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a b s t r a c t

Instant analysis of cybersecurity reports is a fundamental challenge for security experts as an
immeasurable amount of cyber information is generated on a daily basis, which necessitates automated
information extraction tools to facilitate querying and retrieval of data. Hence, we present Open-CyKG:
an Open Cyber Threat Intelligence (CTI) Knowledge Graph (KG) framework that is constructed using
an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat
information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first
identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that
aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured
data is canonicalized to build the KG by employing fusion techniques using word embeddings. As a
result, security professionals can execute queries to retrieve valuable information from the Open-CyKG
framework. Experimental results demonstrate that our proposed components that build up Open-CyKG
outperform state-of-the-art models.1

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cyber threats are developing at a rapid pace, which is driving
ecurity analysts to dynamically utilize various Natural Language
rocessing (NLP) techniques as means to defend, identify, analyze,
nd possibly mitigate various cybersecurity attacks. These include
ext memorization [1], information extraction [2,3] and Named
ntity Recognition (NER) [4,5]. In order to understand the means
nd the consequence of different cyber-attacks, security profes-
ionals rely on previous reports, such as security bulletins or
nline reports, to get a better grasp of the threat at hand. Unfortu-
ately, such reports are often stored in an unstructured manner,
aking efficient information retrieval even more challenging.
Currently, existing information extraction systems lack two

ssential components. First, a methodology that is capable of
xtracting valuable information that does not necessitate either
pre-defined set of relations or an existing ontology [6], limiting
xtraction to a specified set of information, thus increasing the
robability of missing out on vital knowledge. Second, a data
tructure that supports storing extracted data efficiently to allow
uccessful information retrieval and knowledge understanding.

∗ Corresponding author at: Department of Information and Computing
ciences, Utrecht University, Utrecht, The Netherlands.

E-mail addresses: i.a.a.sarhan@uu.nl, injy.sarhan@aast.edu (I. Sarhan).
1 Our implementation of Open-CyKG is publicly available at https://github.

om/IS5882/Open-CyKG.
 t
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950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
The absence of this kind of data structure will prevent security
analysts to fully leverage the extracted information.

In this paper we introduce Open-CyKG: an open Cyber Threat
Intelligence (CTI)2 Knowledge Graph (KG) constructed from Open
nformation Extraction (OIE) triples. Open-CyKG is a framework
hat is capable of efficiently extracting valuable information from
nstructured Advanced Persistent Threat (APT) reports and rep-
esenting the retrieved data in a KG that offers efficient querying
nd retrieval of threat-related information. Open-CyKG is made
p of two main components as shown in Fig. 1. First, an attention-
ased OIE architecture for extracting domain-independent rela-
ional triples from unstructured data. Second, a NER model for
utomatic labeling of cybersecurity terms. More precisely, we
tart by extracting structural relation tuples from APT reports
sing OIE, which are later populated in the KG with the help of
he NER task.

Attention mechanisms have had notable success in several
eep learning tasks [8–10]. The first building block is an attention-
ased OIE. We propose a novel attention mechanism that em-
hasizes the syntactic and semantic features of a given sentence,
n a way that words are assigned different weights based on
heir level of contribution to a sentence. We demonstrate that

2 CTI is the outcome of threat information once it has been compiled and
nalyzed to provide actionable advice regarding previously known or emerging
hreats that helps with the mitigation process [7].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Main building components of the proposed Open-CyKG framework. A more detailed version is shown in Fig. 2.
an attention-based approach improves the process of identifying
semantic relations. The extracted tuples are composed of a pred-
icate and a set of attributes in the form of <Argument 1, Relation,
rgument 2 >.
The second component in Open-CyKG is NER, which acts as

oth a stand-alone NLP application and a pre-processing phase
or several NLP tasks including information extraction, question
nswering, and KG construction [11,12]. It has been significantly
esearched in different domains but only a few studies have tar-
eted the cybersecurity domain. We demonstrate the importance
f a NER module in KG construction and refinement.
One of the major challenges faced during the building process

f a KG is data redundancy and ambiguity. Consequently, to over-
ome this challenge we employ refinement and canonicalization
echniques to fuse information in the KG based on their contex-
ualized word embeddings by using hierarchical agglomerative
lustering for entity grouping. Various empirical analyses to vali-
ate the components of Open-CyKG were carried out demonstrat-
ng that OIE can highly support the development of knowledge
ases. We address the above challenges by proposing a novel and
pen cybersecurity KG model. The contributions presented in this
ork involving different stages of Open-CyKG are as follows:

• We contribute the first OIE-based KG in the cybersecurity
domain that does not limit extractions to a pre-specified set
of information. Our model integrates OIE and NER with KG
fusion techniques to produce an effective open cyber threat
intelligence KG model: Open-CyKG.

• We introduce an attention-based sequence-to-sequence OIE
model that outperforms state-of-the-art network architec-
tures, hereby demonstrating its effectiveness in information
extraction tasks.

• We develop a cybersecurity NER model to label promi-
nent words in this domain that achieves notable results
when compared against several baselines and state-of-the-
art models.

• We conduct a refinement and fusion process in Open-CyKG
which uses the generated NER labels and contextualized
word embeddings to further enhance the quality of the
retrieved queries.

• We show that once Open-CyKG is created, information re-
trieval can be performed efficiently using two sample
queries.

The remainder of this paper is structured as follows. Section 2
eviews previous work in OIE, NER, and KG, followed by our
roposed framework Open-CyKG in Section 3, while Section 4
resents results and evaluation of Open-CyKG. Finally, Section 5
oncludes the paper along with future work discussion.

. Related work

In this section, we review previous work performed on Open
nformation Extraction (OIE), Named Entity Recognition (NER),
nd Knowledge Graphs (KGs) in the literature with underlin-
ng previous work of the aforementioned tasks in the field of
ybersecurity.
2

2.1. Open information extraction state-of-the-art

OIE methodologies can be classified into three main cate-
gories [13]: machine-learning classifier approaches, hand-crafted
rules approaches, and neural network approaches. The first two
approaches can be further classified into two categories, either
deploying shallow syntactic analyses or dependency parsing tech-
niques. In this section, we focus on neural network approaches
and previous work in the cybersecurity domain.

2.1.1. Neural network approaches
Deep neural network approaches have proven their reliability

and success on a wide range of NLP tasks and recently made
their way towards OIE systems as an alternative to feature-based
methods which are considered both time and effort-consuming
to correctly capture entities and linguistic features. In 2018, Cui
et al. [14] developed a Recurrent Neural Network (RNN) encoder–
decoder OIE framework that is constructed from a 3-layer Long
Short-Term Memory (LSTM) [15]. By collecting training data from
high confidence state-of-the-art OIE systems, a variable-length
sequence is inputted to the encoder. Subsequently, the result-
ing compressed representation vector is used by the decoder
to produce the output sequence. Additionally, in the same year,
Stanovsky et al. [16] proposed a supervised OIE paradigm that uti-
lizes a Bidirectional LSTM (Bi-LSTM) transducer to train the neu-
ral network for tuples extraction, authors also validate that OIE
can immensely benefit from an automatic question answering-
semantic role labeling extractor. In [17,18] a Bidirectional Gated
Recurrent Units (Bi-GRU) OIE model was introduced that lever-
ages contextualized word embeddings.

SpanOIE [19] is the first span OIE model that adapts the same
idea of modified span selection that is employed in co-reference
resolution, syntactic parsing, and semantic role labeling. The span
model’s key benefit is visible when applied to token-based se-
quence labeling models in which span-level syntactic information
can be adequately exploited. Authors emphasize that features
of span level support better extraction quality. Cabral et al. in-
troduced CrossOIE [20], a multilingual OIE model that deploys
convolution neural networks that support extractions in English,
Spanish and Portuguese. The cross-language OIE model employs
a binary classifier that generates training features from cross-
language embeddings, hereby highlighting the importance of de-
veloping cross-lingual OIE systems as research is more focused on
the English language only.

2.1.2. Information extraction in cybersecurity
To the best of our knowledge, no previous work has been per-

formed that specifically explores OIE in the field of cybersecurity.
However, several other information extraction techniques target-
ing the cybersecurity domain were recently proposed. In 2019,
Gasmi et al. [4] proposed an LSTM-based Relation Extraction (RE)
system for mining predefined cybersecurity entities from text.
Contrasting to OIE, in RE task relations must be predetermined
prior to extraction. The authors focus mostly on identifying rela-
tions that relate to vulnerabilities that link software with vendors



I. Sarhan and M. Spruit Knowledge-Based Systems 233 (2021) 107524

o
e
f
p
s
f
s
R
i

2

w
N
I
s
s
t
t
m
r
s

2

w
i
N
v
c
t
t
h
N
T
e
w
(

i
t
d
l
t
a
n
b
b
p

2

e
t
t
h

l
M
(
m
t
i
b

i
i

r specific files. Another RE framework was introduced by Jones
t al. [3] that applies a bootstrapping pattern-based approach
or tuple extraction. Their model integrates active learning com-
onents that query the user to supply precise input into the
ystem. Similar to Gasmi’s RE model, Jones et al. [3] use prede-
ined relations that correspond to attributes of vulnerability and
oftware which are derived from a cybersecurity ontology, both
E models aim for a better understanding of vulnerability-related
nformation.

.2. Named entity recognition state-of-the-art

NER is a well-researched topic in several different domains,
here news and biomedical fields dominated the research in the
ER task compared to other less-popular fields like cybersecurity.
t is the task of identifying and locating named entities in un-
tructured text corpora and classify them into a predetermined
et of categories like location, person, organization, date, and
ime expressions. Over the last few years, Neural Network (NN)
echniques have taken over the lead in NER systems as they
inimize the need for human effort in constructing features and

ules necessary for achieving a decent level of accuracy. In this
ection, we review the innovative NN approaches.

.2.1. Neural network approaches
Deep learning systems require minimal feature engineering

ithout essentially requiring lexicons or ontologies, thereby mak-
ng them more domain independent. Amongst the first NN-based
ER systems introduced in 2008 is [21], where a single Con-
olutional Neural Network (CNN) architecture was utilized to
reate a multi-tasking learning system that predicts named en-
ities, POS tags, and semantically similar words. Additionally,
he authors demonstrated that simultaneous task-learning en-
ances the model’s generalization. GRAM-CNN [22] is another
ER approach that uses CNN for biomedical entity extraction.
he authors of [22] used character embeddings instead of word
mbeddings to get a more informative representation of the
ords, where labels are predicted via a Conditional Random Field
CRF) layer.

RNNs paved their way to the NER task by either employ-
ng LSTM or GRU networks. CharNER [23] is a character-level
agger that exploits stacked Bi-LSTM for encoding patterns; a
ecoder is then utilized to transform the generated character-
evel probability representation to word-level tags. Opposing to
he character-level model, in 2016, Yang et al. [24] introduced
multi-tasking, language-independent NER model that concate-
ates both character-level and word-level features. To encode
oth of the aforementioned features, a hierarchical GRU is utilized
efore passing its output to a CRF layer for sequence tagging
rediction.

.2.2. Named entity recognition in cybersecurity
As the demand for automatic text processing and information

xtraction relatively increased in all domains, NER found its way
o the cybersecurity field. Nonetheless, from a technical perspec-
ive, NER systems introduced for the cybersecurity domain are
ighly comparable to the aforementioned systems.
Bridges et al. [5] implemented a maximum entropy model for

abeling named entities on three different cybersecurity datasets:
icrosoft Security Bulletin, National Vulnerability Database

NVD), and Metasploit Framework database, all of which were
ade publicly available by the authors. Average perception is

rained on a fragment of the datasets, while constantly mon-
toring successful entity classifications. Moreover, unigram and
igram features were also included.
 d

3

Kim et al. [25] built a NER system using a deep Bi-LSTM-CRF
neural network to automatically extract named entities of cyber
threats. The key idea is to incorporate several features in their
proposed model, mainly characters based on Bag-Of-Character
(BOC) representations. Their predefined named entities consist
of a diverse set of cybersecurity terms such as malware, hash,
and Common Vulnerabilities and Exposures (CVE). Their model
adapted character-level features, and additionally, GloVe [26] was
utilized to embed words.

In addition to the cybersecurity RE model proposed by Gasmi
et al. [4] – discussed in Section 2.1.2 – they also introduced a
NER system that exploits a Bi-LSTM-CRF neural network similar
to the model proposed by [25] with the exception of adapting
word-level features instead of character-level ones. Alike [5], the
NVD dataset was employed for training and testing purposes.
Another deep learning approach that combines Bi-GRU with CNN
was designed by Simran et al. [27]. The Bi-GRU layer polishes the
vectors prior to feeding them to the CNN layer, where features
are fine-tuned before passing them to the CRF prediction layer.

2.3. Knowledge graph overview

With the arrival of the automatic information extraction and
question answering era, KGs3 fulfilled the need of effectively min-
ing structured knowledge from exhaustive texts. In this section,
we start by briefly presenting the most popular KG applications
and other NLP tasks that can benefit from KGs, followed by
walking through different methods to build KGs and different
canonicalization techniques. Finally, we review previous KG work
in the cybersecurity domain.

2.3.1. Knowledge graph applications
The first KG was introduced by Google [28] in 2012, with

the main objective of enhancing query results and further en-
riching the overall search experience of end-users. This was
the start that ignited research in KG and the development of
other KG-based applications. DBPedia [29] is a well-known multi-
lingual KG project that permits users to retrieve information
through semantic queries; data in DBPedia is mainly acquired
from Wikipedia infoboxes. Freebase [30] is a collaborative knowl-
edge base where community members compose the data, also
described as‘‘an openly shared database of the world’s Knowledge’’.
It is worth noting that Freebase powered a part of Google’s
KG, however, it went offline in 2016 and was succeeded by
Wikidata [31].

In addition to the aforementioned applications, KG also aided
several NLP tasks, from information extraction [32,33] and ques-
tion answering [34] to recommendation systems [35].

2.3.2. Knowledge graph construction and canonicalization
There are several manners to construct a KG. It can be curated

from existing knowledge bases like YAGO [36] and Wikipedia,
where the latter was mainly used in building DBPedia [29], or the
KG can be populated and modified by users as in Freebase [30]
and Wikidata [31]. A third option is using information extraction
techniques to obtain data from unstructured or semi-structured
text to create the KG. As stated in [37], whichever of the three
methods is utilized to build the KG, it will never be entirely
correct or complete. As is the case in DBPedia, although it has
almost 4.6 million entities, only half of them include fewer than
five relations. Hence, KG canonicalization is required to overcome

3 Knowledge Graph can be defined as a form of a data structure, which
s composed of nodes and edges that are leveraged as a way to manage and
llustrate information in such manner that users can efficiently query and obtain
ata on a specific topic.
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his challenge by employing fusion and refinement techniques to
mprove the overall quality of the KG, which might result in a
rade-off between accuracy and coverage of the KG [38].

In [39], an attribute character embedding that is formed on
epresentation learning is created. The model uses the aforemen-
ioned embeddings to distinguish similarities between entities
n a KG. Additionally, transitivity rules are applied to further
nhance the attributes of an entity and assist in the entity linking
rocess. Another way to ensure that similar entities and relations
n a KG lie in the same space is by using entity descriptors as
eployed by Zhong et al. in [40]. The alignment model produced
y the authors of [40] does not require dependencies on specific
ata sources, therefore it can be integrated into any KG as long as
he entities are identified. Entity linking is another way of canon-
calization, by mapping entities in the text to existing entities in
KG as in [41,42]. While entity disambiguation is deemed as a
ub-task of entity linking, it is the process of linking the identified
ntity in a KG to a ground truth entity as in [43,44].

.3.3. Knowledge graphs in cybersecurity
Following the same trend of the two aforementioned NLP

asks, OIE and NER, KG in the cybersecurity domain is one of the
ost under-researched domains compared to the more popular

ields such as news and biomedical domains. Narayanan et al. [45]
uilt a collaborative framework with the help of semantically
ich knowledge representations. Their cognitive assistant system
esignated for early detection of cybersecurity attacks acquires
ulnerability-related data from recently published threat intel-
igence reports from multiple sources such as online blogs and
VE reports, whereas information is later illustrated in a pre-
onstructed KG that is previously loaded with information such
s early detected threats, attack patterns, and tools required to
arry out an attack.
As an alternative to constructing a KG from data about vul-

erabilities, Piplai et al. [12] populate a cybersecurity KG from
alware After Action Reports (AAR), as they enclose insightful
nalyses of cybersecurity incidents, hereby delivering reliable
nformation to security analysts. As AARs provide crucial data
bout detection and mitigation techniques of attacks, they can
lso aid in dealing with new unidentified cybersecurity incidents
y matching pattern similarities with a predefined incident. Addi-
ionally, to ease the extraction phase, a traditional malware entity
xtractor that is based on Stanford NER [46] was created, that was
rained on CVE and security blogs to label each word accordingly.

A further cybersecurity KG that is constantly maintained is
EPSES, introduced by Kiesling et al. [47]. SEPSES encapsulates
nd relates essential information ranging from vulnerabilities to
ttack patterns and weaknesses. Data in the KG is populated
rom several sources and amendments are instantly incorporated
n the real-word, for example, CVE data is continuously fed to
heir model and updated every two hours, which is valuable in
apturing alerts caused by intrusion detection systems in parallel
ith providing updated vulnerability assessments.
Nevertheless, the aforementioned work in this section either

epends on structured text to populate the KG or limits extrac-
ions to a predefined set of information. For the work of [12],
he authors employ RE while authors of [47] completely rely on
pache Jena for the triple formulation of specific relations. This
urther demonstrates the strength of Open-CyKG, as it employs
IE so it is not restricted to a predetermined set of relations or
n ontology to extract information from cybersecurity reports.

. Open-CyKG framework

Our Open-CyKG framework is presented in Fig. 2. The pipeline
s composed of three main modules; a neural OIE system to ex-
ract relation triples from unstructured APT reports, a cybersecu-

ity NER model that identifies and classifies each word according

4

to a predefined set of labels, and a KG construction and fusion
phase where extracted triples from the OIE phase are illustrated.
The KG is constructed such that the extracted entities represent
the KG nodes and edges correspond to the extracted relations that
couple the entities.

3.1. Neural OIE model

Our OIE model is schematically presented in Fig. 3. It is an
upgrade on our previous OIE work described in [17] and [18]. We
tackle OIE as a sequence labeling task using the BIO (Beginning,
Inside, and Outside) labeling scheme [48] in such a way that the
resulting outcome is a set of overlapping tuples for each sentence.

Due to the fact that RNNs have the capacity of storing informa-
tion in their hidden units, they are considered a suitable choice
for handling sequential data when compared to feed-forward
artificial neural networks like CNNs that also struggle to cap-
ture long-distance dependencies between words. Nevertheless,
RNNs are harder to train with longer sequences owing to vanish-
ing and exploding gradient descent complications, which leads
the performance to noticeably degrade. As RNNs are trained by
back-propagation through time, the further we back-propagate
through several time steps, the smaller the gradient gets up
until it vanishes or explodes. As a solution, extended versions of
RNNs were introduced – LSTMs and GRUs – to mitigate vanishing
gradient issues by deploying appropriate gates to permit the
gradient to flow effectively while maintaining long-term depen-
dencies [15,49]. GRUs are regarded as a less complex variation
of LSTMs, both are built on the gating concept, where LSTM’s
architecture is compiled of three gates; input, output and forget
while GRUs couple the input and forget gates into a single update
gate. Our choice of deploying GRUs instead of LSTMs is also
motivated by the fact that GRUs utilize fewer training parameters,
resulting in quicker execution and training times in contrast to
LSTMs.

In addition to embedding the word and its corresponding POS,
and passing them as an input to our neural network, the feature
vector is further enriched by passing the predicate of the phrase,
as predicates are regarded as the building block of any sentence.
The input feature vector (F .V ) is represented in Eq. (1).

F .V = (Emb(w) ⊕ Emb(POS(w)) ⊕ Emb(wPred))|w ∈ S (1)

Where ⊕ represents the concatenation of the 3 inputs: word
denoted as w, its corresponding POS obtained using the NLTK
toolkit [50] POS(w) and the predicate of the sentence wPred, where
each word belongs to a sentence S. All the prior mentioned inputs
are embedded Emb using contextualized word embeddings as
discussed in Section 4.2.1.

The embedded feature vector is then passed to two Bi-GRU
layers. As shown in Fig. 3, Bi-GRU is composed of two GRUs
operating in a reverse direction, the significance in utilizing a
Bi-GRU rather than a single direction GRU is that information is
captured in both directions, forward and backward during each
time-step to efficiently perform sequence labeling.

The outputted tensor from the Bi-GRU layer is then passed
through an attention layer [51] that is based on an additive atten-
tion module. Most of the proposed OIE neural models discussed
in Section 2.1.1 are formulated in a way such that all words
have the same level of importance, however, it is important to
highlight that not all words in a sentence have an equivalent
level of contribution in the OIE task. To address this issue, we
employ the attention mechanism in our network to learn the
varying significance of words in each phrase and aggregate the
output to the following double-layered Time Distributed Dense
(TDD) layer that employs a consistent dense layer to the passed
tensor at each time step. As a final point, the tensor produced by
the TDD layers is fed into a SoftMax layer, where the output is an

individual probability distribution covering all possible tags.
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Fig. 2. The Open-CyKG pipeline is composed of three primary building blocks: OIE, NER modules, as well as fusion and KG refinement techniques that result in a
anonicalized open KG.
Fig. 3. Our OIE model takes the concatenation of all inputs and passes the input to the two Bidirectional Gated Recurrent Units (Bi-GRU) layers, followed by an
attention layer, two Time Distributed Dense (TDD) layers, and finally, a SoftMax layer for prediction.
3.2. Cybersecurity-NER

The task of classifying cybersecurity entities in our dataset
esembles the efforts of prior research discussed in Section 2.2.1,
owever, with a differently designed neural network as illus-
rated in Fig. 4. In a similar manner to our OIE approach, we
ormulate the NER task as a sequence labeling problem with BIO
aggers, as it is considered the most suitable tagging module for
ER specifically in neural models employing CRF [52], where each
ord in the dataset is labeled according to a set of predefined
ntities based on its position.
5

Initially, words are translated into their respective embeddings
and are progressed directly to the following layer. Since long de-
pendencies modeling in NER is essential we also opted to deploy
an RNN. To capture both, backward and forward information,
our proposed cybersecurity-NER deploys a Bi-GRU layer which
outputs a tensor that is later passed to a TDD layer. Finally, a CRF
prediction layer labels each word in our dataset by generating
likelihood distributions over every available tag.
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Fig. 4. Our implemented cybersecurity NER neural model architecture that is
composed of four main layers; Embedding, Bidirectional Gated Recurrent Units
(Bi-GRU), Time Distributed Dense (TDD), and Conditional Random Field (CRF)
for label prediction.

3.3. Knowledge graph construction and canonicalization

To produce Open-CyKG, relation triples extracted from the OIE
tage are processed and outlined in the KG as defined in Eq. (2):

G = {(nh, e, nt)|nh, nt ∈ E, e ∈ R} (2)

Where the set of the extracted OIE triples (nh, e, nt) are composed
of a node head nh and a node tail nt in which both belong to
the entities E, both nodes are linked together using an edge e
hat represents the relation R that lies between the two entities.
dditionally, named entity tags are allocated to each node as a
roperty. An uncanonicalized sample of the generated KG using
eo4J [53] is illustrated in Fig. 5.
6

Several sources of information are used when constructing
a KG, which will possibly prompt duplication. As a result, it is
essential to apply refinement and fusion techniques to address
this matter. The leading step is triple refinement: this two step-
process involves removing redundant and vague information, and
entity blending where identical entities are merged together after
identifying and removing non-essential words to preserve only
informative entities. The filtration task also involves eliminating
uninformative triples generated from the OIE phase, in which all
words forming the three extracted components are not assigned
any named entity labels from the cybersecurity NER phase.

Another common setback in the construction process that
is not captured in the previous step is entity disambiguation,
which can be perceived in two contradictory ways, the first is
ensuring that an entity represents the same semantic concept to
all its connected nodes, while the second is unifying and merging
entities that represent identical concepts. Entity disambiguation
in KG is considered a research problem on its own that is out
of the scope of this paper. Nevertheless, we briefly attend to
this issue by performing entity fusion using contextualized word
embeddings to capture the semantics of entities. In our work, we
experiment with several word embeddings discussed in detail in
Section 4.2.1.

The potential of using word embeddings in Open-KG canoni-
calization to address ambiguity in the generated knowledge graph
has been demonstrated by the works of [38,54]. By first averaging
the generated word embeddings of all subjects in an entity,
we cluster entities by carrying out Hierarchical Agglomerative
Clustering (HAC) by employing cosine similarity as a distance
metric. Our choice behind HAC is motivated by the fact that it
does not require predefining the number of clusters in advance.
Additionally, it supports complete linkage clustering, similar to
the concept of farthest neighbor clustering, where initially each
average embedding is a cluster on its own, and in each step
the two clusters having the smallest maximum pairwise distance
are merged. The complete linkage clustering is fitting in KG
canonicalization as demonstrated in [38] as small-sized clusters
are expected as opposed to single and average linkage clustering.
Fig. 6 illustrates the canonicalized version of Fig. 5, where nodes

are merged after the clustering process.
Fig. 5. An uncanonicalized sample of the created KG using Neo4J.
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Fig. 6. Canonicalized version of Fig. 5 using Neo4J.
The final phase is determining a representative for each clus-
er. In line with the work of [38] we calculate the mean of all
he generated elements’ embeddings weighted by the number of
ccurrences of each element in the input. The entity with the
inimum distance to the weighted cluster mean is selected as
representative.
To further clarify the importance of canonicalization in ad-

ressing ambiguity and redundancy, consider the following two
riple extractions: <Barack Obama, born in, Hawaii> and <Obama,
erved as, 44th U.S President>. In an uncanonicalized version of the
G, the two extractions would be included separately without any
onnecting edges, as Barack Obama and Obama are perceived as
wo distinct entities. This may lead to a remarkable impact when
uerying data from the KG as it will not return all information
inked with Barack Obama. Such KGs will also suffer from re-
undant facts, which is undesired. Canonicalizing KGs using HAC
lustering as described above guarantees relation transitivity, that
oth entities —Barack Obama and Obama— are fused to represent
single entity. Several other canonicalization approaches and

ntity linking techniques are proposed in [55,56].

. Results and evaluation

In this section, we report the utility of Open-CyKG. KG curation
s the task of assessing the value of the constructed KG, this
rocess is commonly fulfilled by experts in the field. However,
owadays, it is deemed a tedious task to be done by humans,
specially with densely populated KGs, or even more compli-
ated ones incorporating several domains [57]. Nonetheless, KG
alidation is still an open challenge, hence we address this mat-
er by evaluating each component in our model separately to
eflect the quality of Open-CyKG. We also present a set of aux-
liary experiments to further analyze our proposed OIE and NER
odels. All our experiments were implemented using the Keras

ramework [58] with the TensorFlow backend [59]. We start by
escribing the dataset used to build the KG in detail along with
ts inherent constraints.
7

4.1. MalwareDB dataset

As the world is digitally growing, devices are more prone to
malware attacks which might lead to misfortunate events ranging
from unauthorized access to personal data to device damage.
MalwareDB [60] is an annotated dataset based around Malware
Attribute Enumeration and Characterization (MAEC) vocabulary
that primarily outlines malware characteristics gathered from 39
APT reports. Fig. 7 shows a sample from the aforementioned
dataset with the extracted triples from the OIE task.

OIE is the primary building block in Open-CyKG to construct
the KG, so our main objective is to effectively identify relation
triples necessary for successful querying. Hence, training data
is crucial in our work. Unfortunately, one of the ongoing chal-
lenges is the lack of BIO-labeled data, specifically in understudied
domains such as cybersecurity. Although the 39 APT reports
that constitute the MalwareDB dataset originally contain 6,819
sentences, we were only able to classify 1,910 sentences as infor-
mative sentences, which challengingly formed our training, test,
and validation sets. Uninformative sentences can be defined as:

• Sentences that are composed of ‘O’: Outside labels only.
• Phrases without any relationship labels.
• Sentences that contain only a single entity.

Yet, currently there is no alternative dataset available in the
cybersecurity domain with BIO labeling.

4.2. Experimental results and analysis: OIE

In this section we assess the outcome of our proposed
attention-based OIE model, we follow the framework configura-
tion and dataset as discussed in Sections 3.1 and 4.1 respectively.

4.2.1. Word embeddings
In recent years various types of embeddings have been pro-

posed, varying from character and word embeddings to sentence
and document embeddings. Nonetheless, they all provide the
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Fig. 7. An example of OIE performed on a sentence from APT reports, where the Action tag represents the relation that links the two entities together.
Table 1
Four embedding techniques and their respective dimensionality
employed in our OIE model.
Embedding technique Vector dimensionality

GloVe [26] 100
BERT [62] 3072
XLNet [63] 2048
XLM-RoBERTa [64] 1024

same function of mapping textual input to semantically mean-
ingful vector representations. The innovative contextualized word
embeddings are capable of capturing dense semantic and syn-
tactic features of a word, by incorporating context into the gen-
erated embeddings. In our OIE task, three inputs are embed-
ded and fed to the network, making the choice of embedding
fundamental, hereby we opted to experiment using different
word embedding techniques, by selecting one conventional non-
contextualized embedding – GloVe [26] – and three contextual-
ized embeddings with varying dimensionality and trained on a
diverse set of domains. In order to carry out our experiments, we
utilized Flair [61], a powerful open-source framework developed
by Zalando Research that provides a unified interface for a wide
range of state-of-the-art word, document, and sentence embed-
dings. The employed embeddings along with their dimensionality
are shown in Table 1.

4.2.2. Experiment and evaluation on MalwareDB
To assess the competence of our model we have analyzed it

igorously with different experimental setups and word embed-
ings. As observed in Table 2, Bi-GRU achieves an overall higher
core than Bi-LSTM neural network models. More precisely, our
i-GRU + Attention model scores an F-measure of 59.4% which is
.2% higher than when using a Bi-LSTM + Attention network, both
chieved the highest score with XLM-RoBERTa embeddings.
We performed an ablation study to measure the effectiveness

f the attention mechanism by testing on a Bi-GRU network
hich resembles the model introduced by Sarhan et al. [17]
nd [18]. By removing the attention component, the Bi-GRU
odel achieved an F-measure score of 56.8%, verifying the impact
f deploying the attention mechanism as it contributed to a 2.6%
ncrease in F-measure. Despite the fact that GRUs and LSTMs
apture long-range dependencies better than traditional RNNs,
hey do not have the ability to direct the focus to some of the
nput words to point out the words that are important to our
ask, which further demonstrates the importance of deploying
ttention mechanisms in information extraction tasks.
To further evaluate the potential of our attention-based OIE

odel, we compare our model against yet another prior state-
f-the-art neural OIE network that is composed of Bi-LSTM as
roposed by Stanovsky et al. [16]. Alike the comparison to the
revious state-of-the-art, our model was able to achieve a higher
-measure by 4.2%. BERT embeddings attained the highest results
n both networks, Bi-LSTM and Bi-GRU.

The rationale behind Bi-GRUs performing better than Bi-LSTMs
s due to GRUs’ ability to expose the complete memory, unlike
STMs. Additionally, LSTMs have more gates than GRU, which
auses the gradients to flow through which leads to steady
rogress being more complex to maintain after many epochs [65].
8

Another interesting conclusion that can be drawn from our ab-
lation study is the adoption of an attention mechanism to fully
leverage the bidirectional context information as it is also elabo-
rated by the authors of [66] and [8].

It should be emphasized that despite the fact that achieving
a decent recall and precision would be the optimal situation,
precision is more crucial in our work as it reflects the certainty
of the extracted information. In KG false positives are expensive
to maintain, in a setting of a high-scoring recall and a lower
precision, the KG would be populated with uninformative or
false information which will result in a less-efficient querying
experience. Nevertheless, it is important to note that the highest
precision achieved by our model was 62.9% using BERT, trading-
off to a lower recall of 54.7%, which resulted in a decrease of 0.9%
in F-measure when compared to our highest achieving score of
59.4% reported in Table 2.

Our model’s results are sensitive to hyperparameter alterna-
tions, thus a grid search was performed to single out the optimal
number of training epochs and batch size. The hyperparameter
configurations that realized the best results are reported in Ta-
ble 3. The hidden size of all Bi-GRU layers is set to 128, which
is also the same number of units used in the two TDD layers.
For regularization reasons to prevent over-fitting, the dropout
rate is adjusted to 0.1. Moreover, early stopping is employed to
terminate training based on the model’s performance on the de-
velopment set. Furthermore, a linear activation function, Rectified
Linear Unit (ReLU) [67] was applied in the two TDD layers, while
the Adam optimizer [68] was utilized to train our model.

Additionally, as the limited size of the training set influences
the neural network’s performance, we were able to further eval-
uate our proposed attention-based OIE model by experimenting
on a larger annotated news dataset [69], which is composed
of 2906 training sentences. An increase of 3.2% in F-measure
was achieved, emphasizing that the limited size of training data
indeed plays an important role.

4.3. Experimental results and analysis: NER

As the MalwareDB dataset has no named entities annota-
tion we could not train or evaluate our model based on Mal-
wareDB extractions. In this section, we will discuss the datasets
used to train and validate our NER neural network described in
Section 3.2.

4.3.1. Dataset
To perform NER, necessary for refinement and labeling of KG

nodes, we used two different training sets, each containing a
diverse set of labels. The output from the two-pass process is then
merged to assign labels from the two datasets to named entities.
The first dataset Microsoft Security Bulletins, utilized in [5], is
also annotated and made widely accessible by the authors. It
is composed of 5072 sentences discussing vulnerabilities and
security flaws in Microsoft’s software products along with various
patch and mitigation information. A random sample drawn from
the Microsoft Security Bulletin dataset is shown in Fig. 8. The
second dataset employed in [25] is a malware-specific dataset
collected from various CTI reports resulting in a total of 3450
sentences with predefined named entities that relate to malware,
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Table 2
Results of our Open-CyKG: OIE model (Open-CyKGBi-GRU+Att). Recall, precision, and F-measure are used as evaluation
metrics. Along with the deployed word embedding that resulted in the highest scores.
Model Network architecture Word embedding Results

Recall Precision F-Measure

Sarhan et al. [17], [18] Bi-GRU BERT 54.9% 58.9% 56.8%
Stanovsky et al. [16] Bi-LSTM BERT 53.0% 57.5% 55.2%
Open-CyKGBi-LSTM+Att Bi-LSTM + Attention XLM-RoBERTa 55.7% 58.7% 57.2%
Open-CyKGBi−GRU+Att Bi-GRU + Attention XLM-RoBERTa 57.2% 61.8% 59.4%
Fig. 8. Sample from Microsoft Security Bulletin dataset with the named entity tags following the BIO tagging schema.
Table 3
Hyperparameter settings used in our OIE model.
Hyperparameter Value

Epochs 100
Batches 50
Bi-GRU 128 units
TDD Activation Function ReLU
TDD units 128 units
Dropout Rate 0.1
Optimizer Adam

which are considered key elements in our malware-based APT
reports. The predefined tags in both datasets with their respective
ratio in the training set are illustrated in Fig. 9. It is worth noting
that when two labels are assigned to a single word, we select the
malware-specific CTI report label since it is more closely related
to our APT reports dataset.

4.3.2. Experiments and evaluation
For both datasets, we split the corpus into two partitions, 80%

or training and 20% for testing, with setting apart a fraction of
.1 of the training set for validation purposes to assess the loss
t the end of each epoch. To certify the quality of our model,
e performed five-fold cross-validation. We opted for stratified
-fold as it takes the cross-validation process one step further
y preserving the distribution of the class in both training and
est splits, to avoid unbalanced labels’ distribution. To validate
he efficiency of our NER network architecture, we compared our
odel’s performance against the results of different baselines and
tate-of-the-art models.
Table 4 shows the complete results of our NER model that

s employed in Open-CyKG on the Microsoft Security Bulletins
ataset. We can clearly find that the proposed model outperforms
oth the baselines and state-of-the-art model by scoring a 98.5%
-measure. More precisely, when comparing our Bi-GRU + CRF
esults to the baseline reported by Bridges et al. [5] that employed
traditional approach using hand-crafted rules, we can see that
ur model outperforms by more than 20% of the F-measure score.
n addition, there is an increase of 1.9% in the F-measure when
e compare our proposed Bi-GRU model to the Bi-LSTM network
rchitecture with 50 batches and 30 epochs.
It is observed that all models obtain decent precision, however

he overall performance of NN models significantly outperforms
and-crafted rules. The low recall achieved by Bridges et al. [5]
odel contributed to this decrease, the rationale behind this is
ue to the large variation of expressions in natural language
pecifically reflected in tasks such as NER and RE as it is also
hown in the work of [70].
The performance of our NER model on the second dataset – CTI
eports – is presented in Table 5. Three comparisons are carried

9

Table 4
Results of the Open-CyKG: NER model (Open-CyKGBi-GRU). Both training and
testing are done on the Microsoft Security Bulletin dataset. Along with the
original dataset baseline results as reported in [5] and Bi-LSTM + CRF network.
Recall, precision, and F-measure are used as evaluation metrics.
Model Method Results

Recall Precision F-Measure

Bridges et al. [5] Hand-crafted Heuristic 75.3% 99.4% 77.8%
Open-CyKGBi-LSTM Bi-LSTM + CRF 96.6% 97.4% 97.0%
Open-CyKGBi−GRU Bi-GRU + CRF 98.7% 99.2% 98.9%

Table 5
Results of our Open-CyKG:NER model (Open-CyKGBi-GRU). Both training and
testing are done on the CTI dataset, the original baseline results in [25] are
reported along with the CNN-based network. Recall, precision, and F-measure
are used as evaluation metrics.
Model Network Architecture Results

Recall Precision F-Measure

Simran et al. BOC [25] BOC: Bi-LSTM + CRF 70.5% 80.3% 75.1%
Simran et al. CNN[25] CNN + Bi-LSTM + CRF 71.0% 78.9% 75.0%
Open-CyKGBi-LSTM Bi-LSTM + CRF 70.4% 71.9% 71.1%
Open-CyKGBi−GRU Bi-GRU + CRF 80.8% 78.9% 79.8%

out in this experiment; the first is the baseline model that orig-
inally annotated and constructed the CTI reports dataset which
employed a BOC-based Bi-LSTM + CRF network architecture pro-
posed by Simran et al. [25]. The second is a character-based
CNN that also uses a Bi-LSTM architecture. A pure Bi-LSTM +
CRF network is our third comparison that is trained with the
same hyperparameters of our model. As it is observed when
comparing our model with the baseline, our model scored an
F-measure of 79.8% which is 4.7% higher than that of Simran
et al. [25], the increase was mainly reflected by an increase in
the recall of our model by 10.3%. In addition to reporting the
findings of their model on the CTI reports dataset, the authors
of [25] reported the score of using a CNN-based Bi-LSTM + CRF
network – the second comparison – which resulted in almost the
same score as the BOC system and 4.8% decrease in F-measure
when compared against the score of our model. Furthermore, in
line with the evaluation we carried out on the Microsoft Security
Bulletin dataset, we implemented a state-of-the-art Bi-LSTM+CRF
network which achieved the lowest score among all other models
reported in Table 5 by scoring an F-measure of 71.1% on 10
training epochs with a batch size of 50.

In addition to the reasons mentioned in Section 4.2.2 on why
Bi-GRUs outperform Bi-LSTMs, in this experiment, we attribute
the increase to the nature of the CTI dataset used in this NER task,
which is a small dataset with long sentences. This phenomenon
is also observed in the work of [71].

Table 6 states our hyperparameter configurations that realized

the reported scores in Tables 4 and 5 for both datasets. Bi-GRU
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Table 6
Hyperparameter settings used in our NER model on both datasets.
Hyperparameter Microsoft security bulletins CTI reports

Epochs 30 10
Batches 50 30
Bi-GRU 50 units 50 units
TDD Activation Function ReLU ReLU
TDD units 50 units 50 units
Dropout Rate 0.1 0.1
Embedding Keras Keras
Optimizer Adam Adam

layers and TDD layers have a mutual number of units – 50 – with
ReLU selected as an activation function in the TDD layer. Similar
to our OIE network, the drop-out rate is set to 0.1 to prevent over-
fitting and early stopping is utilized. All models are trained with
the Adam optimization algorithm.

Although the MalwareDB dataset has no annotated named en-
ity tags, the results indicate that our model can effectively label
ybersecurity-related terms. To further validate the performance
f our NER model, a random sample of 10% was selected from the
alwareDB test set and manually annotated to compare against

he model’s predicted labels. When training on Microsoft Security
ulletins dataset our model achieved a recall, precision, and F-
easure of 85.5%, 87.7%, and 86.6% respectively. While training
n CTI reports resulted in a recall, precision, and F-measure of
3.6%, 82.3%, and 82.9% respectively.

.4. Canonicalization evaluation

To evaluate canonicalization using contextualized word em-
eddings carried out in Open-CyKG, we manually construct a gold
tandard of clusters that represents the ground truth clusters of
ll extracted entities. We follow the work of [38,54,72] by using
acro, micro and pairwise metrics to evaluate canonicalization.

We concisely explain these metrics below. Let C be the clusters
roduced by Open-CyKG canonicalization, and G denotes the gold
tandard clusters.
Macro: Macro precision (Pmacro) can be defined as a fraction of

pure clusters in C formed by our approach that are linked to the
same gold standard G. While Macro recall (Rmacro) is the inverse of
(Pmacro), by interchanging the roles of C and G as seen in Eqs. (3)
and (4).

Pmacro(C,G) =
|{c ∈ C : ∃g ∈ G : g ⊇ c}|

|C |
(3)

macro(C,G) = Pmacro(G, C) (4)

Micro: Micro precision (Pmicro) measures the purity of the
clusters C under the assumption that the most frequent gold
entity of the mentions in a cluster is the correct entity [73], as
depicted in Eq. (5), where N denotes the number of mentions in
10
Table 7
Canonicalization results.
Metric Results

Recall Precision F-Measure

Macro 86.5% 78.9% 82.6%
Micro 90.5% 74.4% 81.7%
Pairwise 79.6% 54.7% 64.8%

the input. In a similar manner, micro recall (Rmicro) is the inverse
of (Pmicro) as shown in Eq. (6).

Pmicro(C,G) =
1
N

∑
c∈C

maxg∈G|c ∩ g| (5)

Rmicro(C,G) = Pmicro(G, C) (6)

Pairwise: A hit in cluster C indicates that two mentions refer
to the same gold entity. Pairwise precision (Ppairwise) measures the
ratio of the number of hits (#hitsc) in C to total possible pairs
(#pairsc) in C [38], where #pairsc = |c|∗(|c|−1)/2. Eqs. (7) and (8)
efine pairwise precision (Ppairwise) and pairwise recall (Rpairwise)
espectively.

pairwise(C,G) =

∑
c∈C #hitsc∑
c∈C #pairsc

(7)

Rpairwise(C,G) =

∑
c∈C #hitsc∑
g∈G #pairsg

(8)

In all cases, F-measure is defined as the harmonic mean of
the model’s precision and recall. The optimal threshold value
chosen for HAC clustering was decided upon using a grid search
on the validation set. Due to the fact that XLM-RoBERTa was
the highest-scoring language model in our OIE phase, we used
the generated embeddings to compute the distance metric. It
should be emphasized that the word embeddings used in the
clustering phase are generated based on the whole input sentence
to fully leverage the concept of contextual embeddings. Results
are shown in Table 7. We observe that the recall achieved in
all metrics is moderate to good, in line with canonicalization
results reported in related works [38,54,72]. Nonetheless, If we
look at pairwise precision, we can notice it is relatively low, which
indicates that not all pairs of entities in C refer to the same gold
entity.

4.5. Demonstrating information retrieval using open-CyKG

In this section, we present two sample queries, a general one
targeting malware, while the other is a more specific query that
focuses on watering hole attacks. To further illustrate the effect
of the applied fusion technique, we perform an ablation analysis
by solely applying the first phase of our refinement process as
explained in Section 3.3. The ablation analysis is supported by
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Fig. 10. Two sample query results as retrieved from Open-CyKG..
nalyzing the results of the queries to inspect the outcome of
ord embeddings in Open-CyKG canonicalization.
Cypher [74] is the official supported query language in Neo4j.

t is an SQL-inspired declarative querying language that per-
its users to retrieve data from a graph database. The queries
erformed along with their Cypher translations are shown in
ig. 10.
In the first query, Open-CyKG was able to retrieve diverse

nformation as long as it is directly connected to a ‘malware’ node.
he majority of the retrieved data captures valuable insights on
alware threats, whereas in some cases the extraction can be
onsidered less informative such as‘Malware via e-mail’ , or unin-
ormative such as ’Malware sends data captured by the malware’.
n the second query, the retrieved data had to relate to both ‘at-
ackers’ and ‘watering hole attacks’, since this query has a higher
evel of specificity it only results in two extractions, although
Attackers use watering hole attacks to infect their victims.’ might be
nterpreted as an uninformative extraction. Nevertheless, when
he queries are performed on the canonicalized version of Open-
yKG the KG was able to deliver more insights on the requested
ata. Additionally, as the generated named entity tags discussed
n Section 4.3.1 are assigned as properties to nodes and edges,
hey can be leveraged to eliminate uninformative or ambiguous
xtractions while querying.
As observed, canonicalization using contextualized word em-

eddings aids in capturing more information, As a result, security
nalysts can query Open-CyKG to retrieve data on a specific
yber entity albeit being expressed differently among various APT
eports.

. Conclusion and future work

We introduced Open-CyKG: a novel framework that combines
eatures from several components along with fusion techniques
sing contextualized embeddings to generate a knowledge graph
rom advanced persistent threat reports. Our proposed frame-
ork is developed from two core components, an attention-based
IE and a cybersecurity NER system.
We validated the quality of the generated KG by evaluat-

ng each component separately. We evaluated our cybersecurity
ER model against several baselines and state-of-the-art mod-
ls on two different datasets. Our model was able to deliver
he best performance. The attention mechanism is a revolution-
ry theory that transformed the way researchers design neural
etworks. Not only does it have an essential role in various
eural network-based NLP tasks to enhance performance, but it
lso offers important insights on how the models are operat-
ng. This has motivated the development of our attention-based
11
OIE framework, which we validated by performing an ablation
study and compared against state-of-the-art OIE models. In both
cases, our attention-based model achieved the best results. An-
other interesting option would be a transformer-based model. A
transformer-based model relies on self-attention, at each time
step there is direct access to all other steps, which practically
means that there is no room for information loss. However, most
transformer-based models have a quadratic complexity, which
limits the token length as a trade-off between performance and
memory usage, resulting in truncating training sentences [75].
The authors of [76] introduced a transformer-based OIE model,
however, its performance was not evaluated against any state-
of-the-art neural network model. Thus as a future direction, we
intend to further evaluate different neural OIE research trends
including transformer-based models on benchmark datasets.

Despite their value and practicality, KGs usually suffer from
incompleteness, redundancy, and ambiguity that might translate
to uninformative query results. First and foremost, we are in the
process of acquiring more cybersecurity data from AAR reports to
carry out a large-scale experiment. In future work we will shift
our attention to KG completion and link prediction to further
enhance the strength of the generated KG. Additionally, we would
like to explore the possibility of extending the KG model to
include a dynamic reasoning component instead of completely
relying on static information to build the KG. A final interesting
addition would be to construct a multi-lingual or cross-lingual
KG to support machine translation-based applications. All in all,
we foresee that in the near future KGs will become sufficiently
mature to provide added value to daily practices in cybersecurity
and beyond.
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