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Improved analytical bounds on delivery times of long-distance entanglement

Tim Coopmans,1, ∗ Sebastiaan Brand,2, † and David Elkouss1, ‡

1QuTech, Delft University of Technology, The Netherlands
2Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands.

The ability to distribute high-quality entanglement between remote parties is a necessary prim-
itive for many quantum communication applications. A large range of schemes for realizing the
long-distance delivery of remote entanglement has been proposed, both for bipartite and multipar-
tite entanglement. For assessing the viability of these schemes, knowledge of the time at which
entanglement is delivered is crucial. For example, if the communication task requires two entangled
pairs of qubits and these pairs are generated at different times by the scheme, the earlier pair will
need to wait and thus its quality will decrease while being stored in an (imperfect) memory. For the
remote-entanglement delivery schemes which are closest to experimental reach, this time assessment
is challenging, as they consist of nondeterministic components such as probabilistic entanglement
swaps. For many such protocols even the average time at which entanglement can be distributed
is not known exactly, in particular when they consist of feedback loops and forced restarts. In this
work, we provide improved analytical bounds on the average and on the quantiles of the completion
time of entanglement distribution protocols in the case that all network components have success
probabilities lower bounded by a constant. A canonical example of such a protocol is a nested
quantum repeater scheme which consists of heralded entanglement generation and entanglement
swaps. For this scheme specifically, our results imply that a common approximation to the mean
entanglement distribution time, the 3-over-2 formula, is in essence an upper bound to the real time.
Our results rely on a novel connection with reliability theory.

I. INTRODUCTION

The Quantum Internet is a vision of a world-wide net-
work of nodes with the capability to transmit and pro-
cess quantum information [1, 2]. Such a network en-
ables tasks that are impossible classically, among which
unconditionally-secure communication [3, 4], secure del-
egated computing [5] and extending the baseline of tele-
scopes [6]. A primitive for such tasks is entanglement
between remote nodes. Several schemes have been pro-
posed for generating long-distance entanglement, all mak-
ing use of intermediate nodes called quantum repeaters
[7]. These proposals include chains of quantum repeaters
[7–9] and generalizations to two-dimensions for serving
multiple users [10–14].

Knowledge of the time that quantum repeater schemes
take to deliver entanglement is highly relevant, for several
reasons. Most evidently, the delivery rate should be suf-
ficiently high for the application. Secure communication
over video, for example, requires transmission rates of at
least hundreds of kbits per second [15]. Furthermore, for
the repeater proposals which make use of quantum mem-
ories and do not rely on error correcting codes, i.e. the
ones that are closest to experimental reach, the delivery
time influences the quality of the produced entanglement.
The reason for this is that in these schemes, an entangled
pair that is generated often needs to wait for another pair
before the scheme can continue, and decoheres in mem-
ory while waiting. In addition, some memory types suffer
from effects which are effectively time-dependent, such as
noise which is induced each time the quantum processor
attempts to generate remote entanglement [16], while for
others the probability of extracting the state degrades
over time [17]. Thus, the quality of the produced en-
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tanglement is a function of the time its generation takes.
This implies that knowledge of the delivery time is cru-
cial for assessing the viability of schemes for long-distance
entanglement distribution using near-term hardware.

Analysis of the delivery time is generally challenging
for the entanglement-distribution schemes that are clos-
est to experimental reach because they consist of prob-
abilistic components. The completion time of a such a
scheme is not a single number but instead a random vari-
able, which for many schemes has a complex structure
due to the feedback loops and restarts. Although numer-
ically, progress has recently been made in determining the
completion time for increasingly larger networks [14, 18–
22], numerical approaches provide only limited intuition
and moreover are demanding in computation time when
performing large-scale optimization over many network
designs and hardware parameters. For this reason, ana-
lytical results are more convenient.

Unfortunately, due to the complexity of the problem,
even the average completion time is known exactly only
in limited cases: for quantum repeater chains consisting
of at most four repeater nodes [19, 23] and a star network
with a single node in the center and an arbitrary number
of leaves [10]. For larger networks, analytical results only
include approximations or loose bounds on the mean en-
tanglement delivery time [24]. The approximations are
based on the assumption that the success probabilities of
some of the network components are very small [25–28] or
close to 1 [24, 29, 30]. Neither approximations are ideal,
since some success probabilities can be boosted by tech-
niques such as multiplexing, while others are bounded
well below 1 for some setups[31]. Indeed, numerics have
shown for some of the approximations that they become
increasingly bad as the size of the network grows [19, 20].
Another scenario in which the completion time probabil-
ity distribution is brought back to a known form includes
the discarding of entanglement [32, 33]. See [34] for a
review of the completion time analysis for entanglement
distribution schemes.
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A canonical use case which has found particularly much
application is a symmetric nested repeater scheme [7, 35]
where at each nesting level two entangled pairs of qubits,
spanning an equal number of nodes, are connected. Con-
sequently, the entanglement span doubles at each nesting
level. For this scheme, it was empirically known [36] that
for small success probabilities of connecting the pairs, the
average time to in-parallel create both required initial
pairs at each nesting level is roughly 3/2 times the av-
erage time for a single pair. This results in an approx-
imation to the average completion time of the repeater
scheme which is known as the 3-over-2 formula and has
been frequently used since [8, 9, 25, 29, 36–49]. Analyti-
cally finding the exact factor, for an arbitrary number of
nesting levels and for any value of the success probabili-
ties, has been an open problem for more than ten years
[25].

In this work, we provide analytical bounds on the com-
pletion time which not only improve significantly upon
existing bounds, but also show how good some of the
previous approximations are because the bounds become
exact in the small probability limit. To be precise, we
give analytical bounds on the mean and quantiles of
the completion time random variable for entanglement-
distributing protocols which are constructed of prob-
abilistic components whose success probability can be
bounded by a constant from below. This includes feed-
back loops in which failure of one component requires
restart of other components, as long as no two com-
ponents wait for the same other component to finish.
Regarding the symmetric nested repeater protocol, our
bounds imply that the 3-over-2 approximation is, in
essence, an upper bound to the mean completion time,
rigorously rendering analyses based on this approxima-
tion pessimistic. Other protocols we can treat include
nested repeater chains with distillation and multipartite-
entanglement generation schemes [10, 14, 50], among oth-
ers.

This work is organized as follows. First, in Sec. II we
describe the class of protocols our bounds apply to and
introduce concepts from reliability theory we will use in
the bounds’ derivation. Sec. III contains our main re-
sults: analytical bounds on the mean completion time of
such protocols and the tail of its probability distribution.
Next, we obtain improved bounds with respect to existing
work by applying these results to two use cases: a nested
quantum repeater chain (Sec. IV) and a quantum switch
in a star network (Sec. V). We prove the main results in
Sec. VI and finish with a discussion in Sec. VII.

II. PRELIMINARIES

A. Protocols

The protocols considered in this work aim to gen-
erate bipartite or multipartite entanglement between
remote parties. We will refer to bipartite entangle-
ment as a ‘link’. We consider protocols that are
constructed from two building blocks: generate and
restart-until-success. We treat them individually.

First, by generate we refer to heralded generation of
fresh entanglement. For simplicity, we will assume that

the entanglement is bipartite and we will refer to such
entanglement as an ‘elementary link’. In our model, en-
tanglement generation is performed in discrete attempts
of fixed duration, each of which succeeds with a given
constant probability pgen [8]. The success is heralded,
i.e. the nodes are aware which attempts fail and which
succeed. The duration of a single attempt equals L/c,
where L is the distance between the nodes and c is the
speed of light in the transmission medium. We use L/c as
the unit of time. As a consequence, the completion time
of entanglement generation is a discrete random variable
following the geometric distribution:

Pr(Tgen = t) =

{
pgen(1− pgen)

t−1 if t ≥ 1 is an integer
0 otherwise.

.

(1)
We will denote the mean of this distribution by µgen =
1/pgen.

We will also consider the exponential distribution,
which is the continuous analogue of the geometric dis-
tribution and is defined as follows: if X follows the expo-
nential distribution with parameter λ > 0, then

Pr(X > x) = e−λx (2)

for any real number x ≥ 0. For small pgen, the completion
time of entanglement generation is sometimes approxi-
mated by an exponential random variable T approx

gen with
the same mean, which is achieved by setting λ = 1/µgen.

Next, we explain restart-until-success by describ-
ing two of its instantiations, regarding entanglement
swapping and entanglement distillation.

By an entanglement swap at node M , we refer to the
operation which converts two links, one between nodes
A and M and one between M and B, into a single long-
distance link between A and B. We model the entangle-
ment swap success with probability 0 < pswap ≤ 1, which
is a constant that is independent of the states upon which
the swap acts. In case of failure, both input links are lost.
We model fusion, the generalization of the entanglement
swap which converts more than 2 input links to a multi-
partite entangled state, in similar fashion.

Entanglement distillation is the probabilistic conver-
sion of two low-quality links shared between two nodes
to a single high-quality link between the same two nodes
[51, 52]. The success probability of distillation depends
on the states of the two links, and is lower bounded by
1
2 for the schemes considered here. Similarly to the case
of entanglement swapping, the two input links are lost if
the distillation step fails.

We assume that the durations of the entanglement
swap, fusion, and distillation operations are negligible.

In general, we use the term restart-until-success
for an operation which takes entanglement as input, per-
forms a probabilistic operation onto it, and demands the
regeneration of the input entanglement in the case of fail-
ure. Its success probability can be a function of prop-
erties of the input entanglement, such as its quality or
its delivery time, but it may also be a constant. By
swap-until-success and distill-until-success, we
refer to instantiations of restart-until-success where
the probabilistic operation is entanglement swapping and
entanglement distillation, respectively.
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The protocols we consider in this work are com-
posed from heralded entanglement generation and
restart-until-success as subprotocols, with the re-
striction that the distinct restart-until-success pro-
tocols do not compete for the same resources. That is,
no pair of subprotocols waits for the same link before
proceeding. This corresponds to the protocols where the
dependency graph of the inputs and outputs of the sub-
protocols is a tree. Fig. 1 shows examples such protocols.

B. Probability theory and the NBU property

In this work, we will make extensive use of a class
of probability distributions called new-better-than-used
(NBU), which have been studied in the context of re-
liability theory and life distributions [53]. In order to
mathematically define new-better-than-used, we first re-
visit some notions from probability theory. All random
variables in this work that are continuous have the posi-
tive reals as domain, i.e. a continuous random variable X
with Pr(X < 0) = 0. The cumulative distribution func-
tion (CDF) of random variable X is x 7→ Pr(X ≤ x), and
the co-CDF is x 7→ Pr(X > x). This co-CDF is also re-
ferred to as the survival function or the reliability, since
it states the probability that X will survive at least up
to time x. The residual life distribution of X is given
by the conditional probability Pr(X > x+ y|X > y) and
describes the time that X will survive at least up another
interval x given that it has already survived time y. We
now say that a real-valued random variable X is new-
better-than-used (NBU) or that it has the NBU property
if its residual life distribution is upper bounded by the
original reliability, i.e.

∀x, y ≥ 0 : Pr(X > x+ y|X > y) ≤ Pr(X > x).
(3)

Intuitively, new-better-than-used random variables de-
scribe ageing over time. As an example, consider the
lifetime of a car: the probability that an old car (one
that is already y years old) will survive another x years
is smaller than the probability that a brand new car will
reach the age of x years.

For clarity, we separately state the definition of NBU,
where we use an expression equivalent to eq. (3) for con-
venience of our proofs later on.

Definition 1. A real-valued random variable X with
Pr(X < 0) = 0 , is called new-better-than-used (NBU)
if

∀x, y ≥ 0 : Pr(X > x+ y) ≤ Pr(X > x) ·Pr(X > y).

It is called new-worse-than-used (NWU) if the reverse in-
equality holds.

We give two examples of NBU distributions.

Example 1. A delta-peak distribution Pr(X = x0) = 1
for some fixed x0 ≥ 0 is NBU, since

Pr(X > x) Pr(X > y) =

{
1 if x < x0 and y < x0

0 otherwise

while

Pr(X > x+ y) =

{
1 if x+ y < x0

0 otherwise.

Since x+y < x0 implies x < x0 and y < x0 for any x, y ≥
0, we see that Pr(X > x+ y) ≤ Pr(X > x) Pr(X > y)
and thus X is NBU.

Example 2. The exponential distribution, defined in
eq. (2), satisfies Pr(X > x+ y) = Pr(X > x) Pr(X > y)
for all x, y ≥ 0 and is therefore both NBU and NWU.

Lastly, we will use the notion of stochastic dominance.

Definition 2. Let X and Y be two random variables
with domains DX and DY , both subsets of the real num-
bers. We say that X stochastically dominates Y and write
X ≥st Y if

Pr(X > z) ≥ Pr(Y > z)

for all z ∈ DX ∩DY .

In particular, we will use the following lemma, which
states that stochastic dominance of one random variable
over the other implies an ordering of their means.

Lemma 1. Let X and Y be two random variables with
domain [0,∞). If X ≥st Y , then E[X] ≥ E[Y ].

Proof. The lemma directly follows from the definition of
stochastic dominance, together with the fact that the
mean of X can be written as an integral over the co-CDF,

E[X] =

∫ ∞

0

Pr(X > x)dx,

and similarly for Y .

III. MAIN RESULTS

In this section, we give our main results in Prop. 1 and
2: bounds on the completion time distribution for proto-
cols composed of elementary-link generation (generate)
and restart-until-success operations. The proofs to
the main results can be found in Sec. VI.

Our results bound continuous completion times,
whereas the completion time of elementary-link gener-
ation is the discrete random variable Tgen (see Sec. II).
Therefore, before starting our main result we first remark
that Tgen is stochastically dominated by a continuous
NBU random variable we denote as T upper

gen .

Lemma 2. The completion time Tgen of elementary-link
generation is stochastically dominated (Def. 2) by the con-
tinuous random variable T upper

gen = 1 + Texp where Texp is
exponentially distributed with parameter −1

log(1−pgen)
. That

is,

Pr(Tgen > t) ≤ Pr
(
T upper

gen > t
)

=

{
1 if 0 ≤ t ≤ 1

exp ((t− 1)/ log(1− pgen)) if t ≥ 1
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(a)

(c)

Span of entanglement

Alice Bob Carol

GENERATE

DISTILL

SWAP

GENERATEGENERATE

Alice Bob

DISTILL

GENERATE
GENERATE

OPERATION P

OPERATION CA

(b)

OPERATION CB

FIG. 1: The results in this work bound the completion time of any entanglement-distribution protocol which can be
visualized as a tree. (a) In such a tree, each vertex is labelled by the operation (P) that should be performed as soon
as the operations on the vertex’s children (CA and CB) have finished. In case the operation fails, both children start
regenerating entanglement, possibly by recursively having their children regenerate entanglement. This procedure is

repeated until the operation P succeeds. (b) Example protocol on two nodes, Alice and Bob, which consists of
performing heralded entanglement generation (generate) twice in parallel, followed by entanglement distillation
(distill) on the two freshly generated links. In case of failure of the distillation attempt, both links are lost, in
which case the protocol restarts. This procedure is repeated until the distillation attempt succeeds. (c) Example
protocol on three nodes. Alice and Bob perform the protocol from (b), and in parallel Bob and Carol perform

heralded entanglement generation. As soon as both have finished, Bob performs an entanglement swap (swap). This
procedure is repeated until the swap succeeds.

The mean of Tgen is upper bounded by the mean of T upper
gen

which is given by

µupper
gen = 1− 1

log(1− pgen)
=

1

pgen
+

1

2
+O(pgen) (4)

where O(pgen) contains terms that scale with pgen or pow-
ers of it. The means of Tgen and T upper

gen differ only
slightly, both in difference and in ratio:

0 ≤ µupper
gen − µgen ≤ 1

2
and 1 ≤

µupper
gen

µgen
≤ 1 +

pgen
2

(5)

for any pgen ∈ [0, 1]. Moreover, T upper
gen is NBU.

As consequence of Lemma 2, we may assume that the
duration of elementary-link generation is described by
T upper

gen if we are looking for upper bounds on a proto-
col’s completion time. Indeed, an upper bound on the
co-CDF or the mean of the resulting completion time
will automatically also become an upper bound on the
real completion time (see Def. 2 and Lemma 1).

Now let us state our bounds on continuous completion
times. For legibility, we first state a special case of our
main result: the scenario where a swap-until-success
operation with constant success probability is performed
on two quantum states. We assume that the time it takes
until a state is produced is a random variable, and that
this random variable is the same for both input states;
that is, their completion times are independent and iden-
tically distributed.

Completion time of swapping: two
states & IID

Proposition 1. Consider the time Toutput of
a swap-until-success protocol with constant
success probability p, acting on two quantum
states, produced with identically-distributed in-
dependent completion times Tinput. If Tinput is
a continuous random variable and it is NBU
(Def. 1), then:

(a) Toutput is NBU;

(b) the mean of Toutput is upper bounded as

E[Toutput] ≤
3E[Tinput]

2p
;

(c) for all t, the probability that Toutput takes
longer than t timesteps decays exponen-
tially fast:

Pr(Toutput > t) ≤ exp

(
p− 2pt

3E[Tinput]

)
while it is lower bounded as

Pr(Toutput > t) ≥ exp

(
−2pt

3E[Tinput]
· 1

1− p

)
.

(d) in the limit p → 0, the normalized comple-
tion time Toutput/E [Toutput] approaches
the exponential distribution with mean 1,
and thus E[Toutput] · 2p/(3E[Tinput]) → 1.
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(2) (3)

T2T1

(1)

Tti
m
e

(a) Consider an entanglement distribution process (1), whose
completion time is a random variable T and has mean E[T ]

(2). If T is NBU, completing two such independent and
identically distributed processes in parallel has a mean time

≤ 3
2
· E[T ] (3).

delivery time (t)

(b) The probability distribution of the delivery time of
entanglement distribution processes can be bounded by
exponentially-fast decaying lower and upper bounds.

FIG. 2: Visual overview of this work’s bounds on the
completion time of entanglement distribution protocols.
The first result (2a) is a bound on the mean completion
time of two parallel entanglement distribution processes,

given that these processes possess the NBU property
(Def. 1). Our second result (2b) is a two-sided bound on

the probability distribution of the completion time of
such processes.

The bounds from Prop. 1 are visually depicted in Fig. 2.
Although Prop. 1 regards a swap-until-success pro-

tocol, it also finds application to distill-until-success,
which has nonconstant success probability:

Remark 1. Consider Prop. 1 where
swap-until-success is replaced by
distill-until-success. Note:

(a) Prop 1(a)-(c) still hold in case the quantum states
produced with completion times Tinput do not deco-
here over time, because then the distillation success
probability p is a constant, independent of the pro-
duction times of the input states;

The success probability of distillation is general lower
bounded by 1/2, resulting in

(b) E[Toutput] ≤ 3E[Tinput].

Since the upper bound in Prop 1(c) is monotonically de-
creasing in p in the regime t ≥ 3E[Tinput]/2, we may
replace p by its lower bound 1/2 to obtain:

(c) for t ≥ 3E[Tinput]/2, we have

Pr(Toutput > t) ≤ exp

(
1

2
− t

3E[Tinput]

)
.

Prop. 1 is a special case of a more general version
of Prop. 2 for restart-until-success protocols that
act on two or more quantum states whose completion
times are independent, but not necessarily identically dis-
tributed.

General case: completion time of
restart-until-success protocol

Proposition 2. Consider the time Toutput of
a restart-until-success protocol with con-
stant success probability p, acting on n ≥
2 quantum states, produced with independent
completion times T1, . . . , Tn, which need not be
identically distributed. Suppose that each of
Toutput and T1, . . . , Tn is a continuous random
variable. Denote m = E[max(T1, . . . , Tn)]. If
all T1, . . . , Tn are NBU (Def. 1), then:

(a) Toutput is NBU;

(b) the mean of Toutput equals
E[Toutput] = m/p;

(c) for all t, the probability that Toutput takes
longer than t timesteps is exponentially
bounded from above as

Pr(Toutput > t) ≤ exp

(
p− p · t

m

)
.

while it is bounded from below by

Pr(Toutput > t) ≥ exp

(
−p · t
m

· 1

1− p

)
.

(d) in the limit p → 0, the normalized comple-
tion time Toutput/E [Toutput] approaches
the exponential distribution with mean 1,
and thus E[Toutput] · p/m → 1.

(e) We have

max
1≤j≤n

E[Tj ] ≤ m ≤
n∑

j=1

E[Tj ].

(f) In case all Tj are identically distributed
with mean E[T ], then a tighter bound than
(e) exists:

1 ≤ m

E[T ]
≤ n− 1 +

1

n
.

We finish this section by generalizing Remark 1.

Remark 2. Consider a restart-until-success proto-
col whose success probability is lower bounded by a con-
stant c. Then the upper bounds in Prop. 2(e) and (f) still
hold, while Prop. 2(b) and (c) can respectively be replaced
by E[Toutput] ≤ m/c and Pr(Toutput > t) ≤ exp

(
c− ct

m

)
for t ≥ m.

In the next sections, we give two use cases for the
bounds derived in this section: a quantum repeater chain
scheme and a quantum switch protocol.
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IV. FIRST APPLICATION: NESTED
QUANTUM REPEATER CHAIN

In this section, we apply our bounds on the comple-
tion time of entanglement distribution protocols to an
extensively-studied nested repeater chain protocol [7, 35].
We explain the protocol for the case where the number of
segments is 2n for some integer n ≥ 0 (i.e. the chain con-
sists of 2n + 1 nodes). See also Fig. 3. If n = 0, then the
network consists of two end nodes only (no repeaters),
which use heralded entanglement generation (see Sec. II)
to generate a single elementary link. If n > 0, then the
chain has a middle node (since the number of segments is
even). In parallel, a 2n−1-hop-spanning link is produced
on the left side of the middle node, as well as a link on its
right side. As soon as both links have been prepared, the
middle node performs an entanglement swap to convert
the two links into a single 2n-hop-spanning link. This
scheme can also be extended with one or multiple rounds
of entanglement distillation at each nesting level, in a
nested fashion [7].

The exact completion time distribution of the nested
repeater scheme has so far not been analytically found
beyond the single-repeater case. The problem was first
fully explained by Sangouard et al. [25], although it was
already partially described in earlier work [36–38]. San-
gouard et al., remarked that while the completion time
of elementary-link generation at the bottom level fol-
lows a well-known distribution (the geometric distribu-
tion, Sec. II), this is no longer the case for higher levels.

To circumvent this issue, many have resorted to ap-
proximating the probability distribution at each level
with an exponential distribution, combined with the
small-probability assumptions pswap ≪ 1 and pgen ≪ 1.
This approximation leads to an expression for the mean
entanglement delivery time as follows. At each nesting
level, the protocol can only continue if both input states
to the entanglement swap have been produced. Mathe-
matically, this is expressed as the maximum of the deliv-
ery time of the two links. The mean of the maximum of
two independent and identically distributed (i.i.d.) ex-
ponential random variables with mean µ is 3

2 · µ. Next,
if the swap success probability is pswap, then on aver-
age 1/pswap attempts are needed until success. Thus, for
each nesting level, the mean entanglement delivery time
should be multiplied by a factor 3/(2pswap), resulting into
an expression for the mean delivery time known as the 3-
over-2-approximation:(

3

2pswap

)n

· 1

pgen
. (6)

The 3-over-2 approximation was first used by Jiang et
al.[36], who mentioned that the factor 3/2 agreed well
with simulations in the small-probability regime. Since
then, the approximation has been frequently used [8, 9,
25, 29, 37–49].

However, the quality of this approximation is not
known exactly and has only been only very loosely
bounded, as follows. As noted by Sangouard et al. [25],
the mean of the maximum of two nonnegative i.i.d ran-
dom variables with mean µ is lower bounded by µ and
upper bounded by 2µ. These bounds correspond to the
scenario where one waits only for a single link to be ready,

or for both links to be prepared sequentially, respectively.
Consequently,(

1

pswap

)n

· 1

pgen
≤ E[T ] ≤

(
2

pswap

)n

· 1

pgen
. (7)

Now we use Markov’s inequality, Pr(T ≥ t) ≤ E[T ]/t,
which can be rephrased

Pr(T > t) ≤ E[T ] · 1

t+ 1
, (8)

since T only takes integral values. Substituting E[T ] by
its upper bound from eq. (7) leads to

Pr(T > t) ≤
(

2

pswap

)n

· 1

pgen
· 1

t+ 1
. (9)

Both the mean bound from eq. (7) and the tail bound
from eq. (9) are quite loose bounds, see Fig. 4 and 5.
Only recently, it was shown analytically by Kuzmin and
Vasilyev that the factor 3/2 from eq. (6) is exact in the
limit of vanishing swap success probability, and moreover
that the delivery time probability distribution after an
entanglement swap in this limit is indeed an exponential
distribution [26].

Our bounds from Sec. III allow us to go beyond these
results. In particular, we show the following. First,
we analytically show that the 3-over-2 approximation
is, in essence, an upper bound to the mean completion
time. This implies that the 3-over-2 approximation is pes-
simistic, confirming numerical simulations [19, 29]. Next,
we derive two-sided bounds on the tail of the probabil-
ity distribution of the repeater chain’s completion time.
Both the mean bound and the tail bounds coincide in
the limit of vanishing success probabilities. We give the
bounds below and plot them in Fig. 4 (mean bounds) and
Fig. 5 (tail bounds).

Proposition 3. Consider the completion time Tn of an
equally-spaced, symmetric nested repeater scheme (no dis-
tillation) on 2n segments, such as the example in Fig. 3
for n = 2. If n > 0, then:

(a) the mean completion time is upper bounded as

E[Tn] ≤
(

3

2pswap

)n

· µ0.

Here, µ0 is the mean of any real-valued NBU ran-
dom variable which stochastically dominates the
completion time Tgen of elementary-link generation.
In case the elementary-link generation is modelled
as discrete attempts which succeed with probability
pgen, then we choose T upper

gen for this random vari-
able (see Lemma 2), resulting in

µ0 = E[T upper
gen ] = 1− 1

log(1− pgen)
.

If instead the completion time of elementary-
link generation is described by the exponentially-
distributed random variable T approx

gen (see Sec. II A),
which is NBU itself, then µ0 = E[T approx

gen ] = 1/pgen.
By Lemma 2, the two models’ means only dif-
fer slightly: 0 ≤ E[T upper

gen ]− E[T approx
gen ] ≤ 1

2 and
1 ≤ E[T upper

gen ]/E[T approx
gen ] ≤ 1 + pgen/2.

6



(b) the mean completion time is lower bounded as

E[Tn] ≥
1

pswap
·
(

3− 2pswap

pswap(2− pswap)

)n−1

· ν0.

Here, ν0 is the mean time until the latest of two par-
allel elementary-link generation processes has fin-
ished. In case elementary-link generation is mod-
elled as discrete attempts which succeed with prob-
ability pgen, then

ν0 =
3− 2pgen

pgen(2− pgen)

while if its completion time is modelled by an expo-
nential distribution, then ν0 = 3/(2pgen).

(c) the co-CDF of Tn differs from the co-CDF of
an exponential distribution by at most a factor
exp(pswap) from above,

Pr(Tn > t) ≤ exp(pswap) · exp
(
−pswap · t

mupper

)
while it is lower bounded as

Pr(Tn > t) ≥ exp

(
−pswap · t
mlower

· 1

1− pswap

)
.

Here, we have denoted

mupper =
3

2
·
(

3

2pswap

)n−1

· µ0

and

mlower =

(
3− 2pswap

pswap(2− pswap)

)n−1

· ν0

where µ0 and ν0 are given in Prop. 3(a) and (b).

(d) in the limit where both pswap → 0 and pgen → 0, the
normalized random variable Tn/E[Tn] follows the
exponential distribution with mean 1, and moreover

lim
pswap→0,pgen→0

E[Tn]/Ln = 1

with

Ln =

(
3

2pswap

)n

· 1

pgen
.

(e) If the completion time of elementary-link generation
is described by the exponentially-distributed T approx

gen ,
then Tn is NBU, while if it is modelled as dis-
crete attempts, then Tn is stochastically dominated
(Def. 2) by an NBU random variable which satisfies
the bounds in items (a-c).

Most statements in Prop. 3 directly follow by applying
Prop. 1 in Sec. III iteratively over the number of nest-
ing levels. In particular, a useful feature following from
Prop. 1(a) is that at each nesting level, the completion
time possesses the NBU property (Def. 1). Consequently,
the mean upper bound in Prop. 1(c), which is only ap-
plicable to NBU random variables, can be used at each

Alice Bob

GENERATE GENERATE GENERATE GENERATE

SWAP SWAP

SWAP

FIG. 3: Schematic of a nested repeater protocol on five
nodes (n = 2 nesting levels) The figure depicts the

protocol for delivering entanglement between remote
parties Alice and Bob through three repeater nodes. At
the start of the protocol, all nodes attempt to generate

an elementary link with each of their neighbors in
parallel. An entanglement swap is performed once the
two leftmost links are ready, and similarly for the two

rightmost links. Once both swaps have succeeded
(failure requires regeneration of the involved links), the

middle node performs an entanglement swap, which
yields entanglement between Alice and Bob.
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FIG. 4: The ratio of different upper and lower bounds
on the mean completion time of a nested repeater

protocol, as compared to the numerically calculated
mean with the deterministic algorithm from [20], for a
repeater chain with 17 nodes (pgen = 0.5, entanglement

generation is performed in discrete attempts). The
figure shows bounds known before this work (eq. (7))

and the tighter bounds from this work in Prop. 3(a) and
(b).

nesting level. Only the lower bound in (b) and the expres-
sion for mlower in (c) do not follow from Prop. 1. These
can be found by noting that the maximum of two sums
dominates a single sum whose length is the maximum of
the original two sum lengths. We give the full proof in
Appendix B.
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FIG. 5: Probability distribution of the completion time
T of a nested repeater protocol. The figure shows the

numerically computed distributions using the
deterministic algorithm from [20], a

polynomially-decaying bound known before this work
which is derived from Markov’s inequality and a bound

on the mean completion time (eq. (9)), and two
improvements on eq. (9) we achieve in this work: first, a
simple improvement by using Markov’s inequality and

the improved bound on the mean completion time
(Prop. 4(a)), followed by the exponentially-decaying

two-sided tail bounds from Prop. 3(c). The plot shows
results for a repeater chain with 17 nodes (pgen = 0.1)
where entanglement generation is performed in discrete
attempts. The swap success probability is pswap = 0.5

(top), and pswap = 0.2 (bottom).

We finish this section by noting a stronger two-sided
bound on the completion time T of an equally-spaced re-
peater chain than Prop. 3(a-b) in the case of deterministic
swapping (pswap = 1). The number of segments can be
any integer N ≥ 2. Since we assume that the entangle-

ment swaps take no time (Sec. IIA), the mean completion
time for this scenario is

E[T ] = E[max(T (1)
gen, T

(2)
gen, . . . , T

(N)
gen )]

where T
(k)
gen is an independent and identically distributed

copy of Tgen and describes the completion time of entan-
glement generation over the kth segment. By replacing
Tgen → T approx

gen , i.e. assuming that the completion time
of entanglement generation follows the exponential dis-
tribution with mean 1/pgen, the following approximation
to E[T ] has been derived [19, 27]:

E[T ] ≈ 1

pgen
·HN (10)

where

HN :=

N∑
k=1

1

k
= γ + log(N) +O

(
1

N

)
(11)

is the N -th harmonic number and γ ≈ 0.5772 is the Euler-
Mascheroni constant. An alternative to eq. (10) is to
replace Tgen → Texp, where Texp is the exponentially-
distributed random variable from Lemma 2, which results
into

E[T ] ≈ −1

log(1− pgen)
·HN =

(
1

pgen
− 1

2
+O(pgen)

)
·HN .

(12)
We remark that eq. (10) and eq. (12) only differ slightly
and that their ratio goes to 1 in the limit of pgen → 0. The
quality of the second approximation, eq. (12), has been
bounded in work by Eisenberg [54] and to our knowledge
no-one has so far noted it in the context of completion
times of quantum network protocols. We state it below.

Proposition 4. [54] Suppose that entanglement swap-
ping is deterministic (pswap = 1). Let E[T ] denote the
mean completion time of a repeater chain over N seg-
ments. Then E[T ] is bounded as

a ·HN ≤ E[T ] ≤ 1 + a ·HN

where HN is the N -th harmonic number given in eq. (11)
and

a = µupper
gen − 1 =

−1

log(1− pgen)
=

1

pgen
− 1

2
+O(pgen).

V. SECOND APPLICATION: A QUANTUM
SWITCH

Here, we apply our results to a quantum switch. A
quantum switch serves k user nodes. Each user is con-
nected to the switch by an arm, which produces bipar-
tite entanglement (a link) between switch and user. As
soon as each user has produced a link with the switch,
the switch performs a k-fuse operation, i.e. a probabilis-
tic operation converting k bipartite links into a single
k-partite entangled state on the user nodes.

Vardoyan et al., considered the scenario in which each
user produces entanglement continuously with the switch
and the switch fuses whenever it can [10]. They obtained

8



user
node

repeater
nodes

switch
node

FIG. 6: A quantum switch with 3 users, each connected
to the switch by an identical repeater chain which

produces links between user and switch. The switch
produces 3-partite entangled states, shared between the

users, by performing a probabilistic operation on 3
links, one with each user node, as soon as these 3 links

are available.

analytical expressions for the rate at which the switch
produces multipartite entanglement in the steady-state
regime. Here, we consider the alternative protocol where
the goal is to produce only a single k-partite state. We
go beyond the model of Vardoyan et al., by replacing the
arms, which connect the switch to the user, by an arbi-
trary entanglement-distribution network whose comple-
tion time is NBU. An example choice for such a network
is the symmetric repeater chain from Sec.IV, yielding the
network topology as depicted in Fig. 6, Our tools allow us
to achieve bounds on the completion time of the switch,
as described in the following proposition.

Proposition 5. Consider a k-armed quantum switch
with fusion success probability pfuse. Suppose that the
completion times of the different arms are independent
and identically distributed according to an NBU random
variable S. Denote by T the time until the switch per-
forms the first successful k-fuse attempt. Then:

(a) T is NBU;

(b) The mean of T is bounded as

E[T ] ≤
(
k − 1 +

1

k

)
· E[S]

pfuse
.

(c) T ’s tail decays exponentially fast:

Pr(T > t) ≤ exp

(
pfuse −

pfuse · t
(k − 1 + 1/k) · E[S]

)
.

Prop. 5(a) follows directly from Prop. 2(a) (Sec. III).
Prop. 5(b) is a consequence of the expression for the mean
completion time in Prop. 2(b) and the upper bound in
Prop. 2(f), while Prop. 5(c) is an instantiation of the
tail bound of Prop. 2(c) combined with the mean upper
bound of Prop. 5(b).

VI. PROOFS OF MAIN RESULTS

In this section, we prove our main results from Sec. III.
We provide proofs in the following order. First, a proof
of Lemma 2. Then, we will prove Prop. 2. Since Prop. 1
is a special case of Prop. 2, we do not prove it separately.

A. Proof of Lemma 2

Here, we prove the four parts of Lemma 2: (i) that
Tgen, the completion time of heralded entanglement gen-
eration with probability pgen, is stochastically dominated
by T upper

gen = 1 + Texp, where Texp is exponentially dis-
tributed with parameter −1/ log(1− pgen). Next, (ii)
that the mean of T upper

gen equals

1− 1

log(1− pgen)
=

1

pgen
+

1

2
+O(pgen).

Then, (iii) that 0 ≤ E[T upper
gen ] − E[Tgen] ≤ 1

2 and (iv)
that 0 ≤ E[T upper

gen ]/E[Tgen] ≤ 1 + pgen/2. Fifth, (v) that
T upper

gen is NBU.
Regarding (i), we use the definition of the geometric

distribution in eq. (1), from which it follows that the sur-
vival function of Tgen is given by

Pr(Tgen > t) = (1− pgen)
⌊t⌋

for all t ≥ 1, where ⌊t⌋ denotes the floor of t: ⌊t⌋ = t if
t is an integer and it equals the largest integer strictly
smaller than t otherwise. For 0 ≤ t < 1, we have
Pr(Tgen > t) = 1 = Pr

(
T upper

gen > t
)
, so the definition of

stochastic dominance (Def. 2) is trivially satisfied on the
interval t ∈ [0, 1). We therefore only need to consider
t ≥ 1. Using the notation from Lemma 2, we now bound

Pr(Tgen > t) = (1− pgen)
⌊t⌋

≤ (1− pgen)
t−1

= exp [(t− 1) · log(1− pgen)]
∗
= Pr(Texp > t− 1)

= Pr(1 + Texp > t),

where in ∗, we have used the definition of the exponen-
tial distribution from eq. (2). For proving (ii), we recall
that the mean of an exponential distribution with co-
CDF e−λt with parameter λ > 0 is 1/λ, hence the mean
of T upper

gen is

E[T upper
gen ] = E[1 + Texp]

= 1 + E[Texp]

= 1− 1

log(1− pgen)

=
1

pgen
+

1

2
+O(pgen)

where in the last equation, we used the expansion of
1/ log(1 + x) for |x| < 1 by Kowalenko [55]. We show
(iii) by computing the derivative of E[T upper

gen ] − E[Tgen]
as function of pgen, which equals

−1

(1− pgen) log
2(1− pgen)

+
1

p2gen
. (13)
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It is not hard to see that eq. (13) is upper bounded by
0 for all pgen ∈ (0, 1): we start with the well-established
inequality[56]

log(x) ≥ x− 1√
x

for 0 < x ≤ 1, which after the substitution x → 1− pgen
becomes

log(1− pgen) ≥
−pgen√
1− pgen

. (14)

Since both sides of eq. (14) are negative and the squaring
function x 7→ x2 is monotonically decreasing for x ≤ 0,
squaring both sides requires the inequality sign to flip,

log2(1− pgen) ≤
p2gen

1− pgen

and hence (1− pgen) log
2(1− pgen) ≤ p2gen, implying that

the derivative in eq. (13) is upper bounded by 0 for all
pgen ∈ (0, 1). Therefore, E[T upper

gen ]−E[Tgen] is monoton-
ically decreasing in that regime and achieves its optima
at pgen ↓ 0 and pgen ↑ 1, which are 1

2 and 0, respectively,
yielding precisely the bound in (iii). For showing (iv), di-
vide each side of 0 ≤ E[T upper

gen ]−E[Tgen] ≤ 1
2 by E[Tgen]

to obtain

0 ≤
E[T upper

gen ]

E[Tgen]
− 1 ≤ 1

2E[Tgen]
=

pgen
2

from which (iv) directly follows. For proving (v), that
T upper

gen = 1+Texp is an NBU random variable, we consider
two cases with respect to the definition of NBU (Def. 1):

• both x < 1 and y < 1. Then

Pr(1 + Texp > x) = Pr(1 + Texp > y) = 1

so the definition of NBU trivially holds by the fact
that Pr(1 + Texp > x+ y) cannot exceed 1;

• at least one of x or y is 1 or larger. Assume with-
out loss of generality that y ≥ 1. Then note that
Pr(1 + Texp > x+ y) equals

Pr(Texp > x+ (y − 1))

≤ Pr(Texp > x) Pr(Texp > y − 1)

= Pr(Texp > x) Pr(1 + Texp > y)

where the inequality holds by the fact that Texp is
itself NBU (see Example 2). The proof finishes by
noting that 1 + Texp stochastically dominates Texp,
i.e. Pr(1 + Texp > y) ≥ Pr(Texp > y).

B. Proof of Proposition 2

Now, we prove Prop. 2, which automatically proves
its special case Prop. 1. For our proof, we first give a
formal definition of Toutput, following Brand et al. [20].
The restart-until-success acts on n quantum states,
which first need to have been delivered. Thus, we define

a fresh random variable to refer to the time until the last
of n quantum states has been delivered:

M := max(T1, . . . , Tn).

The restarts of the restart-until-success protocol, ac-
cording to a constant success probability p, result in the
fact that Toutput can be written as a geometric sum of
copies of M :

Toutput =

K∑
k=1

M (k) (15)

where M (k) is an i.i.d. copy of M and K is a geometrically
distributed random variable with parameter p:

Pr(K = k) = p(1− p)k−1. (16)

Eq. (15) reflects the fact that the
restart-until-success protocol needs to perform
K attempts at success, each of which takes time given by
a fresh instance of M (for a more thorough explanation,
see [20]).

Now we will prove each of the statements (a-f) from
Prop. 2. For statement (a), we need to show that Toutput
is NBU. This follows directly from the following two facts:

(i) NBU-ness is preserved under the maximum: if
T1, . . . , Tn are NBU random variables, then so is
M ;

(ii) NBU-ness is preserved under the geometric sum:
if M is an NBU random variables, then so is
Toutput =

∑K
k=1 M

(k).

We prove item (i) in Appendix A, while item (ii) was
proven by Brown, see Sec. 3.2 in [57] 1.

For proving statement (b), E[Toutput] = m/p with
m = E[M ], we apply a well-known fact of randomized
sums called Wald’s Lemma [58] to eq. (15), which results
in

E[Toutput] = E[M ] · E[K]

and hence E[Toutput] = m · 1
p .

Statement (c) describes a two-sided bound on the co-
CDF of Toutput:

exp

(
−p · t
m

· 1

1− p

)
≤ Pr(Toutput > t) ≤ exp

(
p− p · t

m

)
.

These bounds follow from the following lemma from
Brown, see eq.3.2.4 in [57]:

Lemma 3. [57] Let X be a real-valued random variable
with Pr(X < 0) = 0. Define the geometric compound sum

1 Let us clarify here that the work by Brown proves that the NBU
property is preserved under the geometric sum if K is distributed
according to eq. (16). However, the same paper also proves that
if K is shifted by 1, i.e. Pr(K = k) = p(1 − p)k, then the geo-
metric sum is always NWU, irrespective of the summand random
variable. However, we will not use the latter case here.
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of i.i.d. copies of X as Y :=
∑K

k=1 X
(k), where K fol-

lows the geometric distribution with success probability p

(eq. (16)). Moreover, define Y0 :=
∑K0

k=1 X
(k), where

K0 = K − 1. Then

Pr(Y > t) ≤ exp(p) exp (−t/E[Y ])

while

Pr(Y > t) ≥ exp (−t/E[Y0]) .

Now interpret Y → Toutput and X → M in Lemma 3.
The upper bound in statement (c) follows directly from
Lemma 3 by the use of statement (b), which says that
E[Toutput] = m/p, while for the lower bound in statement
(c) we use

E[Y0] = E[K0] · E[X]

= E[K0] · E[M ]

=

(
1

p
− 1

)
·m

= (1− p) · m
p
.

Next, (d) states that Toutput/E[Toutput] approaches
the exponential distribution with mean 1. For proving
this statement, we substitute t → t · E[Toutput] = tm/p in
statement (c). The result is a bound on

Pr(Toutput > t · E[Toutput]) = Pr(Toutput/E[Toutput] > t)

given by

exp

(
−t · 1

1− p

)
≤ Pr(Toutput/E[Toutput] > t) ≤ exp (p− t) .

Letting p → 0, the bounds on both sides coincide, and
thus

lim
p→0

Pr(Toutput/E[Toutput] > t) = exp (−t)

which is precisely the co-CDF of the exponential distri-
bution with parameter 1.

For showing the upper bound in statement (e),

m ≤
n∑

j=1

E[Tj ]

we use the fact that for all j = 1, . . . , n, it holds that
Tj ≥ 0. The maximum of of nonnegative numbers is
upper bounded by its sum, and thus

m = E[max(T1, . . . , Tn)]

=
∑

t1,...,tn

Pr(T1 = t1, . . . , Tn = tn)max(t1, . . . , tn)

≤
∑

t1,...,tn

Pr(T1 = t1, . . . , Tn = tn) (t1 + · · ·+ tn)

∗
=

n∑
j=1

∑
tj

Pr(Tj = tj)tj

= E

 n∑
j=1

Tj



where for ∗ we made use of the fact that all Tj are in-
dependent. The proof for the lower bound in statement
(e), max1≤j≤n E[Tj ] ≤ m, is similar and relies on the
fact that max(t1, . . . , tn) ≥ tj for all 1 ≤ j ≤ n, where
t1, . . . , tn are nonnegative numbers. Last, (f) states that
if all Tj are identically distributed with mean E[T ], then

1 ≤ m

E[T ]
≤ n− 1 +

1

n

where we recall that m = E[max(T1, . . . , Tn)]. For prov-
ing this statement, we need the following lemma from Hu
and Lin [59, Lemma 2.2.].

Lemma 4. [59] If X1, . . . , Xn are independent
and identically distributed copies of an NBU
random variable X on the domain [0,∞), then
E[min(X1, . . . , Xn)] ≥ E[X]/n.

Proof. The proof is based on two facts. First, note that

Pr(min(X1, . . . , Xn) > x) =

n∏
j=1

Pr(Xj > x) = Pr(X > x)
n
.

Second, note that if X is NBU, then by repeated appli-
cation of the definition of NBU (Def. 1), we find that

Pr

X >

n∑
j=1

xj

 ≤
n∏

j=1

Pr(X > xj)

for any nonnegative numbers xj , 1 ≤ j ≤ n. When choos-
ing all xj identical, say, to some constant nonnegative
number x, this reduces to

Pr(X > nx) ≤ Pr(X > x)
n
.

Using these two facts, we can now prove the lemma:

E[min(X1, . . . , Xn)] =

∫ ∞

0

Pr(X > x)
n
dx

≥
∫ ∞

0

Pr(X > nx)dx

=

∫ ∞

0

Pr(X/n > x)dx

= E[X/n]

= E[X]/n

where we have used the fact that for any real-valued ran-
dom variable X with Pr(X < 0) = 0, the mean can be
computed as E[X] =

∫∞
0

Pr(X > x)dx.

Statement (f) is proven by noting that for nonnegative
numbers t1, . . . , tn, it holds that tj ≥ min(t1, . . . , tn) for
all j = 1, . . . , n, and therefore

t1 + . . . tn ≥ max(t1, . . . , tn) + (n− 1) ·min(t1, . . . , tn).

Translating this to the Tj yields

E

 n∑
j=1

Tj

 ≥ (n− 1) · E[min(T1, . . . , Tn]

+E[max(T1, . . . , Tn)]. (17)
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The left hand side of eq. (17) equals n · E[T ] by the
fact that the Tj are i.i.d., while the right hand side is
lower bounded by (n− 1)/n · E[T ] + E[max(T1, . . . , Tn)]
by Lemma 4. Reshuffling yields

E[max(T1, . . . , Tn) ≤ n · E[T ]− n− 1

n
E[T ]

=

(
n− 1 +

1

n

)
E[T ].

which is what we set out to prove.

VII. DISCUSSION

The distribution of remote entanglement is a key el-
ement of many quantum network applications. In this
work, we provided analytical bounds on both the mean
and quantiles of entanglement delivery times for a large
class of protocols. We applied these results to a nested
quantum repeater chain scheme and to a quantum switch,
and obtained bounds which are tighter than present in the
literature.

In particular, we considered a frequently-used approx-
imation to the mean entanglement-delivery time in the
nested repeater chain scheme, known as the 3-over-2 for-
mula. This approximation is derived by assuming that
the delivery time follows an exponential distribution at
each nesting level. It was not known in general how good
this approximation is. Moreover, finding the exact mean
delivery time has been an open problem for more than
ten years [25]. We made a large step towards solving this
question by showing that the co-CDF of the delivery time,
i.e. the probability that entanglement is delivered after
time t, is lower bounded by the co-CDF of an exponen-
tial distribution, and upper bounded by the co-CDF of
an exponential distribution multiplied by a factor which
is independent of t. In the limit of small success probabil-

ities of the repeater’s components, the bounds coincide.
Second, we show that the 3-over-2 formula is, in essence,
an upper bound to the mean delivery time, rendering old
analyses building upon this approximation pessimistic.

Regarding future work, note that in many quantum
internet scenarios, already-produced entanglement waits
for the generation of other entanglement and in the mean-
time suffers from memory noise. We leave for future work
converting our bounds on the delivery time to bounds on
the amount of memory noise, and thus on the quality of
the produced state.

In this work we only focused on the first remote en-
tanglement that is delivered. Some protocols, however,
might deliver entanglement while still holding residual
entanglement, for example at lower levels in case of the
nested repeater chain. In such a case, it is not optimal to
restart the protocol for producing a second entangled pair
of qubits, since that would require discarding the resid-
ual entanglement. Hence, another possibility for future
work would be to extend our results to protocols which
produce multiple entangled pairs without discarding ex-
isting entanglement in between.

Our bounds are partially based on a novel connec-
tion with reliability theory. We expect that reliability-
theoretic tools will be useful in solving other open prob-
lems in quantum networks too.
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Appendix A: Proof that the NBU property is preserved under the maximum

Here, we prove that the NBU property is preserved under the maximum of independent random variables.

Lemma 5. Suppose X1, . . . , Xn are independent random variables (not necessarily identically distributed). If all Xj

are NBU random variables, then so is max(X1, . . . , Xn).

We first prove the special case for n = 2, from which the statement for general n follows.

Lemma 6. Let A and B be independent nonnegative real-valued random variables (not necessarily identically dis-
tributed). If both are NBU, then so is max(A,B).

Proof. Let us denote az := Pr(A > z) and bz := Pr(B > z) for z ≥ 0. Assume that A and B possess the NBU property
(Def. 1), so that

ax+y ≤ axay and bx+y ≤ bxby for all x, y ≥ 0. (A1)

We also write mz := Pr(max(A,B) ≥ z) and compute

mz = Pr(max(A,B) > z)

= 1− Pr(max(A,B) ≤ z)

= 1− Pr(A ≤ z) Pr(B ≤ z)

= 1− (1− az)(1− bz) (A2)
= az + bz − azbz

= az + bz(1− az). (A3)
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We will prove that max(A,B) is NBU, which in our notation becomes mx+y ≤ mxmy for all x, y ≥ 0. To begin, we
write out the expressions for both sides, i.e. for mx+y and for mxmy. First, using eq. (A2), we write out

mx+y = 1− (1− ax+y)(1− bx+y). (A4)

Since mx+y from eq. (A4) is monotonically increasing in ax+y and moreover ax+y ≤ axay (eq. (A1)), we obtain

mx+y ≤ 1− (1− axay)(1− bx+y). (A5)

We use the same insight again, but now for bx+y: the right-hand side of eq. (A5) is monotonically increasing in bx+y,
which combined with the fact that bx+y ≤ bxby (eq. (A1)) yields

mx+y ≤ 1− (1− axay)(1− bxby) = axay + bxby(1− axay). (A6)

Next, by eq. (A3) we have

mxmy = (ax + bx(1− ax)) · (ay + by(1− ay))

= axay + axby(1− ay) + aybx(1− ax) + bxby(1− ax)(1− ay). (A7)

In order to prove that mx+y ≤ mxmy we consider three cases.

• Case bx = 0. In this case eq. (A6) reduces to mx+y ≤ axay and eq. (A7) becomes

mxmy = axay + axby(1− ay). (A8)

Since ax, ay, bx and by are all cumulative probabilities, they take values in the interval [0, 1], and therefore the
second term of eq. (A8) is nonnegative, which yields mxmy ≥ axay ≥ mx+y.

• Case by = 0. By the fact that both the right hand side of eq. (A6) as well as the expression for mxmy (eq. (A7))
are invariant under exchanging bx and by, this case is proven identically to the first case.

• Case bx ̸= 0 and by ̸= 0. Using eq. (A6) and eq. (A7), we expand

mx+y −mxmy

bxby
=

axay
bxby

+
bxby
bxby

(1− axay)−
axay
bxby

− axby
bxby

(1− ay)−
aybx
bxby

(1− ax)−
bxby
bxby

(1− ax) · (1− ay)

= 1− axay −
ax
bx

(1− ay)−
ay
by

(1− ax)− (1− ax) · (1− ay)

Using the fact that bx, by ≤ 1, we obtain

mx+y −mxmy

bxby
≤ 1− axay − ax (1− ay)− ay (1− ax)− (1− ax) · (1− ay) = 0.

Since bx and by are positive numbers, it follows that mx+y −mxmy ≤ 0. This concludes our proof.

Let us now show how Lemma 5 follows from Lemma 6. Let X1, . . . , Xn be n NBU independent random variables,
for n ≥ 2. We use induction on n. The case n = 2 is proven in Lemma 6. Now suppose Lemma 5 holds for n = m
for some m ≥ 2. We show that Lemma 6 also holds for n = m + 1. For this, choose A = max(X1, . . . , Xm) and
B = Xm+1. By assumption, B is NBU, and so is A by the induction hypothesis. Note that

max (X1, . . . , Xm, Xm+1) = max (max (X1, . . . , Xm) , Xm+1)

= max (A,B) ,

so it follows from Lemma 6 that max(X1, . . . , Xm+1) is also NBU, which concludes the proof of Lemma 5.

Appendix B: Proof of the lower bounds in Proposition 3

Here, we prove the two lower bounds in Prop. 3: first, Prop. 3(b), followed by the lower bound on the quantiles
from Prop. 3(c).

Throughout the appendix, we will use the notation X(1), X(2), . . . to denote independent and identically distributed
copies of a random variable X. Before proving the bounds on the mean and tail of Tn, let us formally define it.
Regarding the base case n = 0, which describes elementary-link generation between adjacent nodes, we use either
of two flavors: we either set T0 = Tgen, i.e. T0 follows the geometric distribution with parameter pgen, or we set
T0 = T approx

gen , i.e. T0 follows the exponential distribution with parameter pgen. For each statement about Tn in this
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appendix, either the statement will hold for both flavors, or it will be clear from the context which of the two flavors
is used. Regardless of the choice for n = 0, we define Tn for n > 0 as

Tn+1 =

K∑
k=1

M (k)
n (B1)

where K is geometrically distributed with parameter pswap and Mn is defined as

Mn = max(T (1)
n , T (2)

n ). (B2)

Eq. (B1) was given in [20] and can be found by applying eq. (15) to each nesting level of the repeater protocol, where
M = Mn in eq. (15) describes the time until the last of two links, each spanning 2n repeater segments, has been
delivered.

1. Proof of Proposition 3(b)

Here, we will prove the lower bound on the mean completion time Tn of the nested repeater protocol on n nesting
levels. Informally stated, the insight is that

max

K(1)∑
k=1

X(k),

K(2)∑
k=1

X(k)

 ≥st

max(K(1),K(2))∑
k=1

X(k) (informal)

i.e. considering sums with independent and identically distributed summands, the maximum of two sums stochastically
dominates the “longest” of the two. Since the definition of Mn in eq. (B2) contains the maximum of two such sums,
we use this idea to define a new random variable Rn as the “longest” of the two sums; by the insight above, Rn is
stochastically dominated by Mn. Using Lemma 1, this stochastic domination can be converted to E[Mn] ≥ E[Rn],
after which the bound on the mean of Tn as described in Prop. 3(b) follows by noting that E[Tn] = E[Mn]/pswap.

We now give the formal proof, which we divide into three steps. First, we define Rn and compute its mean. Next,
we show that Mn ≥st Rn for all n > 0, from which we infer a lower bound on the mean of Tn as third step.

For the first step, we define Rn:

R0 = max(T
(1)
0 , T

(2)
0 ),

Rn+1 =

N∑
j=1

R(j)
n for n ≥ 0.

Here, N = max
(
K(1),K(2)

)
where K(1) and K(2) are both geometrically distributed with parameter pswap. We

emphasize that contrary to Tn, the random variable Rn does not correspond to the completion time of a protocol.
The mean of Rn is computed using the following two lemmas.

Lemma 7. Let X(1) and X(2) be independent and identically distributed random variables with mean 1/p for some
0 < p ≤ 1. If both X(1) and X(2) follow a geometric distribution, then

E[max(X(1), X(2))] =
3− 2p

p(2− p)

while if they follow an exponential distribution, then

E[max(X(1), X(2))] =
3

2p
.

Proof. We start with the case that X follows a geometric distribution. Note that min(X(1), X(2)) is geometrically
distributed with parameter 1− (1− p)2:

Pr
(
min(X(1), X(2)) > t

)
= Pr

(
X(1) > t

)
Pr
(
X(2) > t

)
= (1− p)t · (1− p)t = (1− p)2t =

[
1−

(
1− (1− p)2

)]t
for t = 0, 1, 2, . . . . Combined with the fact that E[max(X(1), X(2))] = E[X(1) +X(2) −min(X(1), X(2))] = E[X(1)] +
E[X(2)]− E[min(X(1), X(2))], we obtain

E[max(X(1), X(2))] =
1

p
+

1

p
− 1

1− (1− p)2
=

3− 2p

p(2− p)

The case of the exponential distribution is analogous, with min(X(1), X(2)) following the exponential distribution with
parameter 2p.
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Lemma 8. The mean of Rn is

E[Rn] =

(
3− 2pswap

pswap(2− pswap)

)n

· ν0 (B3)

where ν0 is defined as follows. If T0, which describes elementary-link generation between adjacent nodes, follows the
geometric distribution with parameter pgen, then

ν0 = E[R0] = E[max(T
(1)
0 , T

(2)
0 )] =

3− 2pgen
pgen(2− pgen)

(B4)

while if T0 follows the exponential distribution with parameter pgen, then

ν0 = E[R0] = E[max(T
(1)
0 , T

(2)
0 )] =

3

2pgen
. (B5)

Proof. We use induction on n. The case n = 0 is treated in Lemma 7 where we set p = pgen. For the induction case,
we note that

E[Rn+1] = E

 N∑
j=1

R(j)
n

 = E[N ] · E[Rn]

by Wald’s Lemma [58]. Since N = max(K(1),K(2)) and K is geometrically distributed with parameter pswap, we again
invoke Lemma 7 to obtain

E[N ] = E[max(K(1),K(2))] =
3− 2pswap

pswap(2− pswap)
.

This finishes the proof.

As second step, we will show that Mn stochastically dominates Rn, for which we need the following two auxiliary
lemmas and corollary.

Lemma 9. Let P and Q be independent real-valued random variables, and P ′ and Q′ i.i.d. copies of P and Q
respectively. Then P ≥st Q implies max(P, P ′) ≥st max(Q,Q′).

Proof. By definition of P ≥st Q, we have, for all real numbers z, that Pr(P > z) ≥ Pr(Q > z) and therefore
Pr(P ≤ z) ≤ Pr(Q ≤ z). Consequently,

Pr(max(P, P ′) > z) = 1− Pr(max(P, P ′) ≤ z) = 1− Pr(P ≤ z)
2 ≥ 1− Pr(Q ≤ z)

2
= Pr(max(Q,Q′) > z)

for all real numbers z, so max(P, P ′) ≥st max(Q,Q′).

Lemma 10. Let P and Q be independent, real-valued random variables with identical domain. Then max(P,Q) ≥st Q.

Proof. For any real number z, we have

Pr(max(P,Q) > z) = 1− Pr(max(P,Q) ≤ z) = 1− Pr(P ≤ z) Pr(Q ≤ z)
∗
≥ 1− Pr(Q ≤ z) = Pr(Q > z)

where the inequality * holds because Pr(P < z) ≤ 1.

Corollary 1. Let A(1), A(2), A(3) and A(4) be independent and identically distributed random variables with domain
{1, 2, 3, . . . }. Furthermore, let X,Y and Z be independent and identically distributed random variables with domain
[0,∞). Then

max

A(1)∑
a=1

X(a),

A(2)∑
b=1

Y (b)

 ≥st

max(A(3),A(4))∑
a=1

Z(a). (B6)

Proof. We note that random sums occur on both sides of eq. (B6), that is, sums whose number of terms is a random
variable. We expand both sides of the inequality from the lemma as a weighted sum over instantiations of this random
variable. For the left-hand-side, we obtain

Pr

max

A(1)∑
a=1

X(a),

A(2)∑
b=1

Y (b)

 > y

 =

∞∑
i=1

∞∑
j=1

Pr
(
A(1) = i

)
· Pr
(
A(2) = j

)
· Cy

ij
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for y ≥ 0, where we have defined

Cy
ij := Pr

(
max

(
i∑

a=1

X(a),

j∑
b=1

Y (b)

)
> y

)

and for the right-hand-side we get

Pr

max(A(3),A(4))∑
a=1

Z(a) > y

 =

∞∑
i=1

∞∑
j=1

Pr
(
A(3) = i

)
· Pr
(
A(4) = j

)
·Dy

ij

with

Dy
ij := Pr

max(i,j)∑
a=1

Z(a) > y

.

Given fixed i and j, we define random variables P and Q as follows:

• if max(i, j) = i > j, then define P =
∑j

b=1 Y
(b) and Q =

∑i
a=1 X

(a);

• if max(i, j) = j, then define P =
∑i

a=1 X
(a) and Q =

∑j
b=1 Y

(b);

In both cases, application of Lemma 10 that max(P,Q) ≥st Q yields Cy
ij ≥ Pr

(∑max(i,j)
a=1 Y (a) > y

)
. Since Y and Z

are i.i.d., we obtain Cy
ij ≥ Dy

ij for all y ≥ 0 and for all i, j. This concludes the proof.

Now we have the tools to show that Mn stochastically dominates Rn, as described in the following lemma.

Lemma 11. For all n ≥ 0, we have

Mn ≥st Rn

where Mn = max(T
(1)
n , T

(2)
n ) as defined in eq. (B2).

Proof. We use induction on n. The base case n = 0 is an equality by definition of R0. Now assume the statement
from the lemma holds for n = m. We will show it also holds for n = m+ 1. First, we expand the definition of Tm+1:

Tm+1 =

K∑
k=1

max(T (1)
m , T (2)

m )

Now apply the induction hypothesis:

Tm+1 ≥st

K∑
k=1

R(k)
m .

Using Lemma 9 we obtain

max(T
(1)
m+1, T

(2)
m+1) ≥st max

K(1)∑
j=1

R(i)
m ,

K(2)∑
j=1

R(j)
m

 .

Applying Corollary 1 to the previous equation yields

max(T
(1)
m+1, T

(2)
m+1) ≥st

max(K(1),K(2))∑
k=1

R(k)
m .

The left-hand side of the previous equation equals Mm+1 by definition, while its right-hand side is Rm+1, again by
definition. This concludes the proof.

The third step is to derive the lower bound on the mean delivery time from Prop. 3. This follows directly from
Lemma 11, as expressed in the following corollary.
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Corollary 2. (Lower bound from Prop. 3) For n > 0, it holds that

E[Tn] ≥
1

pswap
·
(

3− 2pswap

pswap(2− pswap)

)n−1

· ν0

where ν0 is given in eq. (B4) or eq. (B5), depending on whether elementary-link generation is modelled following a
geometric or exponential distribution, respectively.

Proof. By Wald’s Lemma [58], it follows from the definition of Tn for n > 0 that E[Tn] = E[K] · E[Mn−1] =
1

pswap
· E[Mn−1]. A lower bound on E[Mn] follows from Lemma 1 and Lemma 11, resulting into

E[Tn] =
1

pswap
· E[Mn−1] ≥

1

pswap
· E[Rn−1].

The proof finishes by substituting E[Rn−1] by the right-hand side of eq. (B3).

2. Proof of lower bound in Proposition 3(b)

Here, we provide the expression for mlower in Prop. 3(c), which is a lower bound to the mean of the delivery time
after both input links are ready, but before the entanglement swap. Formally, mlower is a lower bound to the mean of
Mn−1 from eq. (B2). Such a bound follows directly from Lemma 11 by the fact that X ≥st Y implies E[X] ≥ E[Y ]
(see Lemma 1):

mlower = E [Rn−1]

and E[Rn−1] is given in eq. (B3).
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