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A B S T R A C T

Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new
product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from par-
ticulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine
learning tools) increase the amount of information generated for particles. For a proper interpretation and
judgment of the generated data a thorough understanding of the measurement principle, suitable application
fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of
novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic pro-
tein formulations (protein-related, excipient-related and primary packaging material-related), as well as par-
ticulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-
based medicinal products). In addition, we review the literature on applications, describe specific analytical
approaches and illustrate advantages and drawbacks of currently available techniques for particulate bio-
pharmaceutical formulations.
© 2021 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Biopharmaceuticals, such as therapeutic proteins, vaccines, as
well as gene and cell therapy products, remain an increasing field in
the pharmaceutical industry with numerous approved treatments
and ongoing clinical trials.1,2 A key aspect in drug product develop-
ment is particle analysis. In order to establish meaningful particle
analysis methods for biopharmaceuticals, it is of high relevance to
define what is considered “a particle”. In Table 1 we made an attempt
to provide definitions depending on the context of biopharmaceutical
product and/or scope of analysis. For protein-based therapeutics,
aggregates larger than 0.1 mm are defined as particles,3 whereas for
particulate delivery systems the delivery vehicle, cell or virus them-
selves are particles.

In general, particles in a drug product must be closely monitored
together with other critical quality attributes (CQAs), as they can
compromise the product’s quality and safety. During the develop-
ment of protein therapeutics particle analysis is used during formula-
tion development and stability testing to evaluate impact factors
such as pH or excipients on protein aggregation.4−7 In recent years
the immunogenic potential of protein particles has increasingly
moved into focus.8−12

Particulate-based biopharmaceuticals include cell-based medici-
nal products (CBMP), virus particles, virus-like particles (VLP), inacti-
vated and attenuated viruses, as well as lipid nanoparticles (LNP).
CBMP are an emerging category of medicines offering treatment
options for severe diseases, such as cancer, immunological disorders
and genetic diseases.2 In general, CBMP are living cells, which can be
derived from autologous (patient’s) or allogenic (healthy donor)
material.13 Viruses, beside their long-standing use in classical vacci-
nation approaches, are applied increasingly as viral vectors for gene
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Table 1
Definitions of particle types in different (bio)pharmaceutical context.

(Bio)pharmaceutical context Particle types and definition

Therapeutic proteins: aggregates and
particles

There is no clear threshold at which size a protein aggregate is considered a “protein particle”. In the biopharmaceutical
industry, the definition from Narhi et al.3 is most often used:
� 10-100 nm: Protein oligomers
� 0.1-1mm: Sub-micrometer particles/ nanometer aggregates
� 1-100 mm: Subvisible particles/ micrometer aggregates
� > » 100 mm: Visible particles
The differentiation between soluble and insoluble aggregates is obsolete, because the definition of “solubility” depends on
the method used to assess “soluble” aggregate content. The size limit for visible particles, related to likelihood of detec-
tion, depends on many factors (e.g., particle quantity, size, shape, color, density, and reflectivity, translucency), and is usu-
ally well above 100mm for protein (translucent) particles.

Viruses and virus like particles (VLP) Viruses and VLP are typically referred to as (nano)particles; liquid virus and VLP formulations are called suspensions or
dispersions.

Particulate delivery systems Particulate delivery systems (e.g., lipid nanoparticles, lipoplexes, polymer-based nano- andmicroparticles) are typically referred
to as (nano- or micro)particles; particulate delivery systems in a liquid formulation are suspensions or dispersions.

Cell-based medicinal products (CBMP) CBMP in a liquid formulation are typically referred to as cell suspensions or dispersions, which means that a cell is a (micro)
particle.

Extrinsic, intrinsic and inherent particles Particulate impurities as outlined in USP<1787> and USP<1790>.
Extrinsic particles are not part of the formulation, package, or assembly process and may originate from:
� Biological external sources (e.g., insect parts, pollens, vegetative matter)
� Building materials (e.g., non-process-related fibers, lint, minerals, paint)
� Personnel (e.g., epithelial cells, clothing fragments, hairs)
Intrinsic particles derive from sources within the formulation ingredients, assembly process, or primary packaging mate-
rials, due to:
� Introduction during processing or not completely removed during cleaning and preparation (e.g., elastomers from seals
and gaskets, container plastic or glass shards, stainless steel parts)
� Lubricants of primary packaging components (e.g. silicone oil in siliconized syringes)
� Changes in the drug product over time, which may be related to ionic or organic extracts (e.g., leachables from rubber
stoppers), instability of the active pharmaceutical ingredient (e.g., unexpected subvisible and visible protein particles),
excipient degradation (e.g., fatty acid particles from degraded polysorbate), or product−package interaction (e.g., glass
delamination).
Inherent particles are intentionally present or expected including solutions, suspensions, emulsions, and other drug
delivery systems that are designed as particle assemblies (agglomerates, aggregates), e.g.:
� Virus, virus-like particles, lipid nanoparticles, cells, other microparticulate formulations
� Product-formulation-related particles (e.g., proteinaceous aggregates or excipient-related degradation products such as
fatty acid particles) characteristic of the product if their presence is measured, characterized, and determined to be part of
the clinical profile.
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therapy,14 delivery vehicle for nucleic acid vaccines15−17 or as onco-
lytic viruses in cancer therapy.18 Viral vectors contain a recombinant
viral genome bearing the therapeutic transgene for gene therapy and
nucleic acid vaccines. Expression of the therapeutic gene can be tran-
sient or long term, depending on the viral vector.14,19,20 Oncolytic
viruses are designed to target and destroy tumor cells either directly
or by lysing tumor blood vessels and can additionally activate an anti-
tumor immune response or deliver a therapeutic gene.18 VLP are an
important category of subunit vaccines, and they are also being
developed as delivery system for drugs.21,22 VLP resemble viruses
that enclose their genome in a protein capsid or in a phospholipid
envelope, but they are devoid of genetic material and therefore non-
infectious. LNP are nanoparticles used for delivery of nucleic acids
such as siRNA and mRNA. They differ from liposomes (phospholipid
bilayer nanoparticles with a liquid interior) in that they have a solid
core filled with lipids plus the active molecules. Nucleic acids are sur-
rounded by cationic or ionizable cationic lipids. Phospholipid and
cholesterol (helper lipids) add structure to the solid core and the
nanoparticles are stabilized by a monolayer of PEG-lipid conjugates.
The exact structure of LNP may depend on lipid composition, type
and concentration of the nucleic acid and preparation methods.

Due to the heterogeneity of biopharmaceuticals, as well as the
purpose/scope of the analysis the selection of analytical techniques is
of high relevance, and often several ideally orthogonal techniques
need to be combined. In addition, the stages of drug product develop-
ment require specific characteristics of analytical methods to assure a
phase appropriate application.23 The focus shifts from low sample
consumption, high throughput, and automation capability during
early development phases towards a method’s stability-indicating
properties, robustness, statistical relevance of results, and ease of use
in regulated environments (quality control (QC)-friendliness) during
late stage development and release testing. For release testing it is
typically sufficient to focus on the CQAs, because the product is well
characterized during development and appropriate control strategies
are in place. As an example, for protein therapeutics, release testing
typically includes oligomer analysis by SEC, turbidity (typically
caused by submicron particles and/or effects related to reversible
self-association), subvisible particle analysis by light obscuration (LO)
and visual inspection for visible particles.23,24 Submicron particle
methods are regularly applied for extended product characterization
and troubleshooting; the reported relatively low robustness is
an unmet challenge for application in QC.25−27 Interlaboratory
and cross-industry studies have become very valuable in demonstrat-
ing the performance and limitations of several particle techni-
ques.25,28−30 The key is to choose the right method(s) for the right
application at the right phase during product development.

This review is divided in two parts. Firstly, we give an update on
analytical techniques and approaches, which have emerged in the
last decade since our first review (Particles in therapeutic protein for-
mulations, Part 1: overview of analytical methods) has been pub-
lished in 2012.31 Secondly, we give a comprehensive overview of the
application of particle analysis for the different types of biopharma-
ceuticals including therapeutic proteins and particulate biopharma-
ceutical formulations such as virus particles, VLP, LNP, and CBMP.

An Update on Analytical Techniques and Tools for Particle
Analysis

This section provides an overview of particle analysis techni-
ques and tools that have emerged in the last decade and can be



Figure 1. Overview of the approximate size range of particles in biotherapeutics (turquois-blue) as well as applicable particle analysis techniques (dark blue). Field flow fraction-
ation includes the techniques asymmetrical flow field-flow fractionation and hollow fiber flow-field-flow fractionation. Techniques/instruments based on the electrical sensing
zone are Coulter counter, tunable resistive pulse sensing and microfluidic resistive pulse sensing. Visual inspection includes camera-based systems. Abbreviations: LNP: lipid nano-
particle; VLP: virus-like particle; CBMP: cell-based medicinal products.
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used as an extension to those techniques described by Z€olls
et al.31 Apart from the new techniques described below, some
existing techniques have undergone technical improvements. For
instance, a new LO instrument has become available, where the
sample chamber can be pressurized, allowing the analysis of vis-
cous samples and reducing the impact of air bubbles.32 Autosam-
plers or liquid handling systems for flow imaging techniques
have become commercially available.

Below, we provide general descriptions of new techniques,
including measurement principles, output parameters, pros and
cons, as well as application possibilities with a “track record” in
the literature and biopharmaceutical industry. Fig. 1 shows an
overview of established and new techniques and their possible
applications. For technical details and in depth explanations
about the underlying measurement principles, the reader is
referred to the review by Gross-Rother et al.33 In addition, we
cover the aspect of machine learning as emerging tool for image-
based particle analysis in this section. Very recent techniques spe-
cific for nanoparticulate formulations will be discussed in the
subsequent sections covering characterization of particulate bio-
pharmaceutical formulations.

Resonant Mass Measurement (RMM)

RMM reflects an analytical approach which is based on the fre-
quency shift of a resonating cantilever (also known as suspended
microchannel resonator (SMR)) proportional to the buoyant mass of
particles floating past the cantilever.34 The only system on the market
so far is the Archimedes system developed by Affinity Biosensors in
two generations, lastly marketed by Malvern Panalytical.

Particles with a higher density than the surrounding fluid
decrease the frequency of the oscillating cantilever, whereas particles
with lower density increase the frequency. This enables a straightfor-
ward discrimination between protein particles and silicone oil drop-
lets based on their density35−39 in a size range of the critical
“submicron size gap”40, 41 of approx. 0.3 to approx. 4 mm. Using an
estimated density for protein particles (e.g., the density of pure pro-
tein of 1.32 g/cm3,42 or an experimentally determined density of 1.28
− 1.33 g/cm3 43), a particle size distribution can be obtained for pro-
tein particles.The optimum concentration depends on the type of
sample and was reported as 3 £ 105 to 1 £ 107 particles/mL35 or
1 £ 106 to 1 £ 109 particles/mL.44

Challenges of the technique include clogging of the very narrow
sensor channel by larger particles, potential fragmentation of larger
particles or droplets by shearing and shedding forces35 and a high
variability in results due to the very low analyzed volume. Reproduc-
ibility can be improved by rigorous protocols and best practice
approaches.44

Electrical Sensing Zone/Coulter Principle

Based on the electrical sensing zone, also known as Coulter princi-
ple45, two variations have emerged: tunable resistive pulse sensing
(TRPS) and microfluidic resistive pulse sensing (MRPS). Similar to the
Coulter counter, sample solutions for both techniques must have a suf-
ficient conductivity which needs in many cases the addition of salts.46

TRPS and MRPS circumvent several drawbacks of the Coulter counter,
such as a high sample consumption and the need for several apertures
to cover a greater particle size range, thereby offering new possibilities
for the analysis of biopharmaceuticals. TRPS uses an elastic pore, which
can be stretched to measure particles between 50 nm and 20mm, pro-
viding the opportunity to adapt the pore size depending upon the par-
ticles to be analyzed. Thereby, the blockage of the pore by stuck
particles can be prevented. The required sampling volume is 40 mL,
and the particle concentrations may range between 1 £ 105 and
1 £ 1012 particles/mL. Within MRPS instruments disposable microflui-
dic cartridges containing a built-in filter to avoid blockage of the orifice
are used. Several pore sizes are available to cover the size range from
50 to 2000 nm. Merely 3mL sample volume is enough to analyze parti-
cle concentrations from 1£ 106 to 1£ 1012 particles/mL.

The measurement principle of MRPS and TRPS is independent of
light and therefore enables the detection of translucent particles that
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are difficult to detect via light-based techniques. As orthogonal meth-
ods to light-based methods both techniques provide a valuable tool
for particle characterization in the submicron and low-micron size
range.

Backgrounded Membrane Imaging (BMI)

BMI uses an automated 96-well plate-based approach for the
microscopic analysis of particles in the size range above 2 mm. In
brief, membrane filter well plates are imaged before and after sample
application, and final particle images are obtained after background
correction. This technique is currently implemented in the Horizon
instrument (Halo Labs, Burlingame, CA), which covers an approxi-
mate concentration range between 1 £ 103 and 7 £ 105 particles/mL.
Output parameters include particle size, shape and morphology
parameters (e.g., equivalent circular diameter, aspect ratio, intensity).
BMI can achieve high sample throughput at required sample volumes
below 100 mL. In principle, for samples containing very low particle
concentrations, higher volumes up to several mL could be applied in
multiple successive application steps to achieve statistically sound
results. Owing to liquid removal in the membrane filtration step, the
impact of formulation refractive index and interferences by micro-
bubbles and droplets (e.g., silicone oil) are eliminated.47−49 Accuracy
of particle counting can be compromised by the limited field of view
of the optical system.47 Further, the required membrane filtration as
part of the sample preparation might pose a risk to the integrity of
fragile particles.50 Recently, BMI has advanced into fluorescence
membrane microscopy, which complements BMI by fluorescence
imaging options.51

Imaging Flow Cytometry (IFC)

IFC, originally designed as a cytometric tool, is a technique com-
bining conventional flow cytometry with imaging microscopy. Avail-
able channels for signal collection and image acquisition comprise
brightfield, fluorescence, and side scattering mode.52 In the field of
particle analysis, IFC is intended to allow for the discrimination of dif-
ferent particle types (e.g., proteinaceous, silicone oil) based on the
fluorescent labeling of particles.53−55 Currently marketed instru-
ments are the FlowSight and the ImageStreamX Mk II (Luminex, Seat-
tle, WA). Depending on the instrument set-up, IFC allows for the
analysis of particles down to approx. 1 mm in size or even in the sub-
micrometer size regime. From the collected images, a broad selection
of parameters (size, shape, intensity, texture, etc.) can be evaluated
with the help of user-defined image analysis masks.52, 56 IFC instru-
ments process sample volumes as low as 20 mL and were reported to
offer superior sensitivity for particle detection when compared to
currently available flow imaging microscopes. Nevertheless, IFC
exhibits limitations in the analysis of samples containing low particle
numbers as baseline levels up to 3 £ 106 particles/mL have been
reported in measurements of deionized water with the Image-
StreamX instrument.53

Oil-immersion Flow Imaging Microscopy (OI-FIM)

OI-FIM is an extension of the flow-imaging microscope series pro-
vided as FlowCam Nano by Fluid Imaging Technologies. Compared to
other flow-imaging microscopes, it covers a lower particle size range,
i.e., from about 0.3 to 10 mm. This is achieved by using an oil-immer-
sion technique with a numerical aperture of 1.4 and a blue light-
emitting-diode (LED) as light source.57 Similar to other flow-imaging
microscopes, particle characterization is based on high-resolution
images, from which 40 diverse optical parameters can be retrieved
for each particle, e.g., several types of diameter, shape, intensity and
translucency. Although the current set-up has some limitations, such
as light-scattering artefacts and an ill-defined measured volume, the
instrument can be used for sizing, morphological characterization
and quantification of particles from various sources.58 The FlowCam
Nano provides an important microscopic tool to close the analytical
gap in the field of submicron (and low-micron) particle analysis. Cur-
rently the lower limit for particle discrimination based on morpho-
logical parameters was found to be at approx. 2 mm.58 A
discrimination of even smaller silicone oil droplets and protein aggre-
gates could be achieved by using deep learning tools.59

Holographic Video Microscopy (HVM)

With HVM particles can be analyzed directly in the formulation
buffer, without any sample preparation or dilution. Based upon the
Lorenz-Mie theory of light scattering the size and the refractive index
of particles can be determined.60 The covered size range spans from
0.5 to 10 mm with particle concentrations from 1 £ 103 up to
1 £ 107 particles/mL.61 HVM was successfully used to discriminate
protein aggregates from silicone oil droplets in the presence of sur-
factants.62 Additionally, other particles commonly encountered in
drug product development, such as metal particles, degradants of
surfactants and air bubbles, can be distinguished with HVM.61

Machine Learning Tools

Many particle analysis techniques such as flow imaging micros-
copy (FIM), imaging flow cytometry or Raman spectroscopy acquire a
large amount of data. In order to increase information extracted from
this data, machine learning tools can be used. In general, machine
learning is based on algorithms detecting patterns in data, which can
then be used to build models to make predictions on unknown data.
Several approaches, such as supervised or unsupervised learning, are
applicable for drug product development. In-depth explanations of
available machine learning models and their relevance for the devel-
opment of biopharmaceuticals were provided by Kamerzell et al. and
Narayanan et al.63−65

Machine learning can be used to understand particle formation of
biopharmaceuticals in order to adapt drug product manufacturing or
give recommendations regarding proper handling thereof. In recent
years, the application of machine learning was successfully applied
to improve the characterization of protein therapeutics with regard
to particle classification, as well as root-cause analysis for protein
aggregation.66, 67

Application of Particle Techniques for Characterization of
Therapeutic Protein Formulations

Protein-related Particles

When proteins aggregate in solution, porous structures contain-
ing solvent are formed,68 which explains why the density of protein
aggregates is typically lower than that of the protein monomer.69

Micrometer-sized aggregates contain 80-93% water, whereas smaller
aggregates most likely contain less solvent, as their density
approaches the protein’s density with decreasing aggregate size.69

Depending on the method’s measurement principle, the resulting
size of a protein aggregate can be described by a number of different
diameters (Fig. 2). Moreover, in solution, protein aggregates are sur-
rounded by a hydration shell. Consequently, techniques analyzing
the protein aggregate in solution may provide different size informa-
tion compared to techniques which analyze the sample after solvent
removal. Therefore, when comparing “the size” of protein aggregates
between methods, it is key to consider which type of diameter has
been acquired and by which particle technique sizing has been per-
formed.



Figure 2. Illustrated 2D projection of a hypothetical protein aggregate (light blue) in the submicron size range. A) Green ring (1): Feret diameter (e.g., OI-FIM); Orange ring (2):
equivalent circular diameter or area based diameter (e.g., OI-FIM); Black ring (3): 2x root mean square distance or 2x radius of gyration (e.g., SAXS, SLS); Purple ring (4): 2x hydrody-
namic radius or 2x Stokes radius (e.g., AUC, DLS, NTA), assuming an arbitrary Rg/Rh of 1.2 for elongated fractal structure.100 B) Grey grid: illustrated pixels from a digital camera;
Dark area: pixels covered by the projected protein aggregate; Yellow area: Pixel area of an equivalent circle; Orange ring: equivalent circular diameter or area based diameter.
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In solution, the protein size in terms of hydrodynamic radius
(Stokes radius, Rh) can be approximated from size exclusion chroma-
tography (SEC) by comparing the retention times to those of refer-
ence proteins.70−72 In case of SEC, the lower and upper separation
size limit of the protein and its aggregates are restricted by the pore
size of the stationary phase. In contrast, the hydrodynamic radius can
be obtained more straightforward by using analytical ultracentrifuga-
tion (AUC), dynamic light scattering (DLS), and nanoparticle tracking
analysis (NTA). Depending on the speed of rotation, AUC can be
applied to either small proteins, as well as larger aggregates in case
their abundance is high enough for detection.

Because individual particles are analyzed, NTA and resistive pulse
sensing (including MRPS and TRPS) can resolve protein particles with
heterogeneous size in the submicron-size range and thus provide
better particle size distributions compared to ensemble analysis from
DLS.73,74

Small angle X-ray scattering (SAXS)75 and, above approx. 10 nm,
multi angle light scattering (MALS) provide the size in terms of radius
of gyration (Rg). MALS in combination with SEC or field flow fraction-
ation (e.g., AF4) is very powerful to obtain the size of monomers and
oligomers after separation.76

Techniques which can analyze protein particles in the dried state
are for instance light microscopy after filtration (including back-
grounded membrane imaging, see section on BMI), atomic force
microscopy (AFM),77 as well as (negative staining) electron micros-
copy (EM).68,78 Moreover, protein particles can be studied in the fro-
zen-hydrated state by electron microscopy (cryo-EM)68 and in
solution (liquid cell EM).79 Remarkably, AFM can also measure pro-
tein aggregates adsorbed to relevant surfaces such as glass barrels
from syringes.80

From imaging techniques in general, several morphological
aspects of (sub)micrometer-sized protein aggregates can be obtained,
such as Feret diameter and the frequently used equivalent circular
diameter (Fig. 2). For porous particles it depends on the measurement
principle (e.g. light-based vs. mass-based or electrical-current-based)
and/or the analysis settings (e.g., threshold values in imaging techni-
ques) whether the particle size is reported including or excluding the
porous parts filled with formulation buffer.

Typically, a particle size distribution is obtained which either
describes the mass (per volume) or the number (per volume) of
detected protein aggregates across the size range covered by the
method. SEC is most routinely used as workhorse method for quanti-
fication of the monomer and smaller oligomers. AUC81−83 and
AF483,84 provide similar information but from orthogonal measure-
ment principles. Nevertheless, SEC, AF4, and AUC quantify the mass
of each species after separation typically via UV, RI or fluorescence
detection. In contrast, DLS provides the size distribution by scattering
intensity of the ensemble as a result.

The molecular weight of a protein oligomer is typically a better
indicator for the stoichiometry (e.g., dimers, trimers, etc.) than its
size. Several methods provide the molecular weight of the protein
aggregate such as AUC,85 mass photometry,86 as well as SEC and AF4
via calibration or in combination with MALS detectors.76, 87

For counting of submicron protein particles, single particle analy-
sis techniques such as NTA, MRPS, TRPS, RMM, OI-FIM are clearly
favored over ensemble analysis from, e.g., DLS.88,73,74 A continuous
particle size distribution from nanometer- to micrometer-sized pro-
tein aggregates, with exponentially decreasing particle concentra-
tions with increasing particle size can very often be observed,58 but is
not guaranteed. For example, Filipe et al. also reported a discontinuity
of the particle size distributions from NTA, RMM, and MFI.89 To obtain
statistically significant results, the small analyzed volume is typically
a challenge when using submicron methods,25−27,88 whereas the low
relative number-based abundance of large protein particles is chal-
lenging for methods in the micrometer-size range.90 Moreover,
authors have reported challenges with RMM25,44 and NTA25,91,92

regarding their measurement performance for protein samples,
including recommendations for best practices.

Importantly, particle concentrations obtained from orthogonal
methods will always differ, to a small or large extent. This has been
demonstrated and discussed many times, e.g., for LO and FIM,26,27,93
−96 resistive pulse sensing, RMM and NTA,26,27 MRPS,88 BMI,47 OI-
FIM58, and has many reasons including measurement principle, prop-
erties of the particles and the surrounding solution, and instrument
limitations. Differences in outcome do not necessarily mean that one
technique is more “right” or “wrong” than the other, but instead can
be employed to gain a better insight into the aggregate content of a
sample.

In general, methods which provide information additional to size
and quantity are very interesting for protein product development or
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trouble shooting. For example, HVM measures the refractive index of
individual subvisible particles (see section on HVM). Microscopes in
combination with an Fourier-transform infrared spectroscopy (FTIR)
or Raman spectrometer can reveal the chemical composition and
therefore are used for forensic applications. FTIR and Raman are com-
plementary spectroscopic techniques for the identification of organic
compounds, with the help of spectral libraries for comparison.97 Also,
energy dispersive X-ray (EDX) spectroscopy, which is commonly cou-
pled to a scanning electron microscope (SEM) providing detailed par-
ticle morphology, can be applied for particle identification.98

Knowing the particle composition is of high relevance to understand
the source of particles, as well as particle formation and/or aggrega-
tion mechanisms. Useful case studies describe optimized isolation
and analysis workflows for particle identification based upon the
expected particles and microscopic inspection.99

Different stress conditions cannot only impact the size and counts,
but also the morphology of protein aggregates, which can be directly
observed by, e.g., microscopic techniques,67,66 or indirectly for
instance by determining Rg/Rh (Fig. 2).100,101 Machine learning tools
can extract stress signatures from the morphology of protein particle
images.66,67,102 Convolutional neural networks (CNNs) alone or in
combination with data pooling,67 classifiers such as k-nearest neigh-
bor or support vector machines66 and statistical analysis102 can accu-
rately predict the particle origin.

Excipient-related Particles

In addition to the protein, excipients in therapeutic protein for-
mulations can contain particles and/or form particles due to degrada-
tion. Along with the wide application of polysorbates to protect
proteins against interfacial stress, water-insoluble free fatty acids
(FFAs) have received growing attention as source of particles.103−105

FFAs are commonly formed during enzymatic ester hydrolysis of
polysorbate by trace amounts of residual host cell proteins,106−108

but an oxidative pathway releasing FFAs is also described.109 Besides
FFA-related particles an increase in proteinaceous particles can occur
due to the loss of functional polysorbate after hydrolysis.48 Both, the
formation of FFA-related particles and proteinaceous particles will
impact the quality of a drug product; specifications for visible or sub-
visible particles may no longer be met. In addition, FFA-related par-
ticles can exhibit a morphology closely resembling proteinaceous
particles, thus impeding a straight-forward discrimination of the two
particle classes based on imaging techniques. Low-throughput tech-
niques, such as FTIR and Raman microscopy, are frequently applied
to allow for the identification of particles resulting from polysorbate
degradation.105,110−113 Heterogeneous particles composed of protein
and polysorbate-related FFA were analyzed by using FTIR microscopy
and SEM-EDX.110 Additionally, both techniques were also used to
identify particles from FFAs in complex with glass leachables.114

Furthermore, Winters et al. described holographic video micros-
copy as a novel approach for the discrimination of FFA-related par-
ticles (oleic acid droplets) from protein particles and silicone oil (SO)
droplets in a mixed sample.61 Nevertheless, the authors also revealed
the limitations of the technique when analyzing samples containing
particle classes of similar refractive index as in the case of stearic acid
particles and protein particles.

Sugars, such as sucrose and trehalose, are another important class
of excipients applied to stabilize therapeutic proteins and as tonicity
agents.115,116 Remarkably, Weinbuch et al. showed that pharmaceuti-
cal grade sucrose can contain up to 109 nanoparticles per gram with a
particle size ranging between 100 nm and 200 nm.117 Those sugar-
related nanoparticles were found to interfere with the analysis of
submicrometer-sized protein aggregates in DLS and NTA, thus posing
a challenge for the application of both techniques in protein formula-
tion development. By using SEM-EDX and FTIR, the authors identified
the nanoparticles as impurities from the sugar refinement process. In
addition to compromising protein particle analysis, the observed
sucrose-related nanoparticle impurities were shown to be capable of
destabilizing mAbs.118

Primary Packaging Material-related Particles

In the discussion of particles in therapeutic protein formulations,
the primary packaging needs to be considered as a relevant source of
particulate impurities. For instance, interaction of the formulation
with the primary packaging material or mechanical stress can result
in the detachment or shedding of various particles from primary
packaging.119−121 Particles originating from primary packaging mate-
rials can affect the quality and safety of a therapeutic protein product
in a similar way as particles originating from the formulation
itself.122−127 In order to define a strategy for the mitigation of particle
levels in protein therapeutics, understanding particle generation
related to primary packaging remains a crucial task.119,120, 124

A particle species frequently observed and expected in formula-
tions stored in primary packaging systems containing siliconized sur-
faces (e.g., siliconized vial stoppers, prefilled syringes) are SO
droplets.40,128 Noteworthy, SO droplets are primarily considered a
safety concern when serving as a nucleation site for protein aggrega-
tion, or in case of intravitreal application; otherwise SO is deemed
less critical.39,122,123,129−133 Accordingly, analysis of SO droplets often
focuses on the discrimination of pure SO droplets from other particle
types, particularly protein aggregates (or, in addition, mixed SO-pro-
tein aggregates). For analysis by flow imaging microscopy, multiple
approaches have been published to differentiate SO droplets and pro-
tein aggregates with the help of image-based morphological filters
which consider one or multiple morphological features, such as
aspect ratio and intensity parameters.35,37,124,128,134−137 More
recently, FIM-based particle classification has advanced further with
the help of machine learning approaches.67,134,135 A random forest
approach, a supervised learning algorithm based on morphological
parameters, can be used to discriminate silicone oil and non-silicone
oil particles in FIM images.134 Further, image-based filters based
solely on silicone oil images obtained by FIM can also be applied to
classify SO droplets and non-SO particles with principal component
analysis (PCA).135 Interestingly, artificial intelligence has lately also
been applied as a tool for particle classification in brightfield channel
images from IFC.138 The authors used a CNN and fluorescence stain-
ing for verification to differentiate SO droplets, protein adsorbed sili-
cone as well as protein aggregates. Importantly, image-based particle
classification still remains challenging in the low micrometer size
range because of limitations of the optical resolution of the applied
imaging system.58 Next to data analysis approaches, fluorescent dyes
can be applied to identify SO droplets. Examples of the latter include
the analysis of BODIPY-labeled SO droplets in IFC or flow
cytometers.53,54,139 Furthermore, RMM and HVM represent interest-
ing options for the analysis of SO droplets in the low micrometer and
the submicrometer size range. Whereas in RMM, positively buoyant
SO droplets can be discriminated from negatively buoyant particles,
such as protein or rubber particles,35,124,128,140 HVM allows for a
direct identification of SO droplets via refractive index
determination.61,62 Chemical identification of SO droplets in aqueous
solution can also be performed by Raman microscopy.141 FTIR
microscopy,142 Raman microscopy143 or FTIR microscopy in combina-
tion with SEM-EDX98 allow the identification of protein and SO in
heterogeneous particles.

Other packaging-related particles comprise glass particles origi-
nating from glass vials and elastomeric particles from rubber
stoppers.99,120,125,126,128,137 Remarkably, glass particles can exhibit
comparably large morphological heterogeneity depending on the
mechanism of their formation: chips and lamellae resulting from
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mechanical or chemical stress are of crystalline morphology, whereas
silica dissolved from a vial’s inner glass surface can form gel-like
particles.144

Approaches to assess glass and rubber particles include visual
inspection, light obscuration, optical microscopy, flow imaging
microscopy, without necessarily being capable to differentiate glass
particles from other types of particles and particle ID techniques.99,
127,128,137,144−147 During visual inspection, the observation of twin-
kling effects can give an indication on the presence of crystalline glass
particles.127,144,145 Nevertheless, it has been reported that non-glass
particles as, e.g., metal particles, can cause similar optical effects,
thereby leading to a misinterpretation of particle origin.144,147 In the
subvisible size range, LO was mainly reported as a tool used in extrac-
tion or durability studies testing the emergence of glass or rubber
particles in the absence of drug product.128,145 For the actual discrim-
ination of glass lamellae or rubber particles from formulation-related
particles (e.g., protein particles), optical microscopy and flow imaging
microscopy were shown to be useful techniques.127,128,137,144,145

These microscopic approaches were reported to allow trained opera-
tors to classify particles by morphological appearance down to a min-
imum particle size of roughly 10 mm145 or even 5 mm137.
Nevertheless, according to Akhunzada et al. the identification of glass
and rubber particles by flow imaging microscopy combined with the
application of image-based morphological filters still remains
challenging.137

For an in-depth analysis of particle origin, particle ID techniques,
specifically SEM-EDX and FTIR microscopy, are applied in the phar-
maceutical industry.99,127,144−146,148,149 In contrast to liquid SO drop-
lets, glass particles and rubber particles are retained on membranes
and filters applied during sample preparation for SEM-EDX or FTIR
microscopy, allowing for the analysis of the spectral properties and
thus chemical composition of the particles. To date, multiple studies
have demonstrated the successful identification of glass particles in
placebo formulations or actual therapeutic protein products with
the help of both techniques.144,148,149 Mixed particles consisting of
protein and silicone rubber particles were identified by Raman
Figure 3. Overview of different particle types found in viral formulations. Viral formulation
(dark blue). Total virus particles may be unwanted virus particles (light blue) such as viral f
particles, i.e., particles that reach the desired effect (light green), are a subgroup of infectious
microscopy and IFC.97 Raman microscopy can also be applied for the
in situ identification of particles as shown for cellulose fibers and
polypropylene particles.141 For the identification of inorganic com-
pounds such as metals and for an element analysis SEM-EDX can be
used.99

Application of Particle Techniques for Characterization of
Particulate Biopharmaceutical Formulations

Virus Particles

The majority of gene therapy viral vectors is based on adenovirus
(AdV), adeno-associated virus (AAV) or lentivirus (LV).14 In addition,
more than 30 different types of oncolytic viruses have been studied
in clinical trials.150 Here, we summarize key characteristics of
selected virus particles of pharmaceutical interest used as viral vec-
tors or oncolytic viruses, and give an overview on analytical techni-
ques for characterization of these virus particles by size, shape,
content and concentration. It should be noted that methods
described in previous chapters can also be used to monitor subvisible
and visible particles potentially present in viral preparations, e.g.,
residual process-related protein particles or particles originating
from the packaging material (Fig. 3).

Commonly applied virus particles are in a size range of 20 to
360 nm and mostly spherical or icosahedral in their morphology
(Table 2). The variety of used virus types is high, including envel-
oped and non-enveloped, RNA and DNA viruses with genome
sizes from 4.7 to 280 kb. Product-related impurities such as viral
aggregates (larger in size than target virus particles) or fragments
(smaller in size) and free viral proteins or nucleic acids exist in
preparations of all virus types. Free viral proteins, sometimes
associated with DNA/RNA, may precipitate and form particulate
impurities in the viral vector preparation. Empty particles (similar
size as target virus particles) are a frequent impurity in AAV, AdV
and Parvovirus H1-PV products.18,20,151 LV and measles virus
(MeV) preparations may be affected by particles with disrupted
s may contain host cell- and process-related particles (purple) as well as virus particles
ragments/aggregates or wanted infectious virus particles (dark green). Functional virus
virus particles.
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or without envelope.18,152 Most process-related impurities, e.g.,
host cell proteins and nucleic acids, residual endonucleases,
adventitious agents, extracellular vesicles, etc., appear in all virus
preparations18,152,153 and may form additional particles. Conse-
quently, particle characterization of viral formulations is challeng-
ing, because of their heterogeneity and the large concentration
range over several orders of magnitude for the different particle
types.18,154

Table 3 gives an overview of analytical techniques that are used to
characterize virus particles by their size, shape, content (cargo load,
e.g., empty vs. full capsids) and concentration; main advantages, limi-
tations and key applications are also summarized. Virus particle con-
centrations can be measured by different methods leading to distinct
particle titers. Here, we distinguish concentrations of total virus par-
ticles, infectious and functional virus particles (Fig. 3). Most methods
determine and characterize the total virus particle concentration, e.
g., dye-based binding assay (DyeBA), enzyme-linked immunosorbent
assay (ELISA), field-flow fractionation-multi-angle light scattering
(FFF-MALS), NTA, polymerase chain reaction (PCR) methods, prod-
uct-enhanced reverse transcriptase (PERT) assay, SEC and TRPS. Dif-
ferent numbers for the total virus particle concentration are achieved
depending on the applied methods due to differences in the measur-
ing principles. For example, the total virus particle concentration of
an LV sample was higher when measured by quantitative reverse
transcription PCR (RT-qPCR) than by TRPS, presumably because RT-
qPCR quantifies all viral RNA genomes independent from particle size
whereas TRPS requires particles of the appropriate size.155 Infectivity
assays, such as 50% tissue culture infective dose (TCID50) and plaque
assays, selectively measure the concentration of infectious virus. The
functional titer can be determined in potency assays by measuring
the desired effect, i.e., transgene expression or tumor killing capacity.
Noteworthy, current methods cannot assess functional or infectious
titer and total virus particle concentrations simultaneously.154 Obvi-
ously, functional or infectious titers are mostly lower than total virus
titers, and ratios of total to infectious particles can vary even for dif-
ferent preparations of the same virus. For example, the ratios span
from 4 to over 200 for AdV, depending on batches and analytical
methods used.151,155,156 For vesicular stomatitis virus (VSV), in con-
trast, a value of about one was reported when comparing infectious
titer from plaque assay with total particle concentration from
TRPS,156 whereas for LVs values are in the 103 order of magnitude for
the ratio of total to functional particles.153 Due to the divergence of
total virus particle numbers, infectious and functional titers, a full
characterization of virus particle concentration requires multiple and
complementary methods.

Some of the used analytical techniques are restricted to certain
virus types, e.g., PERT assay uses the viral reverse transcriptase activ-
ity to estimate particle concentration of LV or gRV,153,155 whereas
others can be applied for all viruses, e.g., transmission electron
microscopy (TEM) for investigating morphology of single virus par-
ticles.155 TEM is also the reference method to determine the content
ratio (i.e., fraction of capsids with a complete genome) of AAV, while
sedimentation-velocity analytical ultracentrifugation (SV-AUC) is the
standard method to quantify partially-full AAV capsids and quantita-
tive PCR (qPCR) to titer AAV genomes.20 The recently developed mul-
tiwavelength SV-AUC can assess full, empty, partially-full AAV and
aggregates.157

Beside these well-established methods, new techniques are
emerging for virus particle characterization, such as ILM (“Video-
drop”), flow virometry, mass photometry and native mass spec-
trometry (MS). Videodrop is a nanoparticle counter based on
transmission brightfield microscopy that was used to analyze LV
and AdV samples.158 Flow virometry enables the characterization
of virus particles down to approx. 100 nm diameter by fluores-
cent labeling of virus particles with antibodies, RNA/DNA or



Table 3
Overview of analytical methods for characterization of particulate biopharmaceutical formulations, i.e., virus particles, vaccines, virus-like particles (VLP), lipid nanoparticles (LNP),
and cell-based medicinal products (CBMP).

Method Target information Advantages Drawbacks Application examples Key references

AEX Particle contenta High throughput and reproduc-
ibility; read-out via OD, FS or
light scattering

Poor resolution of empty vs. full
capsids; method development
required for each serotype

AAV 20,258

AUC Particle content Differentiation of empty, par-
tially-full, full particles and
aggregates; highly repeatable

Large sample volume at high
concentration needed; low
throughput; purified samples
required

AAV
Hep E VLP
siRNA LNP

20,157

182

199

Coulter counter Particle size
Particle
concentration
by counts

Simple and fast; direct determi-
nation of size

No discrimination of particle
classes possible

CBMP 208,209

Cryo-EM Particle size
Particle morphology/
content

Minimum sample preparation;
high optical resolution; very
limited modification of virus
particles; analysis of
impurities

Expensive; low throughput; dif-
ficult to get statistically rele-
vant particle information

AAV
Influenza VLP

20,259

185

DLS Particle size Non-destructive; fast; informa-
tion on polydispersity, PSD,
aggregation; might be com-
bined with SLS

Unreliable results for more poly-
disperse samples; poor
precision

LV, AAV
Duck malaria-HepB VLP
siRNA LNP

20,260−262

187

203

DyeBA Nucleic acid concentration
(by dye)! particle
concentration

Simple and fast; alternative to
PCR methods, not genome-
sequence dependent

Requires removal of free nucleic
acids; less sensitive than PCR;
accuracy and robustness to be
determined

AAV 20

ELISA Capsid protein
concentration ! particle
concentration
(capsid titer)

High specificity, robustness Measured viral protein might
not be part of virus particle
(particle purity required);
time- and labor-intensive

H-1PV, AAV, LV 18−20,155

FFF-MALS Particle size
Amount! particle
concentration

Includes fast and gentle sample
separation; information on
PSD and aggregation

Laborious set-up and optimiza-
tion of separation conditions

AdV, LV
Attenuated influenza virus
Inactivated influenza virus
HBsAg VLP
siRNA LNP

155,263,264

165

167

180

200

Flow cytometry Particle characterization Versatile (cell viability, identity
and functionality); standard
technique in cell biology

Time consuming sample prepa-
ration; different staining dyes
required

CBMP 216,223

Flow imaging
microscopy

Particle size
Particle concentration by
counts
Particle characterization

Visualization of particles; dis-
crimination of particle classes;
combinable with machine
learning tools

Laborious set-up CBMP 220,221,231

Flow virometry Particle size
Particle content
Particle concentration by
counts

Single-particle method; high
throughput; low sample vol-
ume; characterization of enve-
lope conformation

Detection limit at 25 − 100 nm;
measurement in the lower size
range might be inaccurate

AdV, HSV, HIV, VACV,
reovirus, AAV

Influenza virus
HIV-1 VLP

20,151,158,159

169

189

Fluorescence
microscopy

Particle characterization Simple; cell viability by staining Low throughput CBMP 217

FTIR spectroscopy Particle characterization Mechanistic information (mem-
brane phase transition, ice
melting)

Low-throughput; complex data
evaluation

CBMP 239

ILM (“Videodrop”) Particle size
Particle concentration by
counts

Fast for moderate number of
samples; easy to use; low
sample volume

For nanoparticles > 70 nm; diffi-
cult for low-concentration
samples with impurities; nar-
row concentration range: 108 -
7 £ 109 particles/ml

AdV, LV 158

Light microscopy Particle concentration by
counts
Particle size
Particle characterization

Simple; automated and semi-
automated instruments avail-
able; cell viability by staining

Low throughput (manual
counting)

CBMP 211,218

Mass photometry Particle content Fast; small sample volume Accuracy, precision, robustness
to be determined

AAV 20,160

Native MS Particle mass and composi-
tion
Particle content
Particle concentration by
counts

Selective analysis of single virus
particles; analysis of particle
interactions with other
molecules

Used MS instruments still in
research state; high expertise
needed; highly demanding
data analysis

AAV 161,162,164

NTA Particle size
Particle concentration by
counts

Fast; high-resolution PSD; label-
free and fluorescence label
possible

Limited concentration range:
107 - 109 particles/ml; large
sample volume; limited
accuracy

AdV, LV, HSV
Inactivated rabies virus
HIV 1 gag VLP

155,158,265

168

177

(continued)
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Table 3 (Continued)

Method Target information Advantages Drawbacks Application examples Key references

OD 260/280 nm Particle content
Protein/nucleic acid
absorbance! particle
concentration by specific
extinction coefficient

Fast, automatable Limited to concentrated samples
free from residual nucleic
acids and proteins; prone to
interferences; small linear
range; low precision

AdV, AAV 18−20

PERT assay Reverse transcriptase
activity! particle con-
centration by known
activity per virion

More stringent than capsid titer Works only for retroviridae
(functional reverse transcrip-
tase required)

RV, LV 153,155,266

Plaque assay Number of
plaques! infectious titer

Cell-based infectivity assay Virus replication in culture
needed; time- and labor-
intensive

HSV, VACV, AdV, H-1PV, VSV 18,19,155,

156, 265

qPCR, qRT-PCR,
ddPCR

Viral genome
concentration ! particle
concentration (genome
titer)

Specific, fast; ddPCR more accu-
rate than qPCR

Requires removal of free viral
nucleic acids; requires stan-
dard (qPCR, qRT-PCR); ddPCR
less mature than qPCR

VACV, AdV, MeV, H-1PV,
AAV, gRV, LV, AdV

18−20,153,158

Raman microscopy Particle characterization Versatile (cell viability, identity);
mechanistic information
(membrane interactions); in-
situ analysis

Complex data evaluation CBMP 228,233

SEC Particle content
Amount! particle
concentration

Fast; commonly used for infor-
mation on aggregation (AAV);
read-out via FS, MALS or OD

Non-specific interactions possi-
ble; decomposition of large
aggregates possible

AAV, LV
Live attenuated Influenza
virus
HIV-VLP
siRNA LNP

20,258,266

165

177

198

Target tumor cell
killing assay

Amount of tumor cell
killing! functional titer

Cell-based potency assay Time- and labor-intensive HSV, VACV, AdV, MeV, H-
1PV

18

TCID50 assay Number of infected wells
(dilution-
dependent)! infectious
titer

Cell-based infectivity assay Time- and labor-intensive Reovirus, HSV, MeV, VSV,
AAV, AdV

18,19,255

TEM Particle size
Particle morphology/
content

Distinguishes well full, empty,
partially-full capsids; direct
imaging of sample; analysis of
aggregates

Difficult to get statistically rele-
vant particle information;
challenging image analysis;
low throughput

AdV, LV, AAV, RV, HSV, VSV,
SeV, H-1PV

Live attenuated influenza
Hepatitis E VLP
siRNA LNP

18,20,156,158,256,

260,265,267

165

182

199

Transduction assay Amount of transgene
expression! functional
titer

Cell-based potency assay; read-
out with flow cytometry,
ELISA, PCR or similar

Time- and labor-intensive gRV, LV, AAV 19,153

TRPS Particle size
Particle concentration by
counts
Particle charge (zeta
potential)

Concentration range: 105 -
1011 particles/ml; accurate;
nanopore size range: 40 nm −
11.3mm

Large particulate impurities
block membranes

LV, HSV, VSV 156,158,266

Abbreviations: AEX: anion-exchange chromatography; AUC: analytical ultracentrifugation; Cryo-EM: cryogenic electron microscopy; ddPCR: digital droplet polymerase chain reac-
tion; DLS: dynamic light scattering; DyeBA: dye-based binding assay; ELISA: enzyme-linked immunosorbent assay; FFF-MALS: field-flow fractionation-multi-angle light scattering;
FS: fluorescence spectroscopy; ILM: interferometric light microscopy; MS: mass spectrometry; NTA: nanoparticle tracking analysis; OD: optical density; PERT: product-enhanced
reverse transcriptase; PSD: particle size distribution; qPCR: quantitative polymerase chain reaction; qRT-PCR: quantitative reverse transcription polymerase chain reaction; SLS:
static light scattering; TCID50: 50% tissue culture infective dose; TEM: transmission electron microscopy; TRPS: tunable resistive pulse sensing.

a Particle content means the particle cargo load, e.g., empty vs. full capsids.
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envelope dyes. Alternatively, recent technical advancements of
standard flow cytometers also allow measurements of virus par-
ticles without additional staining.159 The ultrasensitive nano-flow
cytometer (nFCM) expands the detection range to 27 nm for virus
particles by reducing background signals.151 Flow virometry has
been used to characterize and quantify a range of different
viruses including vaccinia virus (VACV), HSV, human immunodefi-
ciency virus (HIV), reovirus and AdV.151,159 Mass photometry was
used to obtain the count-based particle distribution of empty and
genome-filled AAV;160 its full potential and limitations are still
under investigation. Native MS is another emerging analytical
technology in structural virology with great potential despite the
difficulties due to the high mass (into megadalton range), rela-
tively low number of charges and the inherent microheterogene-
ity of the virus particles.161,162 Improved mass analysis of intact
viruses or virus-like particles was achieved by charge detection-
mass spectrometry (CD-MS), ion mobility spectrometry (IMS)-MS,
gas-phase electrophoretic mobility molecular analysis (GEMMA)
and nanoelectromechanical system-mass spectrometry (NEMS-
MS) allowing for example analysis of single virus particles.163

Orbitrap-based single-particle CD-MS was successfully applied to
differentiate empty and loaded AAV8 particles.164 The use of MS
for virus particle characterization will certainly expand beyond
current research institutions once appropriate MS instruments
will be commercially available.

Live Attenuated and Inactivated Viruses as Vaccine Antigens

Particle analysis to assess product quality is less frequently used
for inactivated and live attenuated viral vaccines, as compared to
many other biopharmaceuticals (Table 3). Although particle size can
have an impact on the immunogenicity, changes in particle composi-
tion play a minor role in the (desired) immunogenicity of these prod-
ucts. However, a distinction must be made between live attenuated
vaccines and inactivated viral vaccines.

For live attenuated vaccines the viral titer (= all infectious virus
particles) is crucial. The number of infectious particles determines
the immunogenicity to a large extent, because in many cases
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attenuated strains replicate after administration. To minimize risks
and demonstrate product consistency, the presence of viral aggre-
gates, non-infectious particles or viral fragments should be controlled
as unwanted impurity, because it may affect potency, safety and
product yield. Sizing and counting methods are suitable to demon-
strate batch consistency and quality. This was shown for attenuated
influenza vaccine using FFF-MALS, SEC-MALS and TEM for sizing/
counting of particles, as well as methods for infectious particles, such
as RT-qPCR, fluorescent focus assay and TCID50.165

For inactivated viral vaccines the presence and formation of
aggregates as well as viral fragments is even more critical. Antigen
will not be produced in vivo, as with most attenuated vaccines, but
all antigen is present in the administered dose. Aggregation or frag-
mentation should be limited as they may result in inconsistent effi-
cacy.

Electron microscopic techniques have been used to size inacti-
vated SARS-CoV-2 vaccine as a function of different downstream
processing steps.166 Moreover, size based detection of particles by
light scattering techniques is mainly used to measure particle size,
and sometimes also the number of viral particles. A comparative
study of classical quantification methods (infectious particle assays,
PCR) and FFF-MALS done with influenza virus shows that FFF-MALS
is not only suitable for virus quantification but also provides insight
in the presence of aggregates.167 In addition the assay can be used on
the vaccine, i.e., the inactivated virus. However, particle concentra-
tion is not a priori potency indicating (see also section on virus par-
ticles). Proper process control during downstream processing/
vaccine production to ensure consistent removal of unwanted species
next to continuous stability programs should guarantee the absence
of aggregates or fragments. If this is the case, particle counting may
well correlate with antigenicity, as was shown for highly purified
rabies vaccine.168 NTA and ELISA had correlation coefficients of 0.9 or
higher. With influenza virus a similar excellent correlation was dem-
onstrated between direct particle counting techniques (TEM and
virometry) and indirect methods like ion exchange chromatography
and TCID50 virus titration.169 This latter work was performed with
live virus, but in principle direct particle counting techniques should
also work with inactivated whole virus. Although product release
requires functional assays (immunogenicity, potency indicating anti-
genicity), these examples demonstrate that particle counting pro-
vides extremely valuable supportive information to demonstrate
batch consistency, to validate manufacturing steps, for stability
assessment, etc.

Measuring the size of inactivated virus in the drug product is often
complicated because vaccines contain low concentrations of antigen
with doses in the microgram range. In addition, if particulate adju-
vants are present (e.g., aluminum salts, oil-in-water emulsions), siz-
ing and counting of the virus particle itself becomes virtually
impossible. The adjuvant particles and/or adsorption of the virus par-
ticles to the adjuvant prevent reliable size determination of the virus
particles.

Thus, since sensitive and reliable sizing170 and particle quantifica-
tion techniques171 for viruses are available, it makes sense to use
them routinely in viral vaccine development and QC.

Virus-like Particles (VLP)

Since the introduction of recombinant hepatitis B surface antigen
(HBsAg), which assembles in VLP, in the 1980s, other VLP based vac-
cines have been marketed. These include influenza172 and HPV viro-
somes173. Influenza virosomes are also used as an adjuvant or
delivery system for non-influenza antigens, such as inactivated hepa-
titis A virus adsorbed to influenza virosomes.174

The particulate nature of VLP determines to a considerable extent
their immunogenicity. In general, particles with the size of viruses or
bacteria (i.e., 20 nm to low micrometer size range) are suitable for
immune recognition and activation, with an optimum for smaller
nanoparticles (e.g., 50 nm).175 From a pharmaceutical point of view
VLP should ideally be monodisperse and stable. Particle characteriza-
tion is therefore important (Table 3).

Size determination by DLS is often used routinely, because it is
simple and does not require a lot of material. DLS is a common
method to follow VLP formation in refolding and assembly proce-
dures176 and to assess physical stability. However, in cases where
the sample is less monodisperse and/or may contain species of
different size such as for partially purified in-process samples, the
interpretation of DLS data becomes less straightforward. There-
fore, it is recommended to include additional techniques for size
analysis of VLP. These methods can be either performed on the
sample as it is, like electron microscopy or NTA. In complex sam-
ples, containing VLP, VLP fragments (monomeric subunits) and/or
VLP aggregates of different size, separation prior to detection can
provide more relevant data. The latter approach includes
SEC177,178 or AF4179,180, both often with MALS detection, and SV-
AUC181,182.

In the product development phase, particle counting and size
measurements are sometimes used as in-process controls to assess
product yield for different purification steps.183 Also, in (early) prod-
uct development electron microscopic techniques are often used to
determine particle size and structure184−186 in combination with
DLS187 for sizing in the liquid state. Hosseini et al. used DLS, TEM and
SEC to study hepatitis B surface antigen yield in critical downstream
process unit operations.178 The 25-kD recombinant HBsAg lipopro-
tein self-assembles into 22-nm VLPs. VLP formation occurs during
downstream processing, but unintentional aggregation is a risk, and
the formation of VLPs and aggregates in the different unit operations
could be mapped. Chen et al used DLS, TEM and AF4-MALS to study
salt-induced aggregation of HBsAg and the effect on the antigenic-
ity.180 Using AF4-MALS three particle populations could be detected
and quantified: monomeric particles of 23 nm, oligomers of these
particles and polymeric aggregates. The oligomeric fraction was not
baseline separated from the monomeric peak but contained mono-
mers, dimers as well as trimers, as observed by TEM. Zhang et al used
TEM, DLS, SEC and AUC for particle characterization in addition to
other characterization methods, including MS, IEF, SDS-PAGE, CD,
UV, DSC, antigenicity and in vivo immunogenicity, to fully character-
ize a licensed hepatitis E VLP vaccine.182

VLP have been used as model analytes to demonstrate, develop
and improve sizing and particle counting methods.186,188−191 Model
bacteriophage VLP with and without two conjugated peptides were
used to demonstrate the use two types of field-flow fractionation:
AF4 and the better performing cyclical electrical field-flow fraction-
ation (CyEIFF)190 using MALS detection but also TEM of fractions col-
lected from CyEIFF analysis. For SEC it is possible to increase
throughput by interlaced injection, i.e., inject the next sample imme-
diately after the monomeric VLP peak as demonstrated with HPV
VLP.191 Another way to increase throughput is a tiered approach,
using a high throughput method (DLS) for screening followed by low
throughput methods (AF4) to analyze a selection of relevant samples,
as was demonstrated in a formulation optimization study for poly-
omavirus VLP.192

SEC-MALS/UV and NTA were assessed for suitability for rapid,
automated quantification of HIV-1 gag VLP.177 MALS detection
allowed direct particle quantification without the necessity for cali-
bration curves. Particle concentrations determined by SEC were sys-
tematically 1 log lower as compared to NTA measurements, possibly
caused by differences in detectable size range and sensitivity. Other
approaches include the use of sizing techniques such as NTA, flow
virometry, (cryo-)TEM and super-resolution fluorescence microscopy
to characterize HIV-1 VLP.189
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Lipid Nanoparticles (LNP)

Particle size of LNP is a critical product attribute, because particle
size can affect potency and stability as reported by several groups.
Particles in the size range of 40 to 80 nm were considerably more
potent than smaller or larger LNP containing si-RNA.193 Furthermore,
the size of LNP may affect targeting to specific organs and the silenc-
ing activity of si-RNA, because of differences in adsorption of proteins
in the circulation.194 Also, the size may indicate whether LNP contain
active material. This was demonstrated with a SARS-CoV-2 mRNA
vaccine, where the mRNA containing LNP were almost 90 nm in
hydrodynamic diameter, whereas empty LNP were 55 nm.195 In all
these examples DLS was used to measure particle size. Given the
importance of size, it would make sense to more extensively charac-
terize the particle size of LNPs with orthogonal and complementary
methods (Table 3).

DLS in combination with zetapotential measurements has been
used in a factorial study design to determine the effect of process
parameters and composition on particle size for LNP manufacturing
with the emulsion-solvent evaporation technique.196 For the detec-
tion of larger microparticles laser diffractometry was applied. Other
characterization techniques included SEM and AFM.

Like for other nanoparticles (cryo-)EM, AFM and DLS allow sizing
of LNP in the ensemble of the formulation. In addition, techniques in
which the particles are separated first and then analyzed, e.g., AF4197,
SEC198, AUC199 are applied. SV-AUC was used to measure differences
in mRNA loading by applying density matching with D2O.199 Apart
from density variations, particle size and molar mass could also be
determined with SV-AUC.

It appears that most sizing techniques for nanoparticles are suit-
able for LNP analysis. However, care should be taken to avoid “in-
analysis” deterioration, because LNP are rather fragile. For instance,
although AF4 is thought to cause low stress on the analyte, the focus-
ing step at the start of the procedure may result in aggregation. Mild-
ner et al. optimized the loading and focusing procedures in order to
analyze LNP, to finally conduct batch consistency testing, formulation
screening and stability testing.200

Physical stability of LNP is often assessed by DLS, e.g., in stability
studies and optimization of (frozen) liquid and lyophilized formula-
tions.201−203

Cell-based Medicinal Products (CBMP)

The main types of current CBMP are cell-based (or ex vivo) gene
therapy medicines (e.g., chimeric antigen receptor (CAR-)T cells) and
somatic cell therapy medicines (e.g., mesenchymal stem cells). Engi-
neered with an artificial T cell receptor CAR-T cells can be designed
to specifically target tumor cells.204 CBMP can be either stored in liq-
uid state (at room temperature or refrigerated), enabling a shelf-life
of several hours, or cryopreserved at temperatures below -120°C for
long-term storage up to years (depending on the product).13 Methods
to determine total cell concentration and viability, as well as flow
cytometry for cell identification are commonly used for cell charac-
terization (Table 3). The use of additional particle characterization
techniques is not yet common practice. Nevertheless, because of the
particulate nature of cells, which are living microparticles, particle
analysis may be beneficial in formulation development, manufactur-
ing and quality control of CBMP, as discussed below.

Although cell size is a relatively basic parameter, it can be used as
an indicator of cell viability, as dead and apoptotic cells show swell-
ing and shrinking, respectively.205,206 Furthermore, changes in cell
size upon exposure to non-isotonic conditions can be used to deter-
mine physical parameters, such as osmotically inactive cell volume,
water permeability and cryoprotectant permeability. These parame-
ters are critical for the development of cell-specific cryopreservation
protocols, including the choice of cryoprotective agents, their addi-
tion process as well as an optimal freezing procedure.207 Established
techniques for cell sizing are the Coulter counter208−210 technique
and light microscopy.211−214

Cell counting is routinely performed in cell culture to monitor cell
proliferation and to select reasonable passaging time points. There-
fore, viable cells are manually counted in a counting chamber called
hemocytometer under a light microscope.215−217 In order to differen-
tiate between viable and dead cells, the dye Trypan blue can be used,
which selectively permeates dead but not live cells. Trypan blue is
also used with semi-automated and automated cell counting instru-
ments, where the instrument’s software automatically counts viable
cells based on image analysis.218,219

Another approach for cell counting are FIM techniques. Based on
the obtained images from each cell, morphological filters can be
developed to determine both total cell concentration and cell
viability.220,221 The Coulter counter can also be used for cell counting,
although a suitable size range has to be defined to minimize contri-
butions of cell debris and aggregates to the overall count.208

Finally, the characterization of CBMP includes aspects such as cell
viability, identity and purity. In general, cell samples can contain via-
ble, apoptotic, dead cells or debris. In addition to Trypan blue, some
other dyes are able to stain apoptotic or dead cells, which are subse-
quently analyzed with fluorescence microscopy217,222 or flow
cytometry216,223. Raman microscopy is another technique to discrim-
inate viable from dead or apoptotic cells.224 Furthermore, Grabarek
et al. developed a FIM-based method using a CNN to discriminate
between viable cells, dead cells and cell debris.221

CBMP are commonly derived from human material, which con-
sists of various cell types. Therefore, the identification of cells is
highly relevant. The classical approach to identify cells is by labeling
cell surface markers with fluorescent-dye conjugated antibodies fol-
lowed by flow cytometry analysis.215−217,223,225 In recent years, sev-
eral label-free Raman spectroscopy approaches were developed for
the phenotyping of immune cells. A line scan Raman method can be
used to discriminate between immune cells226 as well as a combina-
tion of single point Raman spectra and digital holographic micros-
copy227. Recently, Akagi et al. developed a Raman spectroscopy set-
up based on two rotating Galvano mirrors, which enable the fast
acquisition of spectra from a circular cell area.228 In addition to cell
identification, Raman spectroscopy and variations thereof can also be
used to determine the activation state of T cells.226,228,229

For differentiation of cells and other particulate components in
the sample, FIM is particularly suited, owing to the high-resolution
images. Morphological filters can be developed in the instrument’s
software to differentiate between cells,220,221 cell debris,221,230 and
process-related impurities such as SO droplets, glass and rubber par-
ticles230. Furthermore, machine learning tools can improve the dis-
crimination between cells, debris, aggregates and magnetic beads,
and potentially other particulate impurities, in FIM images in com-
parison to classical FIM analysis approaches.221,231 Traditional count-
ing approaches can serve for the quantification of residual magnetic
beads: After several purification steps the magnetic beads are
counted within a chamber under a light microscope similar to cell
counting via a hemocytometer.232 Another approach to quantify
residual magnetic beads is to first label them and then apply flow
cytometry combined with Trucount� tubes.216

Raman spectroscopy has been proposed as an in-line control dur-
ing CBMP manufacturing. By applying multivariate and univariate
data analysis of the acquired spectra, nutrient consumption as well as
cell concentration and viability can be monitored to ensure optimal
cell expansion.233 Additionally, machine learning can be utilized to
understand and predict the impact of the manufacturing processes,
including mixing or centrifugation on the cell quality by developing
artificial neural networks (ANN).234 Raman spectroscopy has also
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been used for studying cell membrane interactions with cryoprotec-
tants, such as sucrose and trehalose,235 and monitoring intracellular
ice formation during freezing.236−238 Furthermore, FTIR spectroscopy
is suited to determine cell membrane phase transitions or ice nucle-
ation and melting.239

After thawing of CBMP, cell viability and recovery should be veri-
fied. For this purpose the already mentioned techniques need to be
applied, such as fluorescence microscopy,240 Trypan blue exclusion
assays219,240 and flow cytometry.241 Additionally, the functionality of
cells should be examined post-thaw, which can be performed by
flow cytometry assays based on the labeling of pro-inflammatory
cytokines or target and effector cells.242,243 Moreover, FIM techniques
may be used for the detection of cell aggregates occurring post-
thaw.221,244

Other Biopharmaceutical Microparticulate Formulations

Other biopharmaceutical microparticulate formulations are, e.g.,
antibody crystals245,246 and depot formulations containing proteins
or peptides247,248. Characterization of antibody crystals as well as
depot formulations is commonly performed with techniques suitable
for the required size range as has been shown by several groups.245
−248 In-depth discussion of biopharmaceutical microparticulate for-
mulations is beyond the scope of this review and can be found in the
literature.249

Conclusions

Numerous particle analysis techniques are available for the char-
acterization of biopharmaceuticals. The selection of suitable particle
techniques is dependent on the product class and the scope of analy-
sis, such as impurity versus active pharmaceutical ingredient or drug
delivery system itself.

Whereas ten years ago, particle analysis in biotherapeutic formu-
lations was focused on “unwanted” particles (protein aggregates,
impurities, primary packaging related particles),31 today’s particle
analysis also covers “wanted” particles (e.g., CBMP, virus particles,
VLP, LNP and vaccines). As the available techniques have different
benefits and drawbacks, the need to understand the underlying mea-
surement principle remains crucial to select the combination of rele-
vant techniques.

New emerging products such as CBMP and virus particles also
require a sharp differentiation and identification of particles. Up to
now, the applied analytical particle characterization toolbox for
CBMP is limited to a handful of techniques, most of which originate
from classical cell culture. As CBMP need to fulfill similar safety
requirements as classical biotherapeutics, further analytical develop-
ments are required.

Although recent techniques have been developed to close the
“submicron particle gap”,250 in particular relevant for protein thera-
peutics, there are still only few techniques available for this size
range, all with specific drawbacks and so far mainly used for charac-
terization. The advance of complex nanoparticulate formulations,
such as LNP, VLP, and virus particles, pose new analytical challenges.
Furthermore, the analysis of heterogeneous particles in terms of size,
composition, origin and function remains challenging with only few
techniques being available to identify particles.

Machine learning tools are valuable for the differentiation of vari-
ous particle classes, as well as they improve the data evaluation for
information rich particle techniques. Machine learning is emerging
for several analytical purposes, but its full potential is not yet utilized
in particle analysis for biopharmaceuticals.

As the complexity of products increases an appropriate combina-
tion of techniques should be applied for particle analysis. Such com-
bination of methods is required to cover all aspects of sizing,
quantification and characterization over a wide size range from nano-
meters to micrometers. Orthogonal methods are required to confirm
results and gain a good understanding of particle properties because
the measurement outcome is depending on the used technique. Last
but not least, it is of high relevance to select appropriate techniques
regarding the intended purpose. A trouble-shooting analysis of a pro-
tein drug product development has different analytical requirements
than characterization of virus like particles. Critical quality attributes
must be defined for each product class to enable the development of
suitable analytical techniques to guarantee a safe drug product.

In conclusion particle analysis in biotherapeutics is a very impor-
tant task with new challenges, but also possibilities with available
techniques and the use of artificial intelligence.
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