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Pharmacogenomics (PGx) relates to the study of genetic factors determining variabil-

ity in drug response. Implementing PGx testing in paediatric patients can enhance

drug safety, helping to improve drug efficacy or reduce the risk of toxicity. Despite

its clinical relevance, the implementation of PGx testing in paediatric practice to date

has been variable and limited.

As with most paediatric pharmacological studies, there are well-recognised barriers

to obtaining high-quality PGx evidence, particularly when patient numbers may be

small, and off-label or unlicensed prescribing remains widespread. Furthermore, trials

enrolling small numbers of children can rarely, in isolation, provide sufficient PGx evi-

dence to change clinical practice, so extrapolation from larger PGx studies in adult

patients, where scientifically sound, is essential.

This review paper discusses the relevance of PGx to paediatrics and considers imple-

mentation strategies from a child health perspective. Examples are provided from

Canada, the Netherlands and the UK, with consideration of the different healthcare

systems and their distinct approaches to implementation, followed by future recom-

mendations based on these cumulative experiences.

Improving the evidence base demonstrating the clinical utility and cost-effectiveness

of paediatric PGx testing will be critical to drive implementation forwards. Interna-

tional, interdisciplinary collaborations will enhance paediatric data collation, interpre-

tation and evidence curation, while also supporting dedicated paediatric PGx

educational initiatives. PGx consortia and paediatric clinical research networks will

continue to play a central role in the streamlined development of effective PGx

implementation strategies to help optimise paediatric pharmacotherapy.
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1 | PHARMACOGENOMICS: AN
INTRODUCTION

Pharmacogenomics (PGx) relates to the study of genetic factors deter-

mining variability in drug response, in terms of both efficacy and toxic-

ity.1 It has long been known that individuals respond differently to

medicines and, over the last two decades, numerous peer-reviewed

publications have promised imminent benefits of precision medicine,

with many highlighting pharmacogenomic strategies as a core compo-

nent of this long awaited revolution in healthcare.2 There is extensive

literature dedicated to the clinical utility of PGx, which is largely

focused on adult patients,3–5 on whom the majority of PGx research

is based. The challenges to implementation of pharmacogenomic test-

ing within routine healthcare are well described.6–9 The importance of

PGx has been recognised by the drug regulatory agencies, with the

European Medicines Agency (EMA) describing PGx as an “integral part
of the development and post-authorization (marketing) phase for a

number of medicines, with significant impact on the management of

their benefits and risks in clinical use”.10–12 However, the perceived

relevance and familiarity of PGx to healthcare professionals working

in paediatrics remain limited in most settings,13 and the implementa-

tion of pharmacogenomic testing in paediatrics is also limited.14

This review paper discusses the relevance of PGx to paediatrics

and considers the pros and cons of different implementation strate-

gies from a child health perspective. Examples are provided from

Canada, the Netherlands, and the UK, with consideration of the dis-

tinct healthcare systems, different approaches to implementation and

its coordination at a national level, followed by future recommenda-

tions based on these experiences to date.

1.1 | Pharmacogenomic testing: An overview

The aim of a pharmacogenomic test is to improve either the safety or

effectiveness of a pharmacological therapy, or both. This is achieved

by using a patient's pharmacogenetic data (i.e., the elements of their

genetic information that are of relevance to drug therapy) to inform

prescription decision making.15 To be deemed relevant to clinical

practice, the genetic information obtained from a PGx test must be a

robust predictor of drug response;1 however, the degree of the genet-

ically determined variability in drug response can vary considerably

(ranging from 20–95% depending on the drug concerned16). In com-

plex disease genetics (e.g., hypertension, type 2 diabetes, schizophre-

nia), there are multiple genes of interest, each producing small

individual effects. However, exposure of the body to medication is a

new event, in evolutionary terms, and there is evidence that genetic

variants affecting medicines have, overall, larger effect sizes aiding

their potential clinical utility.17

A PGx test result may detect a genetic predisposition to an

adverse drug reaction (ADR), or differentiate between drug

responders and drug non-responders, or it may indicate that a differ-

ent dose of the drug—or in some cases a different class of drug

altogether—is required (Table 1).1 Actionable PGx results are those

that would alter the choices made by the prescriber, and that would

significantly alter the balance of benefit to harm for the individual

patient.22 In many adult PGx panel-based studies, actionable PGx vari-

ants have been identified in more than 90% of patients.23,24

Evidence-based classifications of actionability of drug/gene pairs are

available from PGx practice guidelines consortia, which are discussed

further below.

PGx testing can be either reactive or pre-emptive. Reactive test-

ing occurs at (or close to) the point of prescription of a drug paired

with a known pharmacogene (i.e., the gene of relevance to the clini-

cal pharmacology of that particular compound). This process requires

a prompt turnaround time to ensure the result is available in time to

inform the relevant prescription.19 In contrast, pre-emptive testing

involves prospective PGx testing, before prescription of the relevant

drug(s) is required. Here, results must be accessible within the elec-

tronic health record (EHR), and future prescribers need to be aware

of the existence of actionable PGx results, and know what action to

take.19 In addition, when utilising an EHR, clinical decision support

(CDS) systems are often also used. At least 20 different

pharmacogenomic CDS systems have been, or are being, developed,

TABLE 1 Examples of PGx stratification of patient groups that are
clinically relevant to paediatrics18

PGx patient

group Clinically relevant examples

Responders Ivacaftor therapy for cystic fibrosis patients with

specified CFTR mutations: G551D, G1244E,

G1349D, G178R, G551S, S1251N, S1255P,

S549N or S549R

Non-

responders

CYP2D6 poor metabolisers: Limited conversion of

codeine to morphine: Recommend prescription

of alternative analgesic instead

Differential

responders

CYP2C19 polymorphisms affect voriconazole

pharmacokinetics: Genotype-guided dosing can

help to optimise paediatric voriconazole

therapy19

CYP2D6 ultra-rapid metabolisers have increased

conversion of codeine to morphine, and this PGx

variability is an important factor contributing to

the EMA decision to make codeine use

contraindicated in children under 12 years old20

At risk of

severe ADR

TPMT genetic polymorphisms resulting in TPMT

deficiency can predispose to potentially fatal

myelotoxicity with thiopurine therapy (e.g.,

6-MP; discussed further in text below)

HLA-B*5701 allele predisposes to abacavir

hypersensitivity: As the reaction is severe, the

drug is contraindicated.

HLA-B*15:02 allele predisposes to carbamazepine

induced Stevens–Johnson syndrome (SJS) and toxic

epidermal necrolysis (TEN), in patients from

Southeast Asian countries21

Abbreviations: CFTR, cystic fibrosis transmembrane conductance

regulator; EMA, European Medicines Agency; TPMT, thiopurine

S-methyltransferase; 6-MP, 6-mercaptopurine.
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with the majority embedded within EHR systems.20 An ideal CDS

will inform the clinician of the clinically relevant PGx finding before

they prescribe, including drug–drug interactions, while at the same

time being sophisticated enough to work with dose range checking

processes (as PG may require dose alteration to achieve clinical effi-

cacy, while avoiding alert fatigue in the users). Some evaluation of

CDS for pharmacogenomics has been presented, but more will be

required.20

The approaches for PGx testing can include targeted genotyping

technologies, which may focus on a single pharmacogene (if reactive

testing is chosen) or a number of pharmacogenes within a PGx

panel,21 or may employ next generation sequencing techniques

(e.g., whole exome or whole genome sequencing), which can be used

with virtual (bioinformatics-based) PGx panels,18,25–29 although the

latter is largely restricted to research contexts at present.

1.2 | PGx practice guidelines consortia

The gap in the use of research discoveries to guide clinical practice—

the so-called “Valley of Death”—is well known. To address this, and

aid the dissemination of PGx data and implementation into clinical

practice, a number of PGx consortia have evolved. These include

CPIC, The Pharmacogenomics Knowledge Base (PharmGKB), the

Canadian Pharmacogenomics Network for Drug Safety (CPNDS) and

the Dutch Pharmacogenetics Working Group.30–33 Consortia mem-

bers include representatives from many different disciplines, including

physicians, pharmacists and clinical scientists, with relevant expertise

in clinical pharmacology and therapeutics (CPT), genetics and numer-

ous relevant subspecialty areas. These consortia disseminate

evidence-based, peer-reviewed, updated and curated PGx practice

guidelines, which consider all aspects of PGx including variation in risk

according to ethnicity. Clear, well-referenced knowledge summaries

are also published, for example those dedicated to so-called Very

Important Pharmacogenes (VIPgenes: defined as genes with well-

documented information regarding the relationship with a drug's phar-

macokinetics/pharmacodynamics [PKPD]).33 Notably, these consortia

also provide information about when a PGx test should not be used to

guide prescribing (denoted, for example, by CPIC assigning act-

ionability levels C and D, which signifies that a specified gene/drug

pair is not actionable).31 There are methodological differences in the

evidence appraisal approaches used by different consortia, which war-

rant more detailed consideration when they lead to differing recom-

mendations regarding the actionability of PGx variants encountered in

clinical practice.34

2 | THE RATIONALE FOR IMPLEMENTING
PGX TESTING IN CHILDREN

While the rationale underlying PGx testing is largely equivalent for

adults and children, the relevant principles are summarised here from

the paediatric perspective. An actionable PGx result reported in a

child should change the choices made by a paediatrician (or a physi-

cian looking after the same patient in future during adulthood) if pre-

scribing the relevant drug(s). Therefore, PGx information needs to be

available and interpretable according to updated evidence-based pae-

diatric PGx recommendations. While it is true that PGx will not be

directly relevant for every child, nor will it be relevant for every pre-

scription. This does not mean, however, that appropriate PGx testing

should not be available as part of routine care for those children for

whom it is relevant. It also should not matter if the prescribing clini-

cian is the one who ordered the test, or is even located in the same

institution, as these data should be shared to all prescribers to avoid

unnecessary repetition of tests (which entails potential harms for the

child and additional financial costs). Currently, the limited availability

of PGx testing and clear paediatric PGx guidelines presents a major

obstacle, in addition to the need for enhanced PGx evidence in

children.

To overcome this, scaling up of new, validated testing strategies

for routine implementation within healthcare systems is required, but

can present numerous challenges. Traditionally, paediatric pharmacol-

ogy research studies and implementation strategies to update drug

labelling and evidence-based guidelines have often faced long delays

in comparison to the equivalent timelines in adult medicine.35 Typi-

cally, this delay arises due to various factors, including practical, ethi-

cal and financial barriers to research in children, many of which are

now largely historical, thanks to coordinated global efforts to improve

the pace of paediatric medicines research.36

The majority of prescriptions for children are prescribed in the

community,37 with medicines most commonly prescribed by a GP or

Community Paediatrician. In contrast, the focus of interest for PGx, at

least at first, is likely to be in prescriptions issued for medicines with

narrow therapeutic ranges, variable efficacy, dose limiting toxicity,

relatively frequent PGx-related ADRs, or intensive monitoring require-

ments. Therefore, the majority of paediatric prescriptions for which

PGx is relevant will, at least initially, be in hospitals. In keeping

with this, selected PGx testing is already routinely available in

certain specialist settings, such as in paediatric haemato-oncology

where thiopurine S-methyltransferase (TPMT) testing is routine

(or mandatory) for patients due to receive 6-mercaptopurine ther-

apy.38 Relevant stakeholders from both primary and secondary care

settings need to be prospectively involved in implementation plan-

ning, as discussed further below.

With the mainstreaming of genomic medicine rapidly changing

the healthcare landscape,39 increasing numbers of children and new-

borns are undergoing whole genome sequencing (WGS).40 In particu-

lar, the role of diagnostic WGS (or WES [whole exome sequencing])

in paediatric and neonatal intensive care settings is growing,41,42 and

in addition, pre-existing WES/WGS data can be re-analysed to inves-

tigate PGx variants.43 There have also been recent discussions about

whether WGS may be introduced as part of routine newborn screen-

ing.44,45 Since PGx testing can either be pre-emptively integrated into

WGS for diagnostic reasons—or introduced as a separate “routine”
(or reactive) test in its own right (e.g., when WGS is not available/

required)—the concepts behind the development of a PGx
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“passport”46 with a lifelong PGx record47 have become a reality that

urgently needs further exploration within paediatric healthcare policy

and practice. With appropriate data retention policies, WGS could

represent the once in a lifetime test after which it would be possible

to routinely access the PGx data at any point in a child's lifetime

when they need a relevant drug prescribing. Such an approach would

require the development of robust standard operating procedures

(SOPs) that incorporate prospectively planned periodic data re-

analysis to identify PGx variants which have since become clinically

actionable (following new research findings), as this information

would need to be updated in individuals' PGx records in a timely

fashion.

Beyond the adoption of widespread genomic testing into

healthcare services, there are other ways in which PGx testing for

children is likely to emerge. Home PGx testing is already available to

(adult) patients themselves via direct-to-consumer (DTC) routes48,49

(although not all DTC results are consistent with regulatory guide-

lines). The utility of these services in children is not clear and it is likely

that their availability (and related legislation) will vary in different juris-

dictions, but it will be important to recognise that parents may seek to

use them for their children.

2.1 | Assessing PGx evidence

Expert PGx consortia have researched and summarised much of the

PGx evidence that is available to date,50,51 considering data from

the numerous previous randomised controlled trials (RCTs) in (mainly

adult) patients that have demonstrated the clinical utility of PGx

testing. As implementation initiatives progress, it will be important

to synthesise and analyse the cumulative evidence from PGx studies

involving children, which will require consideration of both the quan-

tity and quality of evidence available. Requiring separate paediatric

(or adult) RCTs to establish the clinical relevance of every single PGx

gene/drug pair would prove impractical and unethical, as well as

being unnecessary.52 It also ignores the potential benefits of using

either PGx panel or approaches based on next generation sequenc-

ing (NGS). It would be logical to approach PGx information (using

data from either drug development or post-marketing studies) on

the basis of sound pharmacological principles, to include appropriate

prescribing actions according to specified PGx results, in the same

way that drug dose recommendations are often adjusted for patients

with renal or hepatic dysfunction, where necessary, without separate

trials in these special populations.52 Aronson et al. recently

highlighted the inadequate appreciation and utilisation of mechanis-

tic evidence in drug approval processes (where mechanistic evidence

refers to evidence of different types, e.g. in vivo, ex vivo, in vitro,

clinical, observational or simulation studies, that supports the exis-

tence or details of a particular pharmacological mechanism), in asso-

ciation with an overemphatic focus on the results of clinical studies/

trials53; within a pharmacogenomic context, there is a risk that this

same phenomenon exacerbates the ongoing delays in PGx

implementation.54

2.2 | The need for separate paediatric PGx
evidence

When reflecting on the need for more paediatric data in order to

implement evidence-based PGx testing in children, it is important to

consider two fundamental questions: firstly, is separate paediatric

PGx evidence always needed? Secondly, if separate paediatric PGx

studies are not always essential, when is it appropriate to extrapolate

adult pharmacogenomic data to adolescents, children or even infants?

In the field of paediatric clinical pharmacology, the traditional mantra

had always been that ‘children are not small adults’,55 although it has

been increasingly recognised that, in terms of pharmacokinetics, it can

be argued that “children are small adults, neonates are immature chil-

dren”.56 For those drugs where there is an actionable pharmacogene,

this will typically be because of the pharmacogenetic effect on either

the PK or PD of the drug in question.

Given that most PGx data have been generated in adult

populations,14,57 it therefore needs to be established, to what extent

(if any) adult PGx data can safely be extrapolated to the paediatric

population for each relevant drug/gene pair and the related prescribing

indication(s). Several factors must be considered to determine the

appropriateness of extrapolation, including the natural history of the

disease progression and response to the proposed therapeutic

intervention, the likely (or known) exposure–response profile, and the

applicability of adult PD measures to children.58,59 The EMA has

acknowledged in its reflection paper on paediatric extrapolation that

“gaps in knowledge of intrinsic factors related to organ maturation and

ontogeny of enzymatic and transport functions or pharmacogenetics

[…], particularly in the youngest age groups of the paediatric population

are sources of uncertainties and can affect the reliability in the

predictions”.60 It will be essential for researchers to further characterise

the role of ontogeny in relation to developmental PGx, particularly with

respect to the age-related changes in expression of drug-metabolising

enzymes (DME) and transporters, exploring how these dynamic

processes influence the clinical relevance of known pharmacogenes

from birth to adulthood.61,62 This research will be especially important

in the youngest age groups (i.e., patients under 2 years of age) where

pharmacological variability—particularly that derived from DME

ontogeny—is most pronounced, and also in those settings where the

indication for a particular drug is unique to paediatrics.

Evidence should also be sought to validate known PGx associa-

tions in children57 and, where possible, to demonstrate the conditions

determining suitability of extrapolation using different PGx datasets

including data from both adults and children. Given the paediatric PGx

data that exist and the implementation programmes that have already

evolved, it would be valuable to reach consensus regarding the

acceptability of adopting (or adapting) paediatric PGx guidelines from

other countries or institutions, when there are examples already dem-

onstrating the effectiveness and utility of PGx testing in children.63

Progress will improve when there is consensus regarding the defini-

tion of the threshold of PGx evidence needed for implementation.64

This process would benefit from involvement of international special-

ist paediatric, clinical genetics and pharmacological societies,
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developing collaborative guidelines together with associated educa-

tional materials and mutual endorsement, in order to help accelerate

implementation processes, as has previously been achieved in other

clinical areas.65–69 Ethically, it is important to avoid unnecessary dupli-

cation of paediatric PGx research whenever possible70; it is therefore

essential to synthesise existing evidence from PGx research and

implementation, so that the lessons learned can enable adoption else-

where to be streamlined and accelerated.

3 | IMPLEMENTING PGX TESTING IN
PAEDIATRICS: STRATEGIES AND
CHALLENGES

The translation of scientific knowledge into healthcare policy and

practice is a complex process,71 but strategic change is now supported

by the ever-growing field of implementation science.72 When plan-

ning paediatric PGx policy, healthcare leaders, managers and PGx

experts must consider the issues described above in addition to

viewpoints of different stakeholders, expected benefits, unintended

consequences and cost. Examples of key issues that need addressing

are briefly summarised in Table 2. Rather than describing different

implementation strategies and challenges conceptually,73 specific

examples are given below based on the paediatric PGx implementa-

tion experiences and future plans from three countries.

3.1 | Implementation experience to date and
lessons learned

The next section summarises relevant examples of PGx implementa-

tion from different countries, with reference to the structure of the

healthcare system where relevant, and the key lessons learned.

3.1.1 | Canada

Direct provision of healthcare in Canada is a provincial responsibility,

with federal oversight of national issues such as drug and device

TABLE 2 Logistics of implementing PGx testing in paediatrics

Issue Challenge Potential solution

Indication for PGx testing Clinicians and pharmacists may feel

uncertain when testing is required

Clear paediatric PGx guidelines with

integration into electronic prescribing

systems and protocols, with PGx

champions in each clinical area

Reporting Insufficient standardisation of PGx reports

will impede interpretation and use of

results

Standardised PGx report format, with

educational modules to support

prescribers, and local PGx web portal and

helpline for queries

PGx result transfer Inadequate mechanisms for data transfer/

retention between different healthcare IT

systems

Unified or interoperable EHRs between

primary and secondary care and

pharmacists in which PGx data is stored

life long

Data retention PGx results may get lost and the

information will not be retained in the

patient's lifelong EHR

Use of PGx cards or PGx QR codes linked

to smartphone app (compatible with

national health systems) and IT to enable

linkage to local/centralised lifelong EHR

Data curation Research updating PGx knowledge will not

be checked against historical PGx results

PGx data repositories will allow original

data to be revisited and reports updated

periodically

Accountability Prescribers including physicians,

pharmacists, nurse prescribers, may not

know how to use PGx information and it

will be wasted

Proactive multidisciplinary education with

CDS tools embedded in e-prescribing

software alerting prescribers to

actionable PGx variants

Coding PGx testing and results are not linked to

appropriate standardised clinical coding

terms

Coding dictionaries need to be updated in

discussion with PGx experts

Cost It is unclear who should pay for PGx testing Cost allocations need predefining during

implementation planning

Cascade testing There are ethical issues surrounding the

implications for family members once

actionable PGx results are known

Guidelines and SOPs should clarify when

testing of a patient's relatives is

recommended and how this will be

communicated to relevant parties

Abbreviations: PGx, pharmacogenomics; EHR, electronic health record; QR, quick response; CDS, clinical decision support; SOP, standard operating

procedure.
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approval. Thus, it could be said that Canada has 14 healthcare sys-

tems, and consequently implementation of PGx strategies varies

between provinces, with some provinces being much more active in

this space than others, with the partial exception of diseases treated

by national networks, for example children with cancer who are

treated pursuant to national guidelines. It should be noted that, even

with these guidelines in place and despite TPMT genotyping being

considered a standard of care, availability still varies between prov-

inces. As in many places, the initial push for pharmacogenetic testing

came from academic researchers, who in the case of Canada have sig-

nificant federal grant support.

Pharmacogenetic testing in broader clinical practice began based

on discovery, replication and validation work completed by the Cana-

dian Pharmacogenomics Network for Drug Safety (CPNDS) and with

other research groups. Clinicians wanted to know why specific genes

were being tested from the range of genetic variants reported in the

literature. Development of peer-reviewed, multidisciplinary pharma-

cogenetic clinical practice guidelines based on systematic reviews and

AGREE II74 were developed for cisplatin75 and anthracyclines,76 and

published thiopurine guidelines were used.77,78 For the cisplatin and

anthracycline guidelines, key questions to be answered were: (1) Who

should be tested? (2) Which variants should be tested for? and

(3) What therapeutic recommendations should be made if variants are

found?

The CPNDS began the implementation of pharmacogenetic test-

ing into clinical practice in 2012, focusing specifically on the imple-

mentation of tests in paediatric oncology at ten paediatric oncology

centres in seven of the ten provinces in Canada. TPMT variants

strongly associated with hearing loss secondary to cisplatin therapy

(rs1142345, rs1800460, rs1800462, rs56161402, rs6921269)79,80

UGT1A6, SLC28A3 and RARG variants strongly associated with

anthracycline-induced cardiotoxicity (rs17863783, rs7853758 and

rs2229774)81–83 and TPMT and NUDT15 variants for thiopurine-

induced myelosuppression (rs1142345, rs1800460, rs1800462,

rs56161402, rs6921269, rs116855232, rs147390019,

rs186364861).77,78 Currently, 827 pharmacogenetic tests have been

ordered and results returned in paediatric oncology across Canada.

CPNDS also established a research programme to understand

how best to return pharmacogenetic results for robust markers associ-

ated with drug outcomes within the three most commonly used clas-

ses of drugs: analgesics, antibiotics and psychotropic drugs.

Robustness was defined as: information on pharmacogenetic variants

included in the drug label by a regulator (e.g., Health Canada, the US

Food and Drug Administration, European Medicines Agency); or publi-

shed, peer-reviewed pharmacogenetic clinical practice guidelines from

an established expert group (CPIC, DPWG or CPNDS); or variants

with drug outcome associations with odds ratio ≥ 3 in at least three

independent populations (see Table 3). To date, 222 pharmacogenetic

tests have been ordered and results returned for these three classes

of drugs in three provinces (British Columbia, Ontario, Quebec). Like

in other countries such as the US, commercial pharmacogenetic panels

are available and accessed throughout Canada by some patients.

Some private insurers are paying for pharmacogenetic testing in spe-

cific instances.

TABLE 3 CPNDS PGx testing panel for antibiotics, analgesics and mental health drugs

Drugs Adverse drug reactions Genes Rationale

ANTIBIOTICS PGx PANEL

Aminoglycosides Hearing loss, deafness MT-RNR1

Dapsone/sulfonamides Haemolytic anaemia G6PD

Rifampin/isoniazid/pyrazinamide Serious liver injury NAT2

ANALGESICS PGx PANEL

Codeine CNS depression, therapeutic failure, death CYP2D6

Hydrocodone CYP2D6

Oxycodone CNS depression, death CYP2D6

Tramadol CYP2D6

MENTAL HEALTH PGx PANEL

Mood disorders

Carbamazepine Severe cutaneous reactions HLA-B, HLA-A

Phenytoin HLA-B, CYP2C9

ADHD

Atomoxetine Therapeutic failure CYP2D6

Antidepressants

SSRIs (e.g., paroxetine) Therapeutic failure CYP2D6, CYP2C19

SNRIs (e.g., venlafaxine) CYP2D6

Abbreviations: PGx, pharmacogenomics; SNRI, serotonin-norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitors.
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3.1.2 | The Netherlands

A landmark event in the clinical implementation of pharmacogenetics

in the Netherlands was made in 2005 when the Royal Dutch

Pharmacist Association (KNMP) founded the Dutch Pharmacogenetics

Working Group.32 This multidisciplinary working group consisting of

physicians and pharmacists writes pharmacogenetic guidelines based

on systematic literature reviews of drug/gene pairs. To date, more

than 100 different drug/gene pairs have been assessed and guidelines

are available for 47 drugs. Recently, the DPWG guidelines were

endorsed by the European Association of Clinical Pharmacology and

Therapeutics84 and the European Association of Hospital

Pharmacists.85

Originally DPWG recommendations focused on patients with a

known genotype. However, DPWG has also started to recommend

testing, since the creation of the Clinical Implication Score, a system

that identifies the drugs for which specific PGx testing is needed

prior to prescribing.86 The score is assigned to all actionable drug/

gene pairs and has three categories for testing: “potentially
beneficial,” “beneficial,” and “essential”. Currently the score “essen-
tial” is assigned to 14 drug/gene combinations comprising 11 drugs

including clopidogrel (CYP2C19), azathioprine/6-MP (TPMT) and

capecitabine/5-FU (DPYD). The utility of DPYD in paediatrics is lim-

ited as fluoropyrimidines are only used to treat rarer solid tumours in

this population (e.g., naso-pharyngeal carcinoma). The clinical recom-

mendations of the DPWG are available at point of care through

incorporation in more than 90% of electronic prescribing systems

and pharmacy order entry systems.

The most widely adopted PGx test in the Netherlands is test-

ing for variants in DPYD to prevent fluoropyrimidine toxicity. A

recent evaluation reported that over 85% of patients were tested

prior to start of treatment.87 Other PGx tests that are generally

well accepted include TPMT (mercaptopurine and azathioprine in

paediatrics), CYP2C19 (clopidogrel) and UGT1A1 (irinotecan), but the

level of implementation is highly variable with specialised and aca-

demic centres having the highest adoption rates. PGx testing is

mostly performed by 10–15 laboratories that are part of clinical

chemistry, hospital pharmacy or clinical genetics departments. In

recent years, the number of tests performed in primary care has

expanded and in response the Dutch College of General Practi-

tioners has issued a point of view on pharmacogenetics.88 More

recently also the Dutch Society for Psychiatry has released a PGx

guidance document.89

Most PGx testing in the Netherlands is reactive, i.e. in response

to the prescription of a drug with a potential PGx recommendation.

However, in paediatric clinical genetics WES has become standard

practice and, as mentioned above, this offers the opportunity to

repurpose existing diagnostic WES data for pharmacogenomics to

enable pre-emptive testing. Recently it was shown that meaningful

pharmacogenetic profiles for seven of 11 important pharmacogenes

can be successfully extracted,43 although there were limitations with

this technique, with some variations in established pharmacogenes

(e.g., CYP2C19 and CYP2D6) not identified.

3.1.3 | United Kingdom

Currently paediatric PGx testing in the UK mainly takes place in

specialist contexts or research studies, examples of which are given

below.

In paediatric haemato-oncology, TPMT PGx testing is now rou-

tine for patients due to receive mercaptopurine as part of the che-

motherapy regime for childhood acute lymphoblastic leukaemia

(ALL).38 The implementation of routine testing followed many years

of research,90 which had investigated TPMT genetic polymorphisms

in relation to clinically relevant endpoints, including the prevention

of potentially fatal myelotoxicity associated with TPMT deficiency,

optimal dosing of mercaptopurine,91 ALL clinical outcomes92,93 and

the importance of genotype–phenotype correlation.94 The details of

TPMT pharmacogenomics are reviewed elsewhere77 and the signifi-

cance of standardising nomenclature has been emphasised.95,96

Notably, the infrastructure to conduct this TPMT research effi-

ciently in the UK was in place because of the pre-existing clinical

trials networks for childhood cancers; paediatric oncology has been

recognised internationally as the “subspecialty in which research

defines the standard of care”.97 Testing of NUDT15 is not currently

standard of care in the UK, but testing can be accessed if required.

A pre-existing paediatric clinical research network which fully inte-

grates medical research into routine patient care, with ongoing trials

into which PGx studies can be incorporated, is invaluable.98 Similar

trials networks and collaborative clinical groups will remain

pivotal in facilitating PGx research and also provide a robust infra-

structure within which to disseminate and implement new PGx

recommendations.99–101

Some research studies aim specifically to implement PGx within

defined routine care settings, such as the Pharmacogenetics to Avoid

Loss Of Hearing (PALOH) study.102,103 PALOH is a clinical implemen-

tation study aiming to investigate a new point-of-care (POC) PGx test-

ing device to identify neonates at risk of aminoglycoside-induced

hearing loss (secondary to the genetic variant m.1555A>G).102 This

study is recruiting in Liverpool and Manchester, but the findings will

be of relevance to neonatal units across the country, particularly if

they support the introduction of the new POC PGx test as part of

standard neonatal care. PALOH is funded by the NIHR Invention for

Innovation (i4i) programme, which is focused on early-stage collabora-

tive studies, involving academic, NHS and industry partners, and

deemed to have commercial potential with scope for future imple-

mentation within the NHS.104,105 The study is also supported by the

NIHR Manchester Biomedical Research Centre (BRC)103,106 in part-

nership with a charity107 and a local small–medium enterprise (SME).

The NIHR BRCs all involve collaborative partnerships between

universities and NHS teaching hospitals, with the aim of translating

scientific research into patient benefit.108,109 This example again dem-

onstrates the importance of appropriate research networks with an

adequately resourced infrastructure to support delivery of PGx

studies.

Historically, PGx testing approaches and availability within the

UK were somewhat heterogeneous and non-standardised.110
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However, there have recently been large changes to the Genomic

Medicine infrastructure in the NHS, which will impact upon future

PGx testing implementation. NHS England delivered a report in 2015

describing its focus on “improving outcomes through personalised

medicine”, which included the aim of delivering whole genome

sequencing for specific conditions by 2020.111 To support this aim, a

series of multidisciplinary genomic education initiatives have been

implemented, which are discussed further below. A dedicated PGx

working group has been created composed of national experts aiming

to prioritise actionable gene/drug pairs.112 At the time of writing, the

formal recommendations of this working group are expected to be

published in the near future and, while initial phases are understood

to have focused on implementation of PGx testing in adults, it is

anticipated that consideration of paediatrics will follow soon after-

wards. The infrastructure provided by the NHS Genomic Medicine

Service, underpinned by a coordinated national network of Genomic

Laboratory Hubs and a National Genomic Test Directory, into

which PGx testing can be integrated, has the potential to support

delivery of an efficient, cost-effective national paediatric PGx testing

programme.

4 | RECOMMENDATIONS FOR PGX
IMPLEMENTATION APPROACHES IN
PAEDIATRICS

The adoption of PGx guidelines into normal clinical practice will

require careful orchestration of national, regional and institutional

implementation strategies; these should ideally include CDS tools

fully integrated into the electronic health record (EHR),113 delivered

in parallel with a specialist PGx consulting service. Recommenda-

tions regarding paediatric PGx needs and implementation strategies

do not necessarily need to be segregated from the activities of PGx

consortia dedicated to developing PGx practice guidelines and the

approaches used for adult patients; for example, in the United

States, three children's hospitals were involved from August 2012 in

phase II of the Electronic Medical Records and Genomics (eMERGE)

Network,114,115 which includes extensive PGx implementation

research.116 A review of the integration of PGx into the US system

has also recently been published.117 There are clear advantages of

integrating paediatric PGx implementation into nationwide

approaches, rather than postponing paediatric initiatives until an

unknown future point, in order to avoid children experiencing

unnecessary delays in receiving the benefits of pharmacogenomics

in practice.

It is recommended that paediatric PGx implementation planning

in different nations is informed by the available evidence, experi-

ence and implementation science. Programme delivery should be

continually monitored for clinically relevant outcomes, evaluating

predefined metrics of success and cost-effectiveness. As the costs

of genomic testing have diminished,118 PGx testing has become

more affordable and therefore more accessible. This apparent

affordability does not alone guarantee cost-effectiveness or clinical

utility, and the pharmacoeconomics of proposed paediatric PGx

implementation strategies will need detailed evaluation.119,120

Prompt information sharing, either through peer-reviewed publica-

tions or paediatric PGx networks, will enable the collaborative PGx

community to learn together to build adaptable, responsive imple-

mentation models that can be applied to different healthcare sys-

tems.121,122 Implementation initiatives should consider paediatric

drug utilisation patterns in different countries and how these will

impact upon the practical relevance of PGx recommendations. It

will also be important to continue to share lessons learned about

implementation across borders so that paediatric PGx benefits can

become available globally when resources permit, as previously

advocated by the PharmacoGenetics for Every Nation

Initiative.123,124

Effective implementation will require early input from key stake-

holders, some of whom will vary depending on local and institutional

contexts. Our recommendations for stakeholders to invite to PGx

planning teams are summarised in Table 4. The importance of advo-

cacy for implementation from experts within the relevant specialty

fields needs to be recognised and incorporated into planned educa-

tional strategies, together with identification of PGx champions in

each discipline who can help to support implementation on the front

line. Suggested members for the paediatric PGx multidisciplinary team

are shown in Figure 1.

4.1 | Embedding education in PGx programmes

A critical aspect of implementing and “mainstreaming” paediatric PGx

testing will be ensuring that concise educational material is developed

for all stakeholders in parallel with the implementation plan. Relevant

stakeholders will include practising paediatricians (including hospital

consultants, registrars/residents and community paediatricians), gen-

eral practitioners, hospital/community pharmacists, nurses and PGx

analytical laboratory scientists. Educational programmes need to pro-

vide adequate information about the principles behind the new test-

ing recommendations, indications, cost and, most importantly, the

clinical relevance to patients. Inadequate or ill-timed multiprofessional

education could jeopardise the success of implementation, for exam-

ple through contributing to inappropriate use of PGx testing, lack of

uptake or misinterpretation of results, and therefore a well-planned

education strategy must be embedded within the implementation

plan. The importance of this extends beyond pharmacogenomics

alone, and to improve “genomic medicine preparedness” (in its broad-

est sense) among healthcare professionals, interprofessional, interdis-

ciplinary educational programmes should be developed126 and the

material should concomitantly be adapted for undergraduate students

in each discipline.

Inspiration can be taken from various pre-existing educational

initiatives, including, for example, the Health Education England

(HEE) Genomics Education Programme, which has developed high-

quality educational modules targeted towards professionals and stu-

dents from different disciplines, and these educational programmes
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have been formally recognised as a core component of implementing

Genomic Medicine within the NHS.127 The Ubiquitous

Pharmacogenomic (U-PGx) e-learning platform also provides open

access online learning materials.128 Furthermore, there is a wealth of

educational literature relating to pharmacogenomics programmes in

many different settings,129–134 including undergraduate curricula,135

and it will be important to tailor pre-existing material specifically

towards paediatrics in order to keep it relevant and to make it suit-

able for CPD (continuing professional development) at a postgradu-

ate level.

TABLE 4 Stakeholders to invite in paediatric PGx implementation planning

Group Examples of inclusion or recommended representatives

Physicians

Paediatricians Both subspecialist consultants and general paediatricians should be involved in implementation planning

Clinical geneticists Geneticists and genetic counsellors with PGx expertise125

Clinical pharmacologists Physicians and pharmacists with expertise in paediatric clinical pharmacology and/or PGx

GPs and community

doctors

General GPs and those with a special interest in child health

Pharmacists

Hospital Including representation from specialist hospitals and local hospitals

Community Representatives from general community pharmacies

Academic and laboratory experts

Scientists PGx experts from genomic laboratories and clinical academia

Nurses

Nurse prescribers Advanced nurse practitioners and clinical nurse specialists who prescribe for children in relevant contexts

Other groups

Patients Lay representation on PGx working groups and committees

Funders Include management representation and engage early with commissioners

Trial coordinators Research network leads and trial coordinators can advise on integrating planning PGx studies into existing paediatric

research networks

F IGURE 1 Healthcare professions and other stakeholders who could contribute to a paediatric pharmacogenomics multidisciplinary team
(MDT) meeting
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4.2 | Integrating research with implementation

In addition to education, PGx research needs to be similarly embed-

ded in any paediatric implementation strategy. The evidence based

supporting PGx recommendations will constantly grow and protocols

will, as always, need to be regularly updated. Demands for ever more

research prior to implementation, in order to increase the quantity of

evidence available to inform the implementation process, need to be

weighed against the risks of further delays to implementation and the

right balance must be struck.54 Integrating research into implementa-

tion, for example through prospective ethical approvals for gathering

PGx data into curated repositories, can help to overcome this barrier

and develop a systematic infrastructure for improving the population

PGx evidence base.

5 | THE FUTURE

Continued international collaboration and cooperation will enable the

PGx community to realise the potential of precision medicine to con-

tribute meaningfully to optimal pharmacotherapy for children.136 As

the omics scientific technologies continue to grow, the remit of PGx

will expand to incorporate understanding of new domains such as

pharmacotranscriptomics and metabolomics.137 Updated, curated

data-sharing initiatives underpinned by robust information gover-

nance will prove invaluable in advancing paediatric PGx science. Ulti-

mately, evidence-based PGx in practice will aim to provide clear and

timely PGx results to paediatric prescribers, supported by high quality

genomic education resources, and continually informed by a cycle of

improvement incorporating the latest results of research, audit and

stakeholder feedback. It will also be important to work towards

harmonisation of paediatric recommendations across the PGx consor-

tia and regulatory agencies to help build internationally recognised

PGx standards.34,138

6 | CONCLUSIONS

Children deserve the benefits of genomic medicine including PGx-

informed therapies based on strong evidence coupled with affordable

implementation. It is inevitable that there are many challenges when

introducing new paediatric pharmacogenomic testing strategies into

any complex healthcare system. However, with international collabo-

ration and evidence curation, to synthesise implementation success

stories from different countries, we can avoid unnecessary duplication

of research and develop streamlined approaches to pharmacogenomic

implementation strategies. As the genomic medicine revolution is well

underway, collaborative efforts of the pharmacogenomic community

will continue to bring PGx benefits to the bedside, supported by the

infrastructure of well-funded paediatric research networks. It is essen-

tial that a pro-active dialogue with the paediatric workforce continues

to be nurtured, to ensure children benefit from improved access to

pharmacogenomic testing delivered with a cost-effective, evidence-

based and sustainable strategy.
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