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Julien Morat, Frédéric Devernay, Sébastien Cornou. Tracking with Stereo-vision System for
Low Speed Following Applications. IEEE Intelligent Vehicles Symposium, Jun 2007, Istanbul,
Turkey. pp.955-961, 2007, <10.1109/IVS.2007.4290240>. <inria-00262147>

HAL Id: inria-00262147

https://hal.inria.fr/inria-00262147

Submitted on 11 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Tracking with Stereo-vision System for Low Speed Following Applications

J. Morat∗♦, F. Devernay∗, and S. Cornou♦

Abstract— Research in adaptative cruise control (ACC) is
currently one of the most important topics in the field of
intelligent transportation systems. The main challenge is to
perceive the environment, especialy at low speed. In this paper,
we present a novel approach to track the 3-D trajectory and
speed of the obstacles and the surrounding vehicles through a
stereo-vision system. This tracking method extends the classical
patch-based Lucas-Kanade algorithm [9], [1] by integrating
the geometric constraints of the stereo system into the motion
model: the epipolar constraint, which enforces the tracked
patches to remain on the epipolar lines, and the magnification
constraint, which links the disparity of the tracked patches
to the apparent size of these patches. We report experimental
results on simulated and real data showing the improvement
in accuracy and robustness of our algorithm compared to the
classical Lucas-Kanade tracker.

I. INTRODUCTION

Automatic vehicle speed control is presently one of the

most popular research topics throughout the automotive

industry [8]. Cruise control (CC) systems, with the capability

of maintaining a constant speed were the first step in this

direction. The next step is adaptative cruise control (ACC),

wich adds to CC the capability of keeping a safe distance

from the preceding vehicle. The first ACC systems are

already on the road, as pricey options on a small group of

luxury cars.

Recently, new systems were developped and marketed,

which added low-speed following capabilities to ACC. These

systems use laser beams [12] or radar to measure the distance

to the preceding car and its relative speed. LADAR and

RADAR provide direct range measurements in a reliable

manner, but these suffer from low angular resolution, limited

field of view and cost.

Vision-based range estimations using stereo-vision tech-

niques can now provide high resolution images yielding a

wide field-of-view. Furthermore, the sensors and processing

power required by these systems have become affordable,

and they can also be used for other tasks such as obstacle

detection or lane and road detection, creating interesting

opportunities for the car industry.

Nevertheless, tracking a moving object during a long

period of time is a challenging task. Most LADAR or

RADAR-based ACC systems work by locating targets ahead

of the vehicle, and then match these targets between two con-

secutive time frames. This can become difficult, especially

when there are multiple targets, or when the target speed with
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respect to the vehicle is high compared to the frame rate of

the system. Similarly, some vision-based methods generate a

depth map of the scene using correlation-based stereoscopy,

then extract high-level primitives representing obstacles or

vehicles and finally match then between time frames [11].

A more promising approach works by combining the depth

map obtained by stereoscopy with motion cues extracted by

optical flow [7]. That way, the problem of matching targets

between time frames becomes partially solved, and the 3-D

trajectories of different targets can be estimated, although

their accuracy highly depends on the accuracy of the two

separate processes, which may be low in certain situations

(especially for the optical flow, which suffers from the well-

known aperture problem [2]).

In fact, stereo and motion cues can be extracted simulta-

neously by computing scene flow directly from the stereo

image stream [13], [4], resulting in highly accurate 3-D

position and speed measurements at every point in the scene.

Unfortunately, the high computational cost of this process

make it inadequate for real-time applications. However, the

3-D motion of individual features can be extracted efficiently

by using an extension of the classical patch-based Lucas-

Kanade tracker [9], [1] to multiple synchronized cameras [6].

In this paper, we show that this 3-D feature tracking method

can be further simplified when using a stereoscopic camera

setup, thanks to the image rectification process which is usu-

ally applied before stereo processing. Due to its pyramidal

implementation, this tracker works in real-time, and it gives

simultaneous estimates of the 3-D position and speed of

features of any size in the image, such as obstacles or other

vehicles, even for large motion. Besides, it can be further

improved by incorporating the magnification constraint in the

mathematical formulation of the tracker. The magnification

constraint simply states that when the stereo disparity of a

given feature changes, its apparent size in the images must

change accordingly.

The experiments show that the performance of our tracker

in terms of robustness and accuracy overcomes the perfor-

mance of the classical stereo tracking method which consists

in tracking each feature separately in both images, and

that incorporating the magnification constraint significantly

improves both its accuracy and its robustness.

The rest of the paper is organized as follows. Section II

presents our extension of the classical Lucas-Kanade tracker

to incorporate two constraints specific to the stereo system:

the epipolar constraint, and the magnification constraint.

Experimental results on synthetic data are shown, and two

versions of the stereo tracker (with and without the magnifi-

cation constraint) are compared to a classical Lucas-Kanade

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThE1.28

1-4244-1068-1/07/$25.00 ©2007 IEEE. 955



t

II
^

tTime

T
^

I(W(w;p))

^

p

Match

Fig. 1. The Lucas-Kanade algorithm optimizes the parameters p to
minimize the dissimilarity between the image patch I(W(x;p)) and the

template T̂ extracted from the previous image Î .

tracker. Section III describes how this method can be applied

to ACC at low-speed, and presents results on real scenes.

II. STEREO-VISION EXTENSION OF LUCAS-KANADE FOR

3-D TRACKING

We are interested in tracking the 3-D trajectory of ve-

hicles using a pair of cameras. Conventional 2-D tracking

techniques are designed to recover the 2-D motion of the

target vehicles in the images, but do they not provide depth

information. On the contrary, reconstruction from stereo-

vision delivers 3-D measurements, but generally does not

give any information on the motion of reconstructed objects.

Our approach is a combination of both techniques, which

gives simultaneously the 3-D position and the 3-D speed

of the targets (vehicles or obstacles) with respect to the

cameras. We first remind the principle of the classical Lucas-

Kanade 2-D tracker, on which our method relies, and we

also explain how to include the epipolar constraint into it.

We then explain the magnification constraint, which links

the stereo disparity to the size of tracked objects, and how

to incorporate it in the tracking method. Finally, results are

presented, comparing the use of 2-D tracking in each image

followed by reconstruction, to the two variants of our stereo

tracker, with and without the magnification constraint.

A. The Lucas-Kanade algorithm and stereoscopy

The Lucas-Kanade method [9], [1] is a classical method

to compute optical flow or to track 2-D points in a video

sequence. Since it doesn’t handle properly the well-known

aperture problem, the optical flow or 2-D tracks are usually

computed for a set of points of interest (typically, corners

or textured areas), which can be extracted optimally [10].

From a set of 2-D points taken in image Î at time t̂
(the hat symbol denotes the previous measures), the tracker

estimates the position of these points in image I at time t.
Each tracked point is described by a vector of parameters

p, composed by its image coordinates in the 2-D tracking

case (additional parameters, describing local geometric or

photometric variations, can be added). A tracked point, also

called feature, is characterized by a texture template T̂ (x),
where x is a texture point (bilinear interpolation is used for

re-sampling the images, and x is chosen to be (0, 0) at the

center of the template). The template is usually a square

window extracted from the previous images Î (cf. Fig 1).

Given feature parameters p, the warp function W(x;p)
maps each point x in the texture template T to a point in

the image I (in its simplest form for 2-D tracking, W is

a translation by the vector p). The Lucas-Kanade tracker

optimizes the feature parameters p (i.e. its position) in order

to minimize an energy formed by the squared differences

between the texture template and the image:

∑

x

[

I(W(x;p)) − T̂ (x)
]2

, (1)

where the sum is done over all the points in the template

image.

In our case, since there are two cameras, each acquisition

provides two images Il (left) and Ir (right). The appearance

of the points may be different in the left and right images,

due to parallax and lighting, especially for close objects, and

they should be characterized by separate texture templates

T̂l(xl) and T̂r(xr). The energy function becomes:

∑

n∈{l,r}

∑

xn

[

In(Wn(xn;p)) − T̂n(xn)
]2

, (2)

where n ∈ {l, r} indicates left or right camera and p is the

feature parameters vector (detailed later). The Lucas-Kanade

algorithm is an iterative method based on the Gauss-Newton

algorithm. At each optimization step the goal is to find ∆p

which minimizes:

∑

n∈{l,r}

∑

xn

[

In(Wn(xn;p + ∆p)) − T̂n(xn)
]2

. (3)

This approach supposes that an initial estimate of p is
available, usually obtained from the feature position at time
t̂. Using the first order Taylor expansion of In to expand
eq. (3) gives:

∑

n∈{l,r}

∑

xn

[

In(Wn(xn;p)) + ∇In

∂Wn

∂p
∆p − T̂n(xn)

]

2

, (4)

where ∇In is the gradient of In. The partial derivative of

eq. (4) with respect to ∆p is:

2
∑

n∈{l,r}

∑

xn

[

∇In

∂Wn

∂p

]T

[

In(Wn(xn;p))+∇In

∂Wn

∂p
∆p−T̂n(x)

]

.

(5)

At the minimum, this partial derivative must be zero, wich

leads to the following ewpression for the parameters update:

∆p = H−1b, (6)

where H is the Gauss-Newton approximation of the Hessian

matrix:

H =
∑

n∈{l,r}

∑

x

[

∇In

∂Wn

∂p

]T [

∇In

∂Wn

∂p

]

, (7)
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Fig. 2. In a rectified stereo pair, a 3-D point M is projected onto the 2-D
image points ml = (x, y) and mr = (x + d, y).

and b is:

b =
∑

n∈{l,r}

∑

xn

[

∇In

∂Wn

∂p

]

T
[

T̂n(xn)−In (Wn (xn;p))
]

. (8)

The first term in the sum of eq. (8) is a vector with the

same dimensions as p, and the images formed by each

of its components are called the steepest descent images.

The second term is the difference between the template and

the warped image. The parameter update of eq. (6) is then

repeated for each feature until convergence.

Now that we have written all the equations for the tracker,

we still have to make the right choices for the parameter

vector p describing the tracked feature, and the warps Wn

which map the image patches at time t̂ onto the images at

time t. The simplest solution is to track the feature separately

in both images, and then to reconstruct its 3-D position from

the tracked 2-D positions. This corresponds to using p =
(xl, yl, xr, yr) for the parameters vector, the translation by

(xl, yr) for Wl, and the translation by (xr, yr) for the right

warp. In fact, with these choices, eq. (2) can be separated

in two independent equations for the left and right images,

and this stereo tracker is strictly identical to applying 2-D

Lucas-Kanade tracking separately to each camera. In the rest

of this paper, we refer to this method as the unconstrained

Lucas-Kanade tracker.

However, by doing so, we are tracking the 3-D motion

of a feature using a 4-dimension parameters vector, which

means that the formulation is under-constrained. The missing

constraint is in fact re-applied when the 3-D position is

reconstructed from the two image positions: it is the well-

known epipolar constraint. We will now show how this

constraint can be taken into account during the optimization

step.

B. Adding the epipolar constraint to stereo tracking

Using the unconstrained Lucas-Kanade tracker, the feature

parameters p are four-dimensional, whereas the object being

tracked has 3 degrees of freedom. If we know the projec-

tion functions of each camera, we can use for the feature

parameters the 3-D coordinates of the tracked object relative

to the cameras. However, this leads to more complicated

warp functions and Jacobian, due to the non-linearity of the

projection functions [6]. In the stereo case, a much simpler

approach is to rectify the images prior to tracking (Fig. 2),

so that for any 3-D point, its projections in the two cameras

have the same y coordinate, and the difference between the

x coordinate in the right and left images is called the stereo

disparity d. For any set of stereo cameras with perspective

projections, the rectification can easily be computed, and

it is a 2D transform which only depends on the geometry

of the cameras, not on the observed scene. Rectification is

equivalent to a re-projection of the two image planes onto a

plane parallel to the 3-D line joining the two optical centers,

as shown Fig. 2. In that situation, the projections of any 3-D

point have the same y coordinates in the images.

Since the 3-D parameters (X, Y, Z) can be computed from

the image parameters (x, y, d) using the camera projection

functions, we propose to use p = (x, y, d) as the feature

parameters. The image coordinates are chosen to be zero at

the principal point in each camera, for reasons that will be

explained in the next section, but any image reference frame

could be chosen for the calculations presented in this section.

With this choice for the feature parameters, the problem

is not under-constrained anymore, since the features have

exactly three degrees of freedom. In fact, we integrated the

so-called epipolar constraint into feature parametrization.

The epipolar constraint states that for any point ml in the

left image, its matching point in the right image must lie

on the projection in that image of the line passing through

the left optical center and ml, and in the case on rectified

images the epipolar line is horizontal.

The only modifications to the Lucas-Kanade equations of

the previous section are different expressions for the warp

functions W{l,r} and their Jacobian matrices (the texture

templates are still square windows extracted around the

feature position in the previous images). Recall that the warps

Wn are 2-D functionals that map template coordinates to

image coordinates in image n. In this case, each warp Wn

is the translation in image n by the 2-D coordinates of the

feature position in that image:

Wl(xl;p) = xl+(x, y), Wr(xr;p) = xr +(x+d, y), (9)

so that the Jacobian of the warps in each image are simply:

∂Wl

∂p
=

[

1 0 0
0 1 0

]

,
∂Wr

∂p
=

[

1 0 1
0 1 0

]

, (10)

and the steepest descent images from eq. (8) are:

∇Il

∂Wl

∂p
=

[

Ilx Ily 0
]

,

∇Ir

∂Wr

∂p
=

[

Irx Iry Irx

]

,

(11)

where ∇Il = (Ilx, Ily) and ∇Ir = (Irx, Iry) are the

gradients of the two images.

The Gauss-Newton approximation of the Hessian from

eq. (7) also has a very simple expression:

H =
∑

xl

Hl(xl) +
∑

xr

Hr(xr), with (12)

Hl(xl) =

[

I2

lx IlxIly 0

IlxIly I2

ly 0

0 0 0

]

, and (13)

Hr(xl) =

[

I2

rx IrxIry I2

rx

IrxIry I2

ry IrxIry

I2

rx IrxIry I2

rx

]

. (14)
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Fig. 3. Aspect size w is dependent of real size W , focal length f and
object depth Z.

Using all these ingredients, we repeat the parameter update

of eq. (6) until convergence. As we can see, taking into

account the epipolar constraint in the Lucas-Kanade tracker

leads to quite simple equations, and it has a computational

cost which is not higher than applying the 2-D Lucas-Kanade

tracker in each image, thanks to the simple geometry of the

rectified images.

C. Objects become bigger when coming closer: adding the

magnification constraint

The stereo trackers described previously make the as-

sumption that an image patch centerer around the object

at two consecutive time frames are similar (see eq. (2)).

However, in automotive applications, vehicles or obstacle

are usually moving fast towards the camera, so that their

apparent size changes drastically accross time (see Fig. 3).

In the following, we describe how to handle properly this

change in apparent size within the tracker, by adding the

magnification constraint.

We chose the image coordinates systems so that the

coordinates of the principal point in each image are zero.

With this convention, the disparity d is a simple function of

the depth Z of the object, the focal length f of the cameras

expressed in pixels, and the baseline B, which is the distance

between the two optical centers:

d = Bf/Z. (15)

Since B and f are constant, a variation of d only depends

on the variation of the depth Z. There is also a simple relation

between the apparent size of a fronto-parallel object in an

image and its depth, defined by:

w = Wf/Z, (16)

where W is the size (in world units) of a fronto-parallel

object, and w is its apparent size in the images. As we can

see, a strong variation of Z due to a high longitudinal speed

will cause a strong variation of the apparent size w, and the

closer the object, the bigger the variation of the apparent size.

This strong variation may cause the previous stereo trackers

to fail, which may be critical for low-speed following or

obstacle avoidance.

However, is it possible to handle this size variation when

tracked features are fronto-parallel (i.e. parallel to the recti-

fied image planes). Non-fronto-parallel features or objects

also follow a similar rule, although there are high order

effects, which can be neglected when the depth range covered

by the feature is small with respect to Z,

Equations (15) and (16) show that the disparity d and the

apparent size w both depend on depth Z, leading to the

following relation:

d

d̂
=

Bf/Z

Bf/Ẑ
=

Ẑ

Z
=

Wf/Z

Wf/Ẑ
=

w

ŵ
, (17)

where d̂ and ŵ are the disparity and the apparent size

at the previous time frame t̂. We call this simple relation

between the disparity and the apparent size the magnification

constraint.

Using the same feature parameters as before, p =
(x, y, d), we can rewrite the warp functions in order to take

into account the magnification constraint (note that xl and

xr are template coordinates, and their origin is at the center

of each template):

Wl(xl;p) =
d

d̂
xl + (x, y), (18)

Wr(xr;p) =
d

d̂
xr + (x + d, y), (19)

and the Jacobian matrices become (i and j are the coordi-

nates of xl and xr):

∂Wl

∂p
=

[

1 0 i

d̂

0 1 j

d̂

]

,
∂Wr

∂p
=

[

1 0 1 + i

d̂

0 1 j

d̂

]

, (20)

and the steepest descent images become:

∇In

∂Wn

∂p
=

[

Inx Iny Sn

]

, (21)

with n ∈ {l, r} and

Sr =
iIrx + jIry

d̂
+ Irx, Sl =

iIlx + jIly

d̂
. (22)

Using Eq. (21), the Hessian matrices Hl and Hr from

Eq. (12) become:

Hn(xn) =





I2

nx InxIny InxSn

InxIny I2

ny InySn

InxSn InySn S2

n



 . (23)

The full tracking algorithm is then built by repeating

the parameter update of eq. (6) until convergence for each

tracked feature. This stereo tracker, altough it takes into

account both the epipolar constraint and the magnification

constraint, does not add much complexity to the overall

computational time. In fact, the only notable difference is that

the coefficients for the bilinear interpolation of the images

Il, Ir and their gradients are not constant, since the warps

are not translations anymore (bilinear interpolation of these

images in used in the computation of H and b, in equations

(7) and (8)).

D. Implementation and Experimental Results

Our implementation is based on the real-time pyramidal

Lucas-Kanade tracker included in the OpenCV library [5].

The pyramidal method works as follows: four image pyra-

mids are built with a reduction factor of 0.5, from the stereo

pairs at time t and t+1. The coarsest pyramid level is chosen
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so that the motion of individual features is below 0.5 pixels,

which is the the largest motion the Lucas-Kanade tracker can

handle robustly. The features are first tracked in the coarsest

pyramid level, as described in the previous sections, and the

extracted feature motion (both in position and disparity) is

scaled to the next resolution and used as the initialization for

tracking at the next level. With this implementation, we get

real-time performance for tracking a few hundred features

from 640×480 images at 25fps on a standard PC using any

of the three trackers presented in this paper.

We compare the performance in terms of accuracy and

robustness of the unconstrained Lucas-Kanade algorithm

(described in Sec. II-B) and of the two versions of our en-

hanced tracker incorporating the epipolar constraint (Sec. II-

B) and the epipolar & magnification constraints (Sec. II-

C). We generated a set of synthetic stereo sequences with

a resolution of 1024 × 768, of a textured plane moving in

the depth (Z) direction at a constant speed. In the initial

stereo pair (at t = 0), the size of the textured plane is about

512×512 pixels, and a set of 400 features are generated over

the plane. The disparity is initialized from the true disparity

of the plane (in a real setup, it would be initialized by stereo

matching). The template size is set to 21× 21 pixels, and 5

pyramid levels are used in order to track high speed motion.

Raw results comparing the position of tracked features for the

various trackers are shown Fig. 4, and show that for a few

features the different trackers behave differently, although

most features are tracked correctly. For each feature, the

ground truth motion is known and can be compared to the

tracked feature motion.

Fig. 4. Enlargement of one of the test sequences showing the points tracked
with the unconstrained method (magenta), incorporating the 3-D (cyan) and
incorporating the 3-D with scale (yellow). Top image corresponds to 2×
longitudinal speed and bottom image corresponds to 3b× longitudinal speed.

Two sets of sequences are generated:

• In the first set, we generate sequences at five different

longitudinal speed values (reference speed, 2×, 3×, 4×,

and 5× the reference speed), without image noise. The

initial frame is the same for all sequences. With these

sequences, we will be able to check the performance of

the trackers with respect to motion speed.

• In the second set, we generate sequences at the refer-

ence speed, with different levels of image noise (white

Gaussian noise is added to the synthetic image data).

With these sequences, we will be able to check the

performance of the trackers with respect to image noise.

In each sequence and for each feature, the tracking error is
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Fig. 5. Error in (x, y, d) pixel for the unconstrained Lucas a& Kanade
algorithm (top), incorporating the epipolar constraint (middle) and incor-
porating the epipolar & magnification constraints (bottom). Left and right
column correpond to small (1×) and large (5×) depth speed in Fig. 6.

measured in the parameter space (x, y, d), as shown in Fig. 5.

From this raw data, we want to evaluate both the robustness

of each tracker, measuring if the tracker fails completely or

succeeds in tracking the feature, and its accuracy, measuring

the accuracy of the tracked feature when the tracker succeeds.

Unfortunately, the RMS error mixes the two, and a non-

robust highly accurate tracker may give the same RMS error

as a very robust but inaccurate tracker. For example, from

the distributions shown in Fig. 5, the unconstrained tracker at

1× seems to give less accurate results than the tracker with

epipolar & magnification constraints at 5×, but its RMS error

is much lower.

In order to separate outliers (i.e. wrongly tracked points)

from inliers, we chose to model the error distributions of

Fig. 5 by a mixture of Gaussians: a narrow Gaussian that

models the accuracy of the results, and a wide Gaussian

which models the outliers. The RMS error is estimated

from the trace of the covariance matrix of the narrow

Gaussian, and the relative weight of both Gaussians gives the

percentage of outliers. This Gaussian mixture was estimated

using the EM (Expectation Maximization) algorithm. The

results are presented in Fig. 6 for the first set of sequences

(with different speed values), and in Fig. 7 for the second

set of sequences (with different noise values). The total RMS

error is also shown for comparison purposes.

The numerical results shown in Fig. 6 show that both the

inaccuracy and the outlier ratio for the unconstrained tracker

increase with speed. The use of the epipolar constraint

does not enhance the tracking accuracy, but reduces the

outliers ratio. This may be explained by the reduction of

the degrees of freedom from the four image coordinates
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Fig. 6. Performance comparison of the unconstrained tracker (magenta)
and the and the trackers with epipolar constraint (cyan) and epipolar &
magnification constraints (yellow) as a function of depth speed. The RMS
is expressed in pixels.
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Fig. 7. Performance comparison of the unconstrained tracker (magenta)
and the and the trackers with epipolar constraint (cyan) and epipolar &
magnification constraints (yellow) as a function of Signal to Noise Ratio
(in dB) applied at the reference speed. The RMS is expressed in pixels.

of the stereo feature to the possible solutions only (i.e.

projections of a 3-D point). The joint use of the epipolar

and the magnification constraints significantly improves the

tracker accuracy and the outliers ratio. For higher speeds,

the improvement is even more significant (up to 100× more

accurate for the highest tested speed). This enhancement is

explained by the fact that the motion model used by the

tracker follows more closely what is observed in the images.

The results obtained on the second set of sequences, with

Gaussian white noise, show that at low speed, the ratio

of outliers for the three trackers is similar, but the tracker

with the epipolar and the magnification constraints gives

more accurate results. The overall performance of the latter

(measured by the the total RMS), is also better than the two

other trackers. At higher speeds and on noisy images, we can

expect to get a better improvement from that tracker, from

the results shown in Fig. 6.

The stereo tracker could be further improved, by taking

into account higher order effects in the tracker, such as

illumination changes, rotation in the image, etc., but this

would require adding more components to the parameter

vector, and may result in a slower and less robust tracker [1].

It would be slower because of the additional computational

cost, and it would probably be less robust due to over-fitting a

tracking model with more degrees of freedom to the observed

images. The tracker with the epipolar and the magnification

constraints incorporates the maximum number of constraints

Level 3

Fine

Level 1

Coarse

Level 2

Fig. 8. Pyramidal approach by Bouguet [3] use a single window size for
the different levels of the pyramid. The tracked region is bigger in coarse
level than in fine level.

in a tracker with the minimum number of degrees of freedom,

making it the best candidate for real-time Lucas-Kanade

tracking in stereo sequences.

III. TRACKING VEHICLES

For the reasons explained in Sec. II-D, we used a pyrami-

dal implementation based on the 2-D tracker by Bouguet [3],

which first estimates the motion at a coarse resolution

(typically 1/8 of the original image size), and then improves

it at each finer scale (1/4, 1/2, and 1). When switching

from one scale to another and changing the image size, the

parameter vector is rescaled, however the template size in

pixels remains the same, so that the template covers larger

image regions in the coarser levels of the pyramid (see

Fig. 8).

This trick enables tracking of small features in the full-

resolution images, but it may give wrong results when the

tracked features are near a motion or depth discontinuity:

at coarse resolutions, the tracker may be attracted by the

background motion (e.g. the road) instead of the object (e.g.

car) motion. This effect is visible in the left column of the

Fig. 10, where the tracked points that were initially on the

rear of the preceding vehicle gradually drift on the road. The

solution we propose is to track fixed-size regions instead of

points. These regions may be for example the result of an

obstacle detection process.

A. Tracking 3-D regions

Instead of tracking points, we choose to track rectangu-

lar regions in images, corresponding to 3-D fronto-parallel

planes in the world. The objects we are interested in are

the rear of vehicles, for which the fronto-parallel assump-

tion is acceptable. The pyramidal approach is modified in

order to scale the template T̂ according to the level of the

pyramid and the disparity variation. The tracked region size

is memorized at each time frame (taking into account the

magnification), in order to use the same region size at the

next time frame.

If the region size is small in the original images, it is even

smaller in the coarser pyramid levels, so that it may become

impossible to track. For this reason, if at a given pyramid

level the region size is below 5 × 5 pixels, we do not track

the region in that resolution, but only in higher resolutions.

Similarly, when the region size is too big in a given

resolution (e.g. it represents a surface of more than 2500
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Fig. 9. Stereo-vision setup mounted behind the windshield of the test
vehicle.

pixels), tracking it in that resolution may become too costly.

Besides, if the region is large, since it usually does not cor-

respond exactly to a fronto-parallel plane, the extra accuracy

brought by high resolution tracking may not be meaningful.

Consequently, if the surface of the tracked region is over a

certain size in a given resolution, we do not track the feature

in that resolution, but only in coarser resolutions.

B. Experimentation on real sequences

We present some experimental results obtained on a

stereo-vision setup mounted behind the windshield of a test

vehicle (Fig. 9). The cameras are 640 × 480 B&W 1/3”

CCD sensors with 6mm lenses. The baseline is about 40cm.

Images are rectified and the image reference frame is chosen

so that zero disparity corresponds to infinite depth.

Initial tracked 3-D features were manualy selected on the

first image. In the sequence depicted in Fig. 10, the vehicle

has been tracked over 500 frames (until it disapears) with the

3-D points tracker (left column) and the 3-D region tracker

(right column). The sequences presented in this section were

recorded within the French funded project DO30.

IV. CONCLUSIONS AND PERSPECTIVES

The accurate measure of position and speed of the tar-

get vehicle in low-speed-following applications is a serious

challenge for stereo-vision systems. The proposed algorithms

efficiently extend the Lucas-Kanade algorithm [9] to a stereo-

vision setup, taking advantages of stereo and motion track-

ing. The main strength of that method is that the speed

measurement is obtained directly from captured images

without interpretations on the tracked object, thus limiting

the error sources. The most important contribution of the

proposed algorithms are the consideration of the epipolar and

the magnification constraints into the tracker formulation.

We applied the proposed scheme to synthetic and real data.

The result showed the effectiveness and robustness of the

scheme. Real-time implementation of the vehicle tracker

is also presented. In order to perform a full evaluation of

our system versus active sensors, like RADAR or LADAR,

we will also compare the outputs of these sensors, both

qualitatively and quantitatively.
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