

Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review

Budhiparama, N.C.; Lumban-Gaol, I.; Sudoyo, H.; Magetsari, R.; Wibawa, T.

Citation

Budhiparama, N. C., Lumban-Gaol, I., Sudoyo, H., Magetsari, R., & Wibawa, T. (2022). Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A metaanalysis and systematic review. *Journal Of Orthopaedic Surgery -Hong Kong-*, *30*(1). doi:10.1177/23094990221076652

Version:Publisher's VersionLicense:Creative Commons CC BY-NC 4.0 licenseDownloaded from:https://hdl.handle.net/1887/3281395

Note: To cite this publication please use the final published version (if applicable).

Basic Science

Interleukin-I genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review

Orthopaedic Surgery

Journal of Orthopaedic Surgery 30(1) 1–14 © The Author(s) 2022 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/23094990221076652 journals.sagepub.com/home/osj

Nicolaas C Budhiparama, MD, PhD^{1,2,3}, Imelda Lumban-Gaol, MD³, Herawati Sudoyo, MD, PhD⁴, Rahadyan Magetsari, MD, PhD¹ and Tri Wibawa, MD, PhD⁵

Abstract

Purpose: Interleukin-I is the main proinflammatory cytokine in osteoarthritis (OA). Several single-nucleotide polymorphisms (SNPs) within the IL-I gene cluster (IL-I β , IL-IRI, and IL-IRN) have been determined, but their associations with knee OA remain poorly understood. The present study aimed to identify the associations between IL-I SNPs and knee osteoarthritis.

Methods: This meta-analysis and systematic review included all comparative studies published in the MEDLINE/PubMed, Embase, Google Scholar, and Cochrane Library databases. We performed a systematic search to identify relevant studies on the evaluation of the correlation between the IL-I gene and knee OA published up to February 2020 that met the eligibility criteria. Nine studies on a total of 2256 knees with OA and 3527 healthy knees met the eligibility criteria. Results associated with IL-IA, IL-IB, IL-IRI, and IL-IRN SNPs were extracted and compared between knees with OA and healthy knees. Methodological quality was assessed using the Newcastle–Ottawa scale (NOS). All studies with fair or good quality were included.

Results: The meta-analysis showed that the risk of knee OA is decreased by the IL-1RN*1 and IL-1RN*1/*1 genotypes and increased by the IL-1RN*2 and I-L1RN*1/*2 genotypes. The systematic review revealed only two studies associating the IL-1RN allele, none associating the IL-1B polymorphism, and only one study associating IL-1A and IL-1R1 polymorphisms with knee OA.

Conclusions: Several IL-IRN alleles and genotypes play a role in knee OA but other genetic variations in the IL-I region were still conflicting in its association with knee OA.

Keywords

Knee osteoarthritis, interleukin-1, single-nucleotide polymorphisms

Date received: 25 August 2021; Received revised 2 December 2021; accepted: 12 January 2022

⁴Eijkman Institute for Molecular Biology at Cipto Mangunkusumo Hospital, Jakarta, Indonesia

Corresponding author:

Nicolaas C Budhiparama, MD, PhD, Department of Orthopaedic & Traumatology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Email: n.c.budhiparama@gmail.com, n.c.budhiparama@lumc.nl

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the

SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

¹Department of Orthopaedic & Traumatology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia ²Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands

³Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jakarta, Indonesia

⁵Department of Microbiology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

Introduction

The pathogenesis of osteoarthritis (OA) is not yet fully understood. It was originally thought to result from the failed repair of damaged cartilage.¹ This theory has been expanded to include contributions from the bone and synovial tissue as well as inflammatory factors.¹⁻³ Interleukin-1 (IL-1) is the regulator of inflammation by controlling the innate immune process. IL-1 itself is expressed in a wide range of tissues and cells.⁴ IL-1 is synthesized due to stress response. By binding to its receptors, it will activate other immune response and other hematological changes.⁵ IL-1 also associated with the pathogenesis of knee OA due to the fact that an increased expression of this cytokine correlates with worsening symptoms and more progressive radiological features of knee OA.⁶⁻⁸ Interleukin-1 is regarded as a major proinflammatory cytokine in addition to Tumor Necrosis Factor (TNF) and IL-6, and its biological activity is mediated through specific cell surface receptor known as the IL-1 receptor type I (IL-1R1).9 Another natural inhibitor of IL-1 activity, IL-1 receptor antagonist (IL-1RA), is produced by several types of cell including chondrocytes and synovial fibroblasts, and functions as a competitive antagonist in the process of osteoarthritis.^{8,10} Another mechanism is through the binding of IL-1 β to the IL-1 receptor (IL-1R1), which induces a pro-inflammatory reaction resulting in cartilage destruction. Progressive cartilage destruction might be followed by subchondral destruction manifesting as progressive radiological grading. Pro-inflammatory reactions also cause synovial inflammation, that might manifest as pain.¹¹

The latest concept of OA pathogenesis involves a genetic component that might influence inflammation (cytokines), anti-inflammation, and receptor binding processes. Several types of OA are associated with a genetic component,^{12–14} but controversies are also found among different ethnicities.¹⁵ Variations in cytokine levels among individuals become a plausible explanation for differences in disease susceptibility and severity,¹⁵ and this association is particularly true for cytokine gene polymorphisms and OA. The most consistent association involves a broad region on human chromosome 2q13-32, which represents the IL-1 gene cluster.¹⁶ Several DNA variants within the IL-1 gene cluster have been reported, including single-nucleotide polymorphisms (SNPs) in IL-1B, IL-1R1, and IL-1RN. However, specific genetic factors and polymorphisms associated with these conditions remain poorly understood. Several studies have generated conflicting findings in terms of this association with various OA phenotypes.

The present meta-analysis and systematic review aimed to clarify an association between genetic polymorphisms in the IL-1 gene cluster and the development of knee OA. We hypothesize that there is a correlation between genetic polymorphisms in the IL-1 gene cluster and the development of knee OA.

Material and methods

Search strategy

Based on the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) guidelines, we performed a systematic review using the MEDLINE/PubMed, Embase, Google Scholar, and Cochrane Library databases to identify relevant studies evaluating the correlation between IL-1 gene and knee OA published up to February 2020 that met the eligibility criteria. We conducted a systematic search using the following medical subject headings (MeSH) and key terms: ((((Knee osteoarthritis) AND Single Nucleotide Polymorphism) OR SNP) OR Gene) AND Interleukin-1) OR IL-1))). We limit our search to studies conducted on humans and published in English. Two authors (NCB, ILG) separately reviewed all abstracts for eligibility. We manually-searched the references from the included articles and reviews to avoid missing any relevant studies.

Inclusion and exclusion

The inclusion criteria were (1) studies comparing knee OA patients and normal patients; (2) studies investigating the relationship between the IL-1 gene or polymorphisms and knee OA; (3) studies conducted on human study; (4) studies published in English; (5) studies providing the number subjects for their case and control groups; and (6) studies providing the genotype and/or allele frequency for their case and control groups. The initial search yielded 18,693 references. After the studies were compared against the inclusion criteria, 18,684 studies were excluded due to the following reasons: irrelevant topic (not correlated with IL-1 in knee OA), full text not available, not a comparative study (no control group), no comparison with a healthy control group, incomplete data, and being meta-analyses or systematic review articles. After exclusions and evaluation by two authors, 9 studies met the inclusion criteria. We found 1 cohort study and 8 case-control studies. Using the Newcastle-Ottawa scale (NOS) for quality assessment, we reviewed the 9 articles (Figure 1). All fair and good-quality studies were included. In each article, we reviewed the comparison between the knee OA group and the healthy control group in terms of the frequency of IL-1 gene polymorphism.

The quality of all articles was assessed by using the Newcastle-Ottawa scale (NOS). Each study is interpreted as having good, fair, and poor quality. The eight case-control and one cohort studies are of good quality. All studies adequately reported a succinct study aim and an appropriate outcome measure. Due to the limitations and wide variation in terms study quality, we were only able to perform metaanalysis for the IL1RN polymorphism while a systematic review was performed for the other IL1 polymorphisms.

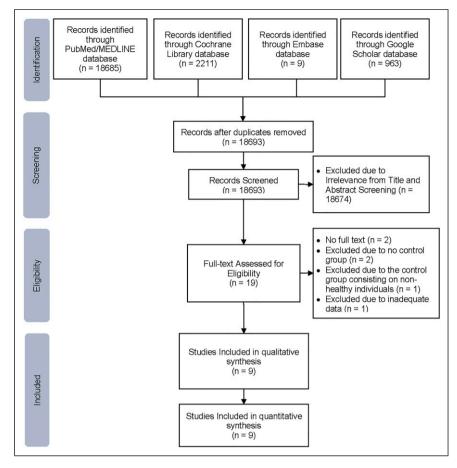


Figure 1. Flowchart shows the numbers of articles initially identified as well as the exclusion and inclusion steps.

Data extraction

In each article, we collected the demographic characteristics, sample size, phenotype information, the number of genotypes in cases and controls, and the results of the study.

Statistical analysis

The distribution of genotypes and alleles is summarized in a data table. The distribution of the genotypes in the control population was assessed using Hardy–Weinberg equilibrium (HWE). *p* values of <0.05 indicated that the genotype distribution deviated from HWE. General data were evaluated using meta-analysis. Heterogeneity was assessed using chi-squared tests. Random and fixed-effect models were applied when p < 0.05 or p > 0.05, respectively. Sources of heterogeneity were identified using a meta-regression analysis. Publication bias was assessed using funnel plots, and Begg and Egger tests helped to reach a clear conclusion. After determining the effect model, the strength of the association between the IL-1-RN Variable Number Tandem Repeat (VNTR) polymorphism and the

risk of OA was assessed using odds ratios (OR) and confidence intervals (CI). Two authors independently completed the analysis and obtained the same results. All data were statistically analyzed using Review Manager (Rev-Man) [Computer program] Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014. p values of <0.05 were considered significant.

Results

An initial search yielded 18,693 references, but 18,684 were excluded due to irrelevant topics (unrelated to correlations between IL-1 and knee OA), full text unavailability, noncomparative study (without controls), no comparison with healthy controls, inadequate data, and being meta-analysis or systematic reviews. The nine remaining studies comprised of one cohort and eight case-control studies. Two individuals (NCB and ILG) independently assessed the methodological quality of the selected articles and found them to be of fair and good quality according to the Newcastle–Ottawa scale (NOS) (Table 1). We then reviewed the comparisons of IL-1 gene polymorphisms

Study	Туре	Selection	Comparability	Exposure	Interpretation
AJP Smith 2004 ²⁷	Case-control	****	**	***	Good quality
Yuyan Na 2017 ²⁸	Case-control	***	**	***	Good quality
Haijian Ni 2009 ²⁹	Case-control	***	**	***	Good quality
Loughlin 2002 ³⁰	Case-control	***	*	***	Good quality
Melek Sezgin 2014 ³¹	Case-control	***	*	***	Good quality
Kaarvatn 2012 ³²	Case-control	***	**	***	Good quality
Menha Swellam 2010 ³³	Case-control	***	**	***	Good quality
otanovic 2011 ³⁴	Case-control	***	**	***	Good quality
S. Ruzickova 2008 ³⁵	Cohort	****	*	**	Good quality

Table I. Newcastle-Ottawa scale (NOS) quality assessment of case-control studies.

frequency between patients with knee OA and healthy controls.

Quantitative synthesis

The allele and haplotype frequencies for cases and controls in each study are presented in Table 2. Pooled analysis of all included studies showed that the IL-1RN*1 and IL-1RN*2 alleles among the IL-1RN (VNTR) (rs419598) polymorphisms were significantly associated with knee OA; IL-1RN*1 and IL-1RN*2, respectively, decreased and increased the risk of knee OA (OR, 0.67; 95% CI, 0.48–0.95; $I^2 = 79$, p = 0.02 and OR, 1.38; 95% CI, 1.02–1.85; $I^2 = 71$, p = 0.04). One and four studies evaluated Asian and Caucasian cohorts, respectively. The IL-1RN*1 and IL-1RN*2 alleles, respectively, decreased and increased the risk of knee OA in the Caucasian cohort (OR, 0.59; 95% CI, 0.38–0.92; $I^2 = 83$, p = 0.02 and OR, 1.50; 95% CI, 1.05– 2.14; $I^2 = 74$, p = 0.03, respectively; Figure 2).

The meta-analysis revealed that some IL-1RN VNTR genotype polymorphisms were also significantly associated with knee OA. The IL-1RN*1/*1 polymorphism decreased the risk of knee OA (OR, 0.59; 95% CI, 0.37–0.95; $I^2 = 82$, p = 0.03). Interleukin-1RN*1/*1 and IL-1RN*1/*2 polymorphisms remained significantly associated with knee OA in Caucasians (OR, 0.50; 95% CI, 0.28–0.89; $I^2 = 84$, p = 0.02 and OR, 1.77; 95% CI 1.03–3.06, $I^2 = 86$, p = 0.04, respectively). Subgroup analysis revealed a significant association between IL-1RN*1/*2 genotype polymorphism and knee OA in Caucasians (OR, 2.20; 95% CI, 1.10–4.43, $I^2 = 88$, p = 0.03). Other IL-1RN VNTR (rs419598) alleles or genotypes polymorphisms were not significantly associated with knee OA (Figure 3).

Heterogeneity tests

The allele contrast model analysis revealed significant heterogeneity ($I^2 = 69$; p < 0.0001); therefore, a random effects model was adopted. Subgroup heterogeneity was also high ($I^2 = 68.4$; p = 0.02). The genotype model analysis

also indicated significant heterogeneity ($I^2 = 67$; p < 0.0001) and the subgroup heterogeneity was $I^2 = 47.1$; p = 0.08. Subgroup analysis based on rand type of study did not identify any source of heterogeneity.

Publication bias

Publication bias was evaluated with funnel plots using the IL-1RN*1 allele as a sample. The results showed asymmetry for the IL-1RN*2, IL-1RN*1/*1, and IL-1RN*1/*2 alleles, but not for any other IL-1RN alleles or genotypes (Figure 4).

Systematic review

The IL-1RN allele was evaluated in seven studies, among which, two found an association between knee OA and IL-1RN*1 allele SNP rs419598, and the IL-1RN*2 SNP rs419598. Interleukin-1RN*1 SNP rs419598 decreased the risk, while the IL-1RN*2 polymorphism increased the risk of knee OA in both studies. One study evaluated different IL-1RN SNP, (11,100 known as rs315952), and found no association between these IL-1RN alleles and knee OA. Six studies investigated associations between IL-1RN geno-types and knee OA. Two of these studies associated a decreased and an increased risk for knee OA with IL-1RN*1/*1 SNP rs419598 and IL-1RN*1/*2 SNP rs419598, respectively (Table 2).

Among the nine studies, five that evaluated associations between IL-1B polymorphisms and knee OA found no associations for the IL-1B allele and the IL-1B genotypes, -511C/T (SNP rs16944), +3954 (SNP rs1143634), 5810 (SNP rs1143633), or in +3953. Three studies found an association between IL-1A and knee OA. However, one study found an association between the IL-1A-899 allele (SNP rs1800587) and knee OA but we found no matching association between the IL-1A-899 allele with knee OA but associated the IL-1A-899 genotypes CC and CT with knee OA. One study found no association between IL-1A+4845 SNP allele and knee OA.

	Sample size	0					Outcome			
Study	Year Case	Control	Gene	SNP	Туре		Case Control	ß	95% CI	đ
AJP Smith et al. ²⁷	2004 141	195		IL-IA-IL-IB-IL-IRN	Haplotype	2C-CTG-ITT		2.44	1.29-4.61	0.006
				IL-IB-IL-IRN	Haplotype	CCA-ITT	14 52	0.30	0.16-0.57	0.0002
	163	195		IL-IA-IL-IB-IL-IRN	Haplotype	2C-CTG-ITT	30 18	2.22	1.19-4.15	0.013
				IL-IB-IL-IRN	Haplotype	CCA-ITT		0.22	0.11-0.43	<0.0001
S. Ruzickova et al. ³⁵	2008 50	170	IL-IRN	rs419598	Allele	IL-IRN*I	68* 285*	0.41	0.25-0.68	0.018
			VNTR			IL-IRN*2		2.20	1.30–3.74	0.043
						IL-IRN*3			0.86-14.25	us
					Genotype	IL-IRN*I/*I	22 123	0.30	0.16-0.58	0.0003
						IL-IRN*1/*2			1.42-5.48	0.002
						IL-IRN*1/*3 IL-IRN*2/*2	- 00 - 10		0.33-5.07	ns Ds
						IL-IRN*2/*3	-		0.41-257.66	SU
					MMP-9	IL-IRN*I	50 —			su
						IL-IRN*2	50 —			ns
						IL-IRN*I	50 —			ns
						IL-IRN*2	50 —			ns
					ЧA	IL-IRN*I	50 —			ns
						IL-IRN*2	50 —			ns
					PEN	IL-IRN*I	50 —			ns
						IL-IRN*2	50 —			ns
					сомр	IL-IRN*I	50 —			ns
						IL-IRN*2	50 —			ns
					MMP-9	IL-IRN*I/*I	50 —			ns
						IL-IRN*I/*2	50			ns
						IL-IRN*2/*2	50			ns
						IL-IRN*1/%	20			ns
						IL-I.K.N*1/*2				US
					Š	IL-I.KIN*2/*2	00			US
					5		8 G			51
						IL-IRN 1/ 2 II - IRN*7/*7	8 G			21
					PEN	II - I R N*1/*1	- 20			SU
						IL-IRN*1/*2	50			SU
						IL-IRN*2/*2	50 —			ns
					сомр	IL-IRN*I/*I	50 —			us
						IL-IRN*I/*2	50 —			ns
						IL-IRN*2/*2	50			ns

Table 2. Studies comparing IL-1 gene polymorphisms between knees with OA and healthy knees.

(continued)

(continued)
ole 2.
Tabl

	ונווינייט											
	Sample size	size					Outcome	me				
Study	Year Case	Control	Gene	SNP	Type		Case	Control	OR 9	95% CI	þ	
Yuyan Na et al. ²⁸	2017 298	297	IL-IRI	rs10490571	Allele	T/C	19	50	1.27 0	0.95–1.70	su	
				rs12712127	Allele	G/A	74	62		0.95–1.64	ns	
				rs956730	Allele	A/G	63	80	-	0.57-0.97	0.028	
				rs311722	Allele		571	8	1.38	67.1-40.1 201 72.0	/00.0	
				rs971/310 rs956730 (G>A)	Genotyne			64		0.01-100	2	
					od/source	۵ ۵	101	6		0 40-1 23	ne ^{30k}	adiusted for age and gender
						AA	8 =	20		0.23-1.15	ns [%]	adjusted for age and gender
					Dominant	00	182	158				
						AA + AG	911	139		0.58–1.14	ns ^{**}	adjusted for age and gender
					Recessive	GG + AG	287	277				
						AA	=	20		0.25-1.21	ns**	adjusted for age and gender
					Additive		Ι	Ι	0.80	0.60-1.06	ns*	adjusted for age and gender
				rs3917225 (A>G)	Genotype	AA	106	131		00.1		
						GA	138	132	1.32	0.91–1.91	ns*	adjusted for age and gender
						00	54	84 194		1.20–3.43 20	0.008**	adjusted for age and gender
					Dominant	AA CC - CS	901	12	3 5	200.00.	******	
						רנ + נא גרייי	761	166	_	1.04-2.07	0.03	adjusted for age and gender
					Kecessive	AA + GA	244	263	8. #	1.00 1.00 2.05	0.07%*	adjusted for age and gender
					A ddisting	222	5	ţ		62 I 60 I		adjusted for age and gender
11-11-11 MI 129				1000			100	*200			100.0	aujusten ioi age allu gelluei
Haijian Ni et al.	(IIIa) 2007 4002) 487 (all)	IL-IKN VN IK rs419598	rs419598	Allele		835°	876°		70 1 11	us	
						IL-IKN*2 II IDN*2	64 *	64* 2*	6.0	0.70-1.41	su	
						IL-IRN*3 II IDN#4	5 *	- *		0.01-2.70	SI S	
								0			2	
					genorype	IL-IRN*1/*1	5,6 7,6	724	6- 	0.63-1.34	SI 50	
						L-IRN*2/*2	5 4 2	5 2		0.39-11.85		
			IL-IB	(-511)C/T rs16944	Genotype		Ξ	126		0.69-1.25	us su	
			1			cT	223	249		0.72-1.19	us su	
						TT	611	112		0.89–1.61	ns	
	323 (fen	323 (female) 314 (female) IL-IRN VNTR) IL-IRN VNTR		Genotype	IL-IRN*I/*I	283	268	1.21 0	0.77-1.915	ns	
				rs 6944		IL-IRN*1/*2	37	45	-	0.49–1.23	us	
			-		ļ	IL-IRN*2/*2	~ F	- 6	5.93	0.30-28.36	su	
			IL-10		Genorype		6 5	79		10.1-1-0.0	SI 3	
						11	82	689		0.85-1.78	sii sii	
	130 (ma	130 (male) 173 (male) IL-1RN VNTR rs419598	IL-IRN VNTR	rs419598	Genotype	IL-IRN*1/*1	011	152	~	0.393–1.469	ns	
	•				:	IL-IRN*1/*2	61	20	1.309 0	0.668–2.569	ns	
						IL-IRN*2/*2	-	_	1.333 0	0.083-	ns	
										21.519		
			IL-IB	(-511)C/T rs16944	Genotype	CC	32	4		0.566–1.619	ns	
						CT	61	85		0.580-1.443	su	
						Ħ	37	†		0.699–1.947	ns	
	453 (all)) 487 (all)		(-511C/T_86-bpVNTR)	Haplotype	(4 4	463 20	0.929 0	0.775-1.113	su	
						7					2	
						-7	874	747	8/0.1	0.679-1.272	SU	
						7-7	6 0	5		1.070-1.074	SU	

(continued)

Table 2. (continued)	inued)											
	S	Sample size						Outcome	ne			
Study	Year O	Case	Control	Gene	SNP	Туре		Case	Control	OR 95% CI	đ	
Loughlin et al. ³⁰	2002 136 (all)		557 (all)	IL-IA	(-899) rs1800587	Allele		167*	763* 0	0.723 0.546-0.957	7 0.023	
,				IL-IB	(+3954) rsl 143634	Allele			-		3 ns	
					(5810) rs1143633						7 ns	
					(-511) rs16944					-	3 ns	
				IL-IRN	9589	Allele			-		9 ns	
					(11100) rs315952			76*			l ns	
	7	78 (female)	215 (female) IL-1A		(-899) rs1800587	Allele					5 ns	
					(+3954)	Allele					9 ns	
					(5810) rs1143633						4 ns	
					(-511) rs16944						7 ns	
				IL-IRN	9589	Allele		43*			8 ns	
					(11100) rs315952						ns	
	5	58 (male)	342 (male)	IL-IA	(-899) rs1800587	Allele			459* 0	0.666 0.444-1.001	l ns	
				IL-1B	(+3954)	Allele		78*	516* 0	0.660 0.432-1.010	0 ns	
					(5810) rsl 143633				444*	1.316 0.852-2.031	l ns	
					(-511) rs16944						8 ns	
				IL-IRN	9589	Allele					3 ns	
					(11100) rs315952			33*	194*	1.029 0.664-1.594	4 ns	
Melek Sezgin et al. ³¹	2014 107		67	IL-IRN VNTR	rs419598	Allele	IL-IRN*2	28*	19*	0.91 0.49–1.71	su	
							IL-IRN*3	2*	<u>*</u>	1.25 0.11–13.97	ns	
							IL-IRN*4	175*	109*		su	
							IL-IRN*5	*6	ۍ *	1.13 0.37–3.45	su	
						Genotypes	IL-IRN*4/*4	74	47		su	
						:	IL-IRN*4/*2	61	12	0.98 0.32-2.95	ns	
							IL-IRN*2/*2	4	- ~	-	su	
							IL-IRN*5/*4	7	5	.75 0.08-6.47	ns	
							IL-IRN*5/*2	-	-	0.71 0.04-12.70	su	
							IL-IRN*4/*3	-	-	-	su	
							IL-IRN*5/*5	0	_		ns	
							IL-IRN*5/*3	-		IR IR	ns	
				IL-IA	(+4845)	Allele	υ	153*		-	9 ns	
							т	59*		0.916 0.468-1.793	3 ns	
						Genotypes	CC	53			su	
							cT	47	26	1.16 0.43–3.12	ns	
							ш	9	7	0.39 0.06–2.42	su	
				IL-IB	(+3953)	Allele	υ	168*		-	l ns	
							т	46*		0.949 0.454-1.983		
						Genotypes	CC	68			su	
							CT	32	52	-		
							Ħ	7	4	2.15 0.28–16.35	su	

(continued)

continued)	
ole 2. (con	
Tab	

	-											
	sample size						Outcome	e				
Study	Year Case	Control	Gene	SNP	Type		Case (Control	OR 9	95% CI	đ	
Kaarvatn et al. ³²	2012 470	1048	IL-IA	(-889) rs1800587	Allele	0 H	311	739 309	0.82 0	0.64–1.04 0.92 1.55	su	
	235	524	IL-IA	(-889) rs1800587	Genotype	- 20	101				0.033	
						타	109 35	201 54	1.39	1.01–1.92 0.61–1.76	0.038 Dr	
	480	1062	IL-IB	(3954) rs 143634	Allele	- 0	365	787		0.86–1.44 0.86–1.44	SII SU	
						т	115	275	-	0.70-1.17	ns	
					Genotype	S	138			0.80-1.52	ns	
						l CT	86			0.69–1.32	ns	
	434	1032	II - I R NI VNITR - 15419598	2010 Dec	Allele	TT LENsi	134*	36 733*	0.79 0	0.39–1.57 0.474–1.096	ns	
		7001		0.011121		II - I R N*2				0.936-1.532	2 2	
						IL-IRN*3	1 00	23	-	0.366-1.856	SU	
						IL-IRN*4	0	-	-	0.032-	ns	
										19.465		
	217	516	IL-IRN VNTR rs419	rs419598	Genotype	IL-IRN*1/*I	101	267		0.591–1.116	ns	
						IL-IRN*1/*2	85	182		0.852-1.639	ns	
						IL-IRN*1/*3		<u>.</u>		0.448-2.770	ns	
						IL-IKN*1/*4	þ	_	0.79	0.032-	su	
						C#/C#NB1-	56	45	0 1241 0	0 731-2107	30	
						IL-IRN*2/*3	3 –			0.066-5.332	SU SU	
						II - I RN*3/*3	- c		-	0.073-934		
	476	1008		II - I A (889)-II - I B (3954)-II - I B (511)-II -	Hanlotyne	1-2-1-1 (C-T-G-4)	о <i>и</i> г		-		0.011	Protection
	2			IRN(VNTR)	ad facidari	1-2-1-1 (C-T-G-4)	04		-		<0.001	Protection, age- and sex-matched
	344 (female,	344 (female) 224 (female)		IL-IA(889)-IL-IB(3954)-IL-IB(511)-IL-	Haplotype	I-2-I-I (C-T-G-4)	37		-	0.03-0.54	0.001	D
				IRN(VNTR)								
	I 32 (male)	690 (male)		IL-1A(889)-IL-1B(3954)-IL-1B(511)-IL- I R N/VNTR)	Haplotype	2-I-I-I (T-C-G-4)	9	6	3.6	1.12–11.3	0.011	
	238	504		IL-IA(889)-IL-IB(3954)-IL-IB(511)-IL-	Haplotype	I-I-I-I/I-I-2-I (C-C-G-4/C-C-A-	=	48	0.46 0	0.22-0.94	0.021	Protection
				IRN(VNTR)		4						
:						1-2-1-1/all (C-T-G-4/all)	S			0.10-0.81	0.008	Protection
Menha Swellam et al. ³³ 2010	2010 80	80	IL-IRN VNTR rs419598	rs419598	Allele	IL-IRN*I	88*			0.13-0.52	0.040	
						IL-IRN*2	*0 [*]	12*	3.81	1.91–7.58	<0.0001	
					(IL-IKN*4	53	58				
					Genotype	IL-IKN*1/*1	24 7	87		0.080-0.421	0.0001	
						IL-IKN*1/*2	80	ø	4 cc.01	-612.4	0.000	
						C*/ C*/N 81 - 11	5	ç	3 253 0	0713-	30	
							7	4		-21.07 15.777	2	
lotanovic et al ³⁴	2011 476	916	II-IB	(-5 1) rs 6944	Allele	U	301	590	0.950 0	0.755-1.196	su	
		2				• ∢	175	326		0.836-1.325	su Su	
	238	458			Genotype	00	96			0.758-1.437	ns	
						GA	109	230	0.838 0	0.612–1.147	ns	
						AA	33	48	1.375 0	0.856-2.209	ns	
	434	974	IL-IRN VNTR rs419	rs419598	Allele	IL-IRN*I			0.886 0	0.694–1.131	ns	
						IL-IRN*2		265*		0.912–1.499	ns	
						IL-IRN*3	* 80	23*		0.345–1.750	ns	
						IL-IRN*4	*0	*	0.747 0	0.030-	ns	
	1	101			(18.371		
	717	495	IL-IKN VN IK rs415	rs419598	Genotype	IL-IKN*4/*4 II IBN ¥4 20	÷10	248* 100*		0.630-1.194	us	
								100	17171	202.1-210.0	20	
						IL-IRN¥4∕3	、 č			0.031-	2 2	
							•			18.679	2	
						IL-IRN*2/*2	23*			0.678-2.014	ns	
						IL-IRN*2/*5	<u>*</u>	4		0.063–5.114	ns	
						IL-IRN*5/*5	*0		0.454 0	0.022-9.492	su	

Knee		Cont			Odds Ratio		Odds Ratio
Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
68	100	285	340	6.4%	0.41 [0.25, 0.68]	2008	
835	906	896	971	8.0%	0.98 [0.70, 1.38]	2009	
98	168	64	76	4.9%	0.26 [0.13, 0.52]	2010	
294	434	685	974	8.9%	0.89 [0.69, 1.13]	2011	
294	434	732	1032	8.9%		2012	-
	2042		3393	37.1%	0.67 [0.48, 0.95]		•
					-		
			= 4 (P =	0.0007);	$l^2 = 79\%$		
Z = 2.25	5 (P = 0)).02)					
28	100	51	340	6.2%	2.20 [1.30, 3.74]	2008	
64	906	69	971	7.9%			
70	168	12	76	4.9%	3.81 [1.91, 7.58]	2010	· · · · · ·
132	434	265	974	8.9%			
132	434	276	1032	8.9%	1.20 [0.94, 1.53]	2012	
28	214	19	134	5.4%			
	2256		3527	42.1%	1.38 [1.02, 1.85]		◆
454		692					
0.09; Cl	$hi^2 = 17$	7.49, df =	5 (P =	0.004); I ²	= 71%		
Z = 2.10	0 (P = 0	0.04)					
4	100	4	340	1.9%	3.50 [0.86, 14.25]	2008	
0	906	3	971	0.5%	0.15 [0.01, 2.96]	2009	· · · · · · · · · · · · · · · · · · ·
8	434	23	974	4.1%	0.78 [0.34, 1.75]	2011	
8	434	23	1032	4.1%	0.82 [0.37, 1.86]	2012	
2	214	1	134	0.7%		2014	
	2088		3451	11.2%	0.98 [0.52, 1.86]		•
22		54					
			4 (P = 0)	.26); I ² =	24%		
Z = 0.06	6 (P = 0).95)					
7	906	6	971	2.7%			
0	168	0	76				
0	434	1	974	0.4%			
0	434	1	1032	0.4%			
175	214	109	134	6.0%		2014	
	2156		3187	9.6%	1.06 [0.65, 1.71]		•
182		117					
			3 (P = 0	.98); I ² =	0%		
Z = 0.22	2 (P = 0)).83)					
	8542		13558	100.0%	0.99 [0.80, 1.23]		•
2247		3525					
0.12; C	$hi^2 = 60$	0.86, df =	= 19 (P <	0.0000	l); I ² = 69%		0.01 0.1 1 10 1
Z = 0.05	5 (P = 0)	.96)					0.01 0.1 1 10 1
	CL 12	0 FO 46	2 /0	0.02), I ²	CO 40/		
	Events 688 835 988 294 294 294 1589 294 288 64 70 132 288 644 70 2 2132 28 454 0.005 (CI Z = 2.1) 4 0 0 2 213; CI CI Z = 0.01; CI Z = 0.00; 7 0 0 0 175 182 20 0.12; CI Z = 0.2; 2247 0.012; CI Z = 0.2; 2247 0.012; CI Z = 0.2;	Events Total 68 100 835 906 98 168 294 434 2042 1589 : 0.11; Chi² = 115 : 2 : 2 2.25 (P = 0 28 100 64 906 70 168 132 434 2256 454 0.09; Chi² = 11; : 2 : 2 2.10 (P = 0 4 100 0 906 8 434 2088 224 : 0.3; Chi² = 5; : 2 : 0.3; Chi² = 5; : 2 : 0.3; Chi² = 5; : 2 : 0.44 175 : 0.434 175 : 0.434 175 : 0.434 175 : 0.434 175 : 0.434 175 : 0.434 175 : 0.434 175 : 0.20; Chi² = 0; : 0.20; Chi² = 0;	Events Total Events 68 100 285 835 906 896 98 168 64 294 434 685 294 434 685 294 434 685 294 434 685 294 434 685 294 434 685 294 434 685 294 434 685 296 0.01; Chi ² = 19.14, df = 2 2.2.5 (P = 0.04) 28 100 51 64 906 69 70 168 12 132 434 265 132 434 265 28 214 19 2256 454 692 0.096 3 8 2 2.14 1 2088 22 54 0.13; Chi ² = 5.23, df =: 276 <tr< td=""><td>Events Total Events Total 68 100 285 340 835 906 896 971 98 168 64 76 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 2042 3339 2662 . 0.011; Ch¹ = 19.14, df E 4 (P =) 28 100 51 340 64 906 6971 70 168 12 76 132 434 256 9524 1324 245 974 28 214 19 134 2256 9527 434 23 1032 214 1 342 208 3441 23</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Events Total Events Total Weight M-H, Random, 95% CI 68 100 285 340 6.4% 0.41 [0.25, 0.68] 835 906 896 971 8.0% 0.98 [0.70, 1.38] 98 168 64 76 4.9% 0.26 [0.13, 0.52] 294 434 685 974 8.9% 0.89 [0.66, 1.10] 2044 343 732 1032 8.9% 0.66 [0.68, 1.10] 2042 3393 37.1% 0.67 [0.48, 0.95] 1.38 1589 2662 .0.11 (h) f 9.9% .0.71 [0.48, 0.95] 132 434 265 974 8.9% 1.17 [0.91, 1.53] 132 434 265 974 8.9% 1.21 [0.49, 1.51] 2256 3527 42.1% 1.38 [1.02, 1.85] 454 692 0.009 Chi² 17.49 df <</td><td>Events Total Events Total Weight M-H, Random, 95% CI Year 68 100 285 340 6.4% 0.41 [0.25, 0.68] 2008 835 906 896 971 8.0% 0.98 [0.70, 1.38] 2000 98 168 64 76 4.9% 0.26 [0.13, 0.52] 2010 294 434 685 974 8.9% 0.89 [0.69, 1.13] 2011 2042 3393 37.1% 0.67 [0.48, 0.95] 2021 1589 2662 .0.011 Chi 2 4.9% 0.81 [1.91, 7.58] 2010 12 244 276 1032 8.9% 1.20 [0.94, 1.53] 2012 28 100 51 340 6.2% 2.20 [1.30, 3.74] 2008 64 906 69 971 7.9% 0.99 [0.70, 1.41] 2014 132 434 265 974</td></tr<>	Events Total Events Total 68 100 285 340 835 906 896 971 98 168 64 76 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 294 434 685 974 2042 3339 2662 . 0.011; Ch ¹ = 19.14, df E 4 (P =) 28 100 51 340 64 906 6971 70 168 12 76 132 434 256 9524 1324 245 974 28 214 19 134 2256 9527 434 23 1032 214 1 342 208 3441 23	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Events Total Events Total Weight M-H, Random, 95% CI 68 100 285 340 6.4% 0.41 [0.25, 0.68] 835 906 896 971 8.0% 0.98 [0.70, 1.38] 98 168 64 76 4.9% 0.26 [0.13, 0.52] 294 434 685 974 8.9% 0.89 [0.66, 1.10] 2044 343 732 1032 8.9% 0.66 [0.68, 1.10] 2042 3393 37.1% 0.67 [0.48, 0.95] 1.38 1589 2662 .0.11 (h) f 9.9% .0.71 [0.48, 0.95] 132 434 265 974 8.9% 1.17 [0.91, 1.53] 132 434 265 974 8.9% 1.21 [0.49, 1.51] 2256 3527 42.1% 1.38 [1.02, 1.85] 454 692 0.009 Chi ² 17.49 df <	Events Total Events Total Weight M-H, Random, 95% CI Year 68 100 285 340 6.4% 0.41 [0.25, 0.68] 2008 835 906 896 971 8.0% 0.98 [0.70, 1.38] 2000 98 168 64 76 4.9% 0.26 [0.13, 0.52] 2010 294 434 685 974 8.9% 0.89 [0.69, 1.13] 2011 2042 3393 37.1% 0.67 [0.48, 0.95] 2021 1589 2662 .0.011 Chi 2 4.9% 0.81 [1.91, 7.58] 2010 12 244 276 1032 8.9% 1.20 [0.94, 1.53] 2012 28 100 51 340 6.2% 2.20 [1.30, 3.74] 2008 64 906 69 971 7.9% 0.99 [0.70, 1.41] 2014 132 434 265 974

Figure 2. Forest plot of ILIRN VNTR allele.

One of the nine studies evaluated IL-1R1 polymorphisms SNP rs10490571, rs12712127, rs956730, rs3917225, and rs3917318. Among these five SNPs, only two were associated with knee OA: rs956730 decreased the risk (OR, 0.74; 95% CI, 0.57–0.97, p = 0.028) while rs3917225 increased the risk of knee OA (OR, 1.38; 95% CI, 1.09-1.75, p = 0.007). Interleukin-1R1 rs956730 SNP was associated with a decreased risk of knee OA in an additive model (OR, 0.73; 95% CI, 0.56–0.96; p = 0.026); but when the age and sex were matched, no association was found between knee OA and IL-1RN SNP rs956730 regardless of whether it was dominant, recessive, or additive. Interleukin-1RN SNP rs3917225 genotypes GG, dominant GG+GA, recessive GG, and an additive model were associated with an increased risk of knee OA. The correlation persisted in age- and sex-matched dominant (adjusted OR, 1.47; 95% CI, 1.04–2.07, p = 0.030), recessive (adjusted OR, 1.75, 95% CI, 1.08–2.85, p = 0.023), and additive models (adjusted OR, 1.40; 95% CI, 1.09–1.79; p = 0.007).

One study evaluated the associations between the IL-1RN polymorphism and matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), as well as hyaluronic acid (HA) and pentosidine (PEN), which are cartilage oligometric matrix proteins (COMP) and markers of synovitis and cartilage destruction. They found no associations between IL-1RN and any of these proteins. Some studies also investigated the haplotype of IL-1 family polymorphisms. Interleukin-1B -511C/T-IL-1RN VNTR was not associated with knee OA, but the IL-1A(889)-IL-1B(3954)-IL-1B(511)-IL-1RN VNTR haplotype 1-2-1-1 (C-T-G-4) decreased the risk of knee OA (OR, 0.31; 95% CI, 0.11–0.84, p = 0.011). Age- and sex-matched models also found an association between this haplotype and knee OA in women (OR = 0.14, 95% CI = 0.04–0.47, p <0.001). Interleukin-1A(889)-IL-1B(3954)-IL-1B(511)-IL-1RN VNTR haplotype 1-1-1/1-1-2-1 (C-C-G-4/C-C-A-4) also decreased the risk of knee OA (OR, 0.46; 95% CI, 0.22-0.94, p = 0.021) as did haplotype 1-2-1-1/all (C-T-G-4/all) (OR, 0.30; 95% CI, 0.10–0.81; p = 0.008).

One study investigated the associations between IL-1 polymorphisms and patient-reported outcome measurements (PROM), laboratory results, and radiological findings. They evaluated the IL-1RN VNTR (SNP rs419598), IL-1A +4845, and IL-1B +3953 polymorphisms using the Western Ontario and McMaster Universities Arthritis Index (WOMAC) which consists of pain, stiffness, and physical

	Knee Events		Contr Events		Weight	Odds Ratio M-H, Random, 95% CI	Year	Odds Ratio r M-H, Random, 95% CI
1.6.1 IL1RN*1/*1								
Kaarvatn 2012	101	217	267	516	7.4%	0.81 [0.59, 1.12]		
Jotanovic 2011	101	217	248	495	7.4%	0.87 [0.63, 1.19]		
Swellam 2010	24	80	28	40	4.5%	0.18 [0.08, 0.42]		
Ni 2009	393	453	420	487	7.1%	1.04 [0.72, 1.52]		
Ruzickova 2008 Subtotal (95% CI)	22	50 1017	123	170 1708	5.5% 32.0%	0.30 [0.16, 0.58] 0.59 [0.37, 0.95]	2008	· · · ·
Total events Heterogeneity: Tau ² = Test for overall effect:				= 4 (P =	0.0001);	$1^2 = 82\%$		
1.6.2 IL1RN*1/*2			10122	121012				
Kaarvatn 2012	85	217	182	516	7.4%	1.18 [0.85, 1.64]		
Jotanovic 2011	85	217	180	495	7.4%	1.13 [0.81, 1.56]		
Swellam 2010	58	80	8	40	4.1%	10.55 [4.21, 26.38]		
Ni 2009	56	453	65	487	7.1%	0.92 [0.62, 1.34]		
Ruzickova 2008	21	50 1017	35	170	5.3%	2.79 [1.42, 5.48]	2008	
Subtotal (95% CI)	205	1017	170	1708	31.3%	1.77 [1.03, 3.06]		-
Total events Heterogeneity: Tau ² =	305	hi ² - 20	470	A (D	0 00001	12 - 0.6%		
Test for overall effect:				: 4 (P <	0.00001); 1- = 86%		
1.6.3 IL1RN*1/*3								
Kaarvatn 2012	7	217	15	516	4.1%	1.11 [0.45, 2.77]		
Jotanovic 2011	7	217	15	495	4.1%	1.07 [0.43, 2.65]	2011	ι - μ
Ruzickova 2008 Subtotal (95% CI)	3	50 484	4	170 1181	2.1% 10.3%	2.65 [0.57, 12.25] 1.25 [0.69, 2.26]	2008	
Total events	17		34					-
Heterogeneity: Tau ² = Test for overall effect:	0.00; C		10, df =	2 (P =	0.58); l ² =	= 0%		
1.6.4 IL1RN*1/*4								
Kaarvatn 2012	0	217	1	516	0.6%	0.79 [0.03, 19.47]		
Jotanovic 2011	0	217	1	495	0.6%	0.76 [0.03, 18.68]		
Swellam 2010 Subtotal (95% CI)	0	80 514	0	40 1051	1.2%	Not estimable	2010	
	0	514	2	1031	1.270	0.77 [0.08, 7.46]		
Total events Heterogeneity: Tau ² =		hi² - 0	2	1 /0	0 001- 12 -	- 0%		
Test for overall effect:	Z = 0.2	2 (P = 0)	00, ul =).82)	I (P =	0.99),1 =	= 0%		
1.6.5 IL1RN*2/*2								
Sezgin 2014	4	107	3	67	2.1%	0.83 [0.18, 3.82]		
Kaarvatn 2012	23	217	45	516	6.2%	1.24 [0.73, 2.11]		
Jotanovic 2011	23	217	45	495	6.2%	1.19 [0.70, 2.01]		
Swellam 2010	12	80	2	40	2.1%	3.35 [0.71, 15.78]		
Ni 2009	4	453	2	487	1.8%	2.16 [0.39, 11.85]		
Ruzickova 2008 Subtotal (95% CI)	3	50 1124	8	170 1775	2.5% 20.9%	1.29 [0.33, 5.07] 1.28 [0.92, 1.79]	2008	
Total events	69	1124	105	1//3	20.9%	1.20 [0.92, 1.79]		
Heterogeneity: Tau ² =		$hi^2 = 2$		5 (P -	0 81)- 12 -	- 0%		
Test for overall effect:				5 (1 -	0.01), 1 -	- 0/0		
1.6.6 IL1RN*2/*3								
Kaarvatn 2012	1	217	4	516	1.2%	0.59 [0.07, 5.33]	2012	2
Jotanovic 2011	1	217	4	495	1.2%	0.57 [0.06, 5.11]		
Ruzickova 2008	1	50	0	170	0.6%	10.33 [0.41, 257.65]	2008	3
Subtotal (95% CI)		484		1181	3.0%	1.07 [0.22, 5.20]		
Total events Heterogeneity: Tau ² = Test for overall effect:				2 (P =	0.29); l ² =	= 20%		
1.6.7 IL1RN*3/*3								
Kaarvatn 2012	0	217	2	516	0.7%	0.47 [0.02, 9.90]		
Jotanovic 2011 Subtotal (95% CI)	0	217 434	2	495 1011	0.7% 1.3%	0.45 [0.02, 9.49] 0.46 [0.05, 3.98]	2011	
Total events	0		4					
Heterogeneity: Tau ² = Test for overall effect:	0.00; C			1 (P =	0.98); l ² =	= 0%		
Total (95% CI)		5074		9615	100.0%	1.09 [0.84, 1.40]		•
Total events	1035		1709					
Heterogeneity: Tau ² = Test for overall effect:	Z = 0.6	2 (P = 0)	6.58, df = 0.53)					0.01 0.1 1 10 100
Test for subgroup diffe	erences:	cni =	11.54, 0	= 0 ()	- 0.08),	1 - 47.178		

Figure 3. Forest plot of ILIRN VNTR genotype.

function subscales (Table 3). They also compared these polymorphisms with erythrocyte sedimentation rates (ESR) and C-reactive protein (CRP) (Table 3) and radiological OA grades (ROA) on the Kellgren-Lawrence scale (KL) of 1–4 (Table 4). They did not find any associations between IL-1RN, IL-1A, and IL-1B gene polymorphisms and PROM, laboratory results, and radiological findings of knee OA. However, these findings contradicted others showing that the frequency of the IL-1RN*2 allele and IL-1RN*1/*2 and IL-1RN*2/*2 SNP rs419598 genotypes between KL grades 1–2 and 3–4, was higher in more severe knee ROA. They also found differences in the visual analog scale (VAS) that

measures the quality of perceived pain (Table 5). The frequency of IL-1RN*2 allele was lower among patients with mild pain than those with moderate or severe pain. The IL-1RN*1/*1 and IL-1RN*1/*2 genotypes negatively and positively correlated, respectively, with pain.

Discussion

We found that IL-1RN*2 allele and IL-1RN*1/*2 genotype rs419598 increased the risk of knee OA, whereas the IL-1RN*1/*1 allele decreased the risk of knee OA. Furthermore, IL-1RN VNTR was correlated with knee OA in Caucasians.

We were unable to analyze this correlation in Asians because only one study has evaluated this in Asian population. Since only a handful of studies have compared IL-1 gene polymorphisms between knees with OA and healthy knees, only the IL-1RN VNTR could be assessed in a meta-analysis.

Genetic factors are among the many causes of OA, including that of the knee. Although several studies and metaanalyses have assessed various sites of OA, the results have remained inconclusive.^{17–21} The conflicting results among studies were probably due to factors other than genetics, such as the environment, age, gender, ethnicity, and BMI. Combinations of factors and the contributions of individual factors that influence knee OA remain unknown.^{22–24} In

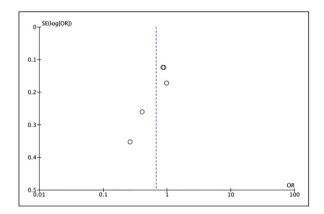


Figure 4. Funnel plot ILIRN*I allele shows asymmetric funnel plot in ILIRN*I.

addition, the sites of knee OA, whether medial or lateral, affect the risk for severity or progression.^{25,26}

Cytokines play key roles in the pathogenesis of synovitis and cartilage destruction in OA.²⁷ Various differentially expressed cytokines due to polymorphisms in the genes encoding cytokines such as IL-1 also play important roles in cartilage and bone destruction in OA. Interleukin-1 α , IL-1 β , and their naturally occurring antagonist (IL-1RA) are encoded by genes located within the 430-kb region, known as the IL-1 gene family. The IL-1A, IL-1B, and IL-1RN genes produce IL-1 α , IL-1 β , and IL-1Ra, respectively. Interleukin-1Ra counteracts the IL-1 action by binding to the IL-1 receptor without activating it.²⁸

The results of the correlations between IL-1RN VNTR and ROA were inconsistent. They did not significantly differ based on KL grading, but did so when evaluated with dichotomous data; the frequency of IL-1RN VNTR was lower for severe knee OA. Wu et al.²⁹ also found that IL-1RN rs380092 and rs315952 decreased the risk of knee OA, while other specific IL-1RN and IL-1R1 increased the risk of knee OA. Attur et al.³⁰ also found that the IL-1RN SNP rs419598, rs9005, and the haplotype rs419598/rs315952/ rs9005 function as protective factors in knee OA. The differences in the results of these studies were probably due to the OA grading on the medial or lateral compartment as revealed by Hunter et al.,³¹ who found that OA in the lateral and medial compartments differs based on risk factors for disease severity and progression. Attur et al.⁸ compared the lateral and medial compartment OA and found a difference in plasma levels of IL-1Ra.

Table 3. Correlation between IL-I gene polymorphisms and PROM and laboratory findings in knee OA.

				PROM			Laboratory	
Study	Year	Gene	Genotypes	WPS (mean ± SD)	WSS (mean ± SD)	WPFS (mean ± SD)	ESR (mm/h) (mean ± SEM)	CRP (mg/L) (mean ± SEM)
Melek Sezgin	2010	IL-IRN VNTR	4/4	14.4 ± 3.5	5.0 ± 2.1	46.1 ± 12.8	23.4 ± 2.2	3.5 ± 0.4
et al. ³¹		rs419598	4/2	13.5 ± 4.6	4.5 ± 2.8	45.3 ± 15.2	21.6 ± 4.7	2.9 ± 0.4
			2/2	13.0 ± 3.5	4.5 ± 2.6	55.0 ± 14.8	13.2 ± 5.1	1.5 ± 0.3
			5/4	15.4 ± 2.6	5.0 ± 1.7	57.7 ± 21.5	31.1 ± 3.3	4.3 ± 1.5
			5/2	12.0	5.0	52	6.0	0.5
			4/3	16.0	4.0	53	6.2	3.4
			5/3	12.0	3.0	39	5.0	1.2
			Þ	0.802	0.917	0.373	0.207	0.544
		IL-IA (+4845)	'cc	13.9 ± 3.8	4.6 ± 0.3	44.4 ± 14.0	23.2 ± 2.3	3.1 ± 0.3
		()	СТ	14.0 ± 3.2	4.9 ± 0.2	48.7 ± 13.1	23.3 ± 3.0	3.1 ± 0.4
			TT	16.6 ± 1.9	5.3 ± 0.8	53.8 ± 14.0	26.8 ± 8.4	7.2 ± 3.8
			Þ	0.198	0.683	0.132	0.907	0.519
		IL-IB (+3953)	'cc	13.7 ± 0.4	4.8±2.2	46.3±1.5	25.0±2.3	3.4±0.4
		、	СТ	14.8 ± 0.6	4.9 ± 2.1	48.5 ± 2.8	19.4 ± 3.0	2.4 ± 0.3
			TT	16.5 ± 1.3	5.1 ± 3.0	48.2 ± 6.3	24.1 ± 8.2	6.7 ± 3.2
			Þ	0.085	0.988	0.743	0.384	0.147

WPS = WOMAC pain subscale; WPFS = WOMAC physical function subscale; WSS = WOMAC stiffness subscale.

This systematic review showed that IL-1B polymorphisms were not associated with knee OA in Asian and Caucasian populations. These findings differed from those of Kanoh et al.,²⁰ who evaluated 303 normal knees and 56 ROAs. They found that the rate of ROA was significantly higher for the T/T, than the C/C or CT genotypes. Others have also associated IL-1B SNP with knee OA.^{18,21} Barakat et al. found that the same concentrations of IL-1B in different compartments of the same knee result in different region of cartilage damage.³² Knee joint chondrocytes are more sensitive to stimulation with IL-1B than other joints,³³ but the present systematic review did not found an association between IL-1B polymorphisms and knee OA.

Whether IL-1B polymorphisms are associated with knee OA remains inconclusive.

Moxley et al. found no association between IL-1A SNP, IL-1B SNP, IL-1RN, and knee OA. Evaluations of these three genes using extended haplotypes found no association between genetic variations in the IL-1 region and knee OA.¹⁷ In contrast, others have found that an extended IL-1 region haplotype is associated with knee OA.^{34,35}

This meta-analysis has some limitations. Firstly, the IL-RN VNTR polymorphisms studies were heterogeneous, although subgroup analysis did not identify any potential sources. This might have resulted in misunderstanding the meta-analysis results. Secondly, the total sample size of the

Table 4. Correlation between IL-I	gene polymorphism and	ROA grading in knee OA.
-----------------------------------	-----------------------	-------------------------

				KL grading	5			
Study	Year	Gene	Genotypes	I (n, %)	2 (n, %)	3 (n, %)	4 (n, %)	þ value
Melek Sezgin et al. ³¹	2010	IL-IRN VNTR rs419598	4/4	19 (25.7)	26 (35.1)	24 (32.4)	5 (6.8)	0.565
0			4/2	3 (15.8)	12 (63.2)	4 (21.1)	0 (0.0)	
			2/2	l (25.0)	2 (50.0)	0 (0.0)	I (25.0)	
			5/4	I (I4.3)	2 (28.6)	3 (42.9)	I (I4.3)	
			5/2	0 (0.0)	1 (100.0)	0 (0.0)	0 (0.0)	
			4/3	0 (0.0)	0 (0.0)	I (10Ó.0)	0 (0.0)	
			5/3	0 (0.0)	0 (0.0)	I (100.0)	0 (0.0)	
		IL-IA (+4845)	CC	12 (22.6)	23 (43.4)	15 (28.3)	3 (5.7)	0.871
		× ,	СТ	10 (21.3)	17 (36.2)	17 (36.2)	3 (6.4)	
			TT	I (16.7)	3 (50.0)	l (l6.7)	I (16.7)	
		IL-1B (+3953)	СС	13 (19.1)	31 (45.6)	21 (30.9)	3 (4.4)	0.306
		· · · ·	СТ	9 (28.I)	8 (25.0)	II (34.4)	4 (12.5)	
			ТТ	2 (28.6)	4 (57.1)	I (I4.3)	0 (0.0)	

Table 5. Correlations between IL-I gene polymorphisms and VAS and ROA grades of knee OA.

Study	Year	Gene	Туре	Visual analog scale (VAS) (%)				KL grading		
				Mild (N = 18)	Moderate (N = 32)		þ value	KL I–2 (N = 34)	KL 3-4 (N = 46)	þ value
Menha Swellam et al. ³³	2010	IL-1RN rs419598	Allele							
			1	16 (88.9)	28 (87.5)	30 (100)	0.141	32 (94.1)	42 (91.3)	0.637
			2	2 (II.I)	26 (81.3)	30 (100)	0.0001	19 (55.9)	39 (84.8)	0.004
			Carriage	· · ·	· · ·	()		· · · ·	· · ·	
			1	16 (88.9)	28 (87.5)	30 (100)	0.141	32 (94.1)	42 (91.3)	0.637
			2	2 (11.1)	26 (81.3)	30 (100)	0.0001	19 (55.9)	39 (84.8)	0.004
			Genotype *1/*1							
			-ve	4 (22.2)	22 (68.8)	30 (100)	0.0001	20 (58.8)	36 (78.3)	0.061
			+ve *1/*2	l4 (77.8)́	10 (31.3)	()		l4 (41.2)́	10 (21.2)	
			_ve	16 (88.9)	6 (18.8)		0.0001	15 (44.1)	7 (15.2)	0.003
			+ve	2 (11.1)	26 (81.3)	30 (100)		19 (55.9)	39 (84.8)	
			*2/*2							
			-ve	18 (100)	28 (87.5)	· · ·	0.038	14 (41.2)	· · ·	0.004
			+ve		4 (12.5)	8 (26.7)		20 (58.8)	38 (82.6)	

eligible studies was insufficient to reach a convincing conclusion. Thirdly, all the samples in this study were taken from peripheral blood which can result in bias. As we know, some SNP of IL-1 β also correlates with heart disease or outcome of other disease. Lastly, our conclusion of the meta-analysis was based on unadjusted estimations. Many factors influence OA, including gender, ethnicity, BMI, lifestyle, and hormones. Since complete data were unavailable, we could not conduct meta-regression analyses, despite the studies included in the analysis being of good qualities.

Conclusion

We concluded that several IL-1RN alleles and genotypes play a role in its severity, but other genetic variations in the IL-1 region were still conflicting in its association with knee OA. Further study is needed to evaluate the association between genetic variations in the IL-1 region and knee OA especially across different ethnicities.

Declaration of conflicting interests

NCB reports personal fees, non-financial support and other from DePuy Synthes, other from Zimmer Biomet, other from Gruppo Bioimpianti, outside the submitted work; and Editorial board/Reviewer: VJSM, CORR, J of Arthroplasty, AJSM, JOS, KSSTA, JISAKOS, BJJ, BJO, Knee Journal, OJSM, JIMR, JSHS, KSRR, CiOS, ANZ Journal of Surgery, JOINTS, Arthroplasty, Arthropaedia, Hip & Knee Journal. The rest of the authors declare no conflict of interest.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Registration

This study was registered in OSF with DOI 10.17605/OSF.IO/ W2CY3.

Data availability statement

The data that supports the findings of this study are available within the article [and its supplementary material]

ORCID iD

Nicolaas C. Budhiparama D https://orcid.org/0000-0002-0801-7400

Supplemental Material

Supplemental material for this article is available online.

References

 Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. *Nat Rev Rheumatol* 2011; 7(1): 33–42.

- Ajrawat P, Dwyer T and Chahal J. Autologous interleukin 1 receptor antagonist blood-derived products for knee osteoarthritis: A systematic review. *Arthrosc-J Arthrosc Relat Surg* 2019; 35(7): 2211–2221.
- Martel-Pelletier J, Alaaeddine N and Pelletier JP. Cytokines and their role in the pathophysiology of osteoarthritis. *Front Biosci* 1999; 4: D694–D703.
- Kaneko N, Kurata M, Yamamoto T, et al. The role of interleukin-1 in general pathology. *Inflamm Regen* 2019; 39(1): 1–16.
- Epstein FH, Dinarello CA and Wolff SM. The role of interleukin-1 in disease. N Engl J Med 1993; 328(2): 106–113.
- Attur M, Wang H-Y, Kraus VB, et al. Radiographic severity of knee osteoarthritis is conditional on interleukin 1 receptor antagonist gene variations. *Ann Rheum Dis* 2010; 69(5): 856–861.
- Kerkhof HJM, Doherty M, Arden NK, et al. Large-scale meta-analysis of interleukin-1 beta and interleukin-1 receptor antagonist polymorphisms on risk of radiographic hip and knee osteoarthritis and severity of knee osteoarthritis. *Osteoarthr Cartil* 2011; 19(3): 265–271.
- Attur M, Statnikov A, Samuels J, et al. Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis. *Osteoarthr Cartil* 2015; 23(11): 1915–1924.
- Arend WP. Interleukin-1 receptor antagonist. *Immunologist* 1998; 5(6): 197–201.
- Palmer G, Guerne PA, Mezin F, et al. Production of interleukin-1 receptor antagonist by human articular chondrocytes. *Arthritis Res* 2002; 4(3): 226–231.
- Sellam J and Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. *Nat Rev Rheumatol* 2010; 6(11): 625–635.
- Abd-Allah SH, Shalaby SM, Pasha HF, et al. Variation of matrix metalloproteinase 1 and 3 haplotypes and their serum levels in patients with rheumatoid arthritis and osteoarthritis. *Genet Test Mol Biomarkers* 2012; 16(1): 15–20.
- Ye S, Patodi N, Walker-Bone K, et al. Variation in the matrix metalloproteinase-3, -7, -12 and -13 genes is associated with functional status in rheumatoid arthritis. *Int J Immunogenet* 2007; 34(2): 81–85.
- Mattey DL, Nixon NB, Dawes PT, et al. Association of matrix metalloproteinase 3 promoter genotype with disease outcome in rheumatoid arthritis. *Genes Immun* 2004; 5(2): 147–149.
- Honsawek S, Malila S, Yuktanandana P, et al. Association of MMP-3 (-1612 5A/6A) polymorphism with knee osteoarthritis in Thai population. *Rheumatol Int* 2013; 33(2): 435–439.
- Meulenbelt I, Seymour AB, Nieuwland M, et al. Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip. *Arthritis Rheum* 2004; 50(4): 1179–1186.
- Moxley G, Meulenbelt I, Chapman K, et al. Interleukin-1 region meta-analysis with osteoarthritis phenotypes. *Osteoarthr Cartil* 2010; 18(2): 200–207.

- Moos V, Rudwaleit M, Herzog V, et al. Association of genotypes affecting the expression of interleukin-1/β or interleukin-1 receptor antagonist with osteoarthritis. *Arthritis Rheum* 2000; 43(11): 2417–2422.
- Meulenbelt I, Bos SD, Kloppenburg M, et al. Interleukin-1 gene cluster variants with innate cytokine production profiles and osteoarthritis in subjects from the genetics, osteoarthritis and progression study. *Arthritis Rheum* 2010; 62(4): 1119–1126.
- Kanoh T, Hasegawa Y, Masui T, et al. Interleukin-1β gene polymorphism associated with radiographic signs of osteoarthritis of the knee. J Orthop Sci 2008; 13(2): 97–100.
- Cai H, Sun H-J, Wang Y-H, et al. Relationships of common polymorphisms in IL-6, IL-1A, and IL-1B genes with susceptibility to osteoarthritis: a meta-analysis. *Clin Rheumatol* 2015; 34(8): 1443–1453.
- Magnusson K, Turkiewicz A and Englund M. Nature vs nurture in knee osteoarthritis – the importance of age, sex and body mass index. *Osteoarthr Cartil* 2019; 27(4): 586–592.
- Manek NJ, Hart D, Spector TD, et al. The association of body mass index and osteoarthritis of the knee joint: An examination of genetic and environmental influences. *Arthritis Rheum* 2003; 48(4): 1024–1029.
- Muthuri SG, Doherty S, Zhang W, et al. Gene-environment interaction between body mass index and transforming growth factor beta 1 (TGFβ1) gene in knee and hip osteoarthritis. *Arthritis Res Ther* 2013; 15(2): 1–8.
- Valdes AM, Hart DJ, Jones KA, et al. Association study of candidate genes for the prevalence and progression of knee osteoarthritis. *Arthritis Rheum* 2004; 50(8): 2497–2507.
- 26. Valdes AM, Van Oene M, Hart DJ, et al. Reproducible genetic associations between candidate genes and clinical knee

osteoarthritis in men and women. *Arthritis Rheum* 2006; 54(2): 533–539.

- Goldring SR and Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. *Clin Orthop Relat Res* 2004; 427(Suppl): S27–S36.
- Arend WP and Gabay C. Physiologic role of interleukin-1 receptor antagonist. *Arthritis Res* 2000; 2(4): 245–248.
- Wu X, Kondragunta V, Kornman KS, et al. IL-1 receptor antagonist gene as a predictive biomarker of progression of knee osteoarthritis in a population cohort. *Osteoarthr Cartil* 2013; 21(7): 930–938.
- Attur M, Zhou H, Samuels J, et al. Interleukin 1 receptor antagonist (IL1RN) gene variants predict radiographic severity of knee osteoarthritis and risk of incident disease. *Ann Rheum Dis* 2020; 79(3): 400–407.
- Hunter DJ, Niu J, Felson DT, et al. Knee alignment does not predict incident osteoarthritis: The Framingham osteoarthritis study. *Arthritis Rheum* 2007; 56(4): 1212–1218.
- Barakat AF, Elson CJ and Westacott CI. Susceptibility to physiological concentrations of IL-1β varies in cartilage at different anatomical locations on human osteoarthritic knee joints. *Osteoarthr Cartil* 2002; 10(4): 264–269.
- Cole AA and Kuettner KE. Molecular basis for differences between human joints. *Cell Mol Life Sci* 2002; 59(1): 19–26.
- 34. Smith AJP, Elson CJ, Perry MJ, et al. Accuracy of haplotype association studies is enhanced by increasing number of polymorphic loci examined: Comment on the article by Meulenbelt et al. *Arthritis Rheum* 2005; 52(2): 675.
- 35. Meulenbelt I, Slagboom PE and van Duijn CM. Reply to editor: accuracy of haplotype association studies is enhancedby increasing number of polymorphic loci examined: comment on the article by Meulenbelt et al. *Arthritis Rheum* 2005; 52(2): 675–676.