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A B S T R A C T 

The evolution of protoplanetary discs and the related process of planet formation is regulated by angular momentum transport 
and mass-loss processes. Over the past decade, the paradigm of viscosity has been challenged and MHD disc winds appear as a 
compelling scenario to account for disc accretion. In this work, we aim to construct the equi v alent of the widely used analytical 
description of viscous evolution for the MHD wind case. The transport of angular momentum and mass induced by the wind is 
parametrized by an α-like parameter and by the magnetic lever arm parameter λ. Extensions of the paradigmatic Lynden-Bell 
and Pringle similarity solutions to the wind case are presented. We show that wind-driven accretion leads to a steeper decrease 
in the disc mass and accretion rate than in viscous models due to the absence of disc spreading. If the decline of the magnetic 
field strength is slower than that of the gas surface density, the disc is dispersed after a finite time. The evolution of the disc in 

the Ṁ ∗ − M D 

plane is sensitive to the wind and turbulence parameters. A disc population evolving under the action of winds can 

exhibit a correlation between Ṁ ∗ and M D 

depending on the initial conditions. The simplified framework proposed in this work 

opens to a new avenue to test the ef fecti veness of wind-dri ven accretion from the observed disc demographics and constitutes 
an important step to include wind-driven accretion in planet population synthesis models. 

Key words: accretion, accretion discs – MHD – protoplanetary discs – planets and satellites: formation. 
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 I N T RO D U C T I O N  

nderstanding why protoplanetary discs accrete is a necessary step
o build any successful planet formation theory (e.g. Morbidelli &
aymond 2016 ). Yet, even after decades of study this issue remains
lusive. 

Accretion is a common phenomenon and almost all the known
rotoplanetary discs, as identified by their infrared excess, show
ome sign of accretion (see Hartmann, Herczeg & Calvet 2016 , and
eferences therein). In the conventional ‘viscous’ view, popularized 1 

y Shakura & Sunyaev ( 1973 ) and Lynden-Bell & Pringle ( 1974 ),
ccretion is ultimately connected with turbulence. At a macroscopic
evel, turbulence acts as an effective viscosity and redistributes the
ngular momentum in the disc, transporting it outwards with a small
raction of the mass (a process called ‘viscous spreading’). This
ransport allows the bulk of the mass to mo v e inwards and eventually
all onto the star. Unfortunately, to what extent discs should be turbu-
ent is a long-standing problem (see Turner et al. 2014 for a re vie w);
 E-mail: benoit.tabone@universite-paris-saclay.fr 
 Though the notion that turbulence is connected to angular momentum 

ransport pre-dates these works, see Pringle ( 1981 ) for a historical perspective. 

a
 

r  

n  

t  

Pub
 mechanism called magnetorotational instability (MRI; Balbus &
a wle y 1991 ) is thought to be the best candidate, but it is currently
nclear whether it can generate enough turbulence to explain the
bserved accretion rates in planet-forming discs. Alternatively, pure
ydrodynamical instabilities such as the gravitational instability (GI;
ratter & Lodato 2016 ), or the vertical shear instability, (VSI;
elson, Gressel & Umurhan 2013 ) could also enhance turbulence.
sually, our ignorance is hidden in the dimensionless parameter α

ntroduced by Shakura & Sunyaev ( 1973 ). 
It should be mentioned that, besides its global importance for disc

volution, as a local phenomenon turbulence plays a role in almost
ny area of planet formation. Just to name a few examples, turbulence
ffects the efficiency of gas (Bodenheimer et al. 2013 ) and dust (e.g.
itsch, Lambrechts & Johansen 2015 ; Ormel & Liu 2018 ) accretion
nto forming planets, how discs respond to planets (Kley & Nelson
012 ; Zhang et al. 2018 ), the vertical mixing of molecular species
Semenov & Wiebe 2011 ), the importance of fragmentation for dust
volution (Ormel & Cuzzi 2007 ; Birnstiel, Klahr & Ercolano 2012 ),
nd many other processes. 

There is ho we ver an alternati v e to e xplain accretion, which has
eceived significant attention in the last years, namely the idea that a
et vertical magnetic field anchored in the disc could launch a wind
hat extracts the angular momentum (see e.g. the seminal paper of
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Schematic view of the disc evolution model explored in this work. 
Disc accretion is driven by an MHD disc wind which extracts mass and 
angular momentum from the disc and by turbulence. We model the disc as a 
1D thin disc and describe the impact of the MHD disc wind on the secular 
evolution of the disc using a Shakura-Sunyaev like parameter denoted as αDW 

and the magnetic lever arm parameter of the wind denoted as λ. This simple 
parametrization allows us to construct analytical solutions for the secular 
evolution of the disc. 
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landford & Payne 1982 , and Lesur 2020 for a recent re vie w). In this
ay, the wind e x erts a torque on the disc and forces the material in the
isc to spiral inward (Ferreira 1997 ). Because angular momentum 

s not transported at large radii but remo v ed v ertically, there is no
iscous spreading. Finally, this scenario does not require any (or 
nly little) turbulence. If correct, this scenario paints a very different 
icture of discs from the viscous one. 
Both redistribution of angular momentum through turbulence 

apart from hydrodynamical instabilities) and extraction through 
inds are ultimately regulated by the magnetic field and its coupling 

o the gas. Given the cold, low-ionization conditions of protoplan- 
tary discs, studying in detail the efficiency of these mechanisms 
equires the use of non-ideal magnetohydrodynamics (MHD) simu- 
ations (Armitage 2011 ). In fact, numerical simulations taking into 
ccount non-ideal MHD terms show that in large regions of the disc,
alled dead-zones, MRI turbulence is suppressed ( � 1 au; Gammie 
996 ; Bai & Stone 2011 ). In this regions, MHD disc winds appear
o be a compelling process to drive efficient disc accretion (Bai &
tone 2013 ). Ho we ver, there are significant numerical challenges in
onducting these simulations, connected with stringent requirements 
n terms of spatial resolution, the time-stepping algorithm, the 
onstraint that the magnetic field divergence should vanish, and the 
eed to couple the simulations with subgrid microphysics to estimate 
he importance of the non-ideal MHD terms (e.g. Bai 2017 ; B ́ethune,
esur & Ferreira 2017 ; Wang, Bai & Goodman 2019 ). All these

actors mean that, while the avenue of MHD simulations is certainly 
f fundamental importance, it is an avenue that needs to be supported
nd complemented in other ways. 

Today, thanks to the new generation of telescopes, we now have 
bservational programs that have measured global disc properties 
or large samples. ALMA has surv e yed sev eral star forming re gions,
roviding large samples of disc sub-mm fluxes (Mann et al. 2014 ;
nsdell et al. 2016 ; Barenfeld et al. 2016 ; Pascucci et al. 2016 ;
nsdell et al. 2017 ; Cox et al. 2017 ; Eisner et al. 2018 ; Cazzoletti

t al. 2019 ; Cieza et al. 2019 ; Ansdell et al. 2020 ), a proxy for the disc
ass, and for a more limited subsample disc radii (Barenfeld et al.

017 ; Ansdell et al. 2018 ). In parallel, surv e ys at optical wav elengths
ave measured the properties of the central stars and their mass
ccretion rates (Manara et al. 2015 , 2017 ; Alcal ́a et al. 2017 ; Manara
t al. 2020 ). These data are invaluable to provide constraints to the
umerical studies that seek to explain why discs accrete starting from
st principles. Indeed, in the recent years a number of studies have
nalysed the surv e y data to provide these constraints (Manara et al.
016b ; Lodato et al. 2017 ; Mulders et al. 2017 ; Rosotti et al. 2017 ;
rapman et al. 2020 ). These studies have determined reasonable 
anges for the α parameter; ho we v er, the y hav e almost e xclusiv ely
onsidered only the viscous case. 

The reason why almost no study based on disc demographics 
as provided constraints for the wind scenario is because of the 
ack of simple analytical solutions, equi v alent to those disco v ered
y Lynden-Bell & Pringle ( 1974 ). Although 1D global evolutionary 
odels for MHD winds have been published (Armitage, Simon & 

artin 2013 ; Bai 2016 ; Suzuki et al. 2016 ; Hase ga wa et al. 2017 ;
hajenabi et al. 2018 ; Chambers 2019 ), a true equi v alent of Lynden-
ell & Pringle ( 1974 ) is still missing. While clearly idealized, these

olutions are simple and powerful: they permit to quantify the average 
fficiency of angular momentum transport and are a very useful tool 
o enable large population studies. These solutions do not make any 
hysical assumption regarding the exact nature of the mechanism 

t the origin of angular momentum transport; they do not tell us
hy the disc is viscous, but they nevertheless tell us what happens

f the disc is viscous. The purpose of this paper is to provide a
arametrization of the efficiency of angular momentum removal by 
HD disc winds akin to Shakura & Sunyaev ( 1973 ) and, with this in

and, to provide simple, analytical, self-similar solutions to the disc 
volution equations akin to Lynden-Bell & Pringle ( 1974 ). We will
ee in particular how the wind model requires two, rather than only
ne, free parameters. One of the two parameters is the equi v alent of
and permits to identify immediately if viscosity or winds dominate 

he transfer of angular momentum. We will then discuss a preliminary
omparison with the available data from disc surv e ys to constrain
hese parameters. We leave more detailed comparisons to future 
apers. 
This paper is structured as follows. In Section 2 the basic equations

nd the adopted parametrization of the wind torque and the wind
ass-loss rate is summarized. We then present the steady-state 

olution and our similarity solutions in Section 3 , including the
ain features of the solutions in the Ṁ ∗ − M D 

plane. The main
bservational diagnostics that can be used to constrain the wind 
nd turbulence related parameters are then briefly re vie wed, and our
odel is discussed in light of the recent non-ideal MHD simulations

nd existing disc evolution models in Section 4 . Our findings are
ummarized in Section 5 . 

 M O D E L  

.1 Basics 

he disc is assumed to be geometrically thin and vertically isothermal 
ith c s , the sound speed (see schematic view in Fig. 1 ). An MHD
isc wind transporting mass and angular momentum is launched 
rom a typical scale height of H W 

∼ 2 H , where H ≡ c s / � is the
ydrostatic scale height of the disc. In this subsection, we also
onsider a possible radial transport of angular momentum due to e.g.
RI turbulence. The disc is treated in a 1D approach by vertically

veraging disc quantities over | z| < H W 

. The evolution of the surface
ensity profile is the result of the angular momentum transported 
adially by turbulence, the angular momentum extracted vertically 
y the MHD disc wind, and the mass-loss induced by the latter (see
MNRAS 512, 2290–2309 (2022) 
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ppendix A ): 

∂� 

∂t 
= 

2 

r 

∂ 

∂r 

{
1 

r�

∂ 

∂r 

(
r 2 

∫ + H W 

−H W 

T rφd z 

)}

+ 

2 

r 

∂ 

∂r 

{ 

r| T zφ | + H W 

−H W 

�

} 

− �̇ W 

, (1) 

here 

T rφ ≡ 〈 ρ� r δ� φ − B r B φ/ 4 π〉 (2) 

s the time-averaged radial stress tensor describing the radial transport
f angular momentum, 

T zφ ≡ 〈 ρ� z δ� φ − B z B φ/ 4 π〉 (3) 

s the time-averaged vertical stress tensor describing the extraction of
ngular momentum by the MHD disc wind, and �̇ W 

is the mass-loss
ate per unit surface induced by the wind. The conventional notations
or a cylindrical coordinate system is used here. � = 

√ 

GM ∗/r 3 is
he Keplerian orbital frequency around the young star of a mass M ∗,
nd δ� φ = � φ − r� is the deviation of the rotation velocity to the
eplerian velocity. 
The physical quantities T r φ , T zφ , and �̇ W 

describe the ef fecti ve
mpact of the transport of angular momentum and mass-loss on the
isc surface density. The value of these quantities ultimately depends
n the physical and chemical structure of the disc (strength and
opology of the magnetic field, temperature, density, grain charge
nd sizes, ionization...). Considering the large uncertainties plaguing
odels that treat the dynamics of the disc and the wind consistently,
e propose here to follow the approach of Shakura & Sunyaev ( 1973 )

nd parametrize the aforementioned terms using a minimum number
f parameters and theoretical preconceptions. 

.2 Turbulent and wind torque 

sing our notations, the Shakura–Sunyaev αSS -parameter is defined
s 2 

SS ≡ 2 

3 

∫ 
T rφd z 

�c 2 s 
= 

2 

3 
√ 

2 π

∫ 
T rφd z 

H P 0 
, (4) 

here P 0 is the mid-plane thermal pressure. 3 This definition leads to
 local accretion rate driven by turbulence of (Pringle 1981 ) 

˙
 

visc 
acc ( r ) = 

6 π

r �

∂ 

∂ r 
( �c 2 s αSS r 

2 ) . (5) 

By analogy, we normalize the wind torque by the mid-plane
hermal pressure and define the dimension-less αDW 

parameter as 

DW 

≡ 4 

3 

r| T zφ | + H W 

−H W 

�c 2 s 
= 

4 

3 
√ 

2 π

| T zφ | + H W 

−H W 

εP 0 
, (6) 

here ε ≡ H / r is the disc aspect ratio. With this definition, the local
ccretion rate driven by the MHD disc wind is 

˙
 

DW 

acc ( r) = 

3 π�c 2 s αDW 

. (7) 
NRAS 512, 2290–2309 (2022) 

�

 Some authors also adopt a definition of αSS without the 2/3 prefactor (e.g. 
uzuki et al. 2016 ) 
 With our definition of the hydrodynamical scale height as H ≡ c s / �, the 
id-plane thermal pressure is P 0 = c s 

�� √ 

2 π
, and the mid-plane density is 

0 = 

�� √ 

2 πc s 
. 

a  

a  

v

�

d  

R  
n the presence of turbulence and MHD disc wind, the fraction of
ass-accretion driven by the wind compared to that driven by viscos-

ty is roughly the ratio of the α-parameters Ṁ 

DW 

acc / Ṁ 

visc 
acc � αDW 

/αSS .
herefore, the comparison between the paradigmatic viscous disc
odel and the wind-driven disc model presented in this paper is

reatly facilitated, without loss of generality. This constitutes the
ain advantage of our definition compared with other conventions

dopted in the literature (see Section 4.5 and Appendix B ). We shall
lready note that numerical simulations and analytical models show
hat αDW 

roughly scales with the magnetization of the disc, com-
only quantified by the mid-plane β0 parameter (see Section 4.3 ). 

.3 Local mass-loss rate 

n order to re-write the local mass-loss rate �̇ W 

in terms of αDW 

nd disc quantities in equation ( 1 ), we use the magnetic lever arm
arameter defined as 

≡ L 

r �( r ) 
, (8) 

here L is the total specific angular momentum carried away
long the MHD disc wind streamline anchored at r (in the form
f both matter rotation and magnetic torsion). This widely used
arameter, first introduced by Blandford & Payne ( 1982 ) quantifies
he ratio of extracted to initial specific angular momentum and can be
bservationally constrained (see Section 4.1 ). For an MHD disc wind
owered by accretion, it can be shown that λ > 3/2. The conservation
f angular momentum (see equation A6 ) gives: 

˙
 W 

= 

3 αDW 

c 2 s 

4( λ − 1) �r 2 
� = 

1 

2( λ − 1) 

Ṁ 

DW 

acc 

2 πr 2 
. (9) 

his approach is similar to that adopted by Kimmig, Dullemond &
ley ( 2020 ). 
Equation ( 9 ) shows that λ can be considered as the efficiency of

he wind to drive accretion: the higher λ, the fewer mass is required
o be launched to sustain an accretion rate of Ṁ 

DW 

acc . 

.4 Master equation 

he impact of the MHD disc wind on the disc evolution is thus
ontrolled by two local parameters: αDW 

, which quantifies the angular
omentum extracted by the wind, and λ, the magnetic lever arm

arameter, which ultimately determines the mass-loss rate of the
ind. Injecting equations ( 4 ), ( 6 ), and ( 9 ) into equation ( 1 ) gives the
aster equation: 

∂� 

∂t 
= 

3 

r 

∂ 

∂r 

{
1 

r�

∂ 

∂r 

(
r 2 αSS �c 2 s 

)}

+ 

3 

2 r 

∂ 

∂r 

{
αDW 

�c 2 s 

�

}
− 3 αDW 

�c 2 s 

4( λ − 1) r 2 �
. (10) 

his equation is a generalization of the standard disc equation.
omparing the first two RHS terms, one can already identify the
ain difference between turbulence-driven accretion and wind-

riven accretion: the second term, which describes the wind-driven
ccretion is a first-order differential term in space, corresponding to
n advection term in equation ( 10 ). This means that the accretion
elocity due to the wind 

 DW 

= 

3 

2 
αDW 

εc s (11) 

oes not depend on any shear, in contrast to viscous accretion (first
HS term). We note that � DW 

should be considered as an average
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Figure 2. Steady-state solution. Radial profile of the surface density (equa- 
tion 15 ), of the local accretion rate Ṁ acc ( r) (equation 20 ), and of the 
cumulative mass-loss rate Ṁ W 

( r) integrated from the inner radius r in to r 
(equation 21 ). The profiles are set by the value of ξ which depends on λ and 
ψ as shown in Fig. 3 and given in equation ( 17 ). In this example, we set λ = 

3 and ψ = ∞ (pure wind case), corresponding to ξ = 0.25. The mass-loss 
rate and the accretion rate are normalized to the accretion rate at the inner 
radius. The accretion rate decreases toward r in as mass is lost along with the 
accretion. 
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 v er the disc scale height. Numerical simulations show that accretion
an proceed in a thin layer of gas in the disc atmosphere (e.g. Bai &
tone 2013 ). In that case, the advection speed in the upper layers can
e near sonic velocity ( � c s ) but the average accretion velocity � DW 

ould still be much smaller. 

.5 Assumptions on αSS , αDW 

, and λ

he master equation ( 10 ) does not assume anything about the
HD disc wind or about the level of turbulence as it is based

n a parametrization of their local impact on the disc. As such,
quation ( 10 ) can be solved numerically, using any prescription for
he spatial and temporal evolution of αSS , αDW 

, and λ. 
In this work, we adopt simplifying prescriptions for these param- 

ters, that allow us to find analytical solutions of the evolution of the
isc. In particular, we assume that αSS , αDW 

, and λ are constant in
pace. Further assumptions about the time evolution of αDW 

are made 
or the self-similar solutions (see Section 3.2.2 ). The temperature 
f the disc follows a power law with T ( r ) ∝ r −1/2 (Kenyon &
artmann 1987 ; Chiang & Goldreich 1997 ) and is constant in time.
he solutions given below are further extended in Appendix C to 

nclude α-parameters and temperature profiles that vary as a power 
aw with radius with arbitrary power-law indexes. 

In order to ensure an explicit transition in the analytical expressions 
rom pure wind accretion to pure turbulent accretion, we define 

˜ ≡ αDW 

+ αSS , (12) 

he α-parameter that quantifies the total torque e x erted by the MHD
isc wind and turbulence, and 

 ≡ αDW 

αSS 
, (13) 

 parameter that quantifies the relative strength between the radial 
nd the vertical torque. 4 

 A NA LY T I C A L  S O L U T I O N S  

n this section, we generalize the analytical solutions proposed by 
ynden-Bell & Pringle ( 1974 ) to MHD wind-driven discs using two
rescriptions for the time evolution of αDW 

. As a preliminary, the 
tudy of the steady-state solutions allows us to define two additional 
ey physical quantities, namely the local mass ejection index ξ and 
he global mass ejection-to-accretion ratio f M 

. 

.1 Steady state 

e first assume steady state ( ∂ t = 0) in equation ( 10 ). By construc-
ion, αDW 

, αSS , and λ are constant in time. 

.1.1 Surface density profile 

n the pure viscous case ( ψ = 0), the surface density follows a simple
ower-law profile 

( r) ∝ r −1 . (14) 

he power-la w inde x of −1 is the result of a constant accretion
elocity � ν = 

3 
2 αSS εc s : as a parcel of accreting gas moves inward

t constant speed, it contracts following a geometrical factor pro- 
ortional to r −1 . This property follows from the choice of the radial
rofiles of αSS and T . 
 We note that ψ is not exactly the ratio of the vertical to the radial torque, 
hat is usually denoted as � (e.g. Ferreira & Pelletier 1993 ). 

v

ξ

For non-vanishing ψ , the total accretion velocity is also constant 
cross the disc. One could then expect to recover a surface density
rofile with a power-law index of −1 as in the viscous case. Ho we ver,
ind accretion is also accompanied by a mass-loss that decreases the
ass of the advected parcel of gas, resulting in flattening the radial

rofile of �. Specifically, adopting a power-law profile (see Fig. 2 ) 

( r) ∝ r −1 + ξ , (15) 

quation ( 10 ) leads to the quadratic equation 

2 + 

1 

2 
(1 + ψ) ξ − ψ 

4( λ − 1) 
= 0 (16) 

hat gives 

= 

1 

4 
( ψ + 1 ) 

[ 

√ 

1 + 

4 ψ 

( λ − 1)( ψ + 1) 2 
− 1 

] 

. (17) 

The parameter ξ appears as the mass ejection index 

≡ d ln Ṁ acc 

d ln r 
(18) 

hat quantifies the local mass-loss rate relative to the local accretion
ate as defined by Ferreira & Pelletier ( 1995 ). In the presence of a
ind, ξ is non-vanishing and Ṁ acc ( r) varies across the disc due to the
ass-loss (see Fig. 2 and next subsection). The higher ξ is, the more
ass is locally ejected to drive accretion and the flatter the surface

ensity profile is. 
The mass ejection index, plotted in Fig. 3 , depends on both λ and
. For λ > 3/2, the surface density profile is always decreasing with

adius as ξ < 1. ξ is larger for lower λ as winds of low λ drive
isc accretion with higher mass-loss rates. In the limit of pure wind
ccretion ( ψ = +∞ ), we reco v er the standard relation ξ = 1/[2( λ

1)] (Ferreira 1997 ). For a finite value of ψ , the ejection index is
maller than this value as a non-vanishing fraction of mass is accreted
ia turbulence, without any mass-loss. Specifically, for λ � 2, 

� 

1 

2( λ − 1) 

ψ 

ψ + 1 
, (19) 
MNRAS 512, 2290–2309 (2022) 
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Figure 3. Mass ejection index ξ as a function of ψ for various values of λ
indicated along each curve (see equation 17 ). ξ controls the slope of � in the 
steady-state solutions (see Fig. 2 ) and the power-law index of the inner part 
of the self-similar solutions (see Fig. 5 ). ξ also sets the total wind mass-loss 
rate in combination with the radial extent of the wind launching region r c / r in 
(see equations 22 and 32 ). 
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Figure 4. Global mass ejection-to-accretion ratio f M 

corresponding to the 
fraction of mass that is ejected in the wind compared to that accreted onto the 
central star. As show in equation ( 22 ), f M 

depends on ψ , λ (via ξ ), and on the 
radial extent of the disc r c / r in , where r c denotes either an arbitrary radius in 
the steady-state solution (see Fig. 2 ), or the characteristic disc radius of the 
self-similar solution (see Fig. 5 ). 
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hich translates the fact that the mass ejection index is about that of
ure wind accretion reduced by the fraction of angular momentum
f fecti v ely e xtracted by the wind. In other words, as the wind torque
ncreases with respect to the turbulent torque, the surface density
rofile gets flatter. 
We note that for α-parameters and a temperature with arbitrary

ower-law dependence on radius, the accretion velocity varies with
adius, resulting in a surface density that scales as � ∝ r ξ − γ , where
 

2 
S ̃  α ∝ r γ−3 / 2 and ψ constant. For γ < ξ , the surface density increases
ith radius, a situation that could describe a cavity opening in the
isc. For conciseness, we focus here on the case γ = 1 and λ > 3/2.

.1.2 Accretion and mass-loss rate 

ue to the local ejection of mass, the local accretion rate Ṁ acc ( r)
aries across the ‘leaky’ disc (see Fig. 2 ). With this notations,
quation ( 18 ) yields a local accretion rate of 

˙
 acc ( r) = Ṁ ∗

(
r 

r in 

)ξ

, (20) 

here r in denotes the inner radius of the disc and Ṁ ∗ denotes the
tellar accretion rate. As discussed in Section 4.4 , r in is not necessarily
he inner radius of the disc which is about 0.05 au in T Tauri discs, but
an be considered as the inner radius of the wind launching region. 

By mass conservation, the cumulative mass-loss rate integrated
etween r in and an arbitrary radius r is 

˙
 W 

( r) = Ṁ ∗

[ (
r 

r in 

)ξ

− 1 

] 

. (21) 

ig. 2 shows that the mass-loss rate increases as a power-law of the
adius at large distance. All in all, the mass-loss rate can be much
igher than the stellar accretion rate, resulting in a steep drop in the
ccretion rate toward r in . 

It is then convenient to define the dimensionless mass ejection-to-
ccretion ratio estimated at a radius r c as (Tabone et al. 2020 ) 

 M 

( r c /r in ) ≡ Ṁ W 

Ṁ ∗
= ( r c /r in ) 

ξ − 1 . (22) 
NRAS 512, 2290–2309 (2022) 
his is considered to be a global parameter that quantifies the mass-
oss rate o v er a disc e xtending from r in out to r c . The higher f M 

is,
he less mass passing through the disc at r c makes it to the growing
tar and the more mass is carried away by the wind. 

Fig. 4 shows that f M 

increases with increasing ψ as the fraction
f the accretion flow mediated by the vertical torque increases. f M 

ncreases with decreasing λ as more mass is then launched to extract
he amount of angular momentum required to drive wind accretion. 

Quantitatively, when the turbulent torque dominates ( ψ � 1),
he mass-loss rate is negligible. In this limit, a Taylor expansion of
quation ( 22 ) ( ξ � 1) gives 

 M 

( r c /r in ) � 

1 

2( λ − 1) 
ψ ln ( r c /r in ) . (23) 

 M 

is then proportional to ψ (see Fig. 4 ). When the wind torque
ominates ( ψ � 1), f M 

converges to the pure wind value of 

 M 

( r c /r in ) = ( r c /r in ) 
1 

2( λ−1) − 1 , (24) 

hich can be either large or small, depending on the radial extent
f the wind r c / r in and on λ (see Fig. 4 ). In particular, in the
ind dominated regime, the mass-loss rate is larger than the stellar

ccretion rate (i.e. f M 

≥ 1) for 

≤ 1 + 

ln ( r c /r in ) 

2 ln (2) 
, (25) 

hich corresponds to λ ≤ 3.8 for r c / r in = 50. 

.2 General form of the self-similar solution 

.2.1 Ansatz 

he steady-state solution presented in Section 3.1 assumes a disc of
nfinite size. For a finite disc size, i.e. a surface density that eventually
ecreases sharply with radius, the surface density profile depends on
ime as material coming from the outer regions is advected towards
he inner regions. Lynden-Bell & Pringle ( 1974 ) derived analytical
olutions for a turbulent disc that is, in the case of constant αSS and
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Figure 5. Surface density profile of the self-similar solution. The core is a 
power law that corresponds to the steady-state solution (see Fig. 2 ) and is 
tapered by an exponential cutoff at large distance. The tapering is controlled 
by r c ( t ), the characteristic disc radius. During the evolution of the disc, the 
functional form of the surface density pictured here remains unchanged but 
� c ( t ) and r c ( t ) vary differently for each class of solution (see Table 2 ). At any 
time, the total mass-loss rate is quantified by f M 

, which depends on the radial 
extent of the disc r c / r in , λ, and ψ as shown in Fig. 4 . 
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 ( r ) ∝ r −1/2 , of the form: 

( r, t) = � c ( t) 

(
r 

r c ( t) 

)−1 

e −r/r c ( t) , (26) 

here � c and r c are functions of time only. In particular, the core
f the surface density profile is a power law that corresponds to the
teady-state solution (equation 14 ). 

Inspired by this solution and by the steady-state solutions pre- 
ented abo v e (equation 15 ), we find e xact solutions of equation ( 10 )
sing the ansatz 

( r, t) = � c ( t) 

(
r 

r c ( t) 

)−1 + ξ

e −r/r c ( t) , (27) 

here r c ( t ) is the characteristic disc radius, ξ is the mass ejection
ndex defined in equation ( 17 ), and � c ( t ) is a function of time only.
s shown in Fig. 5 , at any time, the surface density profile is a power

aw in the inner region tapered by an exponential at large radius.
he tapering is controlled by a characteristic disc radius r c ( t ) which
efines the disc size. 
The quantity � c ( t ) in equation ( 27 ) can also be expressed in terms

f the disc mass as 5 

 c ( t ) = 

M D 

( t ) 

2 πr c ( t ) 2 
, (28) 

or r c � r in . The self-similar ansatz can also be extended to the case
f T ( r ), αDW 

, and αSS with arbitrary power-law dependence on radius
Appendix C ). 
 The exact normalization of the surface density profile includes a multiplica- 
ive factor � c = M D 

/ (2 πr 2 c �( ξ + 1)), where � is the gamma function. For 
> 3/2 one finds �( ξ + 1) � 1 and in the following, we adopt �( ξ + 1) = 1 

see Appendix D ). 

f

6

r
d

.2.2 Classes of solution 

he ansatz ( 27 ) provides exact solutions of equation ( 10 ) in the case
f αSS and λ constant in time. Regarding the αDW 

parameter, we 
xplore two classes of solution. 

(i) Hybrid solutions (Section 3.3 ), for which αDW 

is constant in 
ime. This is the simplest solution that highlights essential features 
f wind-driven accretion compared with turbulent accretion. The 
arameter ψ ≡ αDW 

/ αSS is the key parameter of these solutions. 
(ii) � c -dependent wind torque solutions (Section 3.4 ), for which 

DW 

is constant across the disc but varies implicitly with time as
DW 

( t ) ∝ � c ( t ) −ω , where ω is a free parameter and � c is defined in
quation ( 27 ). These solutions describe the unknown evolution of the
agnetic field strength (see Section 4.4 ). For simplicity, we adopt
SS = 0. As shown below, the latter assumption leads to a constant
 c ( t ). Since M D = 2 π� c r c ( t ) 2 , it follows that these solutions can also
e considered as solutions for which αDW 

( t ) ∝ M D ( t ) −ω . ω = 1 can be
nterpreted as a case for which the magnetic field strength is constant
 v er time. The case ω > 1 is not considered as it corresponds to a
agnetic field strength increasing with time. A full dispersal of the

isc at finite time is predicted for ω > 0. In the following, we focus
n 0 < ω < 1. 

We further define a fiducial solution for which αSS = 0 ( ψ =
 ) and ω = 0. This corresponds to the limit of the two classes of

olution, that is a solution without turbulent accretion and with αDW 

onstant in time. We leave for future papers the general case for
hich αDW 

varies with time ( ω �= 0) and αSS �= 0 (finite value of ψ)
s it requires the use of numerical solutions. 

.2.3 Parameters of the self-similar solutions 

he time evolution of the surface density is controlled by the initial
ccretion time-scale 6 

 acc , 0 ≡ r c ( t = 0) 

3 εc c s,c ̃  α( t = 0) 
, (29) 

here εc is the disc aspect ratio and c s , c is the sound speed at r =
 c ( t = 0). The initial accretion time-scale corresponds to the time that
ould be required to accrete a fluid particle located initially at r c ( t =
)/2 to the inner region of the disc with an accretion velocity equal
o its initial value. With this definition, the initial viscous time-scale
rites 

t ν, 0 = (1 + ψ) t acc , 0 . (30) 

The accretion rate and the total mass-loss rate depend also on the
nitial radial extent of the disc r c (0)/ r in . We quantify the effect of the

ass-loss rate using the initial mass ejection-to-accretion ratio that 
rites (see Appendix E ) 

 M, 0 = ( r c (0) /r in ) 
ξ − 1 . (31) 

he main advantage of using f M 

is that it is an observational quantity
hat does not depend on the disc mass. Interestingly, at any time, the

ass ejection-to-accretion ratio of the self-similar solution simply 
orresponds to that of the steady-state solution e v aluated at r = r c ( t )
see Appendix E ): 

 M 

( t) = ( r c ( t) /r in ) 
ξ − 1 . (32) 
MNRAS 512, 2290–2309 (2022) 

 We note that Sellek, Booth & Clarke ( 2020 ) call ’accretion time-scale’ the 
atio M D 

/ Ṁ ∗. In our work, the latter quantity is called ‘disc lifetime’ and is 
efined in Section 3.5.1 . 
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Table 1. Parameters of the self-similar solutions. The first block gives the 
free parameters of the solution and the second block gives additional disc 
parameters that are set by the free parameters. 

Parameter Description Ref. 

λ Magnetic lever arm parameter 

ψ Wind-to-turbulent α ratio equation ( 13 ) 

ω Power-la w inde x αDW 

( � c ) 

t acc, 0 Initial accretion time-scale equation ( 29 ) 

r c (0) Initial disc characteristic size 

r c (0)/ r in Initial radial extent of the wind 

M 0 Initial disc mass 

ξ Mass ejection index equation ( 17 ) 

f M , 0 Initial mass ejection-to-accretion ratio equation ( 31 ) 

Ṁ ∗, 0 Initial stellar accretion rate equation ( 42 ) 
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ts dependence on r c / r in , ψ , and λ is given in Fig. 4 and discussed
bo v e (see Section 3.1.2 ). In the following, we fix r c (0)/ r in = 50 so
hat f M , 0 is not considered as a free parameter as it is set by the values
f ψ and λ via the mass ejection index ξ (Fig. 3 ). 
In other words, the self-similar solutions presented in this work

re controlled by 7 parameters, namely (see summary in Table 1 ): 

(i) λ, the magnetic lever arm parameter, that has typical values of
bout λ � 2 −5 (see Section 4.1 ) 

(ii) ψ , the ratio between the wind torque and the turbulent torque,
hich is explored in the first class of solution, 
(iii) ω, the power-la w inde x of αDW 

with � c , which is e xplored in
he second class of solution, 

(iv) t acc, 0 , the initial accretion time-scale, which is related to the
isc aspect ratio ε, the initial characteristic disc radius, and the total
orque ˜ α (see equation 29 ), and has typical values of t acc, 0 � 1 Myr
see Section 4.2.3 ), 

(v) r c (0), the initial characteristic disc radius, that has typical
alues of r c � 20 −100 au, 

(vi) r c (0)/ r in , the radial extent of the wind launching region set to
0 (see discussion about the value of r in in Section 4.4 ), 
(vii) M 0 , the initial disc mass, ranging typically between

0 −3 –10 −2 M � (from the masses of Class I discs; Tychoniec et al.
020 ; Tobin et al. 2020 ). 

The analytical solutions for the hybrid and � c -dependent wind
orque solutions are derived in Section 3.3 and 3.4 , respectively, and
ummarized in Table 2 . The evolution of the surface density profile
s shown in Fig. 6 and discussed below. 

.3 Hybrid solutions (constant α parameters) 

.3.1 Solutions 

ssuming that αSS and αDW 

are constant in time and space, the master
quation ( 10 ) can be written using the dimensionless coordinates
NRAS 512, 2290–2309 (2022) 

able 2. Disc quantities for the two classes of solution. 

Quantity � c ( t )/ � c (0) r c ( t )/ r c (0) 

Fiducial ( ψ = ∞ , ω = 0) e −t/ 2 t acc , 0 1 

Hybrid ( ω = 0) 
(

1 + 

t 
(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 2 ξ+ 5) (

1 + 

t 
(1 + ψ) t acc , 0 

)
� c -dep. αDW 

( ψ = ∞ ) 
(

1 − ω 
2 t acc , 0 

t 
)1 /ω 

1 
˜  = r/r c (0) and ˜ t = t/t ν, 0 as 

∂� 

(
˜ r , ̃  t 

)
∂ ̃  t 

= 

1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r 1 / 2 

∂ 

∂ ̃  r 
( ̃ r 3 / 2 � 

(
˜ r , ̃  t 

)
) 

)

+ 

ψ 

2 ̃ r 

∂ 

∂ ̃  r 

{
˜ r � 

(
˜ r , ̃  t 

)} − ψ 

4( λ − 1) ̃ r 
� 

(
˜ r , ̃  t 

)
. (33) 

Rewriting the self-similar ansatz ( 27 ) as � 

(
˜ r , ̃  t 

) =
 ( ̃ t ) ̃ r −1 + ξ e −˜ r / ̃ r c ( ̃ t ) , equation ( 33 ) leads to a system of two
rdinary differential equations 

˙̃
 r c ( ̃ t ) = 1 , 

Ȧ ( ̃ t ) 

A ( ̃ t ) 
= − 1 

˜ r c ( ̃ t ) 

(
3 

2 
+ 2 ξ + 

ψ 

2 

)
. (34) 

he solution of this system in dimensional form is 

r c ( t) = r c (0) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)
, 

 c ( t) = � c (0) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)−
(

5 
2 + ξ+ 

ψ 
2 

)

. (35) 

Examples of the time evolution of the surface density �( r , t ) for
 arious v alues of ψ are sho wn in Fig. 6 , for the same initial mass,
adius, and accretion time-scale. Starting from similar surface density
rofiles, the surface densities differ rapidly o v er less than an accretion
ime-scale. This results in a significantly different evolution of the
lobal disc properties r c ( t ), M D ( t ), Ṁ ∗( t), and Ṁ W 

( t) that are studied
elow. 

.3.2 Disc radius 

he location of the disc characteristic radius r c ( t ) is outlined in
ig. 6 by a circular marker. The time evolution of r c ( t ) depends on

he dominant accretion process quantified by ψ . In the pure viscous
ase ( ψ = 0), the disc spreads as angular momentum it transported
adially. In contrast, in the pure wind case (fiducial solution, ψ =
∞ ), the disc characteristic radius remains constant, as all the

ngular momentum is extracted vertically, without any need for disc
preading. 

In the hybrid case, the disc spreads, though at a slower rate than
n the pure viscous case. The disc characteristic radius provided in
quation ( 35 ) can be rewritten as 

 c ( t) = r c (0) 

(
1 + 

t 

t ν, 0 

)
, (36) 

here t ν, 0 is the initial viscous time-scale (see equation 30 ). Interest-
ngly, we find that the disc spreading is not affected by the presence
f the wind and we simply reco v er the classical relation of the pure
iscous accretion. In particular, for t � t ν, 0 , the disc size increases
inearly with time. Ho we ver, for a fixed accretion time-scale t acc, 0 ,
he disc spreading time-scale increases with increasing wind torque
ince t ν, 0 = (1 + ψ) t acc, 0 . 
M D ( t )/ M 0 Ṁ ∗( t) / Ṁ ∗, 0 

e −t/ 2 t acc , 0 e −t/ 2 t acc , 0 (
1 + 

t 
(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 2 ξ+ 1) (

1 + 

t 
(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 4 ξ+ 3) 

(
1 − ω 

2 t acc , 0 
t 
)1 /ω (

1 − ω 
2 t acc , 0 

t 
)−1 + 1 /ω 
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Figure 6. Examples of the evolution of the surface density for the analytical solutions presented in this work. The first three left-hand panels are for constant α
solutions (see Section 3.3 ) in the case of viscous ( ψ = 0), hybrid ( ψ = 1), and pure wind-driven ( ψ = ∞ ) accretion. The rightmost panel is for a � c -dependent 
wind torque solution (see Section 3.4 ) with ω = 0.25. At initial time, the discs share the same initial characteristic radius of r c (0) = 50 au and disc mass 
of M D 

= 10 −2 M �. The time evolution of the surface density is controlled by the initial accretion time-scale t acc, 0 (see definition in equation 29 ). Each line 
corresponds to a different age ranging from t = 0 to 8 t acc, 0 with steps of 2 t acc, 0 (from dark blue to green). In the � c -dependent wind torque solution (rightmost 
panel), the disc is dispersed at t = 8 t acc, 0 . The characteristic radius r c ( t ), outlined by dots, is constant in the pure wind cases, whereas it increases in the viscous 
cases. The power-law index in the inner tens of au is flatter in the wind cases due to the mass-loss accompanying the accretion flow (see equation 15 ). 

Figure 7. Time evolution of the disc mass for the hybrid solutions, depending 
on the relative contribution of the vertical to the radial torque quantified by 
ψ . In all cases λ = 3 so that ξ varies between 0 and 0.25. The value of the 
viscous accretion time-scale t ν, 0 = (1 + ψ) t acc, 0 is indicated with a circle 
along each curve. 
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.3.3 Disc mass 

he evolution of the disc mass depends also critically on the driving
ccretion process. The evolution of the disc mass obtained from 

quation ( 28 ) and ( 35 ) is 

 D 

( t) = M 0 

(
1 + 

t 

(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 2 ξ+ 1) 

, (37) 

nd shown in Fig. 7 . In the viscous case ( ψ = 0), the disc mass
ecreases slowly with time with the classical scaling M D 

( t) ∝ 1 / 
√ 

t 

or t � t ν, 0 . This is ultimately due to the viscous spreading of the
isc. As the gas in the bulk part of the disc is advected at constant
elocity, the instantaneous viscous time-scale (i.e. the time required 
o advect the gas located at r c ( t )/2 to the inner disc) increases as
 ν, 0 ( t ) ∝ t due to the increase in r c ( t ). This prevents the disc from
apidly draining all its material onto the star. 

In the fiducial wind-driven case, the disc mass drops by more than
wo orders of magnitudes after t = 10 t acc, 0 (see Fig. 7 ). Quantitatively,
 Taylor expansion of equation ( 37 ) in the case ψ → +∞ shows that
he evolution of the disc mass follows an exponential decay with 

 D 

( t) = M 0 e 
− t 

2 t acc , 0 . (38) 

his behaviour, which contrasts with the viscous case, is due to the
bsence of disc spreading. Since the outer radius remains constant, 
he bulk part of the disc located initially within r � r c (0) is drained
fter t � 2 t acc, 0 . The evolution of the disc mass does not depend
n the fraction of mass lost in the wind quantified by f M 

. Therefore
either the value of λ nor r c / r in impacts the evolution of the disc mass
see equation ( 31 )). 

In the hybrid case (see Fig. 7 ), the evolution of the disc mass is
racketed between that of the exponentially decaying pure wind case 
 ψ = ∞ ) and that of the slowly evolving pure viscous case ( ψ = 0),
nd appears to be sensitive to the value of ψ . For t � t ν, 0 = (1 +
) t acc, 0 , the disc mass exhibits a power-law dependence on time 

 D 

( t) � M 0 

(
t 

t ν, 0 

)− 1 
2 ( ψ+ 2 ξ+ 1) 

(39) 

s in the viscous case, but with a power-law index that is increased by
1 
2 ( ψ + 2 ξ ). This is a typical hybrid behaviour: the viscous spreading
revents the rapid draining of the disc, but the wind accretion ensures
 steeper decrease in the disc mass with time due to its ability to
ustain high accretion rate. 

Interestingly, in the more general case for which c 2 S ̃  α ∝ r γ−3 / 2 , the
isc mass scales as (1 + t / t ν, 0 ) −(1 + 2 ξ + ψ)/(2(2 − γ )) (see Appendix C ).
herefore, there is a de generac y in the slope of the disc mass, between
and ψ . For example, a pure viscous case with a radial gradient of

SS ∝ r −1 + γ and a hybrid case with constant α-parameters have the
ame slope for 

 = 

γ − 1 

2 − γ
, (40) 

here we assumed ξ � 1 and a same power-law index of the
emperature. 

.3.4 Accretion rate 

n the presence of a wind, the accretion rate is the time deri v ati ve of
he disc mass reduced by the fraction mass that is ef fecti vely accreted
MNRAS 512, 2290–2309 (2022) 
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Figure 8. Evolution of the accretion rate and mass-loss rate for the hybrid solutions. (a) The stellar accretion rate, (b) the time deri v ati ve of the disc mass, 
which is equal to the sum of the accretion rate and the mass-loss rate, (c) the mass ejection-to-accretion ratio f M 

= Ṁ W 

/ Ṁ ∗. In all cases we fixed λ = 3 and 
r c (0)/ r in = 50. 
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nto the growing star: 

˙
 ∗( t) = 

1 

1 + f M 

( t) 
Ṁ D 

( t) , (41) 

here f M 

( t ) is the instantaneous mass ejection-to-accretion ratio
iven in equation ( 32 ). Therefore, at t = 0, the stellar accretion
ate is 

˙
 ∗, 0 = 

ψ + 1 + 2 ξ

ψ + 1 

M 0 

2 t acc , 0 (1 + f M, 0 ) 

� 

M 0 

2 t acc , 0 (1 + f M, 0 ) 
for ξ � 1 or ψ � 1 . (42) 

he effect of the mass-loss rate can be seen in Fig. 8 (a), where the
nitial accretion rate is lower for higher values of ψ as it corresponds
o higher value of f M , 0 . 

As time increases, the evolution of the accretion rate is driven by
he evolution of Ṁ D 

( t), but also by that of f M 

( t ) (see Figs 8 (b) and (c),
espectively). In fact, as the disc spreads, f M 

( t ) smoothly increases
s the radial extent of the disc increases. Ho we ver, the impact of
he latter on the evolution of Ṁ ∗( t) is generally negligible since fast
iscous spreading is operating for ψ � 1, a regime where f M 

� 1
see Fig. 4 ). All in all, the stellar accretion rate is 

˙
 ∗( t) = Ṁ ∗, 0 

(
1 + 

t 

(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 4 ξ+ 3) 

� 

M 0 

2 t acc , 0 (1 + f M, 0 ) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)− 1 
2 ( ψ+ 3) 

for ξ � 1 or ψ � 1 . (43) 

n the pure viscous case ( ψ = 0), we reco v er the well-known scaling
˙
 ∗( t) ∝ t −3 / 2 for t � t ν, 0 . In the pure wind case f M 

( t ) is constant (no
isc spreading) and the accretion rate drops exponentially with time 

˙
 ∗( t) = 

M 0 

2 t acc , 0 

1 

1 + f M, 0 
e −t/ 2 t acc , 0 . (44) 

When both viscous and wind torque are ef fecti ve, the e volution of
he accretion rate depends mostly on the ratio ψ . For t � t ν, 0 , Ṁ ∗
xhibits a power-law dependence on time, with Ṁ ∗ ∝ t −

1 
2 ( ψ+ 3) . For

he more general case of c 2 s ̃  α ∝ r −3 / 2 + γ , we reco v er the de generac y
ound for the disc mass between ψ and γ . 
NRAS 512, 2290–2309 (2022) 
.3.5 Mass-loss rate 

y symmetry, the mass-loss rate of the wind is 

˙
 W 

( t ) = 

f M 

( t ) 

1 + f M 

( t) 
Ṁ D 

( t ) . (45) 

or f M 

� 1, Ṁ W 

is simply Ṁ D 

reduced by f M 

. For f M 

� 1, Ṁ W 

is
bout Ṁ D 

as most of the disc mass is lost in the wind rather than
ccreted onto the star. 

In the pure wind-driven case, the mass-loss rate follows an
xponential decrease 

˙
 W 

( t) = 

M 0 

2 t acc , 0 

f M0 

1 + f M0 
e 

− t 
2 t acc , 0 . (46) 

.4 � c -dependent wind torque (time-dependent αDW 

) 

.4.1 Solution 

n this section, we assume that the turbulent torque vanishes ( αSS = 0,
.e. ψ = ∞ ) and the wind torque writes αDW 

( t ) ∝ � c ( t ) −ω . Injecting
he self-similar ansatz ( 27 ) in equation ( 10 ) leads to a system of two
rdinary differential equations 

ṙ c ( ̃ t ) = 0 , 

�̇ c ( ̃ t ) = −1 

2 
� c ( ̃ t ) 

1 −ω , 
(47) 

here we used the dimensionless time ˜ t = t/t acc , 0 . 
The disc characteristic radius is then constant as all the angular
omentum is extracted vertically ( αSS = 0). The surface density is

ontrolled by 

 c ( t) = � c (0) 

(
1 − ω 

2 t acc , 0 
t 

)1 /ω 

. (48) 

An example of the time evolution of the surface density for ω =
.25 is shown in Fig. 6 (right most panel). The surface density profile
eeps the same shape as in the constant αDW 

solution (in the pure
ind case). In particular, the slope of the core of �( r , t ) (i.e. for r �
 c ) remains unchanged with �( r , t ) ∝ r −1 + ξ . This is due to the fact
hat despite the increase in αDW 

( t ) with time, ξ remains constant since
t depends only on λ, which is kept constant. Ho we ver, the absolute
alue of the surface density drops faster in the � c -dependent wind
orque solution, as αDW 

( t ) increases with time. This is best seen in
he evolution of the disc mass presented below. 
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Figure 9. Evolution of the disc mass M D ( t ) (top panel) and the time deri v ati ve 
of disc mass Ṁ D 

( t) (bottom panel) for the � c -dependent wind torque 
solutions. The accretion rate Ṁ ∗( t) and the wind mass-loss rate Ṁ W 

( t) are 
simply Ṁ D 

( t) rescaled by 1/(1 + f M , 0 ) and by f M , 0 /(1 + f M , 0 ), respectively, 
where f M , 0 is defined in equation ( 31 ). 

3

F

M

T  

(

t

f  

b  

e

M

w  

i
 

c  

α  

d  

T  

t
 

s  

s  

s

M

B  

m
 

T  

a  

α

3

W  

d  

c
p  

2  

s

3

T  

s

t

T  

d  

c

t

w

t

w  

a  

s  

t

t

w
 

t  

s  

r

t

I  

T  

a
 

t  

Q  

7 Also called ‘disc age’ by Jones, Pringle & Alexander ( 2012 ). Here we 
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this quantity is not necessarily related to the age of the disc, as shown in 
Fig. 10 (a). 
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.4.2 Global disc quantities 

rom equation ( 48 ), the disc mass is 

 D 

( t) = M 0 

(
1 − ω 

2 t acc , 0 
t 

)1 /ω 

. (49) 

he most striking feature of this new class of solution shown in Fig. 9
top panel) is the full dispersal of the disc after a finite time 

 disp ≡ 2 t acc , 0 

ω 

, (50) 

or ω > 0. This can be seen as a runaway accretion first described
y Armitage et al. ( 2013 ). In particular, injecting the solution ( 49 ) in
quation ( 41 ) gives the stellar accretion rate 

˙
 ∗( t ) = 

M 0 

2 t acc , 0 (1 + f M, 0 ) 

(
1 − ω 

2 t acc , 0 
t 

)−1 + 1 /ω 

, (51) 

here the mass ejection-to-accretion ratio f M 

, given by equation ( 32 ),
s constant in time as the disc radius and λ remain constant in time. 

As the disc evolves, � c ( t ) decreases, and αDW 

( t ) increases. In the
ase ω = 1, the accretion rate, which is proportional to the product
DW 

( t ) � c ( t ), is constant o v er time (Fig. 9 , bottom). Therefore, the
isc mass drops linearly with time and is dispersed at t = 2 t acc, 0 .
his case is similar to that proposed by Mulders et al. ( 2017 , see

heir Appendix C). 
For 0 < ω < 1, the increase in αDW 

( t ) with decreasing � c ( t ) is
hallo wer. It follo ws that the accretion rate decreases but still more
lowly than the disc mass. Therefore, for the same t acc, 0 , the disc is
till dispersed but at later time for smaller values of ω. 

By symmetry, the mass-loss rate of the wind is 

˙
 W 

( t ) = 

M 0 

2 t acc , 0 

f M, 0 

1 + f M, 0 

(
1 − ω 

2 t acc , 0 
t 

)−1 + 1 /ω 

. (52) 
ecause f M 

( t ) is constant in time, Ṁ W 

is simply the accretion rate
ultiplied by f M , 0 and follows the same functional form. 
We note that since r c ( t ) is constant, a different radial profile of

 ( r ) or αDW 

( r ) will not change the time evolution of M D ( t ), Ṁ ∗( t),
nd Ṁ W 

( t). Ho we ver, it will af fect the radial profile of �( r , t ). For
DW 

c 2 s ∝ r −3 / 2 + γ , one can show that � ∝ r ξ−γ e −( r/r c ) 2 −γ
. 

.5 Solutions in the Ṁ ∗ − M D plane 

ith new surv e ys conducted in the visible and (sub)millimetre
omains, it is now common to study accretion properties via the
orrelations between the accretion rates and the disc masses in 
opulations of Class II sources of different ages (e.g. Mulders et al.
017 ; Manara et al. 2019 ). In this section, we therefore analyse the
elf-similar solutions presented abo v e in the Ṁ ∗ − M D 

plane. 

.5.1 Disc lifetime 

he evolution of an individual disc in the Ṁ ∗ − M D 

plane can be
tudied using the disc lifetime 7 

 lt ( t ) ≡ M D 

( t ) 

Ṁ ∗( t ) 
. (53) 

he main advantage of this quantity is to be independent on the initial
isc mass and to be directly comparable with observations. For both
lasses of self-similar solutions the disc lifetime is 

 lt ( t) = 2 
1 + ψ 

1 + ψ + 2 ξ
t acc ( t)(1 + f M 

( t)) 

� 2 t acc ( t)(1 + f M 

( t)) for ξ � 1 or ψ � 1 , (54) 

here t acc ( t ) is the instantaneous accretion time-scale defined as 

 acc ( t ) ≡ r c ( t ) 

3 εc c s,c ̃  α( t ) 
, (55) 

here εc is the disc aspect ratio and c s , c is the sound speed e v aluated
t r = r c ( t ). This is a generalization of the initial accretion time-
cale t acc, 0 = t acc ( t = 0). In particular, the instantaneous accretion
ime-scale varies with time due to the evolution of r c ( t ) and ˜ α( t) as 

 acc ( t ) = 

r c ( t ) 

r c (0) 

(
˜ α( t ) 

˜ α(0) 

)−1 

t acc , 0 , (56) 

here we recall that ˜ α = αDW 

+ αSS . 
Fig. 10 (a) shows that the time evolution of the disc lifetime

 lt ( t ) depends critically on the accretion mechanism. In the fiducial
olution ( ψ = ∞ , ω = 0), f M 

( t ), αDW 

( t ), and r c ( t ) are constant,
esulting in a constant disc lifetime 

 lt ( t) = 2 t acc , 0 (1 + f M, 0 ) . (57) 

n contrast, in the general case, the disc lifetime t lt ( t ) varies with time.
his is ultimately due to a variation of r c ( t ) in the hybrid solutions,
nd of αDW 

( t ) in the � c -dependent wind torque solutions. 
For the hybrid solutions, disc spreading results in an increase in

 lt ( t ) driven by the increase in both t acc ( t ) and, to a lesser extent, f M 

( t ).
uantitatively, the disc lifetime grows o v er a viscous time-scale
MNRAS 512, 2290–2309 (2022) 

art/stab3442_f9.eps


2300 B. Tabone et al. 

M

ω
=

1
ω

=
0.5

ψ = 3
 (visc)

ψ = 0

fiducial

ω = 1

ω = 0.5

ψ = 3

 vi
sc

ψ
=

0

fiducial

t lt
= 10 t lt(0

)

tlt ≡
MD
·M*

t lt
= 0.1 t lt(0

)

t lt
= t lt(0

)
(b)(a)

Figure 10. Joint evolution of accretion rate and disc mass. (a) Evolution of the lifetime defined as t lt ( t) ≡ M D 

( t) / Ṁ ∗( t), depending on ψ and ω for each class 
of solution. t lt ( t ) is normalized to its initial value t lt (0) � 2 t acc, 0 (1 + f M , 0 ) (see equation 54 ). (b) Trajectory of the disc in the M D 

− Ṁ ∗ plane, in the constant 
α case, and in the � c -dependent wind torque case. The time evolution is pictured by the markers which represent the discs at t / t acc, 0 = 0, 0.5, 1, 2, 4, 8, 16, 
and 32. The dashed lines in the � c -dependent wind torque case picture the trajectory of the disc during its fast dispersal, as defined as t > 0.9 t dis . The wind 
parameters are set to λ = 3 and r c (0)/ r in = 50. 
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 ν, 0 = (1 + ψ) t acc, 0 as 

 lt ( t) = 2 t acc , 0 (1 + f M, 0 ) 
ψ + 1 

ψ + 1 + 2 ξ

(
1 + 

t 

(1 + ψ) t acc , 0 

)1 + ξ

� 2 t acc , 0 (1 + f M, 0 ) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)

for ξ � 1 or ψ � 1 . (58) 

n the viscous regime ( t � t ν, 0 ) and for ξ � 1, the disc lifetime
s proportional to the disc age t lt � 2 t (1 + f M , 0 )/(1 + ψ). This is
 generalization of the results found for viscous discs (Jones et al.
012 ; Rosotti et al. 2017 ). 
In the � c -dependent wind torque solutions, αDW 

increases with
ime, resulting in a decrease in t acc ( t ) (see equation 56 ) and so in t lt ( t ).
uantitatively, the disc lifetime declines linearly with time as 

 lt ( t) = 2 t acc , 0 (1 + f M, 0 ) 

(
1 − ω 

2 t acc , 0 
t 

)
(59) 

efore full dispersal. 

.5.2 Evolutionary track 

he evolutionary track of a disc in the Ṁ ∗ − M D 

plane is shown in
ig. 10 (b). In both classes of solution, the accretion rate is a power law
f the disc mass (i.e. straight tracks in Fig. 10 b). In the fiducial case,
˙
 ∗ is proportional to M D as the disc lifetime is constant along the

volutionary track. On either side of this reference track, the hybrid
olutions follow tracks that are steeper as the disc lifetime increases
ith time, whereas the � c -dependent wind torque solutions describe

racks that are flatter, as the disc lifetime decreases with time. 
In the hybrid solutions the evolutionary track is given by 

˙
 ∗ = Ṁ ∗, 0 

(
M D 

M 0 

) ψ+ 3 + 4 ξ
ψ+ 1 + 2 ξ

, (60) 

here Ṁ ∗, 0 is the initial accretion rate (see equation 42 ). There-
ore, the power-law index decreases, from the pure viscous case
 Ṁ ∗ ∝ M 

3 
D 

) to the fiducial pure wind case ( Ṁ ∗ ∝ M D 

) as shown in
ig. 10 (b). In the viscous case, the steeper drop in Ṁ ∗ along the track

s ultimately due to the disc spreading. We note that allowing αSS and
DW 

to vary as a power la w, we reco v er the de generac y between γ
NRAS 512, 2290–2309 (2022) 
nd ψ . For example, classical turbulent solutions with αSS ∝ r −1 + γ

nd T ∝ r −1/2 gives Ṁ ∗ ∝ M 

5 −2 γ
D 

meaning that evolutionary tracks
re shallower for larger values of γ (Lodato et al. 2017 ). 

For the � c -dependent wind torque solutions 

˙
 ∗ = Ṁ ∗, 0 

(
M D 

M 0 

)1 −ω 

. (61) 

rajectories are flatter than Ṁ ∗ ∝ M D 

, with a power-law index
anging from 1 in the fiducial case ( ω = 0) to 0 ( ω = 1). 

As time increases, a disc runs along its own evolutionary track. The
arkers in Fig. 10 (b) highlight the location of the disc at different

ime-steps. For the same accretion time-scale t acc, 0 , discs evolve
aster for flatter tracks as the decline of accretion rate is shallower.
n particular, for hybrid solutions, the evolution of the disc along the
rack is faster for stronger wind torque (i.e. higher value of ψ). In
he � c -dependent wind torque solutions, the disc are dispersed at a
nite time as the drop in accretion rate is slower than that of the disc
ass (tracks flatter than Ṁ ∗ ∝ M D 

). In this case, a disc spends most
f its lifetime in the high mass part of its track and then runs rapidly
hrough the low mass part during a short dispersal phase. This is best
hown in Fig. 10 (b), where the dotted line corresponds to the track
wept in the last 10 per cent of the ef fecti ve lifetime of the disc. 

.5.3 Isochrones 

hen studying a population of discs of a similar age, the concept of
sochrone is particularly valuable. An isochrone describes the locus
n the Ṁ ∗ − M D 

plane of a sample of discs that share the same initial
ass M 0 but have different initial accretion time-scales t acc, 0 . The

hape of an isochrone is the result of the evolution of each disc of
ifferent t acc, 0 along its own evolutionary track. By construction, it
oes not depend on t acc, 0 but on the age of the disc sample t , and on
he initial disc mass M 0 . 

Fig. 11 shows the isochrones for the fiducial solution. The high
ass part of the isochrone is vertical. This corresponds to discs that

ave long accretion time-scales ( t acc, 0 � t ) and thus discs that have
ot evolved yet and have a low initial accretion rate ( Ṁ ∗( t = 0) ∝
 /t acc , 0 ). At lower disc mass, the isochrone bends toward the x-axis.
n this region, discs have evolved ( t acc, 0 � t ). As discussed abo v e
Section 3.5.1 ), individual discs have a constant disc lifetime t lt that

art/stab3442_f10.eps


Secular evolution of MHD wind-driven discs 2301 

Figure 11. Isochrones and evolutionary tracks in our fiducial case ( ψ = 

+∞ , ω = 0) for an initial disc mass of M 0 = 10 −2 M �. The orange lines are 
the evolutionary tracks of a sample of discs starting with different values of 
t acc, 0 as indicated along the t = 0 isochrone. The wind parameters are set to 
λ = 3 and r c / r in = 50, which corresponds to an ejection-to-accretion ratio of 
f M , 0 = 1.7. 
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s proportional to t acc, 0 (see equation 57 ). Therefore, discs that are in
he low mass regime have also a small disc lifetime (see grey lines
n Fig. 11 ). Quantitatively, by eliminating t acc, 0 in equation ( 38 ) and
 44 ), the shape of the isochrone in the fiducial case is 

˙
 ∗ = 

1 

(1 + f M, 0 ) t 
M D 

ln M 0 /M D 

. (62) 

nterestingly, the isochrone depends on the mass ejection-to- 
ccretion ratio f M , 0 as Ṁ ∗ is lowered by the wind mass-loss rate. 
he effect of wind mass-loss rate is simply to shift the disc isochrone
ownward. This means that f M , 0 could be constrained from disc 
emographics. 
Fig. 12 shows that the shape of the isochrone depends critically 

n the transport of angular momentum. This difference is the result
f different slopes of the disc evolutionary tracks (see orange lines, 
ig. 12 ). In the pure viscous case ( ψ = 0), we reco v er the result of
odato et al. ( 2017 ) that the isochrone converges at low disc masses

owards a linear relation between Ṁ ∗ and M D . Quantitatively, for t 
t acc, 0 = t ν, 0 and a spatially constant αSS , the disc lifetime does not

epend on the initial accretion time-scale but on the disc age as t lt �
 t , which is by definition the same along an isochrone. Interestingly,
his asymptotic behaviour does not depend on the power-law index 
f α. In fact, for t � t ν, 0 and αSS ∝ r −1 + γ , the disc lifetime is t lt 
 2(2 − γ ) t (Jones et al. 2012 ; Rosotti et al. 2017 ). In other words,

n the turbulent case, the isochrones align along a constant M D 

/ Ṁ ∗
ine that is about the age of the isochrones. 

In the hybrid case, the isochrones share features of both pure wind
nd pure viscous case. Quantitatively, the isochrones write: 

˙
 ∗ = 

ψ + 1 + 2 ξ

2(1 + f M, 0 ) t 
M D 

[ 

1 −
(

M D 

M 0 

) 2 
ψ+ 1 + 2 ξ

] (
M D 

M 0 

) 2 ξ
ψ+ 1 + 2 ξ

� 

ψ + 1 

2(1 + f M, 0 ) t 
M D 

[ 

1 −
(

M D 

M 0 

) 2 
ψ+ 1 

] 

for ξ � 1 . (63) 

he isochrone can be decomposed in two parts. In the high mass
art, corresponding to discs that are in an early stage of evolution, the
sochrone is similar to that of the pure wind case as viscous spreading
oes not impact the disc evolution. In the low mass part, the isochrone
ligns along a constant M D 

/ Ṁ ∗ line as viscous spreading takes o v er.
his defines the viscous regime for which t lt � 2 t (1 + f M 0 )/(1 + ψ),
egardless of the initial t acc, 0 . 

In the � c -dependent wind torque solutions, the bending of the
sochrone is less pronounced as disc evolutionary tracks are flatter. 
uantitatively, the isochrone writes 

˙
 ∗ = 

1 

ω(1 + f M, 0 ) t 
M D 

( (
M D 

M 0 

)−ω 

− 1 

) 

. (64) 

he lower mass part of the isochrone corresponds to discs that are in
he process of being dispersed t disp � t . This implies that at low disc

ass, the isochrone converges towards the evolutionary track of the 
isc that is being dispersed and follows Ṁ ∗ ∝ M 

1 −ω 
D 

. However, the
robability to find a disc that is in the low mass part of the isochrone
s low since it corresponds to a short lived state. The isochrone should
hen be truncated at low M D . 

 DI SCUSSI ON  

.1 Obser v ational constraints on MHD disc winds 

he direct observation of MHD disc wind candidates provides us with
rst constraints on wind parameters. The measurement of the rotation 
ignature, the axial velocity, and the mass-loss rate of outflo ws allo ws
ne to determine the launching region of the MHD disc wind, the
ass ejection-to-accretion ratio, the magnetic lever arm parameter, 

nd the fraction of angular momentum e xtracted v ertically (Anderson 
t al. 2003 ; Ferreira, Dougados & Cabrit 2006 ; Tabone et al. 2020 ). 

ALMA has already unveiled rotation signatures in outflows from 

mbedded protostars, for which the mass-loss and accretion rates 
re the highest (Bjerkeli et al. 2016 ; Tabone et al. 2017 ; de Valon
t al. 2020 ). Magnetic lever arm parameters are consistently found
o be low, typically between λ = 1.6 −5. Mass-loss rates are about
he accretion rates ( f M 

� 1) and, at least in the HH212 protostar,
ompatible with an MHD disc wind that extracts most of the angular
omentum required to drive accretion from the bulk part of the disc

out to 40 au; Tabone et al. 2020 ). 
Regarding Class II discs, early studies have unveiled rotation 

ignatures in atomic jets ( � 50 km s −1 ) suggestive of MHD disc
inds launched from the inner regions of the discs ( � few au) with
agnetic lever arm of λ� 4 and low mass-loss rates of Ṁ W 

� 0 . 1 Ṁ ∗
see Ferreira et al. 2006 , and references therein). Ho we ver, the
resence of MHD disc winds launched from the bulk part of the
isc remains largely unconstrained. Louvet et al. ( 2018 ) found a
assive rotating outflow emanating from the HH30 T Tauri star 

uggestive of an MHD disc wind that has a mass-loss rate about the
ccretion rate, a low magnetic lever arm ( λ � 1.6), and a launching
adius about a fe w au. Ho we ver, the appearance of the outflow as a
-shape cavity suggests that it is not pristine wind material but rather
hocked gas tracing the interaction of the wind with the jet (Tabone
t al. 2018 ), also seen in DG Tau B and HH212 (de Valon et al. 2020 ;
ee et al. 2021 ). This perturbation of the wind by a fast jet might bias

he determination of the angular momentum extracted by the wind 
r the launching re gion. Ov erall, it remains to be determined if the
carcity of clear CO winds launched from extended regions of Class II
iscs is due to the absence of MHD disc winds, the low sensitivities
eached by current observations (in particular in 12 CO lines), or 
he destruction of CO in the wind. In fact observations conducted
n the visible at high spectral resolution provide further evidence 
or a slow atomic component (‘narrow low velocity components’) 
hat could either trace photoe v aporati ve winds or MHD disc winds
Simon et al. 2016 ; Pascucci et al. 2020 ). Still, the lack of spatial
MNRAS 512, 2290–2309 (2022) 
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Figure 12. Isochrones and evolutionary tracks depending on the parameters of the solutions for an initial disc mass of M 0 = 10 −2 M �. The isochrones are 
plotted in solid lines with the age t that is colour coded ( t = 0, 1, 10 Myr). By definition, all the discs located along an isochrone start with the same disc mass 
but a different initial t acc, 0 such that their initial accretion rate is different. Discs of different t acc, 0 are highlighted by markers with t acc, 0 ranging from 0.05 to 
12.8 Myr as indicated in Fig. 11 . The wind parameters are set to λ = 3 and r c / r in = 50, which corresponds to a mass ejection-to-accretion ratio of f M , 0 = 1.7 in 
the pure wind cases (bottom panels) and f M , 0 = 1 for ψ = 3 (top right-hand panel). The effect of the mass-loss rate is to lower the accretion rate by a factor (1 
+ f M , 0 ). Therefore, a change in the relative mass-loss rate would simply shift the isochrones vertically. 

a  

o  

c  

d
 

M  

f  

o  

d  

p  

t  

b  

o

4

T  

a  

p  

d  

T  

p  

c  

t

4

O  

a  

e  

s  

b  

a  

e  

c  

e  

d  

S  

d  

r  

2  

p  

2  

d  

d  

w  

f
 

a  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/2/2290/6445056 by Jacob H
eeren user on 11 M

ay 2022
nd spectral resolution prevents us from deriving robust estimates
f the wind mass-loss rates and λ. Detailed modeling including
hemistry and thermal balance is warranted to further interpret these
ata. 
To conclude, observations of young protostars show evidence of
HD disc winds with λ � 1.6 −5 and f M 

� 1. MHD winds launched
rom the bulk part of Class II discs are largely unconstrained. Further
bservational campaigns at high spectral resolution, combined with
etailed astrochemical modelling, are required to further test the
resence of MHD disc winds and constrain the wind parameters. In
he absence of such constraints, disc demographics can turn out to
e a complementary and independent approach to test the presence
f MHD disc winds. 

.2 Obser v ational perspecti v es on disc demographics 

he analytical solutions presented in this work pave the road to
ssess the role of MHD disc winds from the observations of disc
opulations. In this section, we discuss the analysis that can be con-
ucted to confront these simple analytical solutions to observations.
his also allows us to give first quantitative estimates of the key
arameters of the solutions presented in this work. A first detailed
omparison between the � c -dependent wind torque solutions and
he observations is presented in a companion paper (Tabone 2022 ). 
NRAS 512, 2290–2309 (2022) 
.2.1 Corr elating sour ce properties with sour ce a g e 

ur secular model predicts the evolution of disc radius, mass,
nd accretion rate with time. A possible approach to test our disc
volution models would then be to directly study the evolution of
ource properties with the source age. This approach has already
een adopted to analyse the decline of the accretion rate with source
ge in the viscous paradigm (Hartmann et al. 1998 ; Caratti o Garatti
t al. 2012 ). Ho we ver, the simplicity of this approach hides important
aveats. First of all, the unknown systematic uncertainties on the
stimation of the stellar ages leads to systematic errors on the depen-
ence of source parameters with source age (Soderblom et al. 2014 ).
econdly, this approach does not consider disc dispersal that could
rive the observed evolution of the disc properties by preferentially
emoving discs with specific properties (see e.g. Somigliana et al.
020 , for the viscous case). This ‘survivorship bias’ is expected to
lay a role for source ages larger than the disc dispersal time ( �
 −3 Myr). In fact, in a companion paper, we show that for the � c -
ependent wind torque solutions, the median accretion rate declines
ue to the dispersal of the discs with the highest accretion rates
hereas the accretion rate of an individual disc is constant o v er time

or ω = 1 (see Supplementary material in Tabone 2022 ). 
In order to mitigate the first caveat, it is now common to study the

ccretion rates and disc properties (mass, size...) of a given cluster,
ssuming a similar age for the disc population (e.g. Manara et al.
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016b ; Mulders et al. 2017 ). The second caveat highlights the need
or a disc population synthesis approach. Whereas this work provides 
odels required to build such synthetic populations, this approach is 

eyond the scope of this work. 

.2.2 Disc size 

he simplest distinctive feature between wind-driven and turbulence- 
ri ven e volution lies in the evolution of disc size. In particular, our
ecular model including turbulent transport predicts that the disc 
haracteristic radius increases with time on a time-scale of t ν, 0 = 

 acc, 0 (1 + ψ). In the case of � c -dependent wind torque solutions,
urbulence is neglected. Ho we ver, one can expect that in the presence
f a non-vanishing level of turbulence, the disc spreading would also 
appen on a viscous time-scale t ν, 0 . 
Therefore, the measurement of disc sizes could constitute a 

iscriminant test between wind-driven and turbulence-driven ac- 
retion and provide valuable constraints on the viscous time-scale. 
o we ver, the measurement of the disc characteristic radius remains 

hallenging. Continuum sizes have been measured toward a large 
ample of sources in star forming regions of different ages. However, 
he characteristic size of dust emission is mostly indicative of dust
rowth and drift processes rather than the true radial profile of the gas
Powell et al. 2019 ; Rosotti et al. 2019a , b ). As such, the observation
f a rather constant continuum size between Class 0, I, and II discs
f about � 50 au (Tobin et al. 2020 ; Sanchis et al. 2021 ) should be
nterpreted with caution. 

Alternatively, characteristic emission radii of CO rotational lines 
ave been measured, though on a smaller sample of sources due to
ensitivity issues (Barenfeld et al. 2017 ; Ansdell et al. 2018 ; Sanchis
t al. 2021 ). Ho we ver, this characteristic radius is indicati ve of the
egion of the disc where the CO lines become optically thin, either due
o a drop in the surface density profile or a drop in CO abundance
ue to e.g. photodissociation (Trapman et al. 2019 ). Nevertheless, 
iscous models coupled to detailed modelling confirm that in general 
he observed radius, although in general not a good tracer of true
haracteristic radius, is expected to expand with time with a rate 
ncreasing with the magnitude of the viscosity (Trapman et al. 2020 ).
herefore, detailed modelling including chemistry, thermal balance, 
nd radiative transfer are required to derive the true characteristic 
adius r c from the observed CO emission profile. Moreover, deep 
LMA observations in the gas are still missing to measure disc gas

ize in the majority of the discs. 

.2.3 Disc lifetime and initial accretion time-scale 

s shown in Section 3.5 , the observed disc lifetime t lt = M D 

/ Ṁ ∗
ives an upper limit to the instantaneous accretion time-scale t acc ( t )
see equation 54 ). If f M 

� 1, t lt ( t ) � 2 t acc ( t ). ALMA and XShooter
urv e ys found t lt � 1 −3 Myr in the 2 Myr old clusters of Lupus
nd Chamaeleon implying an instantaneous accretion time-scale of 
bout t acc (2 Myr) � 1 Myr. Ho we ver, this v alue is not necessarily the
nitial accretion time-scale t acc, 0 . In the hybrid case, t acc, 0 � 1 Myr
s t acc ( t ) increases with time. In the pure wind case, t acc, 0 � 1 Myr
s t acc ( t ) decreases with time (see Fig. 10 a). Still, as long as the
ind torque dominates, the instantaneous accretion time-scale gives 
 rough estimate of t acc, 0 . This is because even in the � c -dependent
orque solutions, t acc ( t ) is almost constant during most of the disc
ifetime and decreases substantially only when the disc is on the 
erge of dispersal. We can therefore anticipate that typical values of
he initial accretion time-scale t acc, 0 are of the order of a Myr. This
ontrasts with viscous accretion for which t acc, 0 can be much shorter
han t lt ( t ) as t lt ( t ) � t for t � t acc, 0 = t ν, 0 . 

Provided an independent measurement of r c ( t ) is available, one
ould then derive an estimate of ˜ α. Quantitatively, for ε( r) =
 . 1( r/ 50 au ) 1 / 4 , 

˜ ( t) = 1 . 9 × 10 −3 

(
t acc ( t) 

10 6 yr 

)−1 (
r c ( t) 

50 au 

)(
M ∗

1 M �

)−1 / 2 

. (65) 

ssuming a typical disc characteristic radius of r c = 50 au, we then
erive ˜ α( t = 2 Myr) � 10 −3 . Again, if accretion is driven by a wind,
his value provides us with a rough estimate of the initial value of
DW 

. Ho we ver, these constraints do not allow one to distinguish
etween the two accretion mechanisms. 

.2.4 Ṁ ∗ − M D 

correlation 

ombining ALMA and VLT/XShooter surv e ys, Manara et al. 
 2016a ) and Mulders et al. ( 2017 ) found the first evidence for
 correlation between accretion rate and disc mass in Lupus and
hamaeleon with a nearly linear relationship and a large scatter of
bout 1 dex around this trend. 

In this section, we discuss under what conditions our solutions 
redict such features in the Ṁ ∗ − M D 

plane. A detailed investigation 
f this question requires us to build realistic disc population synthesis
odels. Here, we use a toy population model, starting from a sample

f discs with four initial masses ranging from M 0 = 10 −4 to 10 −1 M �,
nd 9 values of t acc, 0 ranging from 0.02 to 5 Myr. These values are
n line with the masses of Class I discs (Tobin et al. 2020 ; Tychoniec
t al. 2020 ) and the constraints on t acc, 0 obtained in Section 4.2.3 .
 realistic disc population model based on the � c -dependent wind

orque solutions is presented in a companion paper (Tabone et al.
022 ). 
Fig. 13 shows the location of the synthetic discs in the Ṁ ∗ − M D 

lane after 2 Myr for different solutions. We recall that discs that
ave started with the same masses are located along the same disc
sochrone (purple curves). In the viscous case (Fig. 13 a), we reco v er
hat the majority of the discs aligns along the same line of constant t lt 
 4 Myr, regardless of the initial disc mass. This is a typical feature

lready discussed by Lodato et al. ( 2017 ) and Rosotti et al. ( 2017 ).
ecause of viscous spreading, that takes o v er disc evolution for t �

 acc, 0 = t ν, 0 , the initial conditions of the discs are ‘reset’ as the disc
ifetime converges toward t lt � 2 t , regardless of the initial disc mass
r t acc, 0 . The corollary is that the dispersion of the data around the
ain trend shrinks for discs with t � t acc, 0 = t ν, 0 . 
In the hybrid case (Fig. 13 b), we still reco v er a tight correlation

etween Ṁ ∗ and M D for discs that are in the viscous regime ( t �
 ν, 0 = (1 + ψ) t acc, 0 ), regardless of the initial disc mass or t acc, 0 .
ecause the viscous time-scale is longer as t ν, 0 = t acc, 0 (1 + ψ), a

lightly larger fraction of discs are off the main trend. On average,
he disc masses have also declined more as wind accretion is more
fficient than viscous accretion. 

Figs 13 (c)–(d) show that in the case of pure wind-driven accretion,
iscs starting with different M 0 and t acc, 0 do not align along the same
onstant M D 

/ Ṁ ∗ line after 2 Myr. In other words, the isochrones
o not o v erlap in the low mass part, in contrast to the viscous case.
his essential feature is due to the absence of disc spreading: each
isc keeps the memory of its initial conditions. It follows that in
ontrast to the viscous cases, a correlation between Ṁ ∗ and M D is
ot expected for arbitrary initial conditions. 
Ho we ver, a correlation between Ṁ ∗ and M D can be obtained for

pecific initial conditions. In particular, starting from a large spread in
MNRAS 512, 2290–2309 (2022) 
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M

Figure 13. Distribution of the discs in the Ṁ ∗ − M D 

plane after t = 2 Myr depending on the solutions and starting from a distribution in M 0 and t acc, 0 . The 
isochrones are plotted in each panel in solid lines for different initial disc mass ( M 0 = 10 −4 , 10 −3 , 10 −2 , 10 −1 M �). The dots represent individual discs that 
have started with t acc, 0 ranging from 0.02 to 5 Myr with logarithmic steps. The cyan circles in the bottom panels (pure wind cases) highlight discs born with 
t acc, 0 = 2.5 Myr. In the � c -dependent wind torque solution (panel d), discs born with t acc, 0 < t disp have dispersed. 
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 0 but a single value of t acc, 0 , we predict a perfectly linear correlation
etween M D and Ṁ ∗ (see points highlighted in Figs 13 c–d). The
nitial distribution of M 0 is also crucial for the Ṁ ∗ − M D 

correlation.
n the extreme case of a single initial disc mass, the disc population is
onfined to an isochrone, which is not a linear function. For the initial
istributions of t acc, 0 and M 0 adopted in Figs 13 (c)–(d) we reco v er
 correlation between Ṁ ∗ and M D . As a rule of thumb, a correlation
ith a nearly linear relationship is obtained if the distribution of t acc, 0 

s the same for all the values of the initial disc mass M 0 and with
 rather broad distribution of initial disc mass. Further investigation
hould determine how much correlation between the initial t acc, 0 and
 0 can be introduced before altering significantly the relationship.
his illustrates the fact that for wind-driven accretion, the distribution
f the discs in the M D 

− Ṁ ∗ plane carries information about the ini-
ial conditions of the disc population set during the protostellar phase.

Another striking difference between viscous and wind accretion in
ig. 13 is the large dispersion of the discs around the mean trend in the

atter case. Indeed, for wind-driven accretion, discs keep the memory
f their initial conditions: a dispersion in the initial disc lifetime t lt =
 D 

/ Ṁ ∗, which reflects a distribution in t acc, 0 , is maintained during
he evolution of the population. For the fiducial solution, the value of
 lt of each of the disc is constant o v er time and proportional to t acc, 0 

see Section 3.5.1 and Fig. 10 a). As a result, a large dispersion in t acc, 0 

esults in a dispersion in t lt at any time. For the � c -dependent wind
orque solution, the situation is more complicated as t lt decreases
ith time whereas discs born with the lowest t lt (i.e. lowest value of

 acc, 0 ) disperse first. Detailed studies using a disc population synthesis
pproach are required to better determine how the dispersion in the
bserved disc lifetime t lt reflects the initial distribution of t acc, 0 . 
NRAS 512, 2290–2309 (2022) 
In other words, in the wind case, the Ṁ ∗ − M D 

correlation reflects
he initial properties of the disc population. If M 0 and t acc, 0 have a
arge spread and if the distribution of t acc, 0 is independent of M 0 , a
inear correlation with a large dispersion around the mean trend is
redicted. 

.2.5 Disc dispersal 

isc dispersal is one of the most fundamental feature of disc
 volution. Extensi v e surv e ys in the optical and infrared have shown
hat discs disperse after a typical time of about t disp = 2 −3 Myr in a
hort dispersal time-scale of � t disp � 0.5 Myr (Simon & Prato 1995 ;
olk & Walter 1996 ). 
Armitage et al. ( 2013 ) have shown that MHD wind accretion can

nduce fast disc dispersal if the magnetization increases with time,
ue to a slower dissipation of the magnetic field compared to the
as (see also Bai 2016 ; Suzuki et al. 2016 ). In contrast with the
iscous scenario, wind-driven accretion would then account for both
isc accretion and disc dispersal. Our � c -dependent wind torque
olutions provide us with a simple framework to describe this process
nd analyse the observational data. In particular, we predict that the
ispersal time t disp depends on t acc, 0 and ω as 

 disp = 

2 t acc , 0 

ω 

. (66) 

Because disc dispersal is connected to the accretion process,
he constraints on t acc, 0 obtained from disc dispersal prescribe the
ccretion properties. One can already notice that for ω = 1, the
ypical dispersal time of τ � 2.5 Myr implies a typical accretion

art/stab3442_f13.eps
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ime-scale of t acc, 0 � 1 Myr. This is in line with the value of t acc, 0 

stimated from the observed median disc lifetime of t lt � 1 −3 Myr
see Section 4.2.3 ). Ho we ver, disc population synthesis models are
equired to properly reproduce both disc dispersal and the accretion 
roperties. In a companion paper, we follow this argument and show 

hat disc dispersal and accretion properties can be simultaneously 
eproduced by the � c -dependent wind torque solutions. 

The solutions of constant αDW 

might seem to be incompatible 
ith disc dispersal as disc mass and accretion rate never drop to

ero. Ho we ver, the drop in M D ( t ) and Ṁ ∗( t) is steep and the disc will
e undetectable in the IR and in the visible (via accretion signatures)
fter a finite time, which depends on the detection limits and on the
xact values of the disc parameters ( M 0 , t acc, 0 , ψ). Detailed models
re thus required to assess if solutions of constant αDW 

can reproduce 
isc dispersal and accretion properties. 

.3 Relation between α-parameters and the disc physics 

umerical simulations or semi-analytical wind solutions can be used 
o relate the phenomenological α and λ parameters to disc physical 
uantities. αDW 

is certainly the most important parameter of our 
olutions and is roughly proportional to the magnetization of the 
isc, also denoted as the inverse of the β0 parameter, where 

0 ≡ 8 πP 0 

B 

2 
z, 0 

(67) 

s the thermal-to-magnetic pressure ratio in the mid-plane, with 
 z, 0 the strength of the vertical component of the magnetic field 

n the mid-plane. In fact, combining equations ( 3 ) and ( 6 ), αDW 

is
roportional to < B z B φ > e v aluated in the disc upper layers: 

DW 

= 

8 

3 
√ 

2 π

< B z B φ > z=±H W 

4 πεP 0 
, (68) 

here we assumed < B z B φ > z=+ H W 
= < B z B φ > z=−H W 

. For typical
iscs dominated by ambipolar or Ohmic effects, B z is roughly 
onstant o v er the disc scale height whereas B φ increases with altitude.
he exact amount of B φ generated in the atmosphere depends on 

he detailed microphysics of the disc. Global numerical simulations 
ypically find B φ( z = ±H W 

)/ B z, 0 ∼ 1 −20 (Casse & Keppens 2002 ;
ai 2017 ; B ́ethune et al. 2017 ). Combining the latter relation and
quation ( 68 ) gives 

DW 

� 2 − 40 × 10 −3 
(
β0 / 10 4 

)−1 
( ε/ 0 . 1 ) −1 . (69) 

he constraints on αDW 

obtained in Section 4.2.3 from the observed 
isc lifetime translate to a typical value of the initial magnetization 
f about β0 � 10 5 with a rather large spread. Using equation ( 65 )
n the pure wind-driven case, equation ( 69 ) can be translated to a
elation between t acc, 0 and the initial value of β0 at r = r c : 

 acc , 0 � 0 . 05 − 1 × 10 6 yr 
(
β0 ( r c ) / 10 4 

)
× ( r c / 50 au ) 5 / 4 ( M ∗/ 1 M �) −1 / 2 , (70) 

here we assume ε( r ) = 0.1( r /50 au) 1/4 and a constant αDW 

across
he disc. 

The values of αSS is highly uncertain since it depends on the 
bility of the disc to develop the MRI. It can thus vary by orders of
agnitudes for the same disc magnetization. We also note that even 

n the absence of MRI, radial transport of angular momentum can 
ccur due to various kinds of instabilities such as the vertical shear
nstability leading to αSS values of about ∼10 −4 . 
.4 Assumptions for the analytical solutions 

he α-framework defined is Section 2 provides modelers with a 
imple parametrization of wind-driven accretion that can be used to 
ompute numerical solutions, with αDW 

, αSS , and λ parameters that 
ary both in space and time. In this work, in order to obtain analytical
olutions, we made a number of simplifying assumptions on the radial 
rofile and the time dependence of the phenomenological parameters. 
Following equation ( 69 ), the assumption of αDW 

constant across 
he disc amounts to assuming that the magnetization of the disc is
lmost constant across the disc with β0 ( r ) ∝ ε( r ) −1 ∝ r −1/4 for the
ssumed temperature profile of T ( r ) ∝ r −1/2 . The extension of the
olutions to α-parameters and temperature with arbitrary power-law 

ependence on radius can describe any power-law distribution of 
0 ( r ) or T ( r ) (see Appendix C ). 
The dependence of αDW 

with time, investigated in the pure wind 
ase ( αSS = 0), can be seen as a result of the evolution of the
agnetic field strength. The secular evolution of the magnetic field 

n wind-driven accretion discs remains largely unknown (Lubow, 
apaloizou & Pringle 1994 ; Guilet & Ogilvie 2014 ; Okuzumi,
akeuchi & Muto 2014 ; Takeuchi & Okuzumi 2014 ; Bai & Stone
017 ). In the first class of solutions, the assumption of constant
DW 

amounts to assuming that the evolution of the magnetic field is
uch that β0 remains locally constant o v er time (see equation 69 ).
he effect of the evolution of the magnetic field is highlighted
y the second class of solutions. For ω = 1, αDW 

∝ � 

−1 
c . Since

DW 

∝ B 

2 
z /�, the latter relation implies that B z is locally constant

 v er time. The solutions with 0 < ω < 1 describe intermediate cases
or which the magnetic field strength declines more slowly than the
urface density of the gas. Overall, our finding that for ω ≥ 0 the disc
s fully dispersed at a finite time demonstrates the decisive role of the
ransport of the magnetic field in the dispersal of the disc. In turn,
he transport of the magnetic field can be observationally constrained 
rom disc demographics. 

Our self-similar ansatz ( 27 ) assumes that the disc exhibits a power-
aw surface density profile tapered by an exponential cutoff. One 
an wonder if a different initial profile would naturally converge 
owards this self-similar ansatz. In viscous discs, it has been shown
hat the viscous spreading naturally produces the exponential cutoff 
ssumed in the Lynden-Bell & Pringle ( 1974 ) self-similar solutions.
n contrast, in pure wind-driven case, the gas is simply advected 
owards the star such that � keeps memory of the initial condi-
ions. The use of the ansatz ( 27 ) in the wind-driven case might
hen appear somewhat arbitrary. One can invok e tw o arguments
o justify the initial surface density profile: the formation of the
isc can lead to this kind of profile, due to the distribution of
ngular momentum in the collapsing envelope, or a small amount of
urbulence (non-vanishing αSS ) that would produce a smooth outer 
dge even if the transport of angular momentum is dominated by the
ind. 
The inner radius of the disc denoted as r in plays an important role

n our solution as it sets the wind mass-loss rate (see equation 32 ).
ecalling that our disc model is designed to describe the bulk part
f the disc, one has to consider r in as the inner radius of the wind-
aunching region, typically about a few au and not necessarily the
nner radius of the disc which is about 0.05 au in T Tauri discs. In
hat case, our expressions of Ṁ ∗( t) are valid under the assumption
hat the accretion rate is constant across the innermost disc, between
.05 and few au. In that region, the angular momentum can be either
ransported by turbulence or by a fast MHD disc wind observed as
 jet (Pesenti et al. 2004 ) with a low mass-loss rate (Nisini et al.
018 ). 
MNRAS 512, 2290–2309 (2022) 
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.5 Comparison with previous evolution models 

ver the past few years, a handful of models have been proposed
o describe the secular evolution of discs under the effect of an

HD disc wind (Armitage et al. 2013 ; Bai 2016 ; Suzuki et al. 2016 ;
ase ga wa et al. 2017 ; Khajenabi et al. 2018 ; Chambers 2019 ). As

n this work, they all rely on v ertically inte grated disc equations
hat allow us to follow the disc evolution on Myr time-scales. The

ain difference between these models lies in the prescriptions of the
ind and turbulent stress tensors, and in the local mass-loss rate (see

quation 1 ). The equi v alence between the different parameters found
n various papers are summarized in Appendix B . 

In this paper, we parametrize the radial and vertical stress tensors,
nd the mass-loss rate using the phenomenological α and λ param-
ters rather than relying on self-consistent models of magnetized
isc. Therefore, our model does not depend on the details of the
hysical and chemical structure of the disc nor on results of numerical
imulations. This approach is very similar to that followed by
immig et al. ( 2020 ) in the context of planet migration but has the

dvantage that αDW 

has a considerably easier physical interpretation.
his contrasts with the majority of the published models. In their
ioneering work, Armitage et al. ( 2013 ) use results of shearing-box
imulations to compute the resulting torques from an assumed disc
agnetization (see also Hase ga wa et al. 2017 ; Khajenabi et al. 2018 ).
ai ( 2016 ) uses instead semi-analytical wind solutions that describe

he launching of the wind from a warm atmosphere threaded by a
agnetic field of prescribed configuration. Our approach is closer to

hat of Suzuki et al. ( 2016 ) who parametrize the wind torque using an
-like parameter. In the latter study, the mass-loss rate is parametrized
sing sophisticated energetic arguments. The drawback of this kind
f parametrization is to introduce characteristic scales related to the
ass-loss rate and rely on uncertain assumptions on the wind mass-

oading. Moreo v er, this comple x parametrization prev ents one from
nding simple and exact analytical solutions (Chambers 2019 ) that
re key for the exploration of the parameter space and the comparison
o observations. 

Despite these differences, our analytical solutions capture most of
he key features of the disc evolution solutions that have been quali-
atively analysed using numerical solutions. In particular, Armitage
t al. ( 2013 ) already observed the spreading of the disc in hybrid
olutions. Our analytical solutions show that in the simple case of
onstant α-parameters, this spreading occurs according to the viscous
ime-scale as in the pure viscous case (see equation 36 ). Armitage
t al. ( 2013 ), followed by Bai ( 2016 ), have also demonstrated that a
onstant magnetic flux leads to the full dispersal of the disc at finite
ime. Our second class of analytical solutions describes a range of
ituation for which the magnetic flux, or, equi v alently, the magnetic
eld strength declines at slower pace than the gas. One of the features

hat is not captured by our analytical solutions is the formation of a
avity predicted by Suzuki et al. ( 2016 ). This is due to the simplifying
ssumption of uniform α and λ parameters which does not introduce
ny specific scale in the solution. A more sophisticated prescription
f the spatial and temporal evolution of α and λ, as done in Suzuki
t al. ( 2016 ), can be adopted to reco v er these types of solutions
f strong constraints are available on what the characteristic scale
hould be. 

 C O N C L U S I O N S  

n this work, we present an extension of the α-framework to describe
he secular evolution of discs for which accretion is go v erned by
n MHD disc wind. The wind torque is parametrized using an αDW 
NRAS 512, 2290–2309 (2022) 
arameter that can be readily compared to the αSS parameter. The
ass-loss rate is parametrized using the λ parameter that can be

bservationally constrained. Whereas the formalism can be used to
ompute the evolution of a disc with αDW 

, αSS , and λ that vary
n space and time, we made a number of simplifying assumptions
o find analytical solutions. These analytical solutions constitute an
xtension of the canonical Lynden-Bell & Pringle ( 1974 ) solutions.
he strength of these self-similar solutions is two-fold: first, the

undamental features of wind-driven accretion are analysed in detail.
n particular, we show that the absence of the disc spreading leads to
 steep decline of the disc mass, in contrast with viscous accretion.
f the strength of the magnetic field declines slowly with time, the
volution of the disc is even more radical as it is fully dispersed after
 finite time. Secondly, these solutions open a new avenue to test
HD wind-driven accretion from the observed disc demographics.
epending on the wind torque and on the evolution of the magnetic
eld, a population of discs is shown to cluster in a specific way

n the Ṁ ∗ − M D 

plane. Interestingly, we show that wind-driven
ccretion can produce a broad dispersion in the Ṁ ∗ − M D 

plane and
 correlation between Ṁ ∗ − M D 

depending on the initial conditions
f the disc population. Observationally constrained disc evolution
odels will be crucial to build realistic planet formation models in

he emerging paradigm of MHD disc winds. 
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PPENDI X  A :  MASTER  EQUATI ON  

n this section, the master equation ( 10 ) is derived from the basic
HD equations. The conservation of angular momentum in cylin- 

rical coordinates writes 

 t ( ρr � φ) = − 1 

r 
∂ r 

{
r 2 

(
ρ� r � φ − B r B φ/ 4 π

)}
− ∂ z 

{
r 
(
ρ� φ� z − B z B φ/ 4 π

)}
. (A1) 

e further assume that the disc is geometrically thin, isothermal, and
n nearly Keplerian rotation, decomposing the azimuthal velocity as 
 φ = r� + δ� φ . Equation ( A1 ), integrated between the top and the
ottom surface of the disc, gives 

 t ( �r 2 �) = − 1 

r 
∂ r 

{
r 3 �� � r 

} − 1 

r 
∂ r 

{
r 2 

∫ + H W 

−H W 

T rφdz 

}

− r 2 ��̇ W 

− r| T zφ | + H W 

−H W 
, (A2) 

here �̇ W 

is the wind mass-loss rate per unit surface, and T r φ and
 zφ are the components of the stress tensor associated to the radial
nd vertical transport of angular momentum. Their expressions are 
iven in equations ( 2 ) and ( 3 ). H W 

denotes the typical scale height
rom which the wind is launched, which is about a few times the
ydrostatic scale height. 

The conservation of the mass writes 

∂ t ρ = − 1 

r 
∂ r [ rρ� r ] − ∂ z [ ρ� z ] , (A3) 
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hich leads to the vertically integrated form 

∂ t � = − 1 

r 
∂ r [ r� � r ] − �̇ W 

. (A4) 

he adv ection v elocity � r is set by the extraction of angular mo-
entum. Combining equations ( A2 ) and ( A4 ), we obtain the master

quation 

 t � = 

2 

r 
∂ r 

{
1 

r�
∂ r 

(
r 2 

∫ + H W 

−H W 

T rφdz 

)}
+ 

2 

r 
∂ r 

{ 

r| T zφ | + H W −H W 

�

} 

− �̇ W , (A5) 

hich describes the evolution of the surface density under the action
f the radial and vertical toques, and the wind mass-loss. In this work,
he torques are parametrized using the dimensionless parameters αSS 

nd αDW 

that can be straightforwardly injected in equation ( A5 ). 
In order to relate the wind mass-loss rate �̇ W 

to the wind torque,
e further assume that the angular momentum of the wind per unit
ass is proportional to that in the disc as quantified by the magnetic

ever arm parameter λ. The total angular momentum lost locally by
he disc per unit surface is then −λr 2 ��̇ W 

, and is equal to the last
wo terms of equation ( A2 ). Therefore, the local mass-loss rate is 

�̇ W 

= 

r| T zφ | + H W 

−H W 

�r 2 ( λ − 1) 
= 

3 αDW 

�c 2 s 

4( λ − 1) �r 2 
, (A6) 

here we adopt the definition of αDW 

provided in equation ( 6 ).
njecting this relation in equation ( A5 ), we obtain the master
quation ( 10 ). 

PPENDIX  B:  EQUIVA LENCE  BETWEEN  

UBLISHED  DISC  M O D E L S  

ver the past few years, a handful of disc evolution models have
een constructed, with various assumptions and using different
imensionless parameters to describe the wind torque and the mass-
oss rate. In this subsection, we provide the relation between these
arameters and our αDW 

and λ parameters to facilitate the comparison
ith previously published models. 
The wind torque is at the base of any disc evolution model. The

ormalized accretion stress W r φ is often defined as (e.g. Armitage
t al. 2013 ; Hase ga wa et al. 2017 ) 

 zφ ≡ | T zφ | + H W 

−H W 

2 ρ0 c 2 s 
= 

3 
√ 

2 π

8 
εαSS � εαDW 

. (B1) 

r by others (Suzuki et al. 2016 ) as 

¯ zφ ≡ 2 W zφ = 

3 
√ 

2 π

4 
εαDW 

. (B2) 

esur ( 2021 ) uses the parameter 

± ≡ ±T zφ( z = ±H w ) 

��2 H 

= 

3 

8 
εαDW 

. (B3) 

n their study about planet migration, Kimmig et al. ( 2020 ) do not
arametrize the wind torque directly but the local mass-loss rate with
 parameter b , and assume a constant magnetic lever arm parameter
. This leads to the conversion 

 ≡ 2 π�̇ W 

�� 

= 

3 π

2( λ − 1) 
ε2 αDW 

. (B4) 

The effect of the wind mass-loss rate in often neglected (e.g.
rmitage et al. 2013 ; Hase ga wa et al. 2017 ). Suzuki et al. ( 2016 )

dopt the parameter 

 W 

≡ �̇ W 

ρ0 c s 
= 

3 
√ 

2 π

4( λ − 1) 
ε2 αDW 

, (B5) 
NRAS 512, 2290–2309 (2022) 
hich is computed from considerations about the energetics of the
ow. Lesur ( 2021 ) uses instead the parameter 

± ≡ �̇ W 

2 ��
= 

3 

8( λ − 1) 
ε2 αDW 

= 

ευ±
( λ − 1) 

, (B6) 

ssuming that the enthalpy of the wind is negligible. 
Chambers ( 2019 ) uses three parameters to describe the impact

f turbulence and the disc wind on the evolution of the disc. The
qui v alence between our parameters and theirs can be found using
he parameters of Suzuki et al. ( 2016 ) (see equation B2 and B5 ) and
heir equation ( 5 ). 

PPENDI X  C :  EXTENSI ON  O F  T H E  H Y B R I D  

O L U T I O N S  TO  OTH ER  POWER  L AW S  

ssuming that αSS and αDW 

are constant in time and scale with
adius as αSS c 

2 
s ∝ r −3 / 2 + γ and αDW 

c 2 s ∝ r −3 / 2 + γ , the master equation
quation ( 10 ) can written using the dimensionless coordinates ˜ r =
/r c (0) and ˜ t = t/t ν, 0 as 

2 − γ ) 2 ∂ ˜ t � 

(
˜ r , ̃  t 

) = ˜ r −1 ∂ ˜ r 
(

˜ r 1 / 2 ∂ ˜ r ( ̃ r 
1 / 2 + γ � 

(
˜ r , ̃  t 

)
) 
)

+ 

ψ 

2 
˜ r −1 ∂ ˜ r { ̃ r γ � 

(
˜ r , ̃  t 

)} − ψ 

4( λ − 1) 
˜ r −2 + γ � 

(
˜ r , ̃t

(C1

here the viscous time-scale is 

 ν, 0 = 

r c 

3(2 − γ ) 2 εc c s,c αS S ,c 

. (C2) 

nd r c is an arbitrary radius. We also define the initial accretion
ime-scale as 

 acc , 0 = 

r c 

3(2 − γ ) 2 εc c s,c ̃  αc 

. (C3) 

The steady-state solution is found by assuming that the surface
ensity follows a power-law dependence with radius. This leads to
 ∝ r ξ − γ , where ξ is the mass ejection index given in equation ( 17 ).
Inspired by the steady-state solution and by the self-similar

olution of Lynden-Bell & Pringle ( 1974 ) for an arbitrary value
f γ , we find exact solutions of equation ( C1 ) using the ansatz
 

(
˜ r , ̃  t 

) = A ( ̃ t ) ̃ r −γ+ ξ e −( ̃ r / ̃ r c ( ̃ t )) 2 −γ
, where ˜ r c ( ̃ t ) is the characteristic

isc radius, ξ is the mass ejection index defined in equation ( 17 ), and
 ( ̃ t ) is a function of time only. Injecting this form in equation ( C1 )

eads to a system of two equations 

˙ c ( t) = 

1 

2 − γ
r c ( t) 

γ−1 , 

Ȧ ( t) = 

1 

2 − γ

(
γ − 5 

2 
− 2 ξ − ψ 

2 

)
r c ( t ) 

γ−2 A ( t ) . (C4) 

n dimensional form, the solution of the system is 

 c ( t) = r c (0)(1 + t/t ν, 0 ) 
1 / (2 −γ ) , 

A ( t) = A (0) 
(
1 + t/t ν, 0 

)−(5 / 2 −γ+ 2 ξ+ ψ/ 2) / (2 −γ ) 
. (C5) 

ewritting the ansatz as 

( r, t) = � c ( t)( r/r c ( t)) 
−γ+ ξ e −( r/r c ( t)) 2 −γ

, (C6) 

e find the solutions 

r c ( t) = r c (0) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)1 / (2 −γ ) 

, 

 c ( t) = � c (0) 

(
1 + 

t 

(1 + ψ) t acc , 0 

)−(5 + 2 ξ+ ψ) / (2(2 −γ )) 

. (C7) 
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he disc mass is then obtained using equation ( D3 ) 

 D 

( t) = M 0 

(
1 + 

t 

(1 + ψ) t acc , 0 

)−(1 + 2 ξ+ ψ) / 2(2 −γ ) 

. (C8) 

ollowing the case of γ = 1 detailed in Appendix E , one can also
how that the mass ejection-to-accretion ratio f M 

( t ) does not depends
n γ . Therefore the accretion rate can be derived from equations ( 41 ),
 32 ), and ( C8 ), which gives 

˙
 ∗( t) = Ṁ ∗, 0 

(
1 + 

t 

(1 + ψ) t acc , 0 

)−(5 −2 γ+ 4 ξ+ ψ) / 2(2 −γ ) 

, 

Ṁ ∗, 0 = 

1 + 2 ξ + ψ 

ψ + 1 

M 0 

2(2 − γ ) t acc , 0 (1 + f M, 0 ) 
. (C9) 

PPENDIX  D :  DISC  MASS  

he disc mass for both classes of solution can be obtained by
ntegrating the surface density over the full extent of the disc. For α
arameters constant in space, this gives 

 D 

( t) = 2 π� c ( t ) r c ( t ) 
2 
∫ +∞ 

r in /r c ( t) 
x ξ e −x d x 

� 2 πr c ( t ) 
2 � c ( t ) �( ξ + 1) , (D1) 

here � is the gamma function and where we assume r in � r c ( t ).
nterestingly, for λ > 3/2, ξ is smaller than unity and �( ξ + 1) ranges
rom 0.88 and 1. In this work, we assume �( ξ + 1) � 1. 

For α-parameters and a temperature that scales as αc 2 s ∝ r −3 / 2 + γ , 

 D 

( t) = 2 π� c ( t) r c ( t) 
2 
∫ +∞ 

r in /r c ( t) 
x 1 −γ+ ξ e −x 2 −γ

d x. (D2) 

y change of variable and assuming r c � r in , we obtain 

 D 

( t) � 

2 π� c ( t ) r c ( t ) 2 

2 − γ

∫ +∞ 

0 
x ξ/ (2 −γ ) e −x d x 

� 

2 π� c ( t ) r c ( t ) 2 

2 − γ
� 

(
ξ + 2 − γ

2 − γ

)
. (D3) 

PPENDIX  E:  MASS  

JECTION-TO -ACCRETION  RATIO  

n Section 3 , we defined for convenience the stellar accretion rate
nd the mass-loss rate using the mass ejection-to-accretion ratio 
 M 

( t) = Ṁ W 

( t) / Ṁ ∗( t). Here, we show that for the two classes of
nalytical solutions presented in this work, f M 

( t ) = ( r c ( t )/ r in ) ξ − 1. 
The total stellar accretion rate is the sum of the accretion rate due

o viscosity and due to the wind e v aluated at r = r in : 

˙
 ∗ = Ṁ 

visc 
acc ( r in ) + Ṁ 

DW 

acc ( r in ) . (E1) 

t any time, the surface density profile is �( r, t) =
 c ( t)( r/r c ( t)) −1 + ξ e −r/r c ( t) and equations ( 5 ) and ( 7 ) give 

˙
 

DW 

acc ( r in ) = 

ψ 

1 + ψ 

M D 

( t) 

2 t acc ( t) 
( r in /r c ( t)) 

ξ , 

Ṁ 

visc 
acc ( r in ) = 

2 ξ + 1 

1 + ψ 

M D 

( t) 

2 t acc ( t) 
( r in /r c ( t)) 

ξ , (E2) 
here t acc ( t ) is the instantaneous accretion time-scale defined in
quation ( 55 ) and where we assume r in � r c ( t ). The stellar accretion
ate is then 

˙
 ∗( t ) = 

ψ + 2 ξ + 1 

ψ + 1 

M D 

( t ) 

2 t acc ( t ) 
( r in /r c ( t )) 

ξ . (E3) 

With the self-similar ansatz, the local wind mass-loss rate given 
y equation ( A6 ) is 

˙
 W 

( r, t ) = 

ψ 

2( λ − 1)( ψ + 1) 

� c ( t ) 

2 t acc ( t ) 

(
r 

r c ( t ) 

)−2 + ξ

e −r/r c ( t) . (E4) 

nd the total mass-loss rate is 

˙
 W 

= 2 π
∫ +∞ 

r in 

�̇ ( r , t) r d r . (E5) 

ombining the latter two equations, the total mass-loss rate writes 

Ṁ W 

= 

ψ 

2( λ − 1)( ψ + 1 ) 

M D 

( t) 

2 t acc ( t) 

∫ +∞ 

0 
x −1 + ξ e −x d x, (E6) 

here we assumed r in � r c ( t ) and use the relation M D ( t ) =
 π� c ( t ) r c ( t ) 2 . The integral G ( ξ ) = 

∫ +∞ 

r in /r c 
x −1 + ξ e −x dx can be com-

uted using integration by part of the type 
∫ 

u 
′ 
( x ) v( x )d x =∫ 

u ( x ) v 
′ 
( x )d x + [ u ( x ) v( x )] with 

u ( x) = x u 

′ ( x) = 1 

v( x) = x −1 + ξ e −x v ′ ( x) = −v( x) + ( −1 + ξ ) x −2 + ξ e −x , 
(E7) 

his gives 

 ( ξ ) = 

∫ +∞ 

r in /r c 

x ξ e −x − ( −1 + ξ ) G ( ξ ) − ( r in /r c ) 
ξ . (E8) 

dopting r in / r c � 1 in the first RHS term and rearranging the terms
ives 

 ( ξ ) = 

1 

ξ
( �( ξ + 1) − ( r in /r c ) 

ξ ) . (E9) 

s for the disc mass, we adopt �( ξ + 1) � 1. The total mass-loss
ate ( E6 ) can then we re-written as 

Ṁ W 

= 

ψ 

4( λ − 1)( ψ + 1) ξ t acc ( t) 
M D 

( t)(1 − ( r in /r c ( t)) 
ξ ) . (E10) 

Combining equations ( E3 ) and ( E10 ) yields to 

 M 

( t) = 

ψ 

2 ξ ( λ − 1)(1 + 2 ξ + ψ) 

( (
r c ( t) 

r in 

)ξ

− 1 

) 

. (E11) 

rom the quadratic equation ( 16 ) that sets the expression of ξ , one
an note that (1 + 2 ξ + ψ) ξ = ψ /[2( λ − 1)]. This simplifies greatly
quation ( E11 ) and gives 

 M 

( t) = 

(
r c ( t) 

r in 

)ξ

− 1 . (E12) 
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