
Multi-scale graph capsule with influence attention for
information cascades prediction
Chen, X.; Zhang, F.L.; Zhou, F.; Bonsangue, M.M.

Citation
Chen, X., Zhang, F. L., Zhou, F., & Bonsangue, M. M. (2021). Multi-scale
graph capsule with influence attention for information cascades prediction.
International Journal Of Intelligent Systems, 37(3), 2584-2611.
doi:10.1002/int.22786

Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law
(Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3275522

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3275522

Received: 3 September 2021 | Accepted: 10 December 2021

DOI: 10.1002/int.22786

RE S EARCH ART I C L E

Multi‐scale graph capsule with influence
attention for information cascades prediction

Xueqin Chen1,2 | Fengli Zhang1 | Fan Zhou1 |

Marcello Bonsangue2

1School of Information and Software
Engineering, University of Electronic
Science and Technology of China,
Chengdu, China
2Leiden Institute of Advanced Computer
Science, Leiden University, Leiden, The
Netherlands

Correspondence
Fan Zhou, School of Information and
Software Engineering, University of
Electronic Science and Technology of
China, No.4, Section 2, North Jianshe Rd,
610054 Chengdu, China.
Email: fan.zhou@uestc.edu.cn

Funding information

National Natural Science Foundation of
China, Grant/Award Numbers:
62072077, 62176043; Sichuan Regional
Innovation Cooperation Project,
Grant/Award Number: 2020YFQ0018;
National Key R&D Program of China,
Grant/Award Number: 2019YFB1406202

Abstract

Information cascade size prediction is one of the pri-

mary challenges for understanding the diffusion of

information. Traditional feature‐based methods heavily

rely on the quality of handcrafted features, requiring

extensive domain knowledge and hard to generalize to

new domains. Recently, inspired by the success of deep

learning in computer vision and natural language

processing, researchers have developed neural

network‐based approaches for tackling this problem.

However, existing deep learning‐based methods either

focused on modeling the temporal characteristics of

cascades but ignored the structural information or

failed to take the order‐scale and position‐scale into

consideration in modeling structures of information

propagation. This paper proposed a novel graph neural

network‐based model, called MUCas, to learn the la-

tent representations of cascade graphs from a multi‐
scale perspective, which can make full use of the

direction‐scale, high‐order‐scale, position‐scale, and

dynamic‐scale of cascades via a newly designed MUlti‐
scale Graph Capsule Network (MUG‐Caps) and the

influence‐attention mechanism. Extensive experiments

conducted on two real‐world data sets demonstrate

that our MUCas significantly outperforms the state‐of‐
the‐art approaches.

Int J Intell Syst. 2022;37:2584–2611.wileyonlinelibrary.com/journal/int2584 | © 2021 Wiley Periodicals LLC

http://orcid.org/0000-0002-8038-8150
mailto:fan.zhou@uestc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22786&domain=pdf&date_stamp=2021-12-28

KEYWORD S

capsule network, cascade size prediction, graph neural networks,
information cascades, multi‐scale features

1 | INTRODUCTION

In the past decade, a large amount of online social platforms have sprung up, such as Twitter,
Weibo, Facebook, and so forth. These platforms changed the way people obtain information
and brought convenience to the fast diffusion of information.1,2 Understanding how in-
formation is spread has attracted significant attention in both academic world and industry.3–6

Among various information diffusion tasks, information cascades prediction is one of the
primary challenges for understanding the diffusion of information.7

Information cascade is formed as information or innovative ideas propagated among users,8

which has been identified in various settings: for example, retweets in social sites4,9 and paper
citations.10 The cascade is usually represented as a graph data structure, which means pre-
dicting the cascade can be regarded as a graph signal processing problem.7 Existing works of
information cascades prediction can be summarized as two categories, that is, (1) micro‐level
prediction tasks, which aim at inferring the action status of a specific user,11,12 and (2) macro‐
level prediction tasks, which aim at inferring the scale changes of a given cascade.3–5 In this
study, we focus on the macro‐level prediction task, specifically, making predictions of the
increment size of information cascade after a certain period, which is a challenging but fun-
damental problem for many real‐world applications, for example, viral marketing6 and mis-
information detection,13–16 and so forth.

As the successes of deep learning methods in many fields, recent studies have developed
various neural network‐based models to extract diverse features from the cascade graph that
can be used for cascade prediction. For example, researchers have leveraged RNNs and at-
tention mechanisms to automatically learn the cascade's temporal characteristics in a se-
quential learning manner by sampling the cascades as random walks or diffusion paths.3,4,17,18

These approaches, however, fail to capture topological structure features and the dynamic
changes of information diffusion. Later studies5,19 introduce graph embedding methods to
handle the structural diffusion learning problem, and have achieved promising results in
cascade prediction. Despite the significant progress made by recent deep learning‐based, cur-
rent approaches still confront several limitations:

(L1) Lack of efficient way to sample cascade graph: Most of the existing studies try to
decompose a cascade graph into a bag of nodes3 or denote it as a set of diffusion paths,4

such methods either ignore the structural information or fail to capture the time‐evolving
of the cascade. CasCN5 breaks down the original cascade graph into a sequence of sub‐
graphs based on timestamps, which may introduce bias and increase computation cost
because there are a large number of timestamps in the diffusion process.

(L2) Incomplete structural feature extraction: Structural features are demonstrated as one of
the most powerful features in information cascade prediction.5,19 Existing works not only
capture nodes' first‐order information but also take the edges' directional information into
consideration. However, they still fail to capture long‐distance message passing between
nodes and nodes' position information in the cascade graph.

CHEN ET AL. | 2585

(L3) Absence of feature‐level fusion: After obtaining different features from the cascade
graph, for example, temporal and structural features, most of the current works try to
directly concatenate them and then fed them into a fully connected layer to make
predictions.3–5 However, different features play different roles in information cascades
prediction, which necessitates a more fine‐grained feature fusion that would facilitate
predictions.

To overcome the limitations mentioned above, we first define multi‐scale information for
cascade graph, including (1) direction‐scale, representing the propagating direction of the in-
formation between nodes; (2) high‐order‐scale, which is the higher‐order interactions between
the nodes; (3) position‐scale, which means the sequential/position information of each node
(i.e., the emerging time of each node in the diffusion); and (4) dynamic‐scale, which is the
dynamic information captured from the evolving sub‐graph sequence. Then, we propose MUlti‐
scale Cascades model (MUCas)—a novel framework for modeling the information cascades
and predicting the increment size of information items. MUCas first employs time interval‐
aware sub‐cascade graph sampling method, which decomposes the observed cascade graph into
a sequence of sub‐cascade graphs based on disjoint time intervals. And then it uses a multi‐scale
graph capsule network and an influence attention to learn and fuse the multi‐scale information
to form a unique cascade representation for popularity prediction.

In this study, we make the following contributions:

• Efficient sampling method (L1): We propose a novel cascade sampling method to sample
sub‐cascade graphs based on disjoint time‐intervals. This method can significantly decreases
the number of required sub‐cascade graphs and eliminate the bias in processing the
dynamic‐scale in cascade modeling.

• Multi‐scale information learning (L2): We design a multi‐scale graph network for modeling
sub‐cascade graphs that can capture direction‐scale, high‐order‐scale, and position‐scale
features of information diffusion jointly. Simultaneously, we design a neural function to
learn the influence‐attention between dynamic‐scale sub‐cascade graphs.

• Hybrid feature aggregation (L3): We propose a capsule‐based hybrid aggregation layer, which
selectively aggregates the learned multi‐scale features in a more fine‐grained way, that is,
from order‐level and node‐level to graph‐level.

• Comprehensive evaluations: We conducted extensive experiments on two benchmark data
sets. The results demonstrate that MUCas can significantly improve the prediction accuracy
on cascade size prediction compared with the state‐of‐the‐art baselines.

In the rest of this paper, Section 2 reviews the related work of information cascade pre-
diction and Section 3 formally defines the studied problem. In Section 4, we provide the details
of our methodology. Experimental evaluations quantifying the benefits of our approach are
discussed in Section 5. We conclude this study in Section 6 with future work remarks.

2 | RELATED WORKS

Information cascades prediction is a general task of interest that is relevant to many down-
stream social media analysis tasks, such as viral marketing differentiation,6 influence max-
imization,20,21 and misinformation detection,13–16 and so forth. Existing works on information

2586 | CHEN ET AL.

cascades prediction generally focus on two levels,7 that is, macro‐level and micro‐level. As for
the macro‐level cascade modeling, researchers aim to learn the holistic and global patterns
from the cascades and then infer the size change of cascades, for example, estimate cascade
growth3–5 or forecast outbreaks.22 In the contrast, at the micro‐level cascades, researchers pays
more attention to local patterns of social influence, and concerns the behaviors of individual
users/items, for example, predicts the activation probability of a specific user.17,18 In this study,
we focus on macro‐level tasks, that is, the cascade size prediction, and propose a deep learning‐
based method—MUCas. Thus, we review existing deep learning‐based approaches for macro‐
level cascade modeling.

With the rapid advancement of deep learning in computer vision and natural language
processing, researchers have developed a number of deep models to solve the problem of
macro‐level information cascades modeling and prediction. The key idea of such deep learning‐
based models is to automatically extract various diffusion features from the input cascades by
leveraging different kinds of neural networks.

DeepCas3 first demonstrated the effectiveness of deep neural networks in modeling in-
formation cascades. It first transformed the cascade graph as a set of node sequences by random
walk and then automatically learned the structural features of individual graphs using GRU23

and the attention mechanism. Li et al. extended DeepCas to DCGT24 by incorporating content
features. DeepHawkes4 extracted temporal features by modeling diffusion paths via GRU rather
than the random walks in DeepCas, and proposed the non‐parametric time‐decay effect to
further improve the prediction performance, which bridged the gap between deep re-
presentation learning and the conventional Hawkes process. Gou et al.22 proposed LSTMIC,
which first converted the retweeting time series into several viewpoints, and then employed
LSTM and pooling mechanism to extract sequential temporal features for information outbreak
prediction. NT‐GP25 extracts node sequences from the user's activity log using the time decay
sampling method, and then uses GRU to learn the temporal features from the sampling se-
quences and predict the target event's future diffusion range. The latest work TempCas26

introduced a heuristic method for sampling full critical paths that was shown to be more
powerful than random walks and diffusion paths. It uses BiGRU with attention pooling for path
embedding while modeling the short‐term outbreaks and the impact of historical short‐term
outbreaks with an attention CNN and an LSTM.

Chen et al.5 proposed the first graph neural networks (GNNs)27,28‐based model called
CasCN. It learns the structural and temporal information from sub‐cascade graphs via a
combination of graph convolutional network (GCN)28 and LSTM, which also takes into account
the diffusion direction and time‐decay effect. Later, some works29–31 were built upon the
CasCN through changing the graph kernel or using different sampling methods. For example,
Cascade2Vec29 improved the convolutional kernel of CasCN with the idea from graph Iso-
morphism network (GIN)32 and residual networks.33 Xu et al. proposed CasGCN,30 which first
represented cascade graph as an in‐coming graph and an out‐coming graph, and then applied
GCN to learn the structural features from both in‐coming and out‐coming cascade graphs. The
temporal features are learned through the normalization of diffusion time. CasSeqGCN31 as-
sumes that each sampled sub‐cascade graph has the same topology but with a different state
vector. Huang et al. proposed a graph sequence attention network—GSAN,34 which captures
bidirectional and long dependencies between sub‐cascade graphs via a collaboration of graph
transformer block and a sequence transformer block. Another work35—Coupled GNN learns
the cascading effect in information diffusion via coupled GNNs, toward capturing the inter-
personal influence and individual user behavior based on the global graph. VaCas19 first uses

CHEN ET AL. | 2587

the unsupervised graph wavelet to learn the structural information for cascade graphs, and
employs variational autoencoder (VAE)36 to enhance the cascade representation learning.

Furthermore, some existing works attempt to extract temporal and structural information by
performing both micro‐level and macro‐level tasks concurrently using multi‐task learning37 or
reinforcement learning.12 Also, some works have emerged to solve the general problem inherent in
deep cascade learning, such as catastrophic forgetting38 and long‐tail data distribution.39

While current deep learning‐based approaches achieve significant progress in cascade
learning, they still suffer from some limitations such as inefficient sampling, redundant sam-
ples, the failure of capturing long‐distance message passing, the overlook of nodes' position
information in the cascade graph, which are systematically modeled in the proposed MUCas
model proposed in this study.

3 | PRELIMINARIES

As mentioned in Section 2, in this paper, we focus on information cascade size prediction. To
this end, we cast the cascade size prediction task as a regression problem. In this section, we
provide formal definitions of the studied problem and necessary background.

Suppose we have n posts, P p i n= { [1,]}i . For each post pi, with the time elapsed, pi
receives several adoptions, for example, retweets or citations, then the sequence of adoptions
forms the information cascade. If we have the concrete propagation path of each adoption, we
can generate a cascade graph for pi, which is formally defined as

Definition Cascade Graph. A cascade graph for a certain post pi is denoted as
C T= { , ℰ , }i i i i , where i is a set of nodes,  ℰ ×i i i is a set of edges and Ti is a set of

timestamps. A node v* i can represent a user who tweets or re‐tweets the post pi from
some sources (e.g., other users) in social networks or a paper in citation networks. An
edge v v(,) ℰx y i denotes a relationship between vx and vy (e.g., re‐tweet or citation).
t T* i represents the time when the re‐tweeting or citation behavior occurs. Note that

the cascade graphs in our paper are dynamic trees.

In our work, we only focus on a portion of the cascade graph Ci. That is, given an ob-
servation time to, we extract a snapshot of cascade graph Ci before to, and the observed snapshot
is represented as C t()i o . As shown in Figure 1, C t()i o is colored in green background.

As illustrated in Figure 1, we can find that (1) cascade graph is dynamic, in other words,
cascade graph is time‐evolving, that is, new nodes will join in the diffusion process with time
elapsed that leads the cascade size growth. For example, at t5, v6 joins in the diffusion process,
and make the cascade size increase to 7; (2) the message between two nodes, for example, v0
and v1, can be only passed from v0 to v1, that is, the message passing in cascade graph is
directed; (3) nodes are infected in chronological order, and the sequential information can be
regarded as the position of each node in the cascade graph; (4) nodes with high influence will
indirectly infect the long‐distance nodes, and the long‐distance dependency is the higher‐order
information of each node in a cascade graph, for example, v0 to v5.

In this study, we define the aforementioned aspects as the multi‐scale information,
including (1) dynamic‐scale, (2) direction‐scale, (3) position‐scale, and (4) high‐order‐scale of
cascades.

2588 | CHEN ET AL.

Definition Cascade Size Prediction. Given the observed cascade graph C t()i o of
post pi, the goal of cascade size prediction is predicting pi's incremental size SΔ , which
is defined as  SΔ = −t te o   , where te and to are the prediction time and the
observation time, respectively; and *  denotes the number of nodes, in terms of the
size of cascade graph.

4 | METHODOLOGY

In this section, we present the proposed MUCas model, as well as its implementation details
and computational complexity. Figure 2 illustrates the overall framework and the main com-
ponents of MUCas, which consists of four major parts: (1) a time interval‐aware sampling layer
to generate sub‐cascade graphs from observed cascade graph; (2) MUG‐Caps learns the
direction‐scale, position‐scale and high‐order‐scale information from sub‐cascade graphs; (3)
influence attention for dynamic‐scale learning; and (4) a prediction layer for cascade size
prediction.

4.1 | Time interval‐aware sub‐cascade sampling

Taking the observed cascade graph C t()i o of a given post pi as input, the existing works try to
decompose the observed cascade graph into a bag of nodes3 or denote it as a set of diffusion
paths.4 Such methods either ignore both local and global structural information or fail to
consider the dynamic information. Recently, some works such as CasCN5 and VaCas19 use a
Time‐aware sampling method to decompose C t()i o into a sequence of consecutive sub‐cascade
graphs based on the diffusion timestamp, which has been proved to be an efficient way to treat
the observed cascade graph. However, the Time‐aware sampling method still faces some
challenges: (1) the difference between the fine‐grained sub‐graphs is trivial, which will in-
troduce biases in dynamic modeling; and (2) too many sub‐graphs would significantly increase
computation cost. Figure 3A shows a toy example of Time‐aware sampling method. Compared
with the previous time step, each sub‐graph only contains one more node (e.g., t1 vs. t2). Finally,
it would generate m sub‐graphs in total, where m is the number of varying time‐stamps in the

FIGURE 1 A toy example of cascade graph [Color figure can be viewed at wileyonlinelibrary.com]

CHEN ET AL. | 2589

http://wileyonlinelibrary.com

propagation process, resulting a huge number of sub‐graphs within a short time. However, the
difference between consecutive graphs are too trivial to be distinguished, which may confuse
the model to learn discriminative features of information propagation.

To address the aforementioned challenges, we propose a new Time interval‐aware sampling
method, as shown in Figure 3B. This sampling method breaks down the observed cascade

graph C t()i o into l discrete sub‐cascade graphs G g g g j l= { , …, , …, , (1,)}i
T

i
T

i
T

i
Tiv j l1  . Specifically,

we first split the observation time window to into l disjoint time intervals. Then, we sample sub‐
cascade graphs based on these intervals. Each sub‐cascade graph in GTiv is represented by an
adjacency matrix. Thus, Gi

Tiv is further represented as a sequence of adjacency matrices
⋯A A A A= { , , , }i

T
i
T

i
T

i
Tiv l1 2 .

(A)

(B)

(C) (D)

FIGURE 2 Overview of MUCas. (A) A time interval‐aware sub‐cascade graphs sampling layer; (B) the
MUG‐Caps layer; (C) the influence attention layer; and (D) the prediction layer [Color figure can be viewed at
wileyonlinelibrary.com]

2590 | CHEN ET AL.

http://wileyonlinelibrary.com

Algorithm 1 The algorithm for transforming cascade graph into a fixed‐length sub‐graph sequence: Time
interval‐aware sampling

Input: Observed cascade graph C t()i o , time window T , and time interval number l.

Output: A fixed‐length sub‐graph sequence ⋯G g g= { , , }i
T

i
T

i
Tiv l1

1: for n= 1,2,…, l do
2: for Set of nodes  t()i j , set of edges tℰ ()i j and corresponding timestamp tj in C t()i o do

3: Compute the time interval index
∕

m = + 1
t t

T l

(−)j 0   .

4: if m n then

5: Add  t()i j and tℰ ()i j into gi
Tn.

6: end if

7: end for

8: end for

Since the proposed sampling rule will transform the observed cascade graph into a fixed
number of sub‐graphs, it is possible that no new retweet/citation occurs in one of the intervals.
To address this issue, we use the sub‐graph in front of the empty interval as padding to ensure
that the final length of GTiv equals l. Algorithm 1 formalizes the process of the Time interval‐
aware sampling method.

4.2 | Multi‐scale cascade representation learning

After generating l discrete sub‐cascade graphs, MUCas turns to learn high‐level re-
presentation of these sub‐cascade graphs, which contains the multi‐scale information of
cascade graphs. Inspired by the recent success of graph neural networks27,28,40 and capsule
network41 in handling the graph structure data, we propose a MUlti‐scale Graph Capsule
Network (MUG‐Caps) to learn the latent representation for cascade graph from GTiv. MUG‐
Caps is composed of two main parts, that is, (1) node embedding layer and (2) capsule‐based
hybrid aggregation layer.

(A)

(B)

FIGURE 3 Illustration of sampling sub‐cascade graph sequence: time‐aware sampling (A) versus time
interval‐aware sampling (B) [Color figure can be viewed at wileyonlinelibrary.com]

CHEN ET AL. | 2591

http://wileyonlinelibrary.com

4.2.1 | Node embedding layer

We propose a multi‐scale graph network (MGN) as the node embedding module, which
learns node representations at the sub‐graph level simultaneously from direction‐scale,
position‐scale, and high‐order‐scale. The implementation of MGN is based on the GCN.28

Original GCN proposes graph convolution approximations in the spectral domain based on
graph Fourier transform, which is computationally efficient and achieves competitive
performance in many tasks.42,43 However, it still faces some limitations in cascade
modeling:

(1) GCN focuses on static and undirected graphs. Nevertheless, the cascade graphs are dynamic
and directed graphs.

(2) GCN updates a node's representation by aggregating its first‐order neighbors and itself,
failing to capture each node's infected order, that is, node's position information.

(3) GCN aggregates the high‐order information for a node through stacking multiply graph
convolutional layers. As demonstrated by many later improved works,40,44,45 deeper GCN
could not improve the performance and even performs worse in graph representation
learning.

Our MGN addresses these limitations through revising the convolution kernel of GCN,
which is defined as




  ()g σH X A XW PW= = , ˆ , ,θ
k ϕ in out

ϕ
k

ϕ
k

P
{ , }

() ()



  



 (1)

where k and ϕ in out{ , } represent the order‐level concatenation and direction‐level con-
catenation, respectively; [] is a tiling concatenate operation; σ is an element‐wise activation

such as ReLU; Âϕ
k()
denotes the normalized adjacency matrix Â ℝϕ

N N× multiplied by itself k

times, specifically, A Iˆ =ϕ
(0)

is an identity matrix; N is the number of nodes in current sub‐
cascade graph; X ℝN F× is the input graph signal – F is the dimension number; and is a set
of integer adjacency powers – the value of is from 0 to the max‐order K of the current sub‐
cascade graph. ϕ in out{ , } represents the in‐ and out‐directions of the adjacency matrix,
respectively. A A A= = ()in out

T . The asymmetric normalized adjacency matrix Âϕ of each
direction can be calculated as

A D A

A A I

ˆ = (¯) ¯ ,

¯ = + ,

ϕ ϕ ϕ

ϕ ϕ N

−1

(2)

where IN is the identity matrix, and D A(¯) = (¯)ϕ ii j ϕ ij is the diagonal degree matrix.
In MGN, the initial X A · P ℝ= N F× p is a position embedding matrix for current

sub‐cascade graph, and Fp is an adjustable dimension. Specifically, we initialize the position
embedding matrix P p p p= { , …, , …, }u N1 through positional encoding uPE()46 as

∕

∕

∕

∕

()

()

u u

u u

PE

PE

() = sin 10,000 ,

() = cos 10,000 ,

d
d d

d
d d

2
2

2 +1
2

p

p
(3)

2592 | CHEN ET AL.

where   ∕d F1 2p denotes the dimension index in pu. The details of this formula are referred
to.46

In Equation (1), W ℝϕ
k F F() × d is the weight matrix for each direction on different order, and

W ℝP
d F×p p is another weight matrix used to transform position embeddings. The output node

embedding matrix is denoted as H ℝN K F F× ×(2 +)d p and ⋯ ⋯H h h h= { , , , , }m N1 , respectively.

When implementing MGN, there is no need to calculate Âϕ
k
for each order. Instead, we cal-

culate A Xˆ
ϕ
k

via right‐to‐left multiplication. For example, when k = 2, A Xˆ
ϕ
2

is calculated as

A A IXˆ (ˆ ())ϕ ϕ , where I is the identity matrix. MGN can be regarded as a single layer using
multiple times during actual training. The calculation of MGN is outlined in Algorithm 2.

The rationale behind MGN: MGN handles the direction‐scale of cascade through modeling

the incoming and outgoing relations of the cascades, that is, A XWˆ
ϕ
k

ϕ
k() () in Equation (1).

Moreover, due to the directed graph is asymmetric, we use asymmetric normalization

A D Aˆ = (ˆ) ¯
ϕ ϕ ϕ

−1 to replace the symmetric normalization D ADˆ ¯ ˆ− −1
2

1
2 used in vanilla GCN. MGN

utilizes the adjacency matrix's multiple powers to mix the feature representations of higher‐
order neighbors in one graph convolutional layer, which is used to handle the high‐order‐scale.
In our implementation, the sub‐cascade graph is a tree, and the value of Aij

k() can be either 0 or

1. When A = 1ij
k() , there is a path between vi to vj. For arbitrary power p and q, A A = 0ij

p
ij
q will

always be held, which eliminates the problem of layer output—imposing the lower‐order
information on higher‐order relations and increase the feature correlations.47 As for the
position‐scale, MGN adds position embeddings to the convolution kernel, which enriches each
node feature with its corresponding position information.

Algorithm 2 Calculation of multi‐scale graph network

Input: Feature matrix X, normalized adjacency matrix Âϕ for both in‐ and out‐directions, a set of order
powers  and its max‐value K = max(), and positional embedding matrix P.

Parameters: W{ }ϕ
k

k
() and WP.

1: ≔P PWˆ
P

2: ≔B B X,in out

3: for k in do

4: if k = 0 then

5: ≔B IBin in

≔B IBout out

6: else

7: ≔B A Bˆ
in in in

≔B A Bˆ
out out out

8: end if

9: ≔ ()H B W B W PCONCAT , , ˆk
in in

k
out out

k() () ()

10: end if

11: ≔ ⋯ ⋯H H H HCONCAT(, , , ,)k K(0) () ()

12: return σ H()

CHEN ET AL. | 2593

4.2.2 | Capsule‐based hybrid aggregation layer

From the node embedding layer, we obtain a set of node embedding matrix for each sub‐cascade
graph, denoted as ⋯S H H H= { , , , }l1 2 , where S ℝl N K F F× × ×(2 +)d p . Inspired by the work of capsule
networks,41,48–51 we design a capsule‐based hybrid aggregation layer to aggregate the learned node
features from order‐level, node‐level, and graph‐level through dynamic routing, respectively.

Algorithm 3 Dynamic routing mechanism.

Input: Lower‐level capsules U, iteration number τ .

Output: Upper‐level capsules S
1: for all lower‐level capsules i: v W uˆ =j i ij i
2: b 0ij

3: for τ iterations do

4: for all lower‐level capsules i: c bsoftmax()ij ij

5: for all upper‐level capsules j:  cs v bˆ +j i ij j i j 
6: for all upper‐level capsules j: s sSquash()j j

7: for all lower‐level capsules i to all upper‐level capsules j:
  b b v s+ ˆij ij j i j

8: end for

The general procedure of dynamic routing is shown in Algorithm 3: (1) Lower‐level cap-
sules U ℝ FU × U  are linearly transformed through shared matrix W ℝ F FU S× × ×U S    , where U 
and FU are the number of lower‐level capsules and the dimensions, respectively. Here we
introduce W that not only guarantees the feature representation ability of the center vector
after clustering, but also being able to identify the order of input features. The result of this step
is a set of votes V̂ ℝ FU S× × S    (cf. line 1 in Algorithm 3), where S  and FS are the number of
upper‐level capsule and the dimensions, respectively. (2) Upper‐level capsules S ℝ FS × S  are
computed based on the votes via line 3–7 in Algorithm 3, where c ℝij

U S× ×1    is the coupling
co‐efficiency that helps weight the votes, and the nonlinear “squash” function is denoted as

xSquash() =
x

x

x

x0.5+

2

2

 
    .

We add biases to the calculation of sj at line 5, which can solve a critical problem in capsule
networks—indistinguishableness between the positive inputs and negative inputs.52

In the MGN, we defined three levels of capsules, that is, order‐level capsule, node‐level
capsule, and graph‐level capsule, whose specific definitions are as follows:

Order‐level capsule: It is represented as h ℝm
K F F×(2 +)d p , focusing on specific node em-

bedding in the sub‐cascade graph. It aims to aggregate the higher‐order information for
each node into one node‐level capsule n ℝm

F1× n, where Fn is the dimension of node‐level
capsule.

Node‐level capsule: As for a specific sub‐cascade graph gTj, it has a set of node‐level capsules
⋯ ⋯N n n n= { , , , , }j m N1 , N ℝj

N F× n, used Nj to generate the graph‐level capsule
g ℝj

F1× g via dynamic routing, where Fg is the dimension of graph‐level capsule.

2594 | CHEN ET AL.

Graph‐level capsule: We have a set of graph‐level capsulesG, each of which corresponds to a
specific sub‐cascade graph, that is, ⋯ ⋯G g g g= { , , , , }j l1 , G ℝl F× g. Note that each graph‐
level capsule contains the properties of the cascade from different time intervals.

How does MUG‐Caps work? Above we presented the details of the two components of MUG‐
Caps, that is, MGN and the capsule‐based hybrid aggregation layer. Now we turn to explain
how the two components collaborate. MUG‐Caps, as shown in Figure 2, takes a subgraph as
input, which is first fed into an MGN layer to learn the embedding for each node that contains
node direction‐scale information, higher‐order‐scale information, and position‐scale informa-
tion as detailed in Section 3. After this layer, each node was represented as K vectors, with each
vector matched to a different order level, referred to as the order‐level capsules. Next, these
order‐level capsules are fed into the hybrid aggregation layer. Then dynamic routing is em-
ployed to aggregate order‐level capsules to form a node‐level capsule for each node. Finally, the
dynamic routing aggregates these node‐level capsules to build a graph‐level capsule for the
subgraph. The concrete calculation of MUG‐Caps is shown in steps 3 to 11 in Algorithm 4.

4.3 | Sub‐graph level influence attention

Previous works have demonstrated that user influence will decay significantly with time.4,5 In
our work, we aim to learn such influence changes (dynamic‐scale) at the sub‐graph level, that
is, we assume that the sub‐cascade graph's influence decays as the interval index increases.
Inspired by self‐attention mechanism,53 we employ a neural function to learn the influence
attention. First, we represent the time‐interval as a one‐hot vector t ℝj l, and then map tj to λj
through a fully‐connected layer with sigmoid function. Here the λj is used to describe the time
decay effect.

λ Wt b= sigmoid(+),j t
j

t (4)

where W ℝt
F l×g and b ℝt

Fg. According to the time decay effect vector λj and graph‐level
capsules G, we define the influence attention as

⊙

⊙

λ

λ
α

w g

w g
=

exp(,)

exp(,)
,j

j j

i
l

i i=1

 
   (5)

where w ℝFg. Given the influence attention αj, we calculate the graph‐level capsule as

αg gˆ = .j j j (6)

4.4 | Information cascade prediction

Though our work focus on information popularity prediction, unlike existing works, we add an
auxiliary task—an extra classification task, that is, whether a cascade would go viral, as a
supplementary for the cascade size prediction. That is, we predict whether a cascade can break
out a certain threshold value. This step is also implemented using dynamic routing over

CHEN ET AL. | 2595

j lG gˆ = {ˆ [1,]}j to generate class capsules C ℝQ F× c, whereQ is the number of class, and Fc is

the dimension of class capsules. The norm of class capsule cq  represents the probability
belonging to class q. And, we use a margin loss to calculate the classification loss:

μ m ξ μ mc cℓ = { max(0, −) + (1 −)max(0, −) },
q

q q q q1
+ 2 − 2    

(7)

wherem = 0.9+ ,m = 0.1− , and μ = 1q iff the cascade belongs to class q.41,48,52 Here ξ is used to

stop initial learning from reducing the length of all class capsules, especially when Q is large.
Subsequently, we use a weighted sum operation on C to obtain the representation for a

cascade Ĉ. The weight is calculated through c* :

ω

ωC c .

= ,

ˆ =
*

q

q q q

c

c

exp()

exp(*)

q

Q

=1




 
 

(8)

We use a fully‐connected layer to predict the increment size S CΔ = FC(ˆ). The loss function
is

S Sℓ = (logΔ − logΔ) ,͠
2

2
(9)

where SΔ ͠ is the ground truth. Finally, the overall loss function for a batch is

()
B

β βℒ =
1

ℓ + (1 −)ℓ ,
i

B
i i

=1
1 2 (10)

where B is the number of cascades in a batch, and β is used to balance the ℓ1 and ℓ2 losses.
Algorithm 4 illustrates the training process of MUCas.

Algorithm 4 Learning with MUCas.

Input: Time‐interval aware sub‐cascade graphs for n cascade graphs ⋯ ⋯{ }A A A A= , , , , ,T T
i
T

n
T

1
iv iv iv iv ; Max order

K ; Batch size b.

Output: Incremental size ⋯S SΔ = {Δ , }1 of cascades.

1: repeat

2: b = 1, 2, …
3: for adjacency matrix sequence Ai

Tiv in batch bdo

4: for A Ai
T

i
Tj ivdo

5: Compute the node embeddings Hj for jth sub‐cascade graph according to Eq. (1).

6: for node embedding h Hm jdo

7: Use hm to compute the node‐level capsule nm according to Algorithm 3.

8: end for

9:  ⋯N n n{ , , }j N1

2596 | CHEN ET AL.

10: Use Nj to generate the graph‐level capsule gj according to Algorithm 3.

11: end for

12:  ⋯G g g{ , , }i l1

13: Compute influence attention αj according to Eq. (4) and (5).

14: Compute newly graph‐level capsules Ĝi according to Eq. (6).

15: /*Extra classification task*/

16: Use Ĝi to compute class capsules Ci according to Algorithm 3.

17: /*Popularity prediction task*/

18: Calculate cascade representation Ci
′ according to Eq. (8).

19: Feed Ci
′ into fully‐connected layer to compute incremental size SΔ i of cascade.

20: Use Adaptive moment estimation (Adam) to optimize the objective function in Eq. (10) and update all
the parameters.

21: end for

22: until convergence;

4.5 | Complexity analysis

We finalize this section with a discussion of the computational complexity of the main com-
ponent MUG‐Caps in MUCas, that is, the cost of (1) node embedding layer, and (2) capsule‐
based hybrid aggregation layer.

4.5.1 | Node embedding layer

We used MGN to learn node embeddings from the sub‐cascade graph as shown in Equation (1).
As for direction‐scale, MGN models the incoming and outgoing relations of the cascades via

A XWˆ
ϕ
k

ϕ
k() (). Recall that the dimensions of X, Wϕ

k(), and Wp are F , Fd, and Fp, respectively.

Besides, the max‐order is K , and the normalized adjacency matrix Âϕ in our implementation is
a sparse matrix with ℰ  nonzero elements—ℰ  is the number of edges in current graph. In
addition, the number of nodes is denoted as N . According to existing works,28,40 for a single
direction at each order, the calculation is conducted via sparse‐dense matrix multiplications,
and the computational complexity is  F F(ℰ × ×)d  . Taking the high‐order‐scale into con-
sideration, the computational complexity is then  K F F(× ℰ × ×)d  . As for positional‐scale,
the calculation of W Pp is completed via matrix multiplication, which requires N d F(× ×)p p

computations. Therefore, the total computational time cost of evaluating Equation (1) is then
 K F F N d F(2 × × ℰ × × + × ×)d p p  .

4.5.2 | Capsule‐based hybrid aggregation layer

This layer is implemented by executing dynamic routing between different levels capsules. Spe-
cifically, we adopt a dynamic routing mechanism for τ iterations over U  lower‐level capsules and
generate S  upper‐level capsules. This learning process requires τ U S(× ×)    computations.54

From the MGN, we get the order‐level capsule ⋯ ⋯H h h h h= { , , , , ℝ }m N m
K F F

1
×(2 +)d p . For each

node m, it generates the node‐level capsule from order‐level capsules, whose computational
complexity is  τ K(× × 1). Because there are N nodes, the total time of generating node‐level

CHEN ET AL. | 2597

capsules for all nodes is  N τ K(× × × 1). Similarly, generating the graph‐level capsule from
node‐level capsules can be done within  τ N(× × 1) time. The overall computational time is
therefore N τ K τ N(× × × 1 + × × 1).

5 | EXPERIMENTS

In this section, we compare the performance of our proposed model MUCas with the state‐of‐
the‐art approaches, and several variants of MUCas, on information popularity prediction. In
particular, we provide the quantitative results to answer the following research questions:

• RQ1: How does MUCas perform on cascade size prediction compared with the state‐of‐the‐
art baselines?

• RQ2: How do different scales of information modeled in MUCas contribute to the overall
performance?

• RQ3: How do the key hyper‐parameters affect the performance of MUCas?

5.1 | Data sets

We evaluate the effectiveness and generalizability of MUCas on two scenarios. The first one is
to predict the size of retweet cascades in Sina Weibo and the second one is to forecast the
citation count of papers in citation data set APS. The statistics of the data sets used in this study
has shown in Table 1.

5.1.1 | Sina Weibo

Weibo data set is released by Cao et al.,4 and collected from Sina Weibo (http://www.weibo.
com)—one of the most popular microblog platform in China. This data set collects the posts
generated on June 1, 2016, and tracks all retweets for each post within the next 24 h. It consists
of 119, 313 posts in total. Figure 4A plots the distribution of the cascade size (the number of re‐
tweets of each post), which, obviously, follows an power‐law distribution and reflects the Pareto
principle (80/20 rule). Figure 5A shows the distribution of depth over all cascades, which
roughly follows an exponential distribution, indicating that the majority of cascades have a
shallow depth, that is, most of them are less than 5. The depth of a cascade is the length of the
longest path, which also equals to the max‐order of the cascade. Due to the effect of diurnal
rhythm in Weibo,4 in our experiments, the cascades with the publication time before 8 a.m. and

TABLE 1 Statistics of data sets

Ori
Cascades

Avg.
popularity

0.5 h/3 years 1 h/5 years

Data sets # Nodes # Edges Train Val Test Train Val Test

Weibo 119,313 5,918,473 12,204,245 173 19,472 4173 4172 24,636 5279 5278

APS 636,294 636,294 3,425,508 13 19,124 4098 4097 33,408 7159 7158

2598 | CHEN ET AL.

http://www.weibo.com
http://www.weibo.com

after 6 p.m. were filtered out, leaving each post at least 6 h to obtain retweets. As shown in
Figure 6A, on average, a message receives about 70% retweets within 5 h.

5.1.2 | APS

APS (http://journals.aps.org) APS is provided by American Physical Society (APS), which consists
of pairs of APS articles that cite each other for the corpus of Physical Review Letters, Physical
Review, and Reviews of Modern Physics from 1893 to 2018. The papers from 1893 to 1997 are
selected as observations so that each of the papers is allowed to develop for at least 20 years. In the
citation scenario, the size of a cascade is the citation count. Figure 4B shows the distribution of
cascade size in the APS data set, which exhibits a power‐law distribution. Figure 5B shows the
distribution of the depth over all cascades in APS, which has a similar trend with Weibo. As
shown in Figure 6B, on average, the citation reaches around 50% of the final size within 5 years.

(A) (B)

FIGURE 4 Cascade size distributions of Weibo (A), and APS (B) data sets in log‐log scales [Color figure can
be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 5 Distribution of depth (max‐order) of cascades. (A) Weibo data set and (B) APS data set [Color
figure can be viewed at wileyonlinelibrary.com]

CHEN ET AL. | 2599

http://journals.aps.org
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

5.1.3 | Settings

In our experiments, we use the same data set settings as in previous works.4,19 The observation
time window in Weibo data is set to T = 0.5h and T = 1 h. For the observation window of the
APS data set, we choose T = 3 and 5 years. For both Weibo and APS data sets, we filter out
cascades whose observed size S < 10obs . And for those cascades whose S > 100obs , we only track
the first 100 retweets. In addition, we randomly split each data set into a training set (70%), a
validation set (15%), and a testing set (15%) following existing works.4,19

5.2 | Baselines

To validate MUCas's performance in cascade prediction, we select following state‐of‐the‐art
baselines for comparison:

• Handcrafted Feature‐based: Cheng et al.8 defined five classes of features, including content
features, original poster, resharer features, structual and temporal features. Specifically, in
this study, we extract the cumulative popularity series, time between original and first
participant, mean time between the first half and the second half of participants, number of
leaf nodes, mean node degree, mean and max length of sequences. Then, we feed these
extracted features into a linear regression model and a fully‐connected layer to predict the
increment size, and denote these two independent methods as Feature‐Linear and Feature‐
Deep, respectively.

• DeepCas3: DeepCas uses random walks to represent a cascade graph and predict the in-
crement size of cascades through bidirectional GRU23 and an attention mechanism. It only
utilizes cascade structure and node identities in the prediction.

• DeepHawkes4: DeepHawkes combines both the end‐to‐end deep learning and Hawkes
process for cascade size prediction, which bridges the gap between prediction and the me-
chanism ruling information propagation. Specifically, it uses deep learning methods to solve

(A) (B)

FIGURE 6 Size distribution of cascades: retweets (citations) versus time. (A) Weibo data set and (B) APS
data set [Color figure can be viewed at wileyonlinelibrary.com]

2600 | CHEN ET AL.

http://wileyonlinelibrary.com

the three key aspects in Hawkes process, that is, influence of users, self‐exciting mechanism,
and time decay effect.

• CasCN5: CasCN is the first graph convolution network (GCN)‐based framework exploiting
both temporal and structural information for cascade size prediction. It decomposes a cas-
cade graph into a sequence of sub‐cascade graphs based on propagation time, while learning
the local structure and its evolving process of cascade structure through the combination of
graph convolutions and LSTM.

• VaCas19: VaCas is the first Bayesian learning‐based approach that uses pre‐trained node
embeddings of the cascade as input and leverages a hierarchical variational information
diffusion model to learn the posterior of cascade distribution with variational inference.

• Cascade2vec29: Cascade2vec is an improvement of CasCN, which proposes a new graph
convolutional kernal—graph perception network (GPN) to replace the original GCN in
CasCN. It also introduces the attention mechanism to learn different importance of each
sub‐graph.

5.3 | Evaluation metric

Following previous studies,3,4,17 we use mean square logarithmic error (MSLE) and symmetric
mean absolute percentage error (SMAPE) for prediction performance evaluation. In addition,
we also report the coefficient of determination (R2) of different models. The formulation of all
evaluation metric is defined as

∕

()

n
S S

n

S S

S S

R
S S

S S

MSLE=
1

(logΔ − logΔ) ,

SMAPE =
1 logΔ − logΔ

(logΔ + logΔ) 2
,

= 1 −
(logΔ − logΔ)

logΔ − logΔ
,

͠

͠

͠

͠

͠ ͠

i

n

i i

i

n
i i

i i

i

n
i i

i

n
i n i

n
i

=1

2

=1

2 =1
2

=1

1
=1

2







 
   



(11)

where n is the total number of posts, SΔ i is the predicted incremental size for post pi, and SΔ ͠ i is
the ground truth. Note that, the value of MSLE and SMAPE the smaller the better, in contrast,
the value of R2 the bigger the better.

5.4 | Experimental settings and parameter tuning

5.4.1 | Parameter settings

Models mentioned above are optimized to the best performance which involves several key
hyper‐parameters. The L2 coefficient of Feature‐Linear is chosen from ⋯10{0,−1,−2 , −8}. The node
embedding size for DeepCas, DeepHawkes, CasCN, and Cascade2vec is set to 50. The hidden
layer of each GRU has 32 units, and the hidden dimensions of the two‐layer fully‐connected
layers for all deep learning‐based methods are 32 and 16, respectively. The learning rate for
node embeddings in DeepCas and DeepHawkes is 5 × 10−4 and the learning rate for other

CHEN ET AL. | 2601

methods are 5 × 10−3. The batch size is set as 64. All other hyper‐parameters are set to the same
values as used in the original papers.

As for our MUCas, the basic parameters (e.g., the learning rate is 5 × 10−4 and batch size is 64,
etc.) are the same as above deep learning‐based approaches, except that the max‐order K and
iteration number τ are chosen from 1 to 5. The embedding size of positional embedding is chosen
from {30, 50, 100, 150, 200}, the hidden size for MGN is 60, and the hidden size for node‐level
capsule, graph‐level capsule and the class capsule is 30, 8 and 16, respectively. In addition, the
number of time intervals is set to 6. All methods, including ours, are tuned to the best performance
with early stopping when validation errors has not declined for 10 consecutive epochs.

5.4.2 | Experimental environment

The experiments are conducted on a sever with Intel E5‐2680 v4 2.40 GHz, one NVIDIA
GeForce GTX 3090, and 256 GB memory.

5.5 | Performance comparison (RQ1)

The overall performance of MUCas as well as the state‐of‐the‐art baselines are shown in
Tables 2 and 3, from which we have the following important observations.

(O1) The performance of MUCas outperforms the baselines by a large margin, for example,
as for the MSLE, it reduces the prediction error up to 19.53%, 20.22%, 9.63%, and 4.51%
comparing to the best baseline—VaCas, when T is set to 0.5, 1 h and 3, 5 years on Weibo and

TABLE 2 Performance comparison between baselines and MUCas on Weibo data sets

Weibo

0.5 h 1 h

Model MSLE SMAPE R2 MSLE SMAPE R2

Baselines

Feature‐Linear 2.959 0.331 0.351 2.710 0.356 0.461

Feature‐Deep 2.815 0.311 0.379 2.646 0.353 0.465

DeepCas 2.914 0.330 0.352 2.747 0.358 0.459

DeepHawkes 2.891 0.321 0.379 2.632 0.352 0.468

CasCN 2.804 0.311 0.381 2.601 0.350 0.468

Cascade2vec 2.752 0.308 0.384 2.589 0.348 0.479

VaCas 2.586 0.291 0.504 2.359 0.333 0.518

Ours

MUCas 2.081* 0.271* 0.621* 1.882* 0.308* 0.647*

(Improvements) 19.53% 6.87% 23.21% 20.22% 7.51% 24.90%

Note: A paired t test is performed. The best method is shown in bold, and the second best is shown as underlined.

*Statistical significance p< 0.001 as compared with the best baseline method.

2602 | CHEN ET AL.

APS, respectively. We plot the training process of MUCas on the Weibo and APS data set and
show the results in Figure 7. Clearly, the training loss of MUCas consistently decreases and
converges to a lower value.

(O2) The gap between handcrafted feature‐based methods and most deep learning‐based base-
lines are quite small. In some cases the handcrafted feature‐based methods even beat some deep
learning‐based methods. Comparing the Feature‐Deep with DeepCas, for example, we can observe
that a fully connected layer is enough to achieve competitive results than complicated neural net-
works (DeepCas) if we have a set of well‐designed hand crafted features. However, obtaining such
features requiring extensive domain knowledge, which is hard to be generalized to new domains.

(O3) DeepCas—The first deep‐learning‐based approach for cascade size prediction—performs the
worst among the deep learning baselines, because it simply learns the cascade representation based
on sampled random walks but ignores temporal and topological information. DeepHawkes, while
being successful in modeling temporal information for cascades in a generative learning manner,
does not perform well due to its weak ability to learn structural information.

TABLE 3 Performance comparison between baselines and MUCas on APS data sets

APS

3 Years 5 Years

Model MSLE SMAPE R2 MSLE SMAPE R2

Baselines

Feature‐Linear 2.100 0.289 0.126 2.087 0.358 0.311

Feature‐Deep 1.996 0.358 0.221 1.874 0.352 0.322

DeepCas 2.033 0.361 0.213 1.944 0.365 0.318

DeepHawkes 1.831 0.344 0.241 1.588 0.337 0.363

CasCN 1.818 0.274 0.244 1.574 0.337 0.367

Cascade2vec 1.783 0.272 0.258 1.560 0.336 0.373

VaCas 1.723 0.268 0.283 1.507 0.335 0.394

Ours

MUCas 1.557* 0.263* 0.355* 1.439* 0.333* 0.426*

(Improvements) 9.63% 1.87% 25.44% 4.51% 0.59% 8.12%

Note: A paired t test is performed. The best method is shown in bold, and the second best is shown as underlined.

*Statistical significance p< 0.001 as compared with the best baseline method.

(A) (B) (C) (D)

FIGURE 7 Convergence of MUCas on Weibo and APS data sets. (A) Weibo (0.5 h), (B) Weibo (1 h), (C) APS
(3 years), and (D) APS (5 years) [Color figure can be viewed at wileyonlinelibrary.com]

CHEN ET AL. | 2603

http://wileyonlinelibrary.com

(O4) The rest of the baselines, that is, CasCN, Cascade2vec and VaCas, generate competitive
results because they explore structural and temporal information at the same time. When comparing
CasCN with Cascade2vec, the performance of Cascade2vec is slightly better, due to the modified
convolutional kernel in Cascade2vec, which indeed improves the ability of learning structural fea-
tures. Besides, VaCas employed VAE36 to solve the uncertainty problem in structural representation
learning and therefore achieves higher accuracy compared with other baselines. Our MUCas not only
combines the advantages of CasCN and VaCas, but also takes into account the high‐order‐scale and
position‐scale of a cascade graph, leading to a significant improvement in prediction performance.

(O5) When examining the methods with different observation window T , we can observe a
general trend, that is, the larger the T , the accurate the predictions. This is intuitive because
longer observation time reveals more temporal and structural knowledge regarding information
diffusion that helps cascade size prediction.

5.6 | Ablation study (RQ2)

To better investigate the contribution of each scale of information modeled in MUCas, we
derive the following variants of MUC as

‐Direction: In “‐Direction,” we do not consider the directional relation in cascades, that is,
regarding the cascade graphs as undirected graphs. We replace the MGN to an vanilla
GCN28 and calculate the normalized adjacency matrix according to A D ADˆ = ˆ ¯ ˆ− −1

2
1
2 .

‐Order: In “‐Order,” we only focus on 1st‐order neighbors in the cascade graphs, that is,
setting the max‐order number K to 1.

‐Position: In “‐Position,” we ignore the node's relative position in cascade graph, that is,
removing the computation of position information PWp in MGN.

‐Dynamic: In “‐Dynamic,” we remove the sub‐graph level influence attention component,
and use G directly.

Figure 8 shows the performance comparisons among MUCas and its variants, which
illustrates that: (i) the original MUCas achieves the best performance compared with other
variants, demonstrating the motivation of our work, that is, considering the four different scale
information for cascade modeling. (ii) From the comparison between “‐Direction” and
“‐Position”, we find that effectively modeling the directional relation and node's relative

(A) (B)

(C) (D)

FIGURE 8 Ablation study of MUCas on two data sets. (A) Weibo (0.5 h), (B) Weibo (1 h), (C) APS
(3 years), and (D) APS (5 years) [Color figure can be viewed at wileyonlinelibrary.com]

2604 | CHEN ET AL.

http://wileyonlinelibrary.com

position in the cascade graph will improve the prediction performance. (iii) Removing
“‐Order” and “‐Dynamic” bring a remarkable decrease of the prediction performance, which
implies that: (a) nodes with different orders play different importance in prediction task, and
(b) the influence decreases as the cascade graph evolves.

To quantify the effectiveness of different levels of capsules, that is, order‐level, node‐level,
and graph‐level capsule, we test the model performance by designing several single capsule‐
based variants of MUCas, including:

Order‐level: In “Order‐level,” we apply sum‐pooling to aggregate the order‐level capsules
h* for each node and form node‐level capsule n*. Finally, the sum‐pooling operation is
employed again to aggregate node‐level capsules to form the graph‐level capsule g

*
.

Node‐level: In “Node‐level,” we apply dynamic routing to aggregate order‐level capsules h*
to form node‐level capsule n*. Subsequently, sum‐pooling is used to aggregate node‐level
capsules to form the graph‐level features g

*
.

Graph‐level: In “Graph‐level,” we apply sum‐pooling to generate node‐level capsule n* from
h*, and then employ dynamic routing to aggregate node‐level capsules to form the graph‐
level capsule g

*
.

Figure 9 illustrates the differences between three single capsule‐based variants and MUCas. The
experimental results are shown in Figure 10, where we can find that: (i) Compared with all single
capsule‐based variants, the original MUCas performs the best; (ii) Even keeping only one single‐level
capsule, the model performance is still superior to all the baselines in Tables 2 and 3; and (iii)
Compared with original MUCas, the “order‐level” variant performs the worst, while the performance
of the other two variants (i.e., node‐level and graph‐level) do not drop a lot. This result demonstrates
that (1) the three‐level capsules are indispensable, and (2) the dynamic routing is efficient in
aggregating features.

5.7 | Hyper‐parameter sensitivity (RQ3)

Then we study several important hyper‐parameters that may influence the prediction perfor-
mance of our model. Here we select Weibo data set for experiments and omit APS due to the
similar results. The results are shown in Figure 11.

FIGURE 9 Illustration of single capsule‐based variants of MUCas [Color figure can be viewed at
wileyonlinelibrary.com]

CHEN ET AL. | 2605

http://wileyonlinelibrary.com

• Impact of max‐order K : we tried different values of max‐order K from 1 to 5, and the
prediction results of MUCas are shown in Figure 11A,B. When the observation time is 0.5 h,
our MUCas achieves the best performance if K = 3. But for 1 h observation, the optimal
value of K is 4. The reason is that with the increase of observation time, the information are
more likely to propagated to more nodes with deeper depth.

• Impact of embedding size of positional embedding Fp: we change the dimensions Fp of positional
embedding P within {30, 50, 100, 150, 200}. Compare the results on 0.5 h with the results on 1 h

(A) (B)

(C) (D)

FIGURE 10 Capsule study of MUCas on two data sets. (A) Weibo (0.5 h), (B) Weibo (1 h), (C) APS (3 years),
and (D) APS (5 years) [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

FIGURE 11 Impact of the important hyper‐parameters on MUCas. (A) Effect of K (T= 0.5), (B) effect of K
(T= 1), (C) effect of Fp (T= 0.5), (D) effect of Fp (T= 1), (E) effect of τ (T= 0.5), (F) effect of τ (T= 1), (G) effect
of  to  (T= 0.5), (H) effect of  to  (T= 1), (I) effect of l (T= 0.5), (J) effect of l (T= 1), (K) effect of β (T= 0.5), and
(L) effect of β (T= 1). Vertical lines are settings we used in previous experiments. Orange solid lines represent
the results of MSLE, and the purple dashed lines denote the results of SMAPE [Color figure can be viewed at
wileyonlinelibrary.com]

2606 | CHEN ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

(Figure 11C,D), we can see that larger embedding size sometimes may degrade the performance,
and the proper embedding size should fall into the scope of [50, 150]. We hypothesize the reason
is that most cascade graphs are small, though a few of them may diffuse to a large number of
nodes, that is, the 80/20 rule as shown in Figure 4A,B. Therefore, a larger embedding dimensions
would incur overfitting issue for those smaller cascade graphs.

• Impact of iteration numberτ : we tried different values of iteration number τ in dynamic
routing, specifically, by increasing the value from 1 to 5. The results are shown in
Figure 11E,F, which suggests that increasing the number of iterations would improve the
performance first, but deteriorate the model soon. This result raises an open issue in capsule
network learning. That is, the appropriate iterations requires careful tuning that makes the
capsule network unstable. This issue should be addressed for robust representation learning,
which is beyond the scope of this study and left as our future work.

• Impact of the length of observed retweets  to : we track the first 50, 80, 100, 150, and 200 retweets
and report the performance of MUCas based on these observed retweets. The experimental
results show in Figure 11G,H, where we can observe the improved performance with the
increase of observation retweets, which is a natural result of including more training data.

• Impact of the number of time intervals l: when sampling sub‐cascade graphs from the observed
cascade, we set different numbers of time interval, that is, l = [3, 6, 9, 12, 15]. The results are
shown in Figure 11I,J, which reveal that: (1) the fine‐grained sampling does not always perform
better. For example, when the observation time is 0.5 h, the performance of MUCas at l = 6 is
much better than the results when l = 9, 12 and 15. This finding also proves our hypothesis in
Section 4.1 that the differences between fine‐grained sub‐graphs become trivial as l grows, which
will introduce biases in dynamic modeling. Besides, increasing the number of sub‐graphs would
significantly increase the computation cost. (2) The choice of the number of time interval heavily
depends on the distribution of data set. When the observation window is 0.5 and 1 h, the model
performance achieves the best at l = 6 and l = 9, respectively.

• Impact of the balance value β: we change the hyper‐parameter β in loss function (Equation 10)
from 0.1 to 0.9, and report the results in Figure 11K,L. We can see that a smaller value of β
always achieves better performance. Furthermore, β = 0.5 can be regarded as a watershed, with
a value less than 0.5 being far more suitable for model selection than a value greater than 0.5.

• To further support the finding (O5) in Section 5.5, we conducted an extra experiment to
assess the model sensitivity varied with the observation time. Specifically, we consider the
propagation in the first 15 h because most of the messages in the Weibo data set will decay
after this time.7 The results are shown in Figure 12, where we can clearly see that the longer
the observations, the better the performance of the model.

5.8 | Model parameters and computation cost

We compute the time cost of training MUCas and baselines, as well as the required parameters.
The results are reported in Table 4. First, the memory required for DeepCas and DeepHawkes is
much higher because they need the embeddings of all users in the social network, which
required U F× u  parameters—U  represents the total number of users and Fu denotes the
embedding size. Besides, the training time for each epoch of MUCas is around s104 and s105 in
Weibo and APS data set whenT = 0.5 h andT = 3 years, respectively. In contrast, Cascade2Vec
is the fastest model that only needs 50s and 70s for Weibo and APS data sets, respectively,
although its performance is incomparable.

CHEN ET AL. | 2607

6 | CONCLUSION

In this paper, we proposed a novel cascade prediction model—MUCas, which can capture the
multi‐scale features regarding information diffusion comprehensively and make good predic-
tions. Specifically, MUCas consists of four components: (1) a time interval‐aware sampling
layer used to generate sub‐cascade graphs from the observed cascade graph, (2) MUG‐Caps
extracts the direction‐scale, position‐scale, and high‐order‐scale information from sub‐cascade
graphs, (3) attention layer applied to learn dynamic‐scale, and (4) a prediction layer to make
predictions. We conducted extensive experiments based on two real‐world data sets, that is,
Weibo and APS. The experimental results demonstrate that our method achieves state‐of‐the‐
art performance on information cascade size prediction of tweet propagation in social networks
and scientific papers' impact.

As part of our future work, we plan to incorporate hand‐crafted features with MUCas, for
example, user profiles, content features, etc., which can bring the advantages of feature‐based
methods into deep learning‐based methods. MUCas can be tested on more cascade‐related
tasks, such as fake news detection,55 and extend MUCas to other spatial‐temporal modeling
tasks.56 Furthermore, modeling the cascades in an unsupervised manner57,58 can also be
considered.

(A) (B)

FIGURE 12 The influence of time window in Weibo data set. (A) MSLE and (B) R2 [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 4 Model parameters and computation time measured by seconds when T = 0.5 h and 3 years for
Weibo and APS, respectively

Time cost per epoch (s)

Methods Parameters Weibo (T = 0.5 h) APS (T = 3 years)

DeepCas ~250M ~150 ~170

DeepHawkes ~250M ~128 ~158

CasCN ~278K ~320 ~400

Cascade2Vec ~368K ~50 ~75

VaCas ~2M ~83 ~98

MUCas ~495K ~104 ~105

Abbreviation: ~, approximation.

2608 | CHEN ET AL.

http://wileyonlinelibrary.com

ACKNOWLEDGMENTS
This study was supported by National Natural Science Foundation of China (Grant No.
62072077 and No. 62176043), Sichuan Regional Innovation Cooperation Project (Grant No.
2020YFQ0018), and National Key R&D Program of China (Grant No. 2019YFB1406202).

ORCID
Fan Zhou http://orcid.org/0000-0002-8038-8150

REFERENCES
1. Dow PA, Adamic LA, Friggeri A. The anatomy of large Facebook cascades. ICWSM '13. Seventh Inter-

national AAAI Conference on Weblogs and Social Media; 2013.
2. AlFalahi K, Atif Y, Abraham A. Models of influence in online social networks. Int J Intell Syst. 2014;29(2):

161‐183.
3. Li C, Ma J, Guo X, Mei Q. DeepCas: An end‐to‐end predictor of information cascades. WWW '17.

Proceedings of the 26th International Conference on World Wide Web; 2017:577‐586.
4. Cao Q, Shen H, Cen K, Ouyang W, Cheng X. DeepHawkes: Bridging the gap between prediction and

understanding of information cascades. CIKM '17. Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management; 2017:1149‐1158.

5. Chen X, Zhou F, Zhang K, Trajcevski G, Zhong T, Zhang F. Information diffusion prediction via recurrent
cascades convolution. ICDE '19. 2019 IEEE 35th International Conference on Data Engineering; 2019:
770‐781.

6. Leskovec J, Adamic LA, Huberman BA. The dynamics of viral marketing. ACM Trans Web (TWEB). 2007;
1:5‐es.

7. Zhou F, Xu X, Trajcevski G, Zhang K. A survey of information cascade analysis: Models, predictions, and
recent advances. ACM Comput Surv (CSUR). 2021;54(2):1‐36.

8. Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J. Can cascades be predicted? WWW '14. Proceedings
of the 23rd International Conference on World Wide Web; 2014:925‐936.

9. Jenders M, Kasneci G, Naumann F. Analyzing and predicting viral tweets. WWW '13. Proceedings of the
22nd International Conference on World Wide Web; 2013:657‐664.

10. Shen HW, Wang D, Song C, Barabási AL. Modeling and predicting popularity dynamics via reinforced
Poisson processes. AAAI '14. Proceedings of the Twenty‐Eighth AAAI Conference on Artificial In-
telligence; 2014:291‐297.

11. Qiu J, Tang J, Ma H, Dong Y, Wang K, Tang J. DeepInf: Social influence prediction with deep learning.
KDD '18. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining; 2018.

12. Yang C, Tang J, Sun M, Cui G, Liu Z. Multi‐scale information diffusion prediction with reinforced re-
current networks. IJCAI '19. Proceedings of the Twenty‐Eighth International Joint Conference on Artificial
Intelligence; 2019:4033‐4039.

13. Ma J, Gao W, Wong KF. Detect rumors in microblog posts using propagation structure via kernel learning.
ACL '17. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics; 2017:
708‐717.

14. Ma J, Gao W, Wong KF. Rumor detection on twitter with tree‐structured recursive neural networks. ACL
'18. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics; 2018:
1980‐1989.

15. Bian T, Xiao X, Xu T, et al. Rumor detection on social media with bi‐directional graph convolutional
networks. AAAI '20. Proceedings of the AAAI Conference on Artificial Intelligence; 2020:549‐556.

16. Chen X, Zhou F, Zhang F, Bonsangue M. Modeling microscopic and macroscopic information diffusion for
rumor detection. Int J Intell Syst. 2021;36(10):5449‐5471.

17. Wang J, Zheng VW, Liu Z, Chang CC. Topological recurrent neural network for diffusion prediction. ICDM
'17. 2017 IEEE International Conference on Data Mining; 2017:475‐484.

CHEN ET AL. | 2609

http://orcid.org/0000-0002-8038-8150

18. Wang Y, Shen H, Liu S, et al. Cascade dynamics modeling with attention‐based recurrent neural network.
IJCAI '17. Proceedings of the 26th International Joint Conference on Artificial Intelligence; 2017:2985‐2991.

19. Zhou F, Xu X, Zhang K, Trajcevski G, Zhong T. Variational information diffusion for probabilistic cascades
prediction. INFOCOM '20. IEEE Conference on Computer Communications; 2020.

20. Tang J, Tang X, Xiao X, Yuan J. Online processing algorithms for influence maximization. SIGMOD '18.
Proceedings of the 2018 International Conference on Management of Data; 2018:991‐1005.

21. Huang K, Wang S, Bevilacqua G, Xiao X, Lakshmanan LVS. Revisiting the stop‐and‐stare algorithms for
influence maximization. Proc. VLDB Endow. 2017;10(9):913‐924.

22. Gou C, Shen H, Du P, Wu D, Liu Y, Cheng X. Learning sequential features for cascade outbreak prediction.
Knowl Inf Syst. 2018;57(3):721‐739.

23. Hochreiter S, Schmidhuber J. Long short‐term memory. Neural Comput. 1997;9(8):1735‐1780.
24. Li C, Guo X, Mei Q. Joint modeling of text and networks for cascade prediction. ICWSM '18. Proceedings of

the International AAAI Conference on Web and Social Media; 2018.
25. Liu Z, Wang R, Liu Y. Prediction model for non‐topological event propagation in social networks. In:

ICPCSEE '19. Springer; 2019:241‐252.
26. Tang X, Liao D, Huang W, Xu J, Zhu L, Shen M. Fully exploiting cascade graphs for real‐time

forwarding prediction. AAAI '21. Proceedings of the AAAI Conference on Artificial Intelligence;
2021:582‐590.

27. Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized
spectral filtering. NIPS '16. Proceedings of the 30th International Conference on Neural Information
Processing Systems; 2016:3844‐3852.

28. Kipf TN, Welling M. Semi‐Supervised classification with graph convolutional networks. ICLR '17. Inter-
national Conference on Learning Representations; 2017.

29. Huang Z, Wang Z, Zhang R. Cascade2vec: Learning dynamic cascade representation by recurrent graph
neural networks. IEEE Access. 2019;7:144800‐144812.

30. Xu Z, Qian M, Huang X, Meng J. CasGCN: Predicting future cascade growth based on information
diffusion graph. arXiv preprint arXiv:2009.05152; 2020.

31. Wang Y, Wang X, Michalski R, Ran Y, Jia T. CasSeqGCN: Combining network structure and temporal
sequence to predict information cascades. arXiv preprint arXiv:2110.06836; 2021.

32. Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? ICLR '19. International
Conference on Learning Representations; 2019.

33. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. CVPR '16. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016:770‐778.

34. Huang Z, Wang Z, Zhang R, Zhao Y, Zheng F. Learning bi‐directional social influence in information
cascades using graph sequence attention networks. WWW '20. Companion Proceedings of the Web Con-
ference 2020; 2020:19‐21.

35. Cao Q, Shen H, Gao J, Wei B, Cheng X. Popularity prediction on social platforms with coupled graph
neural networks. WSDM '20. Proceedings of the 13th International Conference on Web Search and Data
Mining; 2020:70‐78.

36. Kingma DP, Welling M. Auto‐encoding variational Bayes. ICLR '14. International Conference on Learning
Representations; 2014.

37. Chen X, Zhang K, Zhou F, Trajcevski G, Zhong T, Zhang F. Information cascades modeling via deep multi‐
task learning. SIGIR '19. Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval; 2019:885‐888.

38. Zhou F, Jing X, Xu X, Zhong T, Trajcevski G, Wu J. Continual Information Cascade Learning. GLOBECOM
'20. 2020 IEEE Global Communications Conference; 2020:1‐6.

39. Zhou F, Yu L, Xu X, Trajcevski G. Decoupling representation and regressor for long‐tailed information
cascade prediction. SIGIR '21. Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval; 2021:1875‐1879.

40. Abu‐El‐Haija S, Perozzi B, Kapoor A, et al. MixHop: Higher‐order graph convolution architectures via
sparsified neighborhood mixing. ICML '19. Proceedings of the 36th International Conference on Machine
Learning; 2019:21‐29.

2610 | CHEN ET AL.

41. Xinyi Z, Chen L. Capsule graph neural network. ICLR '19. International Conference on Learning Re-
presentations; 2019.

42. Seo Y, Defferrard M, Vandergheynst P, Bresson X. Structured sequence modeling with graph convolutional
recurrent networks. ICONIP '18. International Conference on Neural Information Processing; 2018:
362‐373.

43. Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. AAAI '19. Proceedings of the
AAAI Conference on Artificial Intelligence; 2019:7370‐7377.

44. Lei F, Liu X, Jiang J, Liao L, Cai J, Zhao H. Graph convolutional networks with higher‐order pooling for
semisupervised node classification. Concurr Comput Pract Exp. 2020:e5695.

45. Casleton EM, Nordman DJ, Kaiser MS. Local structure graph models with higher‐order dependence. Can
J Stat. 2021;49(2):497‐513.

46. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. NIPS '17. Proceedings of the 31st
International Conference on Neural Information Processing Systems; 2017:6000‐6010.

47. Liu S, Chen L, Dong H, Wang Z, Wu D, Huang Z. Higher‐order weighted graph convolutional networks.
arXiv preprint arXiv:1911.04129; 2019.

48. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. NIPS '17. Proceedings of the 31st
International Conference on Neural Information Processing Systems; 2017:3859‐3869.

49. Rosario dVM, Breternitz M Jr, Borin E. Efficiency and scalability of multi‐lane capsule networks (MLCN).
J Parallel Distrib Comput. 2021;155:63‐73.

50. Xiao Z, Xu X, Zhang H, Szczerbicki E. A new multi‐process collaborative architecture for time series
classification. Knowl‐Based Syst. 2021;220:106934.

51. Liu J, Chen S, Wang L, et al. Multimodal emotion recognition with capsule graph convolutional based
representation fusion. ICASSP '20. IEEE; 2021:6339‐6343.

52. Peer D, Stabinger S, Rodríguez‐Sánchez A. Limitation of capsule networks. Pattern Recognit Lett. 2021;144:
68‐74.

53. Lin Z, Feng M, Santos CNd, et al. A structured self‐attentive sentence embedding. ICLR '17. International
Conference on Learning Representations; 2017.

54. Li J, Li S, Zhao WX, et al. Knowledge‐enhanced personalized review generation with capsule graph neural
network. CIKM '20. Proceedings of the 29th ACM International Conference on Information & Knowledge
Management; 2020:735‐744.

55. Chen X, Zhou F, Zhang F, Bonsangue M. Modeling microscopic and macroscopic information diffusion for
rumor detection. Int J Intell Syst. 2021;36(10):5449‐5471.

56. Xiao Y, Yin H, Zhang Y, Qi H, Zhang Y, Liu Z. A dual‐stage attention‐based Conv‐LSTM network for
spatio‐temporal correlation and multivariate time series prediction. Int J Intell Syst. 2021.

57. Cheng Z, Wang S, Zhang P, Wang S, Liu X, Zhu E. Improved autoencoder for unsupervised anomaly
detection. Int J Intell Syst. 2021;36(12):1‐23.

58. Zheng W, Yan L, Gou C, et al. Learning to learn by yourself: unsupervised meta‐learning with self‐
knowledge distillation for COVID‐19 diagnosis from pneumonia cases. Int J Intell Syst. 2021;36(8):
4033‐4064.

How to cite this article: Chen X, Zhang F, Zhou F, Bonsangue M. Multi‐scale graph
capsule with influence attention for information cascades prediction. Int J Intell Syst.
2022;37:2584‐2611. doi:10.1002/int.22786

CHEN ET AL. | 2611

https://doi.org/10.1002/int.22786

