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Abstract

Background: Epigenetic clocks use DNA methylation (DNAm) levels of specific sets
of CpG dinucleotides to accurately predict individual chronological age. A popular
application of these clocks is to explore whether the deviation of predicted age from
chronological age is associated with disease phenotypes, where this deviation is
interpreted as a potential biomarker of biological age. This wide application,
however, contrasts with the limited insight in the processes that may drive the
running of epigenetic clocks.

Results: We perform a functional genomics analysis on four epigenetic clocks,
including Hannum’s blood predictor and Horvath’s multi-tissue predictor, using
blood DNA methylome and transcriptome data from 3132 individuals. The four
clocks result in similar predictions of individual chronological age, and their
constituting CpGs are correlated in DNAm level and are enriched for similar histone
modifications and chromatin states. Interestingly, DNAm levels of CpGs from the
clocks are commonly associated with gene expression in trans. The gene sets
involved are highly overlapping and enriched for T cell processes. Further analysis of
the transcriptome and methylome of sorted blood cell types identifies differences in
DNAm between naive and activated T and NK cells as a probable contributor to the
clocks. Indeed, within the same donor, the four epigenetic clocks predict naive cells
to be up to 40 years younger than activated cells.

Conclusions: The ability of epigenetic clocks to predict chronological age involves
their ability to detect changes in proportions of naive and activated immune blood
cells, an established feature of immuno-senescence. This finding may contribute to
the interpretation of associations between clock-derived measures and age-related
health outcomes.
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Background
Epigenetic clocks are sets of CpG dinucleotides whose DNA methylation (DNAm) can

be used to accurately predict a person’s chronological age [1]. In recent years, various

epigenetic clocks have been developed [2–5]. Well-known examples are the clocks de-

veloped by Hannum et al., trained on blood samples and containing 71 CpGs [2], and

Horvath, a multi-tissue predictor consisting of 353 CpGs [3]. A popular application of

such clocks is to calculate the deviation of predicted age from chronological age in a

population and test for its association with a broad range of age-related health out-

comes under the assumption that the deviation is a biomarker of biological age [6, 7].

The wide application of these clocks, however, contrasts with the lack of insight into

why they are accurate predictors of chronological age.

Various mechanisms have been considered to underlie progression of epigenetic

clocks. The chronological age as predicted by Horvath’s clock [3] was shown to be in-

dependent from the accumulation of senescent cells [8] and the progression this clock

has been hypothesized to be due to a gradual decline in epigenetic control [9]. A key

question is to what extent the clocks measure intrinsic cellular processes or extrinsic

processes, in particular age-related shifts in proportions of certain cell types within a

tissue. Recent work by Zhang et al. underlined the influence of cell-type proportions on

clock performance and indicated that they underlie associations with age-related phe-

notypes [5]. Characterization of how epigenetic clocks and their constituting CpGs are

associated with gene expression may shed more light on the biological processes

involved.

To gain insight in the processes that contribute to epigenetic clock progression, we

adopted a functional genomics approach in which we systematically evaluated the asso-

ciation between clock CpG DNAm and genome-wide gene expression as read-out of

the biological changes involved in progression of the clocks. We included four estab-

lished epigenetic clocks into our analyses, all of which use the DNAm of CpGs

throughout the genome to predict chronological age (Table 1): the blood clock devel-

oped by Hannum et al. containing 71 CpGs (Hannum Bld) [2], the multi-tissue clock

developed by Horvath consisting of 353 CpGs (Horvath MT) [3], the skin/blood clock

developed by Horvath et al. including 391 CpGs (Horvath Skn/Bld) [4], and the blood/

saliva clock developed by Zhang et al. spanning 514 CpGs (Zhang Bld/Slv) [5]. Our

analyses included whole blood samples from 3132 individuals with DNAm and RNA-

seq data, as well as public cell type-specific transcriptomic and methylomic data, and

highlighted age-related changes in T and NK cell phenotypes as a driver of epigenetic

clock progression.
Table 1 Description of the investigated epigenetic clocks. "Training samples" refers to the number
of samples on which the clock was trained; "Training tissues" refers to the tissues used for
development of the clock

Epigenetic clock Number of CpGs Training samples Training tissues Publication date

Hannum Bld 71 656 Whole blood 2013 [2]

Horvath MT 353 3931 27 tissue types 2013 [3]

Horvath Skn/Bld 391 896 Whole blood, buccal cells,
various skin cells

2018 [4]

Zhang Bld/Slv 514 13566 Whole blood, saliva 2019 [5]
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Results
Epigenetic clocks accurately predict chronological age and show high similarity

Our analyses were performed on whole blood samples from 3132 unrelated individuals,

aged 18 to 87, originating from 6 Dutch cohorts (Table 2), for which both DNAm data

and gene expression data were obtained, measured by Illumina 450K arrays and RNA-

seq, respectively. Only samples for which both DNAm and gene expression data passed

QC were analyzed.

First, we applied 4 epigenetic clocks (Table 1) to the DNAm data to predict age.

All clocks accurately predicted age in our data. The Pearson correlation (r) be-

tween chronological age and predicted age was greater than 0.90 for all clocks, but

there were differences in the prediction errors (Fig. 1A). Hannum Bld and Horvath

MT showed the highest age prediction error (mean absolute error (MAE) = 4.5

years), followed by Horvath Skn/Bld (MAE = 3.1 years), and the prediction error

was lowest for Zhang Bld/Slv (MAE = 2.7 years). We found that the errors in age

prediction of the epigenetic clocks were highly correlated between clocks, with the

pairwise correlation coefficients ranging from 0.57 to 0.79 (Fig. 1B). Thus, a person

whose predicted age exceeds their chronological age according to one clock was

likely to have a similar deviation according to another clock. However, this was

not the case for extreme differences between predicted and chronological age,

which were generally not reproduced between clocks (Additional file 1: Fig. S1A-

B). For example, of the individuals for whom the prediction error of Hannum Bld

was 10 years or higher, 32% had a prediction error above 10 years according to

Horvath MT, and only 4% according to Zhang Bld/Slv (Additional file 1: Fig. S1A-

B, top row). However, the individuals marked as extreme by Zhang Bld/Slv were

more consistent with the other clocks, with up to 91% overlap (Additional file 1:

Fig. S1A-B, bottom row). These findings indicate that extreme deviations between

chronological and predicted age should be interpreted with caution.

To test the extent to which the clocks captured the same information, we compared

the individual CpGs constituting the clocks. We found that 45 out of the 71 CpGs

making up Hannum Bld were also present in Horvath Skn/Bld (63%), and 30 were also

included in Zhang Bld/Slv (42%), indicating that a large portion of the information cap-

tured by Hannum Bld is also captured by Horvath Skn/Bld and Zhang Bld/Slv (Fig.

1C). The other clock pairs showed markedly lower percentages of overlapping CpGs

(ranging from 3% to 17%; Fig. 1C).
Table 2 Characteristics of the 6 cohorts comprising our dataset

Cohort Number of
samples

Age (years) Male/female
percentageMean SD Range

CODAM 147 65.5 6.9 50-79 54%/46%

LL 656 46.4 13.6 18-81 43%/57%

LLS 626 58.3 6.8 30-79 48%/52%

NTR 854 37.8 14.8 18-79 34%/66%

PAN 155 67.7 9.5 37-87 61%/39%

RS 694 62.5 6.3 51-87 42%/58%

Total 3132 52.5 16.2 18-87 43%/57%



Fig. 1 Characteristics of epigenetic clocks. A Prediction of age by the four epigenetic clocks. Prediction accuracy
was analyzed using Pearson correlation (r) between chronological and predicted age, as well as mean absolute error
(MAE) of the predicted ages. B Concordance of the age prediction errors of the epigenetic clocks, analyzed using
Pearson correlation (r) between the prediction errors of each clock pair. C Overlap of the CpGs comprising the
epigenetic clocks. The cells on the diagonal represent total clock size, while the other cells represent the number of
CpGs shared between each clock pair. The color of each cell represents the percentage of the smaller CpG set that
overlaps with the larger CpG set (0% = white, 100% = red). D Percentage of each clock’s CpGs which have a proxy
(defined by absolute Pearson correlation above 0.5) within the same clock or in the 3 other clocks. Percentages with
a proxy correlation of at least 0.5, 0.7, and 0.9 are plotted in stacked bar charts. Correlations within a clock are
marked with an asterisk (*). E Enrichment of clock CpGs in CpG-island-centric features (top section), histone
modifications (middle section), and chromatin states according to ChromHmm (bottom section). Abbreviations: OR:
odds ratio; CGI: CpG island; TssA: Active transcription start site; TssAFlnk: flanking active transcription start site; TxFlnk:
transcription at gene 5' and 3'; Tx: strong transcription; TxWk: weak transcription; EnhG: genic enhancers; Enh:
enhancers; ZNF/Rpts: ZNF genes plus repeats; Het: heterochromatin; TssBiv: bivalent/poised transcription start site;
BivFlnk: flanking bivalent transcription start site/enhancer; EnhBiv: bivalent enhancer; ReprPC: repressed polycomb;
ReprPCWk: weak repressed polycomb; Quies: quiescent/low
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Notably, the similar predictions of the 4 clocks may not only stem from CpGs shared

between the clocks, but also from non-shared CpGs whose methylation levels are corre-

lated. Therefore, we analyzed, per clock, whether each of its CpGs had at least one moder-

ate, strong, or very strong proxy (defined as absolute correlation above 0.5, 0.7, and 0.9,

respectively) in the 3 other clocks. The majority of clock CpGs had at least a moderate

proxy in the other clocks (Fig. 1D); the percentages varied from 94% (Hannum Bld with

Horvath Skn/Bld) to 45% (Horvath MT with Hannum Bld). Therefore, it is plausible that

both overlapping CpGs and correlation between non-overlapping CpGs contributed to

the similar performance of the 4 clocks in predicting chronological age. Interestingly,

while all clocks were trained using elastic net, a penalized regression method to limit cor-

relation between features in a predictor [2–5], we nevertheless observed fairly strong in-

ternal correlations within each clock, with 45 to 96% of the clocks’ CpGs having a

moderate proxy within the same clock (Fig. 1D). This indicates that there is notable re-

dundancy in the CpGs included in the clocks.
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The similarity between CpGs across clocks was also evident from their genomic annota-

tions (Fig. 1E). Although CpGs of different clocks showed inconsistent enrichments for

CpG-island related features, all clocks were enriched for the histone modifications

H3K4me1 and H3K4me3, which are associated with active enhancers and active pro-

moters respectively [10]. All clocks except Horvath MT were also enriched for

H3K27me3, which is a mark for polycomb repression [10]. The latter finding was con-

firmed by the analysis of chromatin states. All clocks were enriched for either polycomb-

repressed chromatin (ReprPC) or one or multiple types of bivalent states (TssBiv, BivFlnk,

EnhBiv). Finally, all clocks were depleted for actively transcribed chromatin states (Tx).
Epigenetic clock CpGs are associated in trans with the expression of genes related to T

cell activity

To gain more insight into the biological phenomena that are captured by the epigenetic

clocks, we investigated how DNAm of the individual clock CpGs correlated with gene

expression. We did this by performing a linear regression analysis to find the associa-

tions between clock CpG DNAm and expression of genes in cis and in trans.

We first analyzed the associations in cis (<100 kB distance between CpG and gene).

In each clock, 15–18% of CpGs associated with the expression of at least 1 gene in cis,

with only minor differences between clocks (Fig. 2A; corrected for chronological age,

blood cell counts, cohort, technical covariates, and latent factors). Across all clocks, 194

CpGs associated with the expression of 236 genes in cis. The cis-genes (Additional file

2: Table S1) followed similar trends to the CpGs shared between clocks, with a large

percentage of the genes associating with Hannum Bld CpGs also associating with Hor-

vath Skn/Bld or Zhang Bld/Slv CpGs, and other clock pairs showing moderate overlaps

(Fig. 2B). For none of the clocks, the genes associating in cis were enriched for bio-

logical processes according to the gene ontology (GO) database, and no overarching

patterns were identified upon manual inspection. Therefore, we concluded that the cis-

genes had heterogeneous functions and did not involve distinct biological processes.

Next, we investigated the association between DNAm of clock CpGs and expression

of genes in trans (>5 MB distance from CpG or located on a different chromosome).

The clock CpGs associated with a markedly higher number of trans-genes (Additional

file 2: Table S1), with 40–60% of each clock’s CpGs having a significant association (p <

10-8) with at least 1 gene in trans (Fig. 2C). A permutation test confirmed the statistical

significance of association between CpGs and trans-genes (p < 0.001). In addition, a

notable proportion of clock CpGs associated with at least 10 genes (26–33% of each

clock), and a small proportion even with 100 or more genes (1–13% of each clock).

Across all clocks, 578 CpGs associated with the expression of 1640 genes in trans. We

hypothesized that the trans-genes that are informative on the mechanisms driving

changes in DNAm would be associated with multiple CpGs and vice versa. Therefore,

we focused our further analysis on a core set of 216 trans-genes that were associated

with at least 5% of any of the 4 investigated clocks’ CpGs (in other words, genes which

associated with either 4 Hannum Bld CpGs, 18 Horvath MT CpGs, 20 Horvath Skn/

Bld CpGs, or 26 Zhang Bld/Slv CpGs), and a core set of 365 CpGs that associated with

at least 10 trans-genes. In contrast to the cis-genes that were clock-specific, the trans-

genes identified were highly concordant between clocks (Fig. 2D). For instance, all 117



Fig. 2 Associations between clock CpG DNAm and gene expression. A Percentages of CpGs belonging to
the clocks which associate with the expression of at least 1 gene in cis (<100 kB distance). B Overlap of the
genes associating with clock CpGs in cis. The cells on the diagonal represent the total number of genes
associating with the CpGs of the clock in cis, while the other cells represent the number of cis-genes shared
between each clock pair. The color of each cell represents the percentage of the smaller gene set that
overlaps with the larger gene set (0% = white, 100% = red). C Percentages of CpGs belonging to the clocks
which associate with the expression of at least 1, 10, or 100 genes in trans (>5 MB distance or different
chromosomes). D Overlap of the genes associating with clock CpGs in trans. The cells on the diagonal
represent the total number of genes associating with the CpGs of the clock in trans, while the other cells
represent the number of trans-genes shared between each clock pair. The color of each cell represents the
percentage of the smaller gene set that overlaps with the larger gene set (0% = white, 100% = red). Only
trans-genes which were associated with at least 5% of any of the clocks were included. E Biological
pathway gene ontology (GO) enrichments of trans-genes. Only trans-genes which were associated with at
least 5% of any of the clocks were included. Networks were created using REVIGO, filtering out extremely
similar GO-terms for clarity [11]. Nodes represent GO-terms, with node size depicting GO-term generality,
and node color depicting enrichment p value. Highly related GO-terms which pass the similarity filter are
connected by edges in the graph, with edge width representing term similarity
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genes which associated with Zhang Bld/Slv also associated with Horvath Skn/Bld. In

accordance to the large overlap, each clock’s trans-genes showed enrichments for

highly similar GO terms, with the majority of enriched terms being related to T cell ac-

tivity, implying a role for T cell subtypes in progression of the epigenetic clocks (Fig.

2E; Additional file 3: Table S2).

A role of T cell subtypes was further indicated by clustering of the trans-associations.

The 365 clock CpGs and the 216 trans-genes formed two distinct clusters, which were

independent of the epigenetic clock the CpGs belonged to (Additional file 1: Fig. S2).

The first cluster consisted of 152 CpGs and 93 trans-genes (median correlations of 0.93

and 0.95 for CpGs and genes, respectively). The second cluster consisted of 213 CpGs

and 123 genes (median correlations of 0.95 and 0.94 for CpGs and genes, respectively).

The genes and CpGs in the two clusters were strongly negatively correlated (median

correlation of −0.93 and −0.89 for CpGs and genes, respectively), suggesting that the

two clusters have opposite biological roles. Indeed, the first cluster contained genes in-

volved in naive T cell function, such as FOXP1 (a regulator of quiescence in T cells

[13]), LEF1 (transcription factor involved in naive T cell homeostasis [14]), and TMIG

D2 (an immune checkpoint molecule predominantly expressed by naive T cells [15,

16]). In contrast, the second cluster included genes characteristic for activated T cells,

for example LAG3 (an immune checkpoint molecule expressed by activated T cells and
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a subset of NK cells [17, 18]) and EOMES (transcription factor involved in the differen-

tiation of effector T cells [19]), and several genes involved in degranulation (perforin

and granzymes A, H, and K [20]). The correlation of these trans-genes with clock CpG

methylation was considerable, varying between 0.44 and 0.72 for positive correlations

and between −0.32 and −0.64 for negative correlations (Fig. 3). These results give an in-

dication that the first cluster of trans-genes is representative of naive T cells, while the

second cluster represents activated T cells.

Since aging is accompanied by a decrease in naive immune cell abundance and an in-

crease in activated immune cells [21], we expected the expression of trans-genes to cor-

relate with age. To test this, we compared our trans-genes with a list of age-related

genes published by Peters et al. [22]. In the analysis of Peters et al., 1497 out of the

10342 investigated genes were significantly correlated with age. In our analysis, 216 out

of the 14370 investigated genes were identified as trans-genes. Our trans-genes were

strongly enriched for age correlation as annotated by Peters et al. (108 overlapping

genes, OR = 10.0, p < 10-15). Moreover, the trans-genes in the first cluster (containing

genes associated with naive T cells) were mostly negatively correlated with age, while

the genes in the second cluster (containing genes associated with activated T cells)

were usually positively correlated with age (Additional file 1: Fig. S2). Thus, the correla-

tions of trans-genes with age support the notion that their expression is a signature of

age-related T cell proportions.

To rule out that the observed trans-associations were caused by genetic variants, we

compared two recently published quantitative trait locus (QTL) resources, the first
Fig. 3 Examples of positive and negative correlations between clock CpG DNAm and gene expression
(rank-inverse normal transformed), as identified in the linear regression analysis. The subfigures show the
Pearson correlation (r) between gene expression and DNA methylation for a gene-CpG pair, as well as the p
value for the correlation. A Positive and negative correlations identified for three genes with known
expression in naive T-cells: FOXP1, LEF1, and TMIGD2. B Positive and negative correlations identified for three
genes with known expression in activated T cells: LAG3, EOMES, and GZMH
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containing methylation-QTLs (meQTLs) [23], and the second containing expression-

QTLs (eQTLs) [24]. We reasoned that a trans-association driven by a genetic variant

would require the variant in question to be simultaneously a cis-meQTL for the CpG

and a trans-eQTL for the gene or vice versa. We tested, for each clock CpG identified

in the regression analysis, whether it had a known cis-meQTL. Then, we tested whether

the identified cis-meQTLs (if any) were also identified as trans-eQTL for the genes that

significantly associated with that CpG. Only 9 out of 365 CpGs shared one or more

SNP with a total of 31 trans-genes (Additional file 4: Table S3); the 31 trans-genes were

also associated with 339 other CpGs for which no QTL effect was found. We also per-

formed this analysis in the opposite direction (testing for each trans-gene if it is driven

by cis-eQTLs which are also trans-meQTLs for any of the CpGs that significantly asso-

ciated with the gene) and found that only 2 out of the 216 trans-genes shared a SNP

with 2 clock CpGs. We conclude that genetic effects cannot explain our observations.
Clock CpGs and trans-genes correlate with naive and activated T cell and NK cell

phenotypes

To gain further insight in the involvement of specific cell types in the two clusters of

clock-CpGs and trans-genes, we used an external dataset containing transcriptomic

(RNA-seq) data from sorted blood cell types [25]. Unbiased hierarchical clustering

based on trans-gene expression divided the cell types into four clusters (Additional file

1: Fig. S3), which we labeled based on their distinct cellular characteristics: Naive (con-

taining naive T cells), Late Activated (containing terminal effector T cells, effector

memory T cells, and NK cells), Early Activated (containing helper, regulatory, and cen-

tral memory T cells), and Other (containing B cells and cells of myeloid origins; Fig. 4).

The first cluster of 93 trans-genes was significantly higher expressed in naive cells com-

pared to late activated cells (p < 10-15), while the opposite was the case for the second

cluster of 123 trans-genes (p < 10-15). The cell types in the early activated cluster

showed intermediate expression of both trans-gene clusters, while the other group

showed very low expression for both clusters. These results indicate that the two trans-

genes clusters reflect opposite gene expression patterns in naive and late activated im-

mune cells.

Next, we performed a similar analysis using publicly available DNAm data from

sorted blood cell types [13, 26–28]. In line with cell type-specific gene expression, naive

and activated immune cell types from the same donor showed marked differences in

DNAm of clock CpGs (Fig. 4). The 152 clock CpGs in the first cluster were consistently

higher methylated in naive cells as compared with their activated counterparts (CD4

naive versus memory: p < 10-15, CD8 naive versus effector: p < 10-15, NK canonical ver-

sus adaptive: p < 10-15). The opposite pattern was found for 213 CpGs in the second

cluster, which showed consistently higher DNAm in the activated cell types compared

to their naive counterparts (CD4 memory versus naive: p < 10-12, CD8 effector versus

naive: p < 10-15, NK adaptive versus canonical: p < 10-11). Together, these results indi-

cate that the differences in DNAm levels between the two clusters of clock CpGs can

be attributed to their differential DNAm in naive and activated T and NK cell subtypes.

Our results indicate that changes in T and NK cell subtypes are involved in progres-

sion of epigenetic clocks. However, the associations between clock CpG DNAm and



Fig. 4 DNAm of clock CpGs and expression of trans-genes across sorted blood cell types. Per gene-CpG
pair, the t-statistic of their association is shown in the blue-red heatmap (red = positive association, blue =
negative association, white = no significant association). Only CpGs which associated with at least 10 genes
and genes which associated with at least 5% of any clock were included. Genes and CpGs were clustered
based on Euclidean distance. Two sidebars (viridis color scale) were included with external data, with the
left sidebar depicting expression of trans-genes in 17 sorted blood cell types published by Monaco et al.
[25], and the top sidebar depicting DNAm of clock CpGs in sorted T cell and NK cell subtypes combined
from 4 datasets [13, 26–28]. For visualization, external gene expression and DNAm data were normalized so
that each gene/CpG had a range between 0 and 1 across all measured cell types
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gene expression (Fig. 4) were adjusted for broad white blood cell type proportions (lym-

phocytes, monocytes, eosinophils, basophils, and neutrophils). Therefore, it is possible

that the effects of these broad blood cell types were missed. We analyzed the trans-as-

sociations again without correcting for white blood cell counts (all other covariates

were kept the same). In this analysis, we observed 155 clock CpGs that were associated

with 1044 trans-genes. This is a lower number than in our original analysis (where we

found 578 CpGs associating with the expression of 1640 genes), presumably due to a

combination of factors including a larger inflation of test statistics (mean inflation =

3.3, compared to only 1.4 for the original model). When filtering for genes associating

with at least 5% of CpGs of any clock in trans, only 3 of the 216 genes remained

(TPRG1, EOMES, and KLRG1). We therefore chose to lower the thresholds for

visualization to include genes associating with at least 2.5% of any clock and CpGs as-

sociating with at least 5 genes in trans, resulting in 58 genes and 100 CpGs (Additional

file 1: Fig. S4). All 58 trans-genes, as well as 83 of the 100 CpGs, were also found in the

original trans-analysis correcting for broad cell counts (Fig. 4). Moreover, the genes

and CpGs showed similar expression and DNAm patterns across cell types (Additional

file 1: Fig. S4, left and top sidebars), with two distinct clusters representing naive and

activated immune phenotypes. Thus, this analysis also indicated T and NK cell subsets

as a main contributor to the DNAm levels of clock CpGs.

Additionally, to check the validity of our method of predicting main blood cell

counts, we repeated the analysis with only the 2120 samples for which cell counts were
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measured, now using measured cell counts as covariates. The results from this analysis

were very similar to the original analysis using predicted cell counts (Fig. 4). Adopting

the same cutoffs as for the original analysis (genes which associate with at least 5% of

any clock and CpGs associating with 10 genes), we identified 263 clock CpGs associat-

ing with 154 trans-genes (Additional file 1: Fig. S5). This a lower number than the ori-

ginal analysis, presumably due to the lower sample size, but the sets were similar

nonetheless: 252 out of 263 CpGs and 148 out of the 154 genes were also identified in

the original analysis with the complete set of 3132 samples. Also, the genes and CpGs

formed the same two clusters representing naive and activated immune phenotypes

(Additional file 1: Fig. S5). Therefore, the prediction of main cell counts in order to

analyze the complete set of samples did not affect our findings.
Age prediction by epigenetic clocks is influenced by blood cell types

Finally, we tested whether the differential DNAm of clock CpGs in naive and activated cell

subtypes influenced the age prediction of epigenetic clocks. To this end, we applied the 4

clocks to the different blood cell subtypes from the external datasets. Overall, the 4 clocks

predicted naive CD4+ T cells, CD8+ T cells, and canonical NK cells to be younger than

their activated counterparts from the same donor (p < 0.05; Fig. 5) with the Horvath Skn/

Bld clock as a single exception for CD4+ T cells and NK cells. For CD4+ T cells, Hannum

Bld, Horvath MT, and Zhang Bld/Slv predicted memory CD4+ T cells 7 to 23 years older

than naive CD4+ T cells from the same donor (Fig. 5A). For CD8+ T cells, all clocks pre-

dicted effector cells to be older than naive cells from the same donor with differences ran-

ging from 19 to 42 years (Fig. 5B). Lastly, adaptive NK cells were predicted to be 14 to 32

years older by Hannum Bld, Horvath MT, and Zhang Bld/Slv compared to canonical NK

cells from the same donor (Fig. 5C). The largest difference in age prediction was consist-

ently found for the Hannum Bld and Horvath MT clocks. Together, these results show

that age prediction by epigenetic clocks strongly differs between immune cell subtypes.
Discussion
Our analysis revealed that all four investigated epigenetic clocks were able to accurately

predict age in whole blood and were highly concordant in terms of age prediction in

line with the overlap in or correlation between CpGs of the clocks. Strikingly, we found

that DNAm of clock CpGs was frequently associated with gene expression in trans and

involved similar genes for each clock with a role in T cell function. Further analysis of

public DNAm and gene expression data of purified immune cells highlighted that both

clock CpG DNAm and their trans-associated genes distinguished naive and activated T

and NK cells. Finally, the clocks predicted activated cells to be up to decades older than

naive cells despite being from the same donor.

Interestingly, our findings were congruent for all investigated clocks, despite the differ-

ent tissues and data sets on which they were trained. This was especially remarkable for

the Horvath MT clock, which was trained on samples from 27 different tissues, but still

gave overall similar results to the three other clocks, which were trained exclusively on

whole blood samples (Hannum Bld) or mostly on whole blood plus buccal cells and fibro-

blasts (Horvath Skn/Bld) or saliva samples (Zhang Bld/Slv). A possible explanation for this

finding is that a large percentage (37%) of Horvath-MT’s training set consisted of whole



Fig. 5 Age prediction by epigenetic clocks in sorted blood cell types. Age was predicted by applying the 4
investigated epigenetic clocks to DNAm data from 4 publicly available datasets generated in sorted blood
cells [13, 26–28]. For each subfigure, the median difference in age prediction of each clock between the
naive and activated phenotype is shown in the top left of each panel (Δ: x years), and significance is
marked by stars (*p < 0.05, **p < 0.01, NS not significant). Naive and activated phenotypes were obtained
from the same donors in all instances, and samples originating from the same donor are connected with a
line. A The data published by Garaud et al. [13] and Pitaksalee et al. [26] were generated in sorted CD4+

naive and memory T cells (n = 7). B The data published by Schlums et al. [27] and Rodriguez et al. [28]
were generated in sorted CD8+ naive and effector T cells (n = 6). C The data published by Schlums et al.
[27] also contained canonical and adaptive NK cell samples (n = 4)
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blood samples, which makes it plausible that some CpGs in this clock are predictive of

blood cell proportions. A plausible alternative explanation is that the prediction by

epigenetic clocks in non-blood tissues is affected by tissue-resident T cells and NK cells,

which are present in many tissues included in Horvath MT’s training set [29–33]. The

latter interpretation would also explain why epigenetic clocks trained primarily or even

exclusively on whole blood samples are relatively accurate when applied to other tissues

[3–5, 34].

It should be noted that our aim was not to find or imply any direct causal link be-

tween clock CpG DNAm and trans-gene expression. Instead, we characterized clock

CpGs by analyzing their correlation with trans-gene expression. The inspection of the

function and cell-specific expression of these trans-genes subsequently led to the inter-

pretation that the trans-genes and the correlating clock CpGs were both markers of the

same blood cell type proportions, namely naive and activated T and NK cells. Hence,

our data support the interpretation that age-related changes in clock CpG methylation

and trans-gene expression have shifts in blood cell types as a common cause, which

leads to a notable correlation between the two.
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Our analyses can explain why the investigated clocks can accurately predict age,

namely by detecting the ratio between naive and activated T and NK cells in a sample.

The reduction of naive cells and the accumulation of activated immune cells is a well-

established feature of increasing age and immuno-senescence [21]. However, a limita-

tion of our analysis is that it could not determine which percentage of the clocks’ pre-

dictive ability can be attributed to T and NK cells. For example, other cell type

proportions may also play a role, but our design is not optimal to detect the influence

of broad cell types like granulocytes, lymphocytes, and monocytes. Nevertheless, when

we repeated the analysis of the associations of clock-CpGs with gene expression in

trans without correcting for these broad cell types, we again highlighted the involve-

ment of T cells. As expected, this analysis suffers from high inflation of test statistics.

Although we corrected for this inflation using a method that is designed to be less sen-

sitive to true-positive associations [35], the analysis may not provide a complete picture

of trans-genes expressed in broad cell types. DNAm profiling of purified cell types with

accurate data on their relative proportions from larger series of donors is required to

definitively answer this question.

On the basis of our findings, we propose a model where the age predictions of epigen-

etic clocks in blood depend on proportions of naive and activated immune cell types in a

sample (Fig. 6). According to this model, the relative proportion of activated T and NK

cells increases with age at the expense of naive cells, which, due to their distinct DNAm at

clock CpGs, is expressed as the “ticking” of epigenetic clocks. The model also implies that

deviation of the predicted age from chronological age may stem from a naive-activated

cell ratio that is uncharacteristic for a certain chronological age. Therefore, our results

may contribute to the interpretation of studies in which such deviations are considered as

markers of biological age and associated with disease outcomes. For example, many age-

related health outcomes are accompanied by a pro-inflammatory state, which skews
Fig. 6 Proposed model for the influence of blood cell proportions on age prediction by epigenetic clocks.
Three hypothetical people are highlighted. Person A is young and has a blood cell composition consisting
of mostly naive immune cells, leading to epigenetic clocks rightfully predicting them to be young.
Conversely, Person B is old and has a relatively high proportion of activated immune cells in their blood,
causing the epigenetic clocks to estimate them to be old. For Person C, who has the same chronological
age as Person B but a blood cell composition closer resembling that of a young person, epigenetic clocks
would likely underestimate their age. Note that our data indicate that the prediction errors of the various
clocks (e.g., due to measurement error of the arrays) also contribute to deviations between chronological
and predicted age and hence biological phenomena do not explain deviations in full
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immune cell proportions towards activated phenotypes. Examples of such health out-

comes are Alzheimer’s disease [36], cardiovascular disease [37], and cytomegalovirus in-

fection [38]. This presents a potential explanation for the observed correlation of Horvath

MT’s age prediction with these outcomes [39–41]. Finally, our results may guide the se-

lection of age-related phenotypes to study with epigenetic clocks depending on prior

knowledge of the involvement of T and NK cells. An important consideration when inter-

preting deviations of predicted age from chronological age is that these deviations also re-

flect measurement errors in the methylation arrays and prediction errors of the clocks.

Measurement errors have been reported previously [42], and although we observed that

deviations were highly correlated between the various clocks, substantial differences

remained and extreme deviations were not reproduced across clocks. Hence, deviations

do not have a fully biological interpretation.
Conclusions
The ability of epigenetic clocks to predict chronological age involves their ability to de-

tect changes in proportions of naive and activated immune blood cells. This finding

may contribute to the interpretation of associations between clock-derived measures

and age-related health outcomes.
Methods
Cohorts

This study was performed using DNAm and RNA-seq data generated within the

Biobank-based Integrative Omics Studies Consortium (BIOS Consortium). All data

were generated in whole blood samples originating from 6 Dutch biobanks: Cohort on

Diabetes and Atherosclerosis Maastricht (CODAM) [43], LifeLines (LL) [44], Leiden

Longevity Study (LLS) [45], Netherlands Twin Register (NTR) [46], Rotterdam Study

(RS) [47], and the Prospective ALS Study Netherlands (PAN) [48]. NTR is a biobank of

twins, so a random person was selected from each twin pair to ensure that samples

were unrelated. We selected samples from all cohorts for which DNAm data, RNA-seq

data, and genotype data were all available and for which all of the data passed quality

control (QC), which was the case for 3132 samples. To prevent sample mix-ups from

influencing the results, we verified the identity of all DNAm and RNA-seq samples with

genotype data using OmicsPrint [49].

Age, sex, and cell counts of major white blood cell types were obtained for each co-

hort (measured cell types: lymphocytes, monocytes, neutrophils, eosinophils, basophils).

Cell counts were available for 2120 samples (69% of the total dataset). In line with pre-

vious work [50–52], a prediction model for cell counts was subsequently trained on

these cell counts using wbccpredictor, which fits a multivariate partial-least-squares

model, including age and gender, on the DNA methylation data. The prediction work-

flow is available at https://molepi.github.io/DNAmArray_workflow/05_Predict.html.

Predicted cell counts were used for all samples.
DNA methylation data

DNAm data were generated by bisulphite-converting 500 ng of genomic DNA from

whole blood samples using the EZ DNA Methylation kit (Zymo Research, Irvine, CA,

https://molepi.github.io/DNAmArray_workflow/05_Predict.html
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USA). Subsequently, bisulphite-converted DNA was hybridized onto Infinium Human-

Methylation450 BeadChip arrays (Illumina, San Diego, CA, USA), and signal intensities

were measured on an Illumina iScan BeadChip scanner according to the manufacturer’s

protocol.

A detailed description and R code of the pre-processing workflow, including the qual-

ity control and normalization, is described in DNAmArray, which is publicly available

at https://molepi.github.io/DNAmArray_workflow/. In brief, IDAT files were read into

R using minfi [53], after which sample-level QC was performed with MethylAid [54].

Low-quality samples were defined based on 4 QC-measures using information provided

by the control probes on the array and 1 measure was based on call rate (>95%) as

shown in Additional file 1: Fig. S6, which led to the exclusion of 168 samples. Probe-

level QC was based on detection p value (p < 0.01), number of beads available (≤ 2) or

zero values for signal intensity. Resulting probes with more than 5% missing values

were removed. Normalization was done using functional normalization as implemented

in minfi, using five principal components extracted using the control probes for

normalization.

Sugden et al. analyzed the reliability of measurements of DNAm from Illumina 450K

arrays using repeated measurements [42]. First, we downloaded the reported reliability

of 450K CpGs as expressed using the intraclass correlation (ICC) and selected the ICC

for all CpGs incorporated in the 4 clocks we investigated. The median ICC of clock

CpGs was 0.36 (Additional file 1: Table S4). For context, ICCs below 0.4 were consid-

ered “poor,” those between 0.4 and 0.6 were considered “fair,” between 0.6 and 0.75

“good,” and above 0.75 “excellent.” Next, we also calculated the ICCs for clock CpGs

using our own data on 15 samples for which we had a technical replicate (30 samples

in total; ICC was calculated for each CpG using a mean-rating (k = 2), absolute-

agreement, 2-way random-effects model). We found that the reliability of clock CpGs

was markedly higher in our data as compared with the analysis of the replicates avail-

able to Sugden et al. with median ICC of 0.68, and reaching good or even excellent reli-

ability for most CpGs (Additional file 1: Table S4). We concluded that the DNAm data

we used in our analysis compare favorably to data used in other reports and can be

considered sufficiently reliable.
Gene expression data

A detailed description of the generation and processing of the RNA sequencing (RNA-

seq) data can be found in previously published work of our group [55]. In short, globin

transcripts were removed from whole blood RNA using the Ambion GLOBINclear kit

and subsequently processed for RNA-sequencing using the Illumina TruSeq version 2

library preparation kit. RNA libraries were paired-end sequenced using Illumina’s

HiSeq 2000 platform with a read length of 2 × 50 bp, pooling 10 samples per lane.

Reads which passed the chastity filter were extracted with CASAVA. Quality control

was done in three steps: initial QC was performed using FastQC (v0.10.1), adaptor se-

quences were removed using cutadapt, and read ends with insufficient quality were re-

moved with Sickle. Reads were aligned to the human genome (hg19) using STAR

(v2.3.0e). To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/

?page_id=9) with MAF > 0.01 in the reference genome were masked with N. Read pairs

https://molepi.github.io/DNAmArray_workflow/
http://www.nlgenome.nl/?page_id=9
http://www.nlgenome.nl/?page_id=9
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with at most 8 mismatches, mapping to at most 5 positions, were used. Gene counts

were calculated by summing the total number of reads aligning to a gene’s exons ac-

cording to Ensembl, version 71. Samples for which less than 70% of all reads mapped

to exons were removed, as shown in Additional file 1: Fig. S7; this was the case for 11

samples. Summary statistics of the RNA-seq samples which passed QC are shown in

Additional file 1: Table S5.

For analysis, genes were filtered to include only protein-coding genes (as annotated

by Ensembl, version 71) with sufficient expression in our dataset (median count >1),

which resulted in the inclusion of 14370 genes. Raw counts of these genes were subse-

quently transformed into log counts per million (CPM) values. Additionally, to ensure

that the RNA-seq data were normally distributed, a rank-inverse normal (RIN) trans-

formation was performed per gene.
Epigenetic clocks

Four epigenetic clocks were studied: the blood clock developed by Hannum et al. (Han-

num Bld) [2], the multi-tissue clock developed by Horvath (Horvath MT) [3], the skin/

blood clock developed by Horvath et al. (Horvath Skn/Bld) [4], and the blood/saliva

clock developed by Zhang et al. (Zhang Bld/Slv) [5]. These clocks are described in

Table 1. Together, the four epigenetic clocks comprised 1147 unique CpGs. One CpG

from Horvath Skn/Bld (cg14614643) did not pass QC in our DNAm data and was

therefore excluded from our analyses (i.e., 1146 CpGs were included). The four epigen-

etic clocks were used to predict chronological age in all 3132 samples for which methy-

lome data were available. To this end, the coefficients of all clock CpGs were

downloaded (available in their respective publications [2–5]). Beta-values of the clock

CpGs were used as input for all clocks. For Horvath MT and Horvath Skn/Bld, pre-

dicted ages were transformed according to the authors’ instructions [3, 4]. For Zhang

Bld/Slv, DNAm values were normalized according to the authors’ instructions, so that

all samples had a mean of 0 and a standard deviation of 1 across all 450K CpGs [5].
Correlation between clock CpGs

To obtain an impression of the degree to which the CpGs comprising the 4 clocks cap-

ture the same information, we analyzed the correlation of their methylation values. The

clocks were trained using elastic net, a penalized regression method which aims to limit

internal correlations within a predictor. Therefore, it is expected that most correlations

in DNA methylation of CpGs within and between clocks are (very) low. Therefore, we

reported the percentage of each clock’s CpGs which had a correlation with another

CpG’s methylation level of at least 0.5, 0.7, and 0.9 within the same clock and in the 3

other clocks. For correlations between clocks, instances where the same CpG was in-

cluded in two clocks were included as a correlation of 1; for correlations within a clock,

the correlation of the CpGs with itself was excluded.
Enrichment for genomic features

For annotation of CpG islands (CGIs), the CGI-track from UCSC was queried (genome

hg19) using rtracklayer. CpGs from the 450K array were annotated according to 3
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CGI-centric features: CGIs (as annotated by UCSC), shores (2 kb regions flanking the

CGIs), and non-CGI.

Chromatin immunoprecipitation sequencing (ChIP-seq) data of 6 histone modifica-

tions (H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3) in

PBMCs were downloaded from the Epigenomics Roadmap project [12] using Annota-

tionHub [56]. For histone modifications with relatively broad enrichment regions

(H3K4me1, H3K4me3, and H3K27ac), we used the output of the broadPeak peak call-

ing method, while for histone modifications with relatively narrow enrichment regions

(H3K36me3, H3K27me3, and H3K9me3), we used the output of the narrowPeak peak

calling method. Peak calling methods are described in detail by Kellis et al. [57]. Add-

itionally, chromatin state segments, imputed from 5 core histone modifications

(H3K4me1, H3K4me3, H3K36me3, H3K9me3, H3K27me3) using ChromHmm, were

downloaded from this resource [12] using AnnotationHub [56]. Since our DNAm and

RNA-seq data were generated in whole blood samples, we chose PBMCs as a reference

epigenome (epigenome E062 according to the Epigenomics Roadmap nomenclature).

For enrichment analysis of the annotations described above, we calculated odds ratios

(OR) of clock CpGs being annotated with a genomic feature compared to all non-clock

CpGs from the 450K array being annotated as such. Statistical significances were ob-

tained using Fisher’s exact test. Multiple testing correction was done using the Bonfer-

roni method with 9 independent variables (3 CGI-centric features and 6 histone

modifications), since the 15 chromatin states were derived from the 6 histone

modifications.

Associations between DNA methylation and gene expression

To analyze the correlation between DNAm of clock CpGs and gene expression, a linear

regression analysis was performed for each CpG. Only autosomal genes and CpGs were

considered, which led to the exclusion of a CpG from Horvath Skn/Bld which mapped

to the X-chromosome (cg01892695). The regression was performed using the R pack-

age cate, which implements a method to run a linear regression model including both

known covariates and estimated latent factors in the data causing residual confounding

[58]. Only samples for which both DNAm data and RNA-seq data were available and

for which none of the model covariates were missing were included; this resulted in a

total of 3132 samples. The full regression model is shown below:

Expressiongene x ¼ DNAmCpG y þ Biobankþ Ageþ Sexþ Basophil%þ Eosinophil%
þ Lymphocyte%þMonocyte%þ Bisulphite Plate
þ Sentrix Positionþ Flowcell Numberþ Latent Factor 1…5þ ε

where Biobank refers to the 6 cohorts comprising the data, and basophil %, eosinophil

%, lymphocyte %, and monocyte % are the percentages of basophils, eosinophils, lym-

phocytes, and monocytes. Neutrophil percentages were excluded from the model to

prevent collinearity given the extremely high correlation with lymphocyte percentage (r

= −0.96). Finally, Bisulphite Plate is the plate used for bisulphite-converting DNA prior

to DNAm measurement, Sentrix Position is the sample’s position on the 450K array,

Flowcell Number is the HiSeq 2000 flowcell used for RNA-seq measurement, and La-

tent Factor 1…5 refers to the 5 latent factors estimated by cate.
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Any residual biases or inflations in the test-statistics generated by this model were es-

timated and corrected using the R package bacon [35]. This correction was performed

separately for each CpG, correcting the t statistics and p values of its associations with

all 14370 investigated genes.

From the regression analysis, we obtained a 1146 x 14370 matrix of t statistics and p

values. Each entry in these matrices was indicative of the association between the

DNAm of one clock CpG and the expression of one gene; examples of positive and

negative associations are shown in Fig. 3. Associations in cis and in trans were analyzed

separately. For associations in cis, only gene-CpG pairs within 100 kB of each other

were analyzed. For associations in trans, only gene-CpG pairs which were over 5 MB

away from each other or localized on different chromosomes were analyzed. After mak-

ing these selections, the associations in cis and in trans were separately corrected for

multiple testing using the Bonferroni method.

For the trans-associations, a core set of genes and CpGs was selected. We selected

genes which were significantly associated (pBonf < 0.05) with at least 5% of the CpGs

comprising any of the 4 investigated clocks (in other words, genes which associated

with either 4 Hannum Bld CpGs, 18 Horvath MT CpGs, 20 Horvath Skn/Bld CpGs, or

26 Zhang Bld/Slv CpGs), and we selected CpGs which were significantly associated

with at least 10 genes. The resulting set of 216 genes and 365 CpGs was visualized in a

heatmap, plotting the t statistic as found in the regression analysis for each gene-CpG

pair. Genes and CpGs were clustered using hierarchical clustering based on Euclidean

distance.

To confirm the validity of our analysis, we performed a permutation test where we

randomized the sample identifiers of the DNAm data 1000 times, then repeated the

analysis and counted the total number of Bonferroni-significant trans-associations. Our

actual analysis identified 50029 associations, while all 1000 permutations identified 0

associations (p < 0.001).

Genes associating with at least 1 CpG in cis and genes associating with at least 5% of

any clock’s CpGs in trans were tested for Biological Pathway Gene Ontology enrich-

ment using the R package clusterProfiler [59], with the gene background set to all

14370 genes analyzed in the TWAS. GO-term network visualization was performed

using ReviGO with standard settings [11].
External datasets on sorted blood cells

To investigate whether the levels of clock CpG DNAm and expression of associated

trans-genes were specific for blood cell types, we downloaded publicly available tran-

scriptomic and methylomics datasets generated in sorted blood cells. For transcrip-

tomic data, a dataset measured in 29 sorted blood cell types from 4 donors was

downloaded [25]. For clearer visualization, 17 cell types were selected for further ana-

lysis (as shown in Fig. 4). For DNAm data, a total of 4 publicly available 450K datasets

were downloaded. The data published by Garaud et al. [13] and Pitaksalee et al. [26]

were generated in sorted CD4+ naive and memory T cells (n = 7). The data published

by Schlums et al. [27] and Rodriguez et al. [28] were generated in sorted CD8+ naive

and effector T cells (n = 6). The data published by Schlums et al. [27] also contained

canonical and adaptive NK cell samples (n = 4). For each dataset, we selected samples
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to ensure that a naive and activated sample would be available for each included donor,

and we included only samples from healthy donors with no prior treatment. This

meant we selected only resting CD4+ T cells from Garaud et al. (excluding stimulated

samples, n = 3), CD4+ T cells from healthy controls from Pitaksalee et al. (excluding

rheumatoid arthritis samples, n = 4), naive and effector CD8+ T cells and CD56dim

CD57- canonical NK cells and CD56dim CD57bright EAT2- adaptive NK cells from

Schlums et al. (excluding other NK cell subtypes from the same donors, n = 4), and

naive and TEMRA CD8+ T cells from Rodriguez et al. (excluding effector memory T

cells from the same donors, n = 2).

Levels of CpG DNAm and gene expression were normalized to have a minimum of 0

and a maximum of 1 by applying the following formula per gene/CpG:

Xnorm ¼ X− min Xð Þð Þ= max X− min Xð Þð Þ

where X is the median expression or DNAm level in one cell type, and min(X) and

max(X) refer to the lowest and highest value of that gene/CpG across all cell types.

Normalized expression and DNAm data from the external datasets were visualized fol-

lowing the clustering order of genes and CpGs in the heatmap of the trans-associations

(gene and CpG entries which were not present in the external datasets were set to NA).

To test whether the genes/CpGs in the heatmap’s main clusters (2 clusters for both

genes and CpGs) were differentially expressed/methylated across blood cell types in the

external data, a series of t tests was performed. For the external gene expression data,

the median normalized expression of each gene was calculated in naive and late acti-

vated cell types, and a t test was used to test for differential expression in naive cell

types versus late activated cell types (this analysis was performed separately for genes

in the top cluster and those in the bottom cluster). For the external DNAm data, the

median normalized DNAm of each CpG was calculated in each of the 6 cell types. Dif-

ferential DNAm of CpGs was separately tested for the left and right cluster using t tests

in three settings: Naive CD4+ T cells versus memory CD4+ T cells, naive CD8+ T cells

versus effector CD8+ T cells, and canonical NK cells versus adaptive NK cells.

The epigenetic clocks were applied to predict age in the external DNAm samples.

Differences between naive and activated phenotypes were tested using paired t tests.
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