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Abstract: Permanent electric dipole is a key property for effective control of semiconductor quantum-
dot-based sources of quantum light. For theoretical prediction of that, complex geometry-dependent
quantum simulations are necessary. Here, we use k · p simulations of exciton transition in InGaAs
quantum dots to derive a simple geometry-dependent analytical model of dipole. Our model, dis-
cussed here, enables reasonably good estimation of the electric dipole, caused in quantum dot by the
elastic strain, including an externally induced one. Due to its apparent simplicity, not necessitating
elaborate and time-consuming simulations, it might after experimental verification serve as a pre-
ferred choice for experimentalists enabling them to make quick estimates of built-in and induced
electric dipole in quantum dots.

Keywords: electric dipole; quantum dots; InGaAs; k · p method; electronic structure

1. Introduction

Due to their discrete energy levels with the molecular-like character [1] and strong
quantum confinement of electrons and holes in all dimensions [2], semiconductor quantum
dots (QDs) serve as an excellent solid-state platform for a number of appealing applications.
Among others, they may be used as gain material for semiconductor lasers [3,4] or as build-
ing blocks of nonvolatile universal memory, so-called QD-Flash [5,6]. Due to near unity
quantum efficiency and external-field tuneability, QD optical transitions are often used
as sources of quantum light [7,8] in advanced quantum communication and computation
schemes [9,10]. This application demands well-defined transitions energies and control of
QDs’ interaction with the charge environment.

Permanent electric dipole (p) is one of the key properties of semiconductor quantum
dots connecting their electronic structure with optical activity. Since it directly relates to
the separation of electron and hole wavefunction [11,12], it can be used for identification
of the type of QD spatial confinement. More importantly, the dipole plays significant
role in fine-tuning of QDs’ emission energies through in-plane applied electriec field via
quantum Stark effect [13,14]. Such control of emission energies is used in cavity quantum
electrodynamics for tuning QD emission into resonance with optical cavity [8,15], or for
control of photon indistinguishability from remote quantum emitters [16,17].

Even though theoretical predictions of the electric dipole of QDs with realistic shape
currently exist, they are typically based on complex single-particle quantum simulations
requiring a definition of the full heterostructure, strain energy minimalization in that,
and quantification of the related strain and piezoelectricity-induced changes of the con-
finement potentials [2]. In principle, such calculation can be done with atomistic preci-
sion within empirical pseudopotential [18,19] or tight-binding models [2,20], but since
that approach is computational-heavy, it is typically used for QDs with a rather small
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volume. To account for effects at macroscopic dimensions, tight-binding models are typi-
cally replaced with computationally lighter approximate semiempirical methods based on
macroscopic properties of the heterostructure, such as k · p simulations [21,22]. Because
performing such advanced simulations requires years of experience with complex software
tools [23], hands-on approximations of geometry-dependent electric dipole for QDs are
practical but nonexistent to date. Therefore, in this study, we extend model from our recent
work [24] on QD-geometry-induced changes of electric dipole and discuss a phenomeno-
logical model of the electric dipole motivated by analytical estimation of p of 1D quantum
well [25,26] and found by systematic analysis of a set of k · p simulations.

2. Modeling of Electric Dipole

In our previous work [24], we showed that the electrical polarization P and the
corresponding built-in dipole moment in stress-tuned InxGa1−xAs/GaAs QDs [27] are
mainly influenced by one of the second-order terms in the expansion of P into strain
(η), the dominant term is denoted by the coefficient B124. Based on that observation,
an approximate formula to reproduce p as a function of applied shear in-plane stress σ

appl
xy

was derived
p/e ∝ AQD(σ

appl
xy + σ

pre
xy + σQD

xy ), (1)

where σ
pre
xy represents off-diagonal component of the (symmetric) in-plane prestress induced

in the heterostructure by bonding on the piezoelectric actuators for external stress tuning,
σQD

xy is the in-plane component of hydrostatic stress in QD, and e denotes the elementary
charge. That relation allows splitting changes of p into contributions driven by the stress-
tuning and terms purely related to build-in QD dipole effected only by QD lattice relaxation-
induced hydrostatic stress. Since the scaling factor AQD can be written as [24]

AQD = CQD B124 ηQD
H

eG
, (2)

we can further separate QD geometry, represented by geometry-dependent scaling factor
CQD, from hydrostatic strain effects. In Equation (2), B124 represents the second-order term
in the expansion of P; G and ηQD

H are the shear modulus and the hydrostatic strain in QD,
respectively. Values of parameters B124 and G for a specific QD’s material composition x
are estimated by linear interpolation of parameters listed in Table 1.

Table 1. Parameter values used in k · p calculation and in Equation (2).

B124 (C/m2) [28] G (GPa)

InAs −4.1 19.00 [29]
GaAs −3.8 32.85 [30]

Since the parameter CQD reflects the quantum confinement effect on the quasiparticle
position in QD, quantum simulations are needed for its quantification. In this work, we
extract the parameter CQD from simulations of p calculated for a truncated cone shape
InxGa1−xAs QD by eight-band k · p approximation. In our simulations, we keep In-Ga alloy
distribution constant at value showing good agreement in emission energy, fine-structures
splitting of QD exciton, and p between theory and experiment (x = 0.45) [24] and vary
only QD spatial dimensions, i.e., QD’s top (t) and bottom (b) diameter, and height (h).

The full calculation flow of simulations discussed in this work was as follows. First,
the geometry of the QD structure was defined on a rectangular grid including the spa-
tially dependent material constituents. Thereafter, the strain field in and around QD was
found by minimizing the strain energy, followed by calculation of the effect of resulting
strain on the confinement potential was then calculated using the Bir-Pikus Hamiltonian
with positionally dependent material parameters listed in the supplementary materials
of [24]. In the next step, the self-consistent solution of single-particle Schrödinger and
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Poisson equations including the effect of piezoelectric fields up to second order in η were
calculated by Nextnano3 simulation suite [23]. The obtained single-particle states within
the envelope function method based on an eight-band k · p approximation are then used
for accounting for multiparticle interactions, including direct and exchange Coulomb
interaction [31–33]. Restricting ourselves only to bright exciton transition, we use the
multiparticle corrected electronic states for p calculation, i.e., the distance between electron-
and hole-wavefunctions center of mass. Assuming that the geometrical dependency of
CQD for any QD shape will for laterally large dots converge to the dependency p ∝ h4

derived for infinitely large 1D potential well of thickness h [25,26], we can quantify the
dipole correction for the lateral quantum confinement by further analysis of cQD as

CQD = cQDh4. (3)

By careful cross-analysis of simulated sets of p for varying t, b, and h presented in the
panels of Figure 1, we find that cQD can be approximated by

cQD = A(b− t) exp
(

B
|b− t|

h

)
+ D. (4)

Now, we analyze the fitted parameters A, B, and D, shown in Figure 2. Parameter
A in Figure 2a) is found to be independent of the QD lateral dimensions, while it clearly
retains a residue dependency on QD height. This dependency is stronger for smaller QDs
and exponentially disappears for taller dots. Contrary, parameter B in Figure 2b) shows
strong dependency only on lateral dimensions, where it increases proportionally to the
dot top diameter B ∝ −1/t and decreases with its base diameter as B ∝ 1/b. Finally,
cQD for laterally big QDs converges to the parameter D, represented in Figure 2c). Even
though we initially assumed D to be geometry-independent, it still shows a dependency
for small QDs. That dependency, together with high statistical error from our fits, could
be related to an artefact of rough simulation grid in k · p calculations, where the electron
wavefunction with the tendency to be located at the top of the dot would need a finer grid
for better convergence.

The presented model merges together into one simple analytical expression two
methods used for estimation of QD electric dipole. On the one hand, it is an extension of
the already existing, explicitly geometry-dependent model of p derived for 1D well [25,26],
used widely also in QD research, on lateral confinement. On the other hand, our model is
developed from complex k · p simulations of realistic QDs, where the electron and hole
eigenstates of QD, and thus also p, are corrected for piezoelectricity, stress, and many-body
effects. Note that due to the form of Equation (4), our model also correctly describes the
sign of p in QD with reverted vertical orientation.

The model relies only on the validation of the approximation from Equation (1),
derived under assumptions: (i) the QD has type-I confinement, (ii) it consists from piezo-
electric material with dominant second-order term B124, and (iii) the hydrostatic strain
around QD is mostly driven by the material mismatch between the dot and the sub-
strate ηQD

H . Because the model is proportional not only to QD geometry but also to ma-
terial parameters, it can be, therefore, expected to be applicable also for other III-V QD
systems [14,34–37] with type-I confinement where the electric dipole is aligned only along
the dot growth direction.
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Figure 1. Comparison of cQD (multiplied by factor 104) extracted from k · p simulations (symbols)
with the model Equation (4) (curves) for QD with fixed b = 40 nm and varying t and h [panels (a)
and (c)], and QD with fixed t = 20 nm and varying b and h [in (b,d)], respectively.

Figure 2. Fitting parameters A [panel (a)], B [panel (b)], and D [panel (c)] from analysis of cQD given
in Figure 1 by Equation (4). Parameters A and D are multiplied by factors 106 and 104, respectively,
for the sake of better visibility. Parameters extracted from fits of the data dependency of cQD on base
(top) are plotted here as a function of height with black (yellow) triangles. Similarly, parameters
extracted from height dependency are plotted as a function of base (top) diameter in blue (red).
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3. Conclusions

In conclusion, we show a phenomenological analytical model describing the excitonic
electric dipole of In0.45Ga0.55As QDs with geometry-dependent parameters quantifying
quantum confinement effect. The presented simple model of electric dipole agrees with
dipole simulation done with complex eight-band k · p approximation, which recently fully
described single-quantum dot experiments [24]. The presented model, being a 3D con-
finement extension of model derived for 1D well [25,26], needs to be further tested on
a combination of morphology and single QD spectroscopy data set. Thereafter, due to
its strong dependency on individual spatial properties of studied QDs, it can serve as
a rough but straightforward estimate of QD’s spatial dimensions directly from spectro-
scopic measurements without necessity of additional information taken from, e.g., STM
measurements [38].
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