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Abstract

Early-stage disease indications are rarely recorded
in real-world domains, such as Agriculture and
Healthcare, and yet, their accurate identification is
critical in that point of time. In this type of highly
imbalanced classification problems, which encom-
pass complex features, deep learning (DL) is much
needed because of its strong detection capabili-
ties. At the same time, DL is observed in practice
to favor majority over minority classes and con-
sequently suffer from inaccurate detection of the
targeted early-stage indications. In this work, we
extend the study done by [Kocaman et al., 2020],
showing that the final BN layer, when placed be-
fore the softmax output layer, has a considerable
impact in highly imbalanced image classification
problems as well as undermines the role of the soft-
max outputs as an uncertainty measure. This cur-
rent study addresses additional hypotheses and re-
ports on the following findings: (i) the performance
gain after adding the final BN layer in highly im-
balanced settings could still be achieved after re-
moving this additional BN layer in inference; (ii)
there is a certain threshold for the imbalance ra-
tio upon which the progress gained by the final
BN layer reaches its peak; (iii) the batch size also
plays a role and affects the outcome of the final
BN application; (iv) the impact of the BN appli-
cation is also reproducible on other datasets and
when utilizing much simpler neural architectures;
(v) the reported BN effect occurs only per a single
majority class and multiple minority classes – i.e.,
no improvements are evident when there are two
majority classes; and finally, (vi) utilizing this BN
layer with sigmoid activation has almost no impact
when dealing with a strongly imbalanced image
classification tasks.

1 INTRODUCTION

Detecting anomalies that are hardly distinguishable from
the majority of observations is a challenging task that of-
ten requires strong learning capabilities since anomalies
appear scarcely, and in instances of diverse nature, a labeled
dataset representative of all forms is typically unattainable.
Despite tremendous advances in computer vision and object
recognition algorithms in the past few years, their effec-
tiveness remains strongly dependent upon the datasets’ size
and distribution, which are usually limited under real-world
settings. This work is mostly concerned with hard classifi-
cation problems at early-stages of abnormalities in certain
domains (i.e. crop, human diseases, chip manufacturing),
which suffer from lack of data instances, and whose effective
treatment would make a dramatic impact in these domains.
For instance, fungus’s visual cues on crops in agriculture
or early-stage malignant tumors in the medical domain are
hardly detectable in the relevant time-window, while the
highly infectious nature leads rapidly to devastation in a
large scale. Other examples include detecting the faults in
chip manufacturing industry, automated insulation defect
detection with thermography data, assessments of installed
solar capacity based on earth observation data, and nature
reserve monitoring with remote sensing and deep learning.
However, class imbalance poses an obstacle when address-
ing each of these applications.

In recent years, reliable models capable of learning from
small samples have been obtained through various ap-
proaches, such as autoencoders [Beggel et al., 2019], class-
balanced loss (CBL) to find the effective number of samples
required [Cui et al., 2019], fine tuning with transfer learn-
ing [Hussain et al., 2018], data augmentation [Shorten and
Khoshgoftaar, 2019], cosine loss utilizing (replacing cate-
gorical cross entropy) [Barz and Denzler, 2020], or prior
knowledge [Lake et al., 2015].

[Kocaman et al., 2020] presented an effective modifica-
tion in the neural network architecture, with a surprising
simplicity and without a computational overhead, which en-
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ables a substantial improvement using a smaller number of
anomaly samples in the training set. The authors empirically
showed that the final BN layer before the softmax output
layer has a considerable impact in highly imbalanced image
classification problems. They reported that under artificially-
generated skewness of 99% vs. 1% in the PlantVillage (PV)
image dataset [Mohanty et al., 2016], the initial F1 test score
increased from the 0.29-0.56 range to the 0.95-0.98 range
(almost triple) for the minority class when BN modifica-
tion applied. They also argued that, a model might perform
better even if it is not confident enough while making a pre-
diction, hence the softmax output may not serve as a good
uncertainty measure for DNNs (see Figure 1).

This shows that DNNs have the tendency of becoming ‘over-
confident’ in their predictions during training, and this can
reduce their ability to generalize and thus perform as well
on unseen data. In addition, large datasets can often com-
prise incorrectly labeled data, meaning inherently the DNN
should be a bit skeptical of the ‘correct answer’ to avoid
being overconfident on bad answers. This was the main mo-
tivation of Müller et al. [Müller et al., 2019] for proposing
the label smoothing, a loss function modification that has
been shown to be effective for training DNNs. Label smooth-
ing encourages the activations of the penultimate layer to
be close to the template of the correct class and equally dis-
tant to the templates of the incorrect classes [Müller et al.,
2019]. Despite its relevancy, [Kocaman et al., 2020] also
reports that label smoothing did not do well in their study as
previously mentioned by Kornblith et al. [Chelombiev et al.,
2019] who demonstrated that label smoothing impairs the
accuracy of transfer learning, which similarly depends on
the presence of non-class-relevant information in the final
layers of the network.

In this study, we extend previous efforts done by [Koca-
man et al., 2020] to devise an effective approach to enable
learning of minority classes, given the surprising evidence
of applying the final Batch Normalization (BN) layer.

Given these recent findings, we formulate and test additional
hypotheses and report our observations in what follows. The
concrete contributions of this paper are the following:

• The performance gain after adding the final BN layer in
highly imbalanced settings could still be achieved after
removing this additional BN layer during inference; in
turn enabling us to get a performance boost with no
additional cost in production.

• There is a certain threshold for the ratio of the im-
balance for this specific PV dataset, upon which the
progress is the most obvious after adding the final BN
layer.

• The batch size also plays a role and significantly affects
the outcome.

• We replicated the similar imbalanced scenarios in

MNIST dataset, reproduced the same BN impact, and
furthermore demonstrated that the final BN layer has a
considerable impact not just in modern CNN architec-
tures but also in simple CNNs and even in one-layered
feed-forward fully connected (FC) networks.

• We illustrate that the performance gain occurs only
when there is a single majority class and multiple mi-
nority classes; and no improvement observed regard-
less of the final BN layer when there are two majority
classes.

• We argue that using the final BN layer with sigmoid
activation has almost no impact when dealing with a
strongly imbalanced image classification tasks.

The remainder of the paper is organized as follows: Sec-
tion 2 gives some background concerning the role of the BN
layer in neural networks. Section 3 summarizes the previous
findings and existing hypotheses in the previous work done
by [Kocaman et al., 2020] and then lists the derived hypothe-
ses that will be addressed throughout this study. Section 4
elaborates the implementation details and settings for our
new experiments and presents results. Section 5 discusses
the findings and proposes possible mechanistic explanations.
Section 6 concludes this paper by pointing out key points
and future directions.

2 BACKGROUND

In order to better understand the novel contributions of this
study, in this section, we give some background information
about the Batch Normalization (BN) [Ioffe and Szegedy,
2015] concept. Since the various applications of BN in sim-
ilar studies and related work have already been investigated
thoroughly in our previous work [Kocaman et al., 2020], we
will only focus on the fundamentals of BN in this chapter.

Training deep neural networks with dozens of layers is chal-
lenging as the networks can be sensitive to the initial random
weights and configuration of the learning algorithm. One
possible reason for this difficulty is that the distribution
of the inputs to layers deep in the network may change
after each mini-batch when the weights are updated. This
slows down the training by requiring lower learning rates
and careful parameter initialization, makes it notoriously
hard to train models with saturating nonlinearities [Ioffe and
Szegedy, 2015], and can cause the learning algorithm to
forever chase a moving target. This change in the distribu-
tion of inputs to layers in the network is referred to by the
technical name “internal covariate shift” (ICS).

BN is a widely adopted technique that is designed to combat
ICS and to enable faster and more stable training of deep
neural networks (DNNs). It is an operation added to the
model before activation which normalizes the inputs and
then applies learnable scale (γ) and shift (β ) parameters



Figure 1: The x-axis represents the ground truth for all 150 healthy (0) and 150 unhealthy (1) images in the test set while red
and blue lines represent final softmax output values between 0 and 1 for each image. Top chart (without final BN): When
ground truth (black) is class = 0 (healthy), the softmax output for class = 0 is around 1.0 (blue, predicting correctly). But
when ground truth (black) is class = 1 (unhealthy), the softmax output for class = 1 (red points) changes between 0.0 and
1.0 (mostly below 0.5, NOT predicting correctly). Bottom chart (with final BN): When ground truth (black) is class = 0
(healthy), the softmax output is between 0.5 and 0.75 (blue, predicting correctly). When ground truth (black) is class = 1
(unhealthy), the softmax output (red points) changes between 0.5 and 1.0 (mostly above 0.5, predicting correctly).

to preserve model performance. Given m activation values
x1 . . . ,xm from a mini-batch B for any particular layer input
x( j) and any dimension j ∈ {1, . . . ,d}, the transformation
uses the mini-batch mean µB = 1/m∑

m
i=1 xi and variance

σ2
B = 1/m∑

m
i=1(xi−µB)2 for normalizing the xi according

to x̂i = (xi−µB)/
√

σ2
B + ε and then applies the scale and

shift to obtain the transformed values yi = γ x̂i +β . The con-
stant ε > 0 assures numerical stability of the transformation.

BN has the effect of stabilizing the learning process and dra-
matically reducing the number of training epochs required
to train deep networks; and using BN makes the network
more stable during training. This may require the use of
much larger learning rates, which in turn may further speed
up the learning process.

Though BN has been around for a few years and has become
common in deep architectures, it remains one of the DL
concepts that is not fully understood, having many studies
discussing why and how it works. Most notably, Santurkar et
al. [Santurkar et al., 2018] recently demonstrated that such

distributional stability of layer inputs has little to do with
the success of BN and the relationship between ICS and
BN is tenuous. Instead, they uncovered a more fundamental
impact of BN on the training process: it makes the opti-
mization landscape significantly smoother. This smoothness
induces a more predictive and stable behavior of the gradi-
ents, allowing for faster training. Bjorck et al. [Bjorck et al.,
2018] also makes similar statements that the success of BN
can be explained without ICS. They argue that being able to
use larger learning rate increases the implicit regularization
of the gradient, which improves generalization.

Even though BN adds an overhead to each iteration (esti-
mated as additional 30% computation [Mishkin and Matas,
2015]), the following advantages of BN outweigh the over-
head shortcoming:

• It improves gradient flow and allows training deeper
models (e.g., ResNet).

• It enables using higher learning rates because it elim-
inates outliers’ activation, hence the learning process



may be accelerated using those high rates.

• It reduces the dependency on initialization and then re-
duces overfitting due to its minor regularization effect.
Similarly to dropout, it adds some noise to each hidden
layer’s activation.

• Since the scale of input features would not differ sig-
nificantly, the gradient descent may reduce the oscil-
lations when approaching the optimum and thus con-
verge faster.

• BN reduces the impacts of earlier layers on the follow-
ing layers in DNNs. Therefore, it takes more time to
train the model to converge. However, the use of BN
can reduce the impact of earlier layers by keeping the
mean and variance fixed, which in some way makes
the layers independent from each other. Consequently,
the convergence becomes faster.

3 PREVIOUS FINDINGS AND EXISTING
HYPOTHESES

In the work done by [Kocaman et al., 2020], the authors fo-
cused their efforts on the role of BN layer in DNNs, where
in the first part of the experiments ResNet34 [Simonyan
and Zisserman, 2014] and VGG19 CNN architectures [He
et al., 2016] are utilized. They first addressed the complete
PV original dataset and trained a ResNet34 model for 38
classes. Using scheduled learning rates [Smith, 2017], they
obtained 99.782% accuracy after 10 epochs – slightly im-
proving the PV project’s record of 99.34% when employing
GoogleNet [Mohanty et al., 2016]. In what follows, we sum-
marize the previous observations borrowed from [Kocaman
et al., 2020] and then formulate the derived hypotheses that
became the core of the current study.

3.1 ADDING A FINAL BATCH NORM LAYER
BEFORE THE OUTPUT LAYER

By using the imbalanced datasets for certain plant types
(1,000/10 in the training set, 150/7 in the validation set and
150/150 in the test set), [Kocaman et al., 2020] performed
several experiments with the VGG19 and ResNet34 archi-
tectures. The selected plant types were Apple, Pepper and
Tomato - being the only datasets of sufficient size to enable
the 99%-1% skewness generation. All the tests are run with
batch size 64.

In order to fine-tune the network for the PV dataset, the
final classification layer of CNN architectures is replaced
by Adaptive Average Pooling (AAP), BN, Dropout, Dense,
ReLU, BN and Dropout followed by the Dense and BN
layer again. The last layer of an image classification net-
work is often a FC layer with a hidden size being equal
to the number of labels to output the predicted confidence
scores that are normalized by the softmax operator to obtain

predicted probabilities. In their implementation, they added
another 2-input BN layer after the last dense layer (before
softmax output) in addition to existing BN layers in the tail
and 4 BN layers in the head of the DL architecture (e.g.,
ResNet34 possesses a BN layer after each convolutional
layer, having altogether 38 BN layers given the additional 4
in the head).

At first they run experiments with VGG19 architectures for
selected plant types by adding the final BN layer. When they
train this model for 10 epochs and repeat this for 10 times,
they observed that the F1 test score is increased from 0.2942
to 0.9562 for unhealthy Apple, from 0.7237 to 0.9575 for
unhealthy Pepper and from 0.5688 to 0.9786 for unhealthy
Tomato leaves. They also achieved significant improvements
in healthy samples (being the majority in the training set).
See Table 1 for details.

3.2 EXPERIMENTATION ON PLANTVILLAGE
DATASET SUBJECT TO DIFFERENT
CONFIGURATIONS

Using the following six configuration variations with two
options each, the authors created 64 different configurations
which they tested with ResNet34 (training for 10 epochs
only): Adding (X) a final BN layer just before the output
layer (BN), using (X) weighted cross-entropy loss [Goodfel-
low et al., 2016] according to class imbalance (WL), using
(X) data augmentation (DA), using (X) mixup (MX) [Zhang
et al., 2017], unfreezing (X) or freezing (learnable vs pre-
trained weights) the previous BN layers in ResNet34 (UF),
and using (X) weight decay (WD) [Krogh and Hertz, 1992].
Checkmarks (X) and two-letter abbreviations are used in
Table 2 to denote configurations. When an option is disabled
across all configurations, its associated column is dropped.

As shown in Table 2, just adding the final BN layer was
enough to get the highest F1 test score in both classes. Sur-
prisingly, although there is already a BN layer after each con-
volutional layer in the backbone CNN architecture, adding
one more BN layer just before the output layer boosts the
test scores. Notably, the 3rd best score (average score for
configuration 31 in Table 2) is achieved just by adding a
single BN layer before the output layer, even without un-
freezing the previous BN layers.

One of the important observations is that the model with-
out the final BN layer is pretty confident even if it predicts
falsely. But the proposed model with the final BN layer
predicts correctly even though it is less confident. They
basically ended up with less confident but more accurate
models in less than 10 epochs. The classification proba-
bilities for five sample images from the unhealthy class
(class = 1) with final BN layer (right column) and without
final BN layer (left column) are shown in Table 3. As ex-
plained above, without the final BN layer, these anomalies



Table 1: Averaged F1 test set performance values over 10 runs, alongside BN’s total improvement, using 10 epochs with
VGG19, with/without BN and with Weighted Loss (WL) without BN.

plant class without final
BN

with WL
(no BN)

with final BN
(no WL)

BN total
improvement

Apple Unhealthy 0.2942 0.7947 0.9562 0.1615
Healthy 0.7075 0.8596 0.9577 0.0981

Pepper Unhealthy 0.7237 0.8939 0.9575 0.0636
Healthy 0.8229 0.9121 0.9558 0.0437

Tomato Unhealthy 0.5688 0.8671 0.9786 0.1115
Healthy 0.7708 0.9121 0.9780 0.0659

Table 2: Best performance metrics over the Apple dataset under various configurations using ResNet34.

Class Config
Id

Test set
precision

Test set
recall

Test set
F1-score

Epoch BN DA UF WD

Unhealthy 31 0.9856 0.9133 0.9481 6 X
(class = 1) 23 0.9718 0.9200 0.9452 6 X X

20 0.9926 0.8933 0.9404 7 X X X X

are all falsely classified (recall that Psoftmax(class = 0) =
1−Psoftmax(class = 1)).

Table 3: Softmax output values (representing class proba-
bilities) for five sample images of unhealthy plants. Left
column: Without final BN layer, softmax output values for
unhealthy, resulting in a wrong classification in each case.
Right column: With final BN layer, softmax output value
for unhealthy, resulting in correct but less "confident" clas-
sifications.

Without final BN layer With final BN layer

0.1082 0.5108
0.1464 0.6369
0.1999 0.6082
0.2725 0.6866
0.3338 0.7032

3.3 DERIVED HYPOTHESES

Under all these observations and findings mentioned above,
we derived the following hypotheses for our new study:

• The added complexity to the network by adding the
final BN layer could be eliminated by removing the
final BN layer in inference without compromising the
performance gain achieved.

• There might be a certain level of skewness upon which
the progress reaches its peak without further sizing the
minority class.

• Since the trainable parameters in a BN layer also de-
pend on the batch size (i.e., number of samples) in each

iteration (mini-batch), its sizing could also play a role
on the level of progress with the final BN layer.

• The observations and performance gain with respect
to the PV dataset, upon utilizing ResNet and VGG
architectures, may not be reproduced with any other
dataset or with much simpler neural architectures.

• Since the number of units in the output layer depends
on the number of classes in the dataset, the perfor-
mance gain may not be achieved in multi-classification
settings and the number of majority and minority
classes can affect the role of the final BN layer.

• Since sigmoid activation is also one of the most widely
used activation functions in the output layer for the
binary classification problems, the performance gain
could be achieved with sigmoid outputs as well.

Next, we report on addressing these hypotheses, one by one,
and describe our empirical findings in detail.

4 IMPLEMENTATION DETAILS AND
EXPERIMENTAL RESULTS

4.1 REMOVING THE ADDITIONAL BN LAYER
DURING INFERENCE (H-1)

Since adding the final BN layer adds a small overhead (four
new parameters) to the network at each iteration, we exper-
imented if the final BN layer could be dropped once the
training is finished so that we can avoid the cost. Dropping
this final BN layer means that training the network from end
to end, and then chopping off the final BN layer from the
network before saving the weights. We tested this hypothe-
sis for Apple, Pepper and Tomato images from PV dataset



under three conditions with 1% imbalance ratio: Without fi-
nal BN, with final BN and then removing the final BN during
testing. We observed that removing the final BN layer in in-
ference would still give us a considerable boost on minority
class without losing any performance gain on the majority
class. The results in Table 4 show that the performance gain
is very close to the configuration in which we used the final
BN layer both in training and inference time. As a conse-
quence, we confirm hypothesis (H-1) by showing that the
final BN layer can indeed be removed in inference without
compromising the performance gain.

4.2 IMPACT LEVEL REGARDING THE
IMBALANCE RATIO (H-2) AND THE BATCH
SIZE (H-3)

[Kocaman et al., 2020] empirically shows that the final BN
layer, when placed be-fore the softmax output layer, has a
considerable impact in highly imbalanced image classifica-
tion problems but they fail to explain the impact of using
the final BN layer as a function of level of imbalance in
the training set. In order to find if there is a certain ratio in
which the impact is maximized, we tested this hypothesis
(H-1) over various levels of imbalance ratios and condi-
tions explained below. In sum, we ended up with 430 model
runs, each with 10 epochs (basically tested with 5, 10, 15, ..
100 unhealthy vs 1000 healthy samples). During the experi-
ments, we observed that the impact of final BN on highly
imbalanced settings is the most obvious when the ratio of
minority class to the majority is less than 10%; above that
almost no impact. As expected, the impact of the final BN
layer is more obvious on minority class than it is on majority
class, albeit the level of impact with respect to the imbal-
ance ratio is almost same, and levels off around 10%. It is
mainly because of the fact that the backbone architecture
(ResNet34) is already good enough to converge faster on
such data set (Plant Village) and the model does well on
both classes after 10% imbalance (having more than 100
unhealthy with respect to 1000 healthy samples can already
be handled regardless of final BN trick). During these ex-
periments, we also tested if unfreezing the previous layers
in the backbone CNN architecture (ResNet34) would also
matter. We observed that unfreezing the pretrained layers
helps without even final BN layer, but unfreezing adds more
computation as the gradient loss will be calculated for each
one of them. After adding the final BN layer and freezing
the previous pretrained layers, we observed similar metrics
and learning pattern as we did with unfreezing but not with
final BN layer. This is another advantage of using the final
BN that allow us to freeze the previous pretrained layers.
The results are displayed as charts in Figure 2a.

We also experimented if the batch size would also be an
important parameter for the minority class test accuracy
when the final BN is added and found out that the highest

score is gained when the batch size is around 64, whereas the
accuracy drops afterwards with larger batches. The results
are exhibited in Figure 2b. Consequently, given the reported
observations, we confirm hypotheses (H-2) and (H-3).

4.3 EXPERIMENTATION ON THE MNIST
DATASET: THE IMPACT OF FINAL BN
LAYER IN BASIC CNNS AND FC NETWORKS
[(H-4),(H-5),(H-6)]

In order to reproduce equivalent results on a well known
benchmark dataset when utilizing different DL architectures,
we set up two simple DL architectures: a CNN network with
five Conv2D layers and a one-layer (128-node) FC feed for-
ward NN. Then we sampled several pairs of digits (2 vs 8, 3
vs 8, 3 vs 5 and 5 vs 8) from MNIST dataset that are mostly
confused in a digit recognition task due to similar patterns
in the pixels. During the experiments, the ratio of minority
class to majority is kept as 0.1 and experiments with the
simple CNN architecture indicates that, after adding the
final BN layer, we gain ∼ 20% boost in minority class and
∼ 10% in majority class (see Table 5). Lower standard devi-
ations across the runs with final BN layer also indicates the
regularization effect of using the final BN layer. As a result,
we rejected the fourth hypothesis (H-4) that we derived in
section 3.3 by showing that the performance gain through
the final BN layer can be reproduced with another dataset or
with much simpler neural architectures. Another important
finding is that the final BN layer boosts the minority class’
F1 scores only when there is a single majority class. When
two majority classes are set, no improvements are evident
regardless of the usage of the final BN layer (see 4th and 5th
settings in Table 6). Therefore, we partially confirm hypoth-
esis (H-5) by showing that the performance gain through the
final BN layer can also be achieved in multi-classification
settings but the number of majority and minority classes
may affect the role of the final BN layer. In the experiments
with a one-layer FC network, we enriched the scope and
also tested whether using different loss functions and out-
put activation functions would have an impact on model
performance using final BN layer with or without another
BN layer after the hidden layer. We observed that adding
the final BN layer, softmax output layer and categorical
crossentropy (CCE) as a loss function have the highest test
F1 scores for both classes. It is also important to note that
we observe no improvement even after adding the final BN
layer when we use sigmoid activation in the output layer
(Table 6). Accordingly, we reject hypothesis (H-6).

5 DISCUSSION

In a previous work done in [Kocaman et al., 2020], the
authors suggested that by applying BN to dense layers, the
gap between activations is reduced (normalized) and then



Table 4: Training with the final BN layer, and then dropping this layer while evaluating on the test set proved to be still
useful in terms of improving the classification score on minority classes, albeit not as much as with the final BN layer kept
(imbalance ratio 0.01, epoch 10, batch size 64).

Apple Pepper Tomoto
healthy unhealthy healthy unhealthy healthy unhealthy

with no final BN 0.71 0.22 0.74 0.45 0.74 0.46
with final BN 0.92 0.91 0.94 0.94 0.98 0.98
train with final BN 0.74 0.83 0.75 0.82 0.78 0.85
remove while testing

(a) The impact of final BN layer on the F1 test score of each class
for Apple plant. The impact is the most obvious when the ratio of
minority class to the majority is less than 0.1.

(b) The impact of batch size on the F1 test score when the final
BN layer added. The highest score is gained when the batch size
is 64 and then the accuracy starts declining.

Figure 2: Imbalance ratio and batch size analysis with respect to the final BN layer added

Table 5: Average test metrics with a simple CNN network
(5xConv2D) to classify 3 (minority) and 8 (majority) images
from MNIST dataset with 0.01 imbalance ratio, 10 runs, and
20 epoch per run.

with BN
minority

without BN
minority

with BN
majority

without BN
majority

Test F1 0.9299 0.7378 0.9447 0.8354
Std. Dev. 0.0791 0.1126 0.0487 0.0506

softmax is applied on normalized outputs, which are cen-
tered around the mean. Therefore, ending up with centered
probabilities (around 0.5), but favoring the minority class
by a small margin. They also argued that DNNs have the
tendency of becoming ‘over-confident’ in their predictions
during training, and this can reduce their ability to general-
ize further and thus perform as well on unseen data. Then
they also concluded that a DNN with the final BN layer is
more calibrated [Guo et al., 2017]. We assert that ’being
less confident’ in terms of softmax outputs might be fun-
damentally wrong and a network shouldn’t be discarded or
embraced due to its capacity of producing confident or less
confident results in the softmax layer as it may not even be
interpreted as a ’confidence’.

In this study, we empirically demonstrated that the final BN
layer could still be eliminated in inference without compro-
mising the attained performance gain. This finding supports
the assertion that adding the BN layer makes the optimiza-
tion landscape significantly smoother, which in turn renders
the gradients’ behavior more predictive and stable – as sug-
gested by [Santurkar et al., 2018]. We argue that the learned
parameters, which were affected by the addition of the final
BN layer under imbalanced settings, are likely sufficiently
robust to further generalization on the unseen samples, even
without normalization prior to the softmax layer.

The observation of locating a sweet spot (10%) for the
imbalance ratio, at which we can utilize the final BN layer,
might be explained by the fact that the backbone ResNet
architecture is already strong enough to easily generalize
on the PV dataset and the model does not need any other
regularization once the number of samples from the minority
class exceeds a certain threshold. As the threshold found in
our experiments is highly related to the DL architecture and
the utilized dataset, it is clear that it may not apply to other
datasets, but can be found in a similar way.

As discussed before, the BN layer calculates mean and vari-
ance to normalize the previous outputs across the batch,
whereas the accuracy of this statistical estimation increases



Table 6: Using the same ResNet-34 architecture and skewness (1% vs 99%) and setting up five different configurations
across various confusing classes from MNIST dataset, it is clear that adding the final BN layer boosts the minority class
F1 scores by 10% to 30% only when there is a single majority class. When we have two majority classes, there is no
improvement observed regardless of the final BN layer is used or not. (X) indicates minority classes.

Setting-1 Setting-2 Setting-3 Setting-4 Setting-5
3 (X) 8 2 (X) 8 3 (X) 5 3 (X) 5 8 3 (X) 5 (X) 8

without final BN 0.19 0.69 0.25 0.70 0.24 0.70 0.06 0.77 0.78 0.28 0.32 0.56
with final BN 0.55 0.76 0.50 0.74 0.54 0.76 0.00 0.77 0.78 0.58 0.59 0.69

Table 7: Using one-layer (128 node) NN and the 0.01 skew-
ness ratio, with nine different settings for 3 (minority) and 8
(majority) classes from MNIST dataset (100-epoch). Adding
the final BN layer, softmax output layer and CCE as a loss
function has the highest test F1 scores for both classes. (CCE
- categorical cross entropy, BCE - binary cross entropy, first
BN - a BN layer after the hidden layer).

output
activation

loss
function

first
BN layer

final
BN layer

class-3
(minority)

class-8
(majority)

sigmoid BCE 0.17 0.67
softmax BCE 0.00 0.67
softmax BCE X 0.60 0.78
softmax CCE 0.67 0.80
sigmoid BCE X 0.05 0.67
softmax BCE X 0.85 0.88
softmax BCE X X 0.83 0.87
softmax CCE X 0.88 0.90
softmax CCE X X 0.78 0.85

as the batch size grows. However, its role seems to change
under the imbalanced settings – we found out that a batch
size of 64 reaches the highest score, whereas by utilizing
larger batches the score consistently drops. As a possible
explanation for this observation, we think that the larger
the batches, the higher the number of majority samples in a
batch and the lesser the chances that the minority samples
are fairly represented, resulting in a deteriorated perfor-
mance.

During our experiments, we expected to see similar behav-
ior with sigmoid activation replacing softmax in the output
layer, but, evidently, the final BN layer works best with soft-
max activations. Although softmax output may not serve as
a good uncertainty measure for DNNs compared to sigmoid
layer, it can still do well on detecting the under-represented
samples when used with the final BN layer.

6 CONCLUSIONS

In this study, we extended the previous efforts done by
[Kocaman et al., 2020] to devise an effective approach to
enable learning of minority classes, given the surprising
evidence of applying the final BN layer. Given these recent
findings, we formulated and tested additional hypotheses.

We at first noticed that the performance gain after adding
the final BN layer in highly imbalanced settings could still
be achieved after removing this additional BN layer during
inference; in turn enabling us to get a performance boost
with no additional cost in production. Then we explored
the dynamics of using the final BN layer as a function of
the imbalance ratio within the training set, and found out
that the impact of final BN on highly imbalanced settings
is the most apparent when the ratio of minority class to the
majority is less than 10%; there is hardly any impact above
that threshold.

We also ran similar experiments with simpler architectures,
namely a basic CNN and a single-layered FC network, when
applied to the MNIST dataset under various imbalance set-
tings. The simple CNN experiments exhibited a gain of ∼
20% boost per the minority class and ∼ 10% per the major-
ity class after adding the final BN layer. In the FC network
experiments, we observed improvements by 10% to 30%
only when a single majority class was defined; no improve-
ments were evident for two majority classes, regardless of
the usage of the final BN layer. While experimenting with
different activation and cost functions, we found out that
using the final BN layer with sigmoid activation had almost
no impact on the task at hand.

We found the impact of final BN layer in simpler neural
networks quite surprising. It is an important finding, which
we plan to further investigate in the future, as it requires
thorough analysis. We also plan to formulate our findings
in a generalized way for any neural model, preferably with
a combination of softmax activation or a proper loss func-
tion that could be used in imbalanced image classification
problems.
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