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Summary 
Background Histopathological assessment of transplant biopsies is currently the standard method to diagnose 
allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, 
requiring considerable expertise, time, and effort. We aimed to analyse the utility of deep learning to preclassify 
histology of kidney allograft biopsies into three main broad categories (ie, normal, rejection, and other diseases) as a 
potential biopsy triage system focusing on transplant rejection.

Methods We performed a retrospective, multicentre, proof-of-concept study using 5844 digital whole slide images of 
kidney allograft biopsies from 1948 patients. Kidney allograft biopsy samples were identified by a database search in 
the Departments of Pathology of the Amsterdam UMC, Amsterdam, Netherlands (1130 patients) and the University 
Medical Center Utrecht, Utrecht, Netherlands (717 patients). 101 consecutive kidney transplant biopsies were 
identified in the archive of the Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany. 
Convolutional neural networks (CNNs) were trained to classify allograft biopsies as normal, rejection, or other 
diseases. Three times cross-validation (1847 patients) and deployment on an external real-world cohort (101 patients) 
were used for validation. Area under the receiver operating characteristic curve (AUROC) was used as the main 
performance metric (the primary endpoint to assess CNN performance).

Findings Serial CNNs, first classifying kidney allograft biopsies as normal (AUROC 0·87 [ten times bootstrapped CI 
0·85–0·88]) and disease (0·87 [0·86–0·88]), followed by a second CNN classifying biopsies classified as disease into 
rejection (0·75 [0·73–0·76]) and other diseases (0·75 [0·72–0·77]), showed similar AUROC in cross-validation and 
deployment on independent real-world data (first CNN normal AUROC 0·83 [0·80–0·85], disease 0·83 [0·73–0·91]; 
second CNN rejection 0·61 [0·51–0·70], other diseases 0·61 [0·50–0·74]). A single CNN classifying biopsies as normal, 
rejection, or other diseases showed similar performance in cross-validation (normal AUROC 0·80 [0·73–0·84], 
rejection 0·76 [0·66–0·80], other diseases 0·50 [0·36–0·57]) and generalised well for normal and rejection classes in 
the real-world data. Visualisation techniques highlighted rejection-relevant areas of biopsies in the tubulointerstitium.

Interpretation This study showed that deep learning-based classification of transplant biopsies could support 
pathological diagnostics of kidney allograft rejection.
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Research, Health, and Economic Affairs and Energy; Dutch Kidney Foundation; Human(e) AI Research Priority Area 
of the University of Amsterdam; and Max-Eder Programme of German Cancer Aid.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Although kidney transplantation is the most frequently 
performed solid organ transplantation worldwide, there 
is a major shortage of organs for transplantation.1 This 
shortage renders long-term allograft survival, particularly 
concerning allograft rejection, an important goal in 
patient management.

Histopathological assessment of allograft biopsies 
remains an essential tool in diagnosing organ rejection, 
thereby guiding the treatment and management of 

patients who have received a transplant.2 Despite the 
international efforts to improve and standardise 
assessment of kidney allograft pathology within the Banff 
classification,3 evaluation of transplant biopsies remains 
challenging and time-consuming. Although the Banff 
classification provides a scoring system for allograft 
pathology, this approach remains semiquantitative and 
subjective, and is often confounded by interobserver 
variability.4 Also, pathology is experiencing a decrease in 
workforce as fewer young physicians aspire to become 
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pathologists.5 Tools that assist in transplant histo pathology 
diagnostics, potentially providing reproducible quantitative 
data, could be one approach to tackle these challenges. The 
ongoing digital transformation of pathology enables the 
effective application of artificial intelligence and 
particularly deep learning, showing great promise for such 
tools to be used in the near future.6–8

Convolutional neural networks (CNNs) are a specific 
type of deep learning neural network that are particularly 
suited for image analysis and computer vision.9 CNNs 
have widely been applied in image-based medical diag-
nostics, particularly in radiology,10,11 and also increasingly 
in oncological surgical pathology.12–14 CNNs can extract 
subtle patterns from cancer histopathology images, 
detecting molecular subclasses of tumours in an end-
to-end way—ie, training CNNs directly on raw image 
data without manually defining intermediate steps.12,15 
Currently, the very few applications of deep learning in 
transplant histopathology and nephrology mostly focus 
on automated semantic segmentation of histology into 
different histological compartments.16–18 Additionally, 
prediction tools for allograft loss19 and molecular 
archetypal analysis of kidney allograft rejection20 have 
been developed. However, no end-to-end deep learning 
biomarkers are yet available in transplant histopathology.

We aimed to develop and validate CNNs for automated 
preclassification of kidney allograft biopsies using digital 
biopsies and their pathologist-derived diagnoses as 
ground truth, and to analyse the potential utility of these 
CNNs as a biopsy triage system focusing on transplant 
rejection.

Methods 
Study design and participants 
We performed a retrospective, multicentre, proof-of-
concept study and identified diagnostic kidney allograft 
biopsy samples by a database search in the Departments 

of Pathology of the Amsterdam UMC, Amsterdam, 
Netherlands (n=1130) and the University Medical Center 
Utrecht, Utrecht, Netherlands (n=717; appendix pp 3–5). 
101 consecutive kidney transplant biopsies were identified 
in the archive of the Institute of Pathology, RWTH 
Aachen University Hospital, Aachen, Germany (figure 1, 
appendix p 5). All three institutions are kidney transplant 
centres. Physical glass slides (produced from formalin-
fixed paraffin-embedded tissue) of one periodic acid 
Schiff (PAS), one haematoxylin and eosin (H&E), and one 
Jones silver stain per kidney biopsy were digitised with 
identical scan resolutions (appendix pp 3–6). 5844 digital 
whole slide images from 1948 kidney transplant biopsy 
samples were tessellated into image tiles used to either 
train a single CNN or two serial CNNs (figure 1A). All 
experiments were done in accordance with the 
Declaration of Helsinki and were approved by the local 
ethics and privacy committees (Amsterdam 19.260; 
Utrecht 19.482; Aachen EK315/19). The need for informed 
consent was waived by the local ethics and privacy 
committees.

Ground truth 
Allograft biopsy samples were centrally assigned to the 
classes normal (Banff category 1); rejection, comprised 
of antibody-mediated rejection, T-cell-mediated 
rejection, and mixed rejection (Banff categories 2–4), 
including cases where there was suspicion of antibody-
mediated rejection and borderline T-cell-mediated 
rejection; or other diseases (Banff category 5), on the 
basis of the 2019 update of the Banff criteria,21 by an 
experienced transplant nephropathologist who assessed 
the Banff lesions and final diagnoses within the 
pathology reports (appendix p 26). Samples with another 
diagnosis in addition to rejection were classified as 
rejection because we aimed to potentially identify all 
biopsies with histological signs of rejection. Pathological 

Research in context

Evidence before this study
We searched Pubmed and Web of Science on Jan 1, 2021, using 
the terms “Deep Learning” OR “Machine Learning” AND 
“Kidney” AND “Transplantation” from database inception to 
Dec 31, 2020, with no language restrictions. Our search yielded 
78 results; additionally, we used the bibliographies of the 
retrieved articles for literature review. We found several studies 
investigating machine or deep learning for kidney diseases 
using clinical parameters and some studies on segmentation of 
kidney histology images. However, we did not identify any 
studies that investigated the diagnostic classification of kidney 
allograft histopathology.

Added value of this study
To our knowledge, this is the first study to investigate deep 
learning-based classification of kidney allograft 

histopathology, particularly focusing on transplant rejection, 
based on whole slide images of allograft biopsies alone. This 
is the largest retrospective multicentre study to date to 
analyse the potential of deep learning in kidney transplant 
pathology. This study also provided an assessment of the 
models’ predictions using several visualisation techniques.

Implications of all the available evidence
The developed deep learning-based models could serve as a 
basis to create a decision support system for pathologists, 
augmenting kidney transplant diagnostics. Such a system 
could potentially reduce assessment subjectivity and 
variation of kidney allograft histopathology.
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diagnoses in the written reports were a consensus of 
three (at Amsterdam UMC) or two nephropathologists 
(at Utrecht and Aachen), after discussion at weekly 
multidisciplinary nephrology-pathology consensus 
meetings at the respective tertiary expertise centre for 
kidney transplantation. The additional class of disease, 
used for experiments with the serial CNN, included all 
samples classified as rejection and other diseases.

Deep learning analyses 
Details on generation of tiles and their preprocessing, 
CNN training, and CNN performance analyses and 
visualisation techniques are provided in the appendix 
(pp 6–8). The primary endpoint to assess CNN 
performance was the area under the receiver operating 
characteristic curve (AUROC) with ten times boot-
strapped CIs. Additionally, we show precision-recall 
curves, and report the area under the precision-recall 
curve (AUPRC).

The models were trained on the Amsterdam and 
Utrecht cohorts (figure 1B) and validated on the external 
real-world Aachen cohort (figure 1C). The two serial 
CNNs were trained to distinguish the classes normal 
(Banff category 1) versus disease (all other Banff 
categories) by the first CNN, followed by the second CNN 
to distinguish rejection (Banff categories 2–4) versus 
other diseases (including Banff category 5) in the disease 
class only (figure 1D). The single CNN was trained to 
distinguish in parallel the classes normal, rejection, and 
other diseases (figure 1E). A complete list of included 
histopathological diagnoses within the classes is given in 
the appendix (pp 24–25). Initially, we investigated which 
histological stains (H&E, PAS, or Jones silver) should be 
used for optimal performance. The highest performance, 
assessed by mean AUROC, was achieved using all stains 
combined (figure 1A). Therefore, we used all stains for all 
following analyses. Next, we investigated several CNN 
architectures (ie, ResNet18, ResNet50, ResNet101, 
ShuffleNet, and Inceptionv3) for their respective perfor-
mance. Although there were almost no differences in 
mean AUROCs achieved in three times internal 
cross-validation on the Amsterdam cohort, we could 
observe differences in the generalisability of the models 
when deployed on the Utrecht cohort, to which the CNNs 
had not been exposed previously. The three ResNets 
achieved the highest mean AUROCs on the Amsterdam 
cohort, but did not generalise as well as the Inceptionv3 
architecture (appendix p 9). Prioritising generalisability, 
we used the Inceptionv3 architecture throughout the rest 
of the study.

As T-cell-mediated rejection and BK polyomavirus 
nephropathy can be particularly difficult to differentiate 
given the largely overlapping pathology, we investigated 
network confusion for biopsies with these diagnoses. 
Given the diagnostic importance of cortical kidney tissue, 
we evaluated the performance on the basis of the amount 
of cortical tissue.

To visualise the basis of classification on the individual 
most predictive tiles of each class, we applied Occlusion 
Sensitivity22and gradient-weighted Class Activation 
Mapping (gradCAM).23

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results 
A single Inceptionv3 CNN trained on kidney allograft 
pathology (on the Amsterdam and Utrecht samples 

Figure 1: Flowchart of the generation of the allograft biopsy cohorts and study plan
A database search was performed in all centres to identify all kidney allograft biopsies and samples were excluded 
on the basis of predefined criteria. The remaining biopsies were digitised, followed by a manual quality check 
resulting in the exclusion of samples with insufficient quality for further processing. The final number of samples 
and whole slide images are shown at the bottom of the flowchart (A). The Amsterdam and Utrecht cohorts were 
used for model development, and performance in these cohorts was assessed in three times cross-validation (B). 
The Aachen cohort was used as an unseen external validation set to assess generalisability (C). This split of cohorts 
was used in two approaches: a series of two CNNs first classifying biopsies into normal and disease and then 
classifying samples in the disease class into rejection or other diseases (D), and one single network classifying 
biopsies into normal, rejection, and other diseases (E). H&E=haematoxylin and eosin. PAS=periodic acid Schiff. 
CNN=convolutional neural network.
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combined) achieved AUROCs of 0·86 (ten times 
bootstrapped CI 0·85–0·87) for the normal class, 0·78 
(0·77–0·79) for the rejection class, and 0·70 (0·68–0·72) 
for the other diseases class (figure 2).

Next, we trained two CNNs (on the Amsterdam and 
Utrecht samples combined), first classifying biopsies 
into normal (AUROC 0·87 [CI 0·85–0·88]) and disease 
(0·87 [0·86–0·88]; figure 3A, B), and then classifying the 

biopsies classified as disease into rejection (0·75 
[0·73–0·76]) or other diseases (0·75 [0·72–0·77]; 
figure 3C, D). Precision-recall curves and the mean  
AUPRC for all models showed a good trade-off between 
precision and recall, especially for classifying biopsies as 
normal (appendix p 10). A confusion matrix comparing 
pathologist and single CNN-derived classes showed 
confusion primarily between the rejection and other 
diseases classes (appendix p 11). A large number of BK 
polyomavirus nephropathy cases were misclassified as 
rejection (appendix p 12). The analyses of all pathological 
diagnoses of the mis classified cases showed that all 
rejection types were misclassified by the single CNN 
(appendix p 27).

In the evaluation of performance on the basis of the 
amount of cortical tissue, the performance was similar 
between subgroups with varying glomerular numbers 
(appendix pp 13, 28).

In the model validation, when deploying the single 
CNN on external kidney allograft biopsies (Aachen 
samples) similar AUROCs (0·80 [ten times bootstrapped 
CI 0·73–0·84] for the normal class, 0·76 [0·66–0·80] for 
the rejection class, and 0·50 [0·36–0·57] for the 
other diseases class) were achieved, showing good 
generalisability for the normal and rejection classes 
(figure 4). However, no generalisability was found for the 
diverse class of other diseases. Visualisation of the basis 
of the single CNN model’s predictions revealed that in 
the normal and rejection classes, large areas of the biopsy 
core were highly predictive, but only a smaller amount of 
tiles were highly predictive in the other diseases group 
(figure 4). The different distributions of highly predictive 
tiles is likely to reflect focal pathology within one biopsy 
and heterogeneity of phenotypes within the respective 
classes. We next investigated whether such prediction 
maps point to relevant diagnostic regions for rejection. 
We extracted highly predictive regions from whole slide 
images correctly classified as rejection (appendix p 14), 
which showed interstitial inflammation, tubulitis, and 
peri tubular capillaritis, all of which are diagnostic lesions 
of the Banff classification for kidney allograft pathology.

In the normal class, tubular cross-sections, thin 
interstitium, and normal peritubular capillaries were 
highlighted using both Occlusion Sensitivity and 
gradCAM (figure 4C, appendix p 15). For the rejection 
class, interstitial lymphocytic infiltrates and injured 
tubuli were important (figure 4F, appendix p 15). In the 
most predictive tile of the other diseases class, altered 
tubulointerstitium and intratubular material were 
important for the prediction (figure 4I, appendix p 15).

When we deployed both serial CNNs on the Aachen 
cohort, the first serial CNN achieved AUROCs of 0·83 
(ten times bootstrapped CI 0·80–0·85) for the normal 
class and 0·83 (0·73–0·91) for the disease class (figure 5), 
also indicating good generalisability. The second serial 
CNN generalised less well with AUROCs of 0·61 
(0·50–0·74) for the other diseases class and 0·61 

Figure 2: Single CNN performance evaluated in three times cross-validation
Patient-level receiver operating characteristic curves for the normal (A), rejection (B), and other diseases (C) 
classes. In this analysis, the cohorts from Amsterdam and Utrecht were used in a combined fashion resulting in 
347 samples classed as normal, 664 classed as rejection, and 836 classed as other diseases (total n=1847). 
CNN=convolutional neural network.

Figure 3: Serial CNN performance evaluated in three times cross-validation
Patient-level receiver operating characteristic curves for the normal (A) and disease (B) classes (normal n=347, 
disease n=1500, total n=1847), as performed by the first serial model, and for the other diseases (C) and rejection 
(D) classes (other diseases n=836, rejection n=664, total n=1500), as performed by the second serial model. In this 
analysis, the cohorts from Amsterdam and Utrecht were used in a combined fashion. CNN=convolutional neural 
network.
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(0·51–0·70) for the rejection class (figure 5). Highly 
predictive tiles seem to be distributed across the entire 
biopsy cores for all classes. When using Occlusion 
Sensitivity and gradCAM, thin interstitium and empty 
peritubular capillaries were highlighted (figure 5C, 
appendix p 16). The most predictive tile of the disease 
class showed prominent immune cell infiltrates, some of 
which were particularly important for classifying this tile 
as diseased (figure 5F, appendix p 16). The most 
predictive tile and visualisation of the class other diseases 
showed interstitial fibrosis and simplified tubular 
epithelial cells, in line with Banff category 5 included in 
this class (figure 5I, appendix p 16). In the rejection class, 
the most predictive tile showed prominent interstitial 
immune cell infiltration. Only some immune infiltrates 
were highlighted using Occlusion Sensitivity and 
gradCAM; however, no obvious visual distinction was 
possible between important and irrelevant immune 
infiltrates (figure 5L, appendix p 16). Precision-recall 

curves and the mean AUPRC for the models deployed on 
the Aachen cohort showed generali sability of all classes 
other than the diverse class of other diseases 
(appendix p 17).

Various applications of the CNNs could be envisioned 
in a digitised pathology workflow. This assumption is 
supported by the short time required for the scanning 
(approximately 2 min per slide) and inference of the 
models (approximately 10 min using standard hardware 
for three stains). The most predictive tiles of a patient 
could potentially be used to facilitate kidney allograft 
diagnostics by a pathologist—eg, by using the 81 most 
predictive tiles (9 × 9 matrix) from correctly classified 
samples of each class (appendix pp 18–20). Using the 
optimal operating threshold (0·68) of the first serial CNN 
resulted in a mean sensitivity of 95·03% (ten times 
bootstrapped CI 93·80–95·52) and mean specificity of 
45·39% (43·27–49·86) for detection of the disease class, 
with a mean positive predictive value of 87·91% 

Figure 4: Single CNN performance in the external Aachen cohort
Patient-level receiver operating characteristic curves for the normal class (A), rejection class (D), and other diseases class (G). (B) Representative prediction map for 
the normal class mapping the predictive value of respective tiles to their parent whole slide image. Tile-level visualisations of important image areas of the normal 
class (C), rejection class (F), and other diseases class (I), using Occlusion Sensitivity and gradCAM on the most predictive tile. Representative prediction maps for the 
rejection class (E) and other diseases class (H). 29 samples were in the normal class, 43 in the other diseases class, and 29 in the rejection class (total n=101). Tile edge 
length is 128 µm for each tile. CNN=convolutional neural network. gradCAM=gradient-weighted Class Activation Mapping.
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(86·33–88·52) and mean negative predictive value of 
67·86% (59·03–74·37; appendix p 21).

Discussion 
Kidney allograft pathology diagnostics is essential to 
guide the treatment of patients who receive transplants. 
However, it is also one of the most challenging fields 
in diagnostic pathology that could strongly benefit 

from supportive systems to augment the diagnostic 
process. In this study, we showed that even in this highly 
complex use case, deep learning-based classification 
and visualisation of kidney allograft biopsies could 
potentially provide a useful diagnostic support system for 
pathologists. We focused on the classification of the three 
main overarching classes in kidney transplants 
(ie, normal, rejection, and other diseases). This approach 

Figure 5: Serial CNN performance in the external Aachen cohort
Patient-level receiver operating characteristic curves for the normal (A) and disease (D) classes (disease n=72, normal n=29, total n=101), and for the other diseases 
(G) and rejection (J) classes (other diseases n=43, rejection n=29, total n=72). (B) Representative prediction map for the normal class mapping the predictive value of 
respective tiles to their parent whole slide image. (C) Visualisation of the basis for prediction of the class normal using Occlusion Sensitivity and gradCAM on the most 
predictive tile. Representative prediction maps for the disease class (E), other diseases class (H), and rejection class (K). Tile-level visualisations of important image 
areas of the disease class (F), other diseases class (I), and rejection class (L), using Occlusion Sensitivity and gradCAM on the most predictive tile. Tile edge length is 
128 µm for each tile. CNN=convolutional neural network. gradCAM=gradient-weighted Class Activation Mapping.
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provides a basis for future studies to develop specialised 
models for classification of rejection and the numerous 
other allograft diseases. We assume that such classifi-
cation algorithms require specific dedicated models, 
which could be serially switched after using more general 
models as proposed here. Despite the already large 
datasets used, the current performance of these deep 
learning-based models is not sufficient to replace human 
pathologists. A histological report contains much more 
information than the pure diagnostic class (ie, the extent 
of the canonical Banff lesions). Instead of replacing 
human pathologists, we argue that these models have the 
potential to improve pathologists’ performance; eg, by 
using visualisation techniques, in the sense of augmented 
intelligence and improved digital pathology workflows, 
but this remains to be evaluated.

Most current deep learning studies in histology, 
particularly in cancer, only use a single stain per patient 
(most commonly H&E). For correct diagnostics in kidney 
allograft pathology, several stains are needed. The use of 
several stains helps nephropathologists to detect specific 
diagnostic features more easily and provide correct 
diagnoses. Accordingly, our CNNs performed better when 
different stainings were used for training instead of using 
a single stain. This finding might be because many kidney 
allograft pathologies are focal—ie, only observed in a given 
area and perhaps in only one section. Regarding focality, 
the inclusion of available consecutive H&E or PAS slides, 
or both, might be an interesting approach to further 
improve the performance. Another hypothesis is that each 
stain might contain stain-specific features relevant for the 
discrimination of the classes. This hypothesis suggests 
that even in the case of deep learning-augmented allograft 
diagnostics, several histological stainings and biopsy 
sections would be required, but the use of deep learning 
can point the pathologist to the diagnostically most 
predictive areas and thereby potentially save time.

Distinguishing between normal and diseased biopsies 
was the easiest task for the CNNs, given that the 
morphological difference between these classes is the 
highest. Although the performance was largely similar 
between the single and the serial CNNs, the single 
CNN did not generalise well in the external cohort 
when classifying biopsies with other diseases. This 
relatively poor generalisability using the single CNN is 
likely to be because the other diseases class contains 
many morphologically diverse diseases. Thus, serial 
CNNs could be useful for specific classification tasks, 
particularly of very rare pathological features or diseases 
(eg, BK polyomavirus nephropathy) that have been 
preclassified (and preselected on the basis of 
preclassification) by a more general CNN; ie, a general 
CNN could coarsely classify biopsies and more specialist 
CNNs can determine the specific features or diseases. 
The CNNs could be used as prioritisation tools, to triage 
biopsies that should be assessed with higher urgency and 
to sort out completely healthy samples for later 

assessment. In particular, prioritising biopsies with 
rejection, which often requires fast initiation of 
treatment, would be helpful.

Introduction of deep learning-based technologies into 
clinical practice might be hindered by the low 
explainability of the models, the so-called black box 
phenomenon.24 Here, we investigated the localisation of 
model predictions both at the slide and tile level as one 
approach of explainability. Remarkably, the most 
predictive tiles showed some canonical lesions of their 
respective classes. Visualisation techniques in the most 
relevant tiles mainly identified alterations of the 
tubulointerstitium, most of which correlated well with 
typical pathological findings (eg, healthy tubules for the 
normal class, or tubulitis or capillaritis for the rejection 
class). Interstitial fibrosis and tubular atrophy was 
the leading pathology identified by the visualisation 
techniques in Banff category 5 for the other diseases 
class, which was in line with the common development of 
fibrosis in allograft biopsies. On the other hand, this 
finding could also be viewed as an unbiased confirmation 
of some diagnostic criteria (a subset of the Banff criteria) 
set out by transplant pathologists. However, some 
important histological lesions were largely missing from 
highly predictive tiles (and thus also from our tile-level 
visualisations), particularly those in glomeruli and large 
arteries. Grouping the biopsies on the basis of glomerular 
count resulted in only minor differences or no differences 
in model performance. This analysis indicated that for 
the given task, glomeruli were not of high importance for 
the CNNs trained in this study. This low importance 
might be because the tubulointerstitium represents the 
majority of tissue, thereby being strongly over-represented 
in the image tiles used for training, by comparison with 
tiles containing glomeruli and arteries. Additionally, for 
the identification of the rejection class, tubulointerstitium 
contains lesions for both T-cell-mediated rejection and 
antibody-mediated rejection, which is not the case 
for glomeruli for example (only antibody-mediated 
rejection). Misclassified rejection samples included all 
types of rejection and were most often classified as other 
diseases, and were only rarely classified as normal.

Visualisation approaches could be used to augment 
biopsy diagnostics; eg, by pinpointing the focus of 
pathologists on highly predictive areas (tiles) of a biopsy 
for rejection, or providing a matrix of most predictive tiles. 
This augmentation might be particularly useful in 
non-tumour pathology, in which pathological alterations 
are not seldom focal and searching for these can be time-
consuming. Future approaches using biopsies that have 
been presegmented into different microanatomic 
compartments and training specific CNNs for each 
compartment might potentially improve accuracy and 
explainability.16–18 Also, a model solely trained on 
glomerular images from rejection samples might show 
higher performance for identification of antibody-
mediated rejection.
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This study has some limitations. All participating 
institutions are from western Europe and we did not 
include data on ethnicity, since collection of this kind of 
information is illegal in the Netherlands and not 
routinely performed in Germany. Additionally, some 
baseline and demographic characteristics, such as the 
initial nephropathy or HLA mismatches are not 
available, which might limit transferability of the results 
to other cohorts. However, this information is not 
needed for histopathological diagnosis of kidney 
allograft diseases.3,21 Before implementation in clinical 
practice, extending the training datasets to additional 
centres might lead to the development of more robust 
models in the future. Variability in staining from only 
two centres was included in the training set. Although 
the stainings look different in each centre, our models 
performed well when deployed on previously unseen 
data, with different staining appearances and using 
different whole slide image scanners. The performance 
concerning staining variability could further improve by 
adding more data and centres, as well as by deploying 
additional forms of data augmentation (eg, with 
generative models).25 Our focus was not to build a full 
diagnostic deep learning algorithm that could replace 
the pathologist, but rather develop a support system that 
could augment human pathologists. Therefore, we did 
not differentiate between different types of rejection 
(ie, T-cell-mediated rejection or antibody-mediated 
rejection, or mixed).3 Particularly for antibody-mediated 
rejection, additional data are required for correct 
diagnosis; eg, presence of donor-specific antibodies, but 
also C4d-positive staining of peritubular capillaries. 
These data are not always available at the time of 
diagnosis. Such data integration is easy for human 
pathologists, so our approach extends the idea of 
computer–human interactions and augmented intelli-
gence. We anticipate that, in the future, such multimodal 
classification algorithms could be trained similarly to in 
this study on a multipathologist consensus diagnostic 
class vote as a surrogate gold standard or alternatively, 
the archetypal molecular diagnostic class.20 Combining 
such molecular classification systems with histological 
deep learning analyses might lead to a more reproducible 
and granular classification system of allograft 
pathologies. Unfor tunately, sufficiently large datasets 
are currently not available and will require considerable 
efforts from the transplant community in order to 
develop these. To automatically assess the canonical 
lesions of the Banff classification, combinations of 
CNNs performing instance segmen tation (detection and 
delineation of each individual object in an image) of 
relevant compartments (eg, capillaries, tubuli, vessels, 
and glomeruli)16–18 with models detecting individual 
inflammatory cells would be of high interest. Some tiles 
containing medulla were found within this 9 × 9 matrix 
in a sample classified as other diseases. A possible 
explanation for this could be that the CNNs might 

confuse patches of medulla for interstitial fibrosis, since 
medulla naturally contains more extracellular matrix. 
Another example of implementation into the clinical 
workflow in digital pathology could include initial 
filtering and prioritising of biopsies with pathological 
changes for the pathologist. Potentially, models trained 
and analysing exclusively the cortical tissue could 
overcome this problem. Another limitation is the 
retrospective design of our study. However, before 
prospective trials can be done, studies such as ours are 
required to understand the potential and feasibility of 
such deep learning-based support systems and identify 
potential pitfalls. Retrospective studies will be required 
to prepare for the successful design of prospective trials 
because, for example, there is currently no accepted way 
to calculate sample size for the development of deep 
learning algorithms.

In conclusion, our findings suggest the feasibility 
of using CNNs for automated and reproducible 
preclassification of kidney allograft biopsies, potentially 
augmenting allograft biopsy diagnostics by computer–
human interaction.
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