognos-
tic factors for ADPKD and independent of urine am-
monium excretion.

What impact this may have on practice or policy?

• serum bicarbonate may add to prognostic models of
ADPKD; and

• because alkali treatment reduces kidney function de-
cline in patients with CKD, serum bicarbonate should
also be explored as treatment target in patients with
ADPKD.
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care or lanreotide in a 1:1 ratio. They were followed-up every
12 weeks for 2.5 years. Main exclusion criteria were bradycardia,
a history of gall stones or pancreatitis, and diseases or medica-
tion that could confound outcome assessment (such as diabetes
mellitus, and use of non-steroidal anti-inflammatory drugs,
lithium or tolvaptan). The DIPAK intervention trial was per-
formed in adherence to the Declaration of Helsinki, and all
patients provided written informed consent.

Measurements

At each visit, blood pressure and body weight were mea-
sured, and blood and 24-h urine were stored for analysis. At
baseline, end of treatment and end of study (12 weeks after end
of treatment), an magnetic resonance imaging scan without
contrast was performed to obtain total kidney volume (TKV)
and total liver volume (TLV). TKV and TLV were measured on
T2-weighted coronal images by manual tracing, and adjusted
for height. GFR was estimated using the Chronic Kidney
Disease Epidemiology Collaboration equation [21]. eGFR slope
was determined using 14 eGFR values per patient. Serum bicar-
bonate was measured at baseline as a pre-specified measure-
ment of the DIPAK trial [20]. Serum bicarbonate was measured
by the clinical laboratories of the separate treatment study sites
by means of a phosphoenolpyruvate reaction. The serum bicar-
bonate levels were measured using Cobas 8000 (Roche) at the
Erasmus Medical Centre in Rotterdam and Leiden University
Medical Centre, ABL720 (Radiometer) at the University
Medical Centre Groningen or RAPIDPoint 500 (Siemens) at
the Radboudumc in Nijmegen. Baseline urinary ammonium ex-
cretion was measured using the phenol–hypochlorite reaction
in 24-h urine. Daily dietary protein intake (g/day) was calcu-
lated using the equation: 6.25� (urine urea nitrogen in g/dayþ
weight in kg) � 0.031 [22]. Net endogenous acid production
(NEAP) was estimated by: 10.2þ (54.5� protein intake in g/
day)/urine potassium in mEq/day [23].

Outcomes

The primary outcome of this study was worsening kidney
function, which was pre-defined in the original DIPAK trial as
30% decrease in baseline eGFR or the development of kidney
failure, defined as eGFR<15 mL/min/1.73 m2 [20, 24–26].
Secondary outcomes were annualized eGFR slope (mL/min/
1.73 m2/year), change in height-adjusted TKV (htTKV), change
in height-adjusted TLV (htTLV) and change in htTLV in
patients with polycystic liver disease (PLD), defined previously
for this patient study as liver size>2000 mL [20]. For our analy-
sis, we used the htTKV and htTLV values obtained at the end
of study.

Statistical analysis

Serum bicarbonate was studied both in tertiles and as a con-
tinuous variable. Multivariable linear regression was used to an-
alyse which baseline variables were associated with serum
bicarbonate. We used Cox regression to determine the effect of
serum bicarbonate on the primary outcome. Censoring was ap-
plied at end of study (after 132 weeks) or in case of loss to

follow-up. The unadjusted effect of serum bicarbonate was
assessed before correcting for 15 covariates in the three additive
models. Model 1 was adjusted for age, sex, eGFR, htTKV,
treatment group and study site, because these are the main
factors associated with ADPKD progression [27]. Model 2 was
additionally adjusted for onset of hypertension before the age
35 years, onset of urological events before the age of 35 years
and PKD mutation (PKD1 truncating, PKD1 non-truncating or
PKD2), because those have previously also been defined as
prognostic predictors of ADPKD [28]. In Model 3, we included
urinary excretion of ammonium, serum potassium, renin–an-
giotensin inhibitor use, diuretic use, estimated dietary protein
intake and body mass index, all of the variables we considered
relevant for acid–base homoeostasis [29, 30]. We also analysed
serum bicarbonate in regression models in which only Mayo
image class, predicting renal outcomes in ADPKD (PROPKD)
score, CKD stage or study site was added. Serum bicarbonate
(tertiles) met the assumptions of the Cox proportional hazard
model based on the partial residuals. We used linear regression
to evaluate the association between serum bicarbonate and sec-
ondary outcomes. Homoscedasticity of the multivariable analy-
sis was checked by a fitted versus residual plot, and normality
using a Q–Q-plot. The statistical analyses were performed using
SPSS version 25.0.0.1 (IBM). A P< 0.05 was considered statisti-
cally significant.

R E S U L T S

Baseline characteristics

Of the 309 DIPAK participants that were randomized, se-
rum bicarbonate was available in 296 patients. The average se-
rum bicarbonate was 26.1 6 2.8 mmol/L (Table 1). Patients in
the highest tertile of serum bicarbonate had lower body mass
index, lower serum potassium and lower urine ammonium ex-
cretion (Table 1). Most patients were of primarily European
descent; five patients were of Asian descent and ethnicity was
not reported in five patients. The distributions for Mayo image
class, PROPKD scores, CKD stage and study sites are shown in
Supplementary data, Table S1. No patients used alkali supple-
mentation at baseline, while four patients used it during follow-
up (three in the lowest tertile and one in the highest tertile).
Serum bicarbonate showed a positive association with diuretic
use and eGFR, and a negative association with male sex, body
mass index, study sites 2 and 3, serum potassium and Mayo
image class (Table 2).

Lower serum bicarbonate increases the risk of
worsening kidney function

Patients with lower serum bicarbonate had a greater risk of
worsening kidney function (Figure 1; log-rank P¼ 0.004).
When compared with the third serum bicarbonate tertile,
patients in the first tertile had a significantly greater risk of
worsening kidney function in the fully adjusted model [hazard
ratio ¼ 2.95, 95% confidence interval (CI) 1.21–7.19; Figure 2].
The same trend was observed for patients in the second tertile,
although this was not statistically significant. In the continuous
analysis, each mmol/L decrease in serum bicarbonate increased
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the risk of worsening kidney function by 21% in the fully ad-
justed model (hazard ratio ¼ 1.21, 95% CI 1.06–1.37; Figure 2).
The covariates Mayo image class, PROPKD, CKD stage and
study site were also added individually in a model with serum
bicarbonate (Supplementary data, Table S2). In these analyses,
serum bicarbonate was also independently associated with the
primary outcome. We also analysed if NEAP or dietary protein
intake (as measures of dietary acid load), and urinary ammo-
nium (as measure of kidney acidifying capacity) were associated
with the primary or secondary outcomes, which was not the
case (data not shown).

Serum bicarbonate independently predicts changes in
eGFR but not TKV and TLV

A lower serum bicarbonate was associated with greater an-
nual eGFR decline (P for trend <0.001; Figure 3A). Each
mmol/L decrease in serum bicarbonate increased the annual de-
cline in eGFR by 0.12 mL/min/1.73 m2/year (95% CI �0.20 to
�0.03) in the fully adjusted model (Table 2). A lower serum bi-
carbonate was not associated with a change in htTKV (0.1 per-
centage point, 95% CI �0.2 to 0.4; Figure 3B and Table 3).
Serum bicarbonate was also not associated with TLV growth in
all participants (�0.1 percentage point, 95% CI �0.5 to 0.2) or
in the subset of participants with PLD (�0.2 percentage point,
95% CI�0.8 to 0.3).

D I S C U S S I O N

In this study, we show that in patients with ADPKD and eGFR
30–60 mL/min/1.73 m2, serum bicarbonate is independently as-
sociated with kidney outcomes. A lower serum bicarbonate was
associated with a greater risk of 30% eGFR decline or kidney
failure (the composite primary outcome) and a more rapid an-
nual eGFR decline (secondary outcome). A lower serum bicar-
bonate was not associated with a greater increase in htTKV and
htTLV. Of interest, the association between serum bicarbonate
and kidney outcomes was independent of variables that are in-
cluded in two established prognostic models for ADPKD, the
Mayo image class and PROPKD score [27, 28]. Furthermore,
the association was also independent of urinary ammonium ex-
cretion, a measure of urinary acidification capacity. Our data
suggest that serum bicarbonate adds to the current prognostic

Table 1. Baseline characteristics according to serum bicarbonate tertiles

Variable Total (n¼ 296) Tertile 1 (n¼ 99) Tertile 2 (n¼ 99) Tertile 3 (n¼ 98) P-value

General characteristics
Age, years 48 6 7 48 6 7 48 6 7 49 6 8 0.3
Men, n (%) 137 (46) 45 (45) 47 (47) 45 (46) 0.9
Body mass index, kg/m2 27 6 5 28 6 6 27 6 4 26 6 4 0.002
Systolic blood pressure, mmHg 133 6 13 132 6 13 134 6 14 134 6 13 0.4
RAS-blocking agents, n (%) 223 (75) 74 (75) 74 (75) 75 (77) 0.8
Diuretics, n (%) 103 (35) 29 (29) 35 (35) 39 (40) 0.1
Laboratory values
eGFR, mL/min/1.73 m2 50 6 11 49 6 11 49 6 12 52 6 11 0.07
Creatinine clearance, mL/min 73 6 27 71 6 25 71 6 25 78 6 30 0.2
Serum bicarbonate, mmol/L 26.1 6 2.8 23.1 6 1.6 26.2 6 0.8 29.0 6 1.3 –
Serum potassium, mmol/L 4.2 6 0.4 4.4 6 0.4 4.2 6 0.4 4.1 6 0.5 <0.001
Urine sodium, mmol/day 161 6 65 168 6 65 160 6 66 156 6 65 0.4
Urine ammonium, mmol/kg/day 0.21 6 0.09 0.20 6 0.09 0.20 6 0.08 0.22 6 0.09 0.03
Dietary protein, g/day 87 6 25 90 6 26 86 6 26 84 6 23 0.1

ADPKD characteristics
htTKV, mL/m 1083 (728–1679) 1209 (864–1797) 1037 (677–1688) 987 (668–1554) 0.07
htTLV, mL/m 1188 (998–1526) 1210 (1007–1512) 1127 (970–1507) 1210 (1041–1660) 0.7
TLV>2000 mL, n (%) 170 (57) 56 (57) 54 (55) 60 (61) 0.5
Truncating PKD1, n (%) 133 (45) 48 (48) 44 (44) 41 (42) 0.3
Non-truncating PKD1, n (%) 69 (23) 18 (18) 25 (25) 26 (27) 0.2
Other mutation, n (%) 94 (32) 33 (33) 30 (30) 31 (32) 0.8
Hypertension<35 years, n (%) 116 (39) 41 (41) 41 (41) 34 (35) 0.3
Urologic events<35 years, n (%) 68 (23) 16 (16) 25 (25) 27 (28) 0.06

Bold font indicates statistically significant results (P < 0.05).
Data are presented as mean 6 SD or median (interquartile range), unless otherwise indicated.

Table 2. Variables independently associated with serum bicarbonate

Variablea B (95% CI) St. b P-value

Male sex �0.72 (�1.33 to �0.09) �0.13 0.02
Body mass

index, kg/m2
�0.08 (�0.14 to �0.02) �0.13 0.02

Diuretic use 0.89 (0.24 to 1.54) 0.15 0.01
Study site 2 �2.34 (�3.09 to �1.59) �0.36 <0.0001
Study site 3 �0.67 (�1.36 to 0.20) �0.11 0.06
eGFR, mL/min/

1.73 m2
0.03 (0.02 to 0.06) 0.11 0.04

Serum potassium,
mmol/L

�1.07 (�1.83 to �0.31) �0.17 0.01

Mayo image class �0.55 (�0.91 to �0.19) �0.17 0.003

aCovariates related to acid–base homeostasis or ADPKD progression were included in
the model, including age, sex, body mass index, systolic blood pressure, renin–angioten-
sin inhibitor use, diuretic use, study site, eGFR, creatinine clearance, serum potassium,
24-h urinary sodium excretion, 24-h urinary ammonium excretion, NEAP, dietary pro-
tein intake, Mayo image class and PROPKD score.
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models for ADPKD, and may be considered as a treatment
target.

Several studies in patients with CKD have shown that serum
bicarbonate is associated both with kidney outcomes and mor-
tality [4–9]. Furthermore, there is low-to-moderate certainty
evidence that alkali supplementation slows the rate of kidney
function decline in patients with CKD [31]. Of interest, several
of these cohorts or trials also included patients with ADPKD,
although they likely represented a minority and were not ana-
lysed separately. Compared with CKD, the effect size of the as-
sociation between serum bicarbonate and kidney outcomes
appears to be similar or even greater for ADPKD [4–9].
However, two differences in acid–base balance between
ADPKD and CKD merit emphasis. First, dietary acid load or
urinary ammonium did not predict kidney outcomes in our
ADPKD cohort. This was unexpected because previous studies
in CKD cohorts identified dietary acid load and urinary ammo-
nium excretion as risk factors for kidney outcomes independent
of serum bicarbonate [29, 30, 32]. This suggests that in CKD,

ammonium handling is affected differently than in ADPKD, as
has been suggested previously [16]. Secondly, the average serum
bicarbonate concentration was higher in our ADPKD cohort
than in previous CKD cohorts with similar eGFR range [8, 30].
In fact, only 7.4% of the patients in our cohort had a serum
bicarbonate <22 mmol/L that would classify as metabolic
acidosis [2]. Although serum bicarbonate was correlated with
diuretic use, fewer participants used diuretics in our cohort
than in the CKD cohorts (35% versus >50%). This suggests
that the target value for serum bicarbonate may depend on the
underlying kidney disease. A possible explanation for higher
serum bicarbonate in patients with ADPKD may be that the
urinary concentrating defect causes slight volume depletion
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FIGURE 1: Survival analysis for worsening kidney function by base-
line serum bicarbonate tertiles. Worsening kidney function (primary
outcome) was defined as >30% eGFR loss or kidney failure.
Censoring was applied at end of study (after 132 weeks) or in case of
loss to follow-up.

Table 3. Linear regression analysis for associations between serum bicarbonate and secondary outcomes

Outcomes Unadjusted Model 1a Model 2 Model 3

b (95% CI) P-value R2 b (95% CI) P-value R2 b (95% CI) P-value R2 b (95% CI) P-value R2

eGFR, mL/min/
1.73 m2/year

�0.15 (�0.23
to �0.07)

<0.001 0.05 �0.13 (�0.22
to �0.05)

0.001 0.18 �0.13 (�0.21
to �0.05)

0.003 0.20 �0.12 (�0.20
to �0.03)

0.008 0.20

htTKV, pp/year 0.1 (�0.2 to 0.4) 0.5 0.00 0.1 (�0.2
to 0.4)

0.5 0.17 0.1 (�0.2 to 0.4) 0.4 0.20 0.1 (�0.2 to 0.4) 0.5 0.23

htTLV, pp/year �0.1 (�0.4 to 0.1) 0.3 0.00 �0.1 (�0.4
to 0.2)

0.4 0.05 �0.1 (�0.4 to 0.2) 0.5 0.06 �0.1 (�0.5 to 0.2) 0.3 0.07

htTLV in
PLD, pp/year

�0.2 (�0.4 to 0.2) 0.4 0.01 �0.2 (�0.7
to 0.3)

0.5 0.06 �0.2 (�0.7 to 0.3) 0.5 0.08 �0.2 (�0.8 to 0.3) 0.4 0.10

aModel 1: age, sex, baseline eGFR, baseline htTKV, treatment group (lanreotide or not) and study site; Model 2: Model 1 and hypertension before the age of 35 years, urologic events
before the age of 35 years and PKD mutation; Model 3: Model 2 and urinary ammonium excretion, baseline serum potassium, renin–angiotensin inhibitor use, diuretic use, dietary pro-
tein and body mass index. pp, percentage point.
Bold font indicates statistically significant results (P < 0.05).

Serum bicarbonate tertile 1
Unadjusted 3.19 (1.48–6.90)

Model 1 2.61 (1.16–5.90)

Model 2 2.68 (1.18–6.07)

Model 3 2.95 (1.21–7.19)

Serum bicarbonate tertile 2
Unadjusted 1.78 (0.78–4.06)

Serum bicarbonate tertile 3
Reference (1)

Model 1 1.40 (0.60–3.26)

Model 2 1.43 (0.61–3.33)

Model 3 1.47 (0.61–3.53)

Serum bicarbonate (per mEq/L decrease)
Unadjusted 1.19 (1.07–1.32)

Model 1 1.20 (1.06–1.35)

Model 2 1.20 (1.06–1.36)

Model 3 1.21 (1.06–1.37)

0.5 1 2
Hazard ratio

4 8

FIGURE 2: Graphical display of hazard ratios with 95% CIs for
serum bicarbonate tertiles and serum bicarbonate.
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with angiotensin II-mediated bicarbonate reabsorption [33]. Of
interest, a tubular form of metabolic alkalosis was recently
reported in the so-called Oak Ridge polycystic kidney mouse,
which exhibits increased sodium–hydrogen exchanger activity
in the cortical collecting duct [34]. Therefore, an alternative ex-
planation may be that the higher serum bicarbonate in ADPKD
is caused by a change in tubular acid–base handling. It is not
clear if serum bicarbonate in the high–normal range can also
cause complications. Some studies identified U- or J-shaped
associations between serum bicarbonate and mortality [5, 7],
although this finding is not consistent [6, 8, 9]. In the Chronic
Renal Insufficiency Cohort, a higher serum bicarbonate was
associated with heart failure, but this study excluded patients
with ADPKD [8].

Although our study cannot prove causality between a lower
serum bicarbonate and faster kidney function decline, experi-
mental models of both CKD and ADPKD do support a direct
link between acid retention and kidney injury [17, 35]. Three of
the explanations for why metabolic acidosis can cause kidney
damage in CKD may also be relevant for ADPKD. First, the re-
nin–angiotensin system (RAS) in the kidney has been impli-
cated in acidosis-induced kidney injury and also in the
progression of ADPKD [10, 36, 37]. Recently, we showed that
patients with ADPKD have a 5- to 6-fold higher urinary excre-
tion of renin and angiotensinogen compared with matched
CKD patients [38]. Secondly, increased ammoniagenesis by die-
tary acid loads may activate the complement system and pro-
mote kidney fibrosis [39]. The complement system has also
been implicated in the progression of PKD [17, 40]. In a recent
proteomic analysis, we detected more complement in urinary
extracellular vesicles of patients with ADPKD than with CKD
[41]. Thirdly, metabolic acidosis causes hypocitraturia, which
may promote crystal deposition in the kidney and which in
turn may promote the progression of ADPKD [42, 43].
Hypocitraturia is common in ADPKD, and calculi can be found
in up to 25% of patients with ADPKD [44]. Challenging PKD
rat models with calcium oxalate or phosphate deposition in-
creased cystogenesis and disease progression through a mam-
malian target of rapamycin-dependent pathway [42]. A higher
serum bicarbonate could also reflect higher dietary intake of cit-
rate, which will reduce crystal deposition, and was linked to
slower disease progression [18, 42].

To our knowledge, this is the first study to specifically
analyse the association between serum bicarbonate and kidney
outcomes in patients with ADPKD. The strength of this study is
that the data are based on a randomized clinical trial, with stan-
dardized procedures and prospectively defined outcomes. In
the DIPAK trial, lanreotide reduced the rate of growth in TKV
[19] and therefore treatment allocation was included in our
models. Furthermore, we were able to correct for multiple con-
founders, including established risk factors for progression of
ADPKD, urinary ammonium excretion (measured specifically
for this study) and use of renin–angiotensin inhibitors and diu-
retics. However, a number of limitations should be mentioned.
First, follow-up time was too short to analyse kidney failure
or mortality, outcomes that have previously been associated
with serum bicarbonate [4–9]. Secondly, different analysers
were used to measure serum bicarbonate, although inter-
changeability has previously been established [45]. The average
serum bicarbonate was significantly lower in one study site
despite the use of the same analyser as in one of the other sites.
However, neither stratification nor correction for study site
changed the results.

In conclusion, in patients with ADPKD, a lower serum
bicarbonate within the normal range predicts worse kidney
outcomes independent of established prognostic factors for
ADPKD and independent of urine ammonium excretion.
Serum bicarbonate may add to prognostic models and should
be explored as a treatment target in ADPKD.
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