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• Background and Aims While trait-based approaches have provided critical insights into general plant func-
tioning, we lack a comprehensive quantitative view on plant strategies in flooded conditions. Plants adapted to 
flooded conditions have specific traits (e.g. root porosity, low root/shoot ratio and shoot elongation) to cope with 
the environmental stressors including anoxic sediments, and the subsequent presence of phytotoxic compounds. 
In flooded habitats, plants also respond to potential nutrient and light limitations, e.g. through the expression of 
leaf economics traits and size-related traits, respectively. However, we do not know whether and how these trait 
dimensions are connected.
• Methods Based on a trait dataset compiled on 131 plant species from 141 studies in flooded habitats, we quanti-
tatively analysed how flooding-induced traits are positioned in relation to the other two dominant trait dimensions: 
leaf economics traits and size-related traits. We evaluated how these key trait components are expressed along 
wetness gradients, across habitat types and among plant life forms.
• Key Results We found that flooding-induced traits constitute a trait dimension independent from leaf eco-
nomics traits and size-related traits, indicating that there is no generic trade-off associated with flooding adapta-
tions. Moreover, individual flooding-induced traits themselves are to a large extent decoupled from each other. 
These results suggest that adaptation to stressful environments, such as flooding, can be stressor specific without 
generic adverse effects on plant functioning (e.g. causing trade-offs on leaf economics traits).
• Conclusions The trait expression across multiple dimensions promotes plant adaptations and coexistence 
across multifaceted flooded environments. The decoupled trait dimensions, as related to different environmental 
drivers, also explain why ecosystem functioning (including, for example, methane emissions) are species and 
habitat specific. Thus, our results provide a backbone for applying trait-based approaches in wetland ecology by 
considering flooding-induced traits as an independent trait dimension.

Key words: Adaptations to stressful environments, flooding-induced traits, key trait dimensions, leaf economics 
traits, plant strategies and functioning, trait-based approaches.

INTRODUCTION

By definition, flooding encompasses the hydrological con-
ditions of waterlogging, partial or complete submergence 
(Sasidharan et al., 2017). Freshwater flooding induces physical 
stress in plants, but additionally induces anoxic soil conditions. 
The distinct biogeochemical processes and their phytotoxic 
products associated with anaerobic metabolic pathways can 
also have adverse impacts on plant survival in flooded habitats 
(Greenway et  al., 2006; Voesenek et  al., 2006; Pezeshki and 
DeLaune, 2012). In response, some plant species have specific 
traits to cope with flooding-induced conditions, not only via 
facilitating oxygen transport to the anoxic rhizosphere, but also 
via ameliorating the phytotoxic compounds produced during 
and after flooding periods (Armstrong et  al., 1994; Visser 

et al., 2000; Colmer and Voesenek, 2009; Voesenek and Bailey-
Serres, 2013). Under the influence of the gaseous phytohormone 
ethylene, produced shortly after exposure to anoxic conditions, 
fast shoot elongation and adventitious root development are 
stimulated, which are costly for long-term adaptation (Blanch 
et  al., 1999; Voesenek et  al., 2004). These more permanent 
flooding-induced traits, including root porosity, changed root/
shoot ratios and shoot elongation, have been intensively exam-
ined in eco-physiological studies (Voesenek and Bailey-Serres, 
2015; Winkel et al., 2016; Moor et al., 2017). Root porosity 
reflects the proportion of longitudinally interconnected gas-
filled spaces in root tissues enhancing gas diffusion, which im-
proves plants’ performance in flooded conditions (Armstrong, 
1980; Justin and Armstrong, 1987; Colmer, 2003b; Garssen 
et  al., 2015). Amongst others, the root/shoot ratio is shaped 
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by environmental drivers such as light, nutrients and different 
types of ecosystems (Valladares et  al., 2000; Cakmak et  al., 
2007). Plants tolerant to flooding tend to have a reduced root/
shoot ratio to increase oxygen access (have more shoot bio-
mass) and reduce oxygen sinks (have less root biomass) to tol-
erate flooding (Idestam-Almquist and Kautsky, 1995; Lopez 
and Kursar, 2003; Jung et al., 2009). Therefore, the root/shoot 
ratio also reflects the oxygen balance between different plant 
organs in flooding-induced conditions (Mommer et al., 2004; 
van Bodegom et al., 2005; Stromberg and Merritt, 2016). Once 
submerged, shoot elongation is a trait helping flooding-tolerant 
plant shoot tips to quickly reach above the water surface to re-
store contact with the atmosphere (Voesenek et al., 2003; Nagai 
et  al., 2010). While previous studies have assessed flooding-
induced trait expression for a single or few species, the lack 
of integrative analyses forms a major barrier to the application 
of such elaborate observations at a broader scale (Moor et al., 
2017; Pan et al., 2019).

In addition to dealing with flooding-induced stressors, plants 
may have to adapt to habitat resources mainly including nu-
trients and light. The leaf economics spectrum (Wright et al., 
2004) expresses traits [such as specific leaf area (SLA) and 
leaf nitrogen content] that allow us to distinguish plant strat-
egies based on investment and turnover of resources to leaves, 
providing a spectrum from conservative to acquisitive strat-
egies (Reich et  al., 1997; Wright et  al., 2004; Reich, 2014). 
Size-related traits (such as plant height and seed mass) are 
considered as another important but independent trait dimen-
sion expressing responses to competition for light and water 
(Diaz et al., 2016). The quantitative analysis of these two trait 
dimensions helps us to understand the fundamental strategies 
for plant growth, survival and reproduction (e.g. van Bodegom 
et al., 2012). Applications of these two trait dimensions have 
led to increased insights into critical ecosystem processes, such 
as the feedbacks between litter decomposition and fire regimes 
(Cornelissen et  al., 2017). However, the pattern of dominant 
trait dimensions in plants adapted to flooding stress is unknown.

As flooding-induced traits play important but distinct roles 
compared with leaf economics traits and size-related traits in 
plant functioning, understanding whether and how these different 
groups of traits position relative to each other will improve our 
knowledge of plant strategies that cope with flooding stresses, in 
combination with differences in nutrient and light availability. If 
flooding-induced traits are decoupled from leaf economics traits, 
this suggests that flooding-induced traits are cheap to develop 
without trade-offs in nutrient acquisition or allocation (Fig. 1A). 
Plants would therefore not be constrained by habitat fertility when 
responding to flooding stress. On the other hand, if flooding-
induced traits are positively co-ordinated to leaf economics traits, 
it indicates that adaptation to flooding stress facilitates the func-
tioning of the leaf economics spectrum (Fig. 1B). Alternatively, 
if flooding-induced traits and leaf economics traits are negatively 
co-ordinated, it suggests that plants have to sacrifice part of their 
leaf resources as a cost of responding to flooded conditions (Fig. 
1C). If flooding-induced traits are tightly co-ordinated with size-
related traits, it suggests that either larger plants can easily out-
grow the water column and profit more from aerenchyma tissues 
(Fig. 1D) or that plants that are more tolerant to flooding stress 
need less shoot elongation in order to reach out of the water sur-
face for light and gases (Fig. 1E).

So far, some arguments are available that support the case 
of decoupled relationships (as shown in Fig. 1A). One line of 
reasoning is that the environmental drivers of the different trait 
groups are different. With nutrient and water availability driving 
leaf economics traits, and light availability steering size-related 
traits (Reich, 2014; Diaz et al., 2016), while water regimes and 
the subsequent oxygen availability modify flooding-induced 
traits (Colmer and Voesenek, 2009), we expect to see each trait 
group varying independently in response to its specific drivers. 
The second line of reasoning is that flooded habitats across the 
globe cover a wide fertility range (e.g. from oligotrophic bogs 
to eutrophic floodplains), which suggests a prevalence of trait 
decoupling: if there were to be significant trade-offs between 
flooding-induced traits and leaf economics traits, we should 
find plants to be constrained only to fertile flooded habitats in 
order to acquire sufficient nutrient resources in compensation 
for the costs on flooding-specific adaptations (Pan et al., 2019). 
Despite these coincidental lines of evidence, a quantification of 
these trait dimensions and the relationships among them cur-
rently does not yet exist.

In this study, we hypothesize that flooding-induced traits are 
decoupled from leaf economics traits and size-related traits, 
and thus constitute a separate trait dimension independent from 
the other dominant trait dimensions (as shown in Fig. 1A). We 
expect such decoupled trait dimension to occur consistently 
across environmental gradients of nutrient and water in the 
various wetland habitat types analysed (i.e. from infertile bog 
to fertile marsh). We also expect to observe the general exist-
ence of the leaf economics spectrum in flood-tolerant species, 
considering the widespread ecological principles for budgeting 
of plant resources in varied ecosystems. In addition, we hy-
pothesize that flooding-induced traits should contribute to plant 
habitat affinities across a wetness gradient.

Leaf economic traits

Flooding-induced traitsA

B
C

D

E

Size-related traits

Fig. 1. Possible positions of flooding-induced traits (dashed lines) relative to 
the leaf economics trait and size-related trait axes (solid lines). If adaptation to 
wetlands does not intrinsically hinder plant functions of resource acquisition or 
allocation, then flooding-induced traits should be decoupled from the leaf eco-
nomics trait axis (A). If adaptation to wetlands facilitates plant functioning in 
terms of nutrient acquisition and allocation, then flooding-induced traits should 
be positively correlated to the leaf economics trait axis (B). If adaptation to wet-
lands is costly and causes trade-offs on leaf nutrient functioning, then flooding-
induced traits should be negatively correlated to the leaf economics trait axis 
(C). If the choices of varied wetland-specific strategies are dependent on the 
plant size, then flooding-induced traits should be correlated to the size-related 

trait axis (D and E).
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To test these hypotheses, we analysed the dominant trait di-
mensions of seven key plant traits that are ecologically important 
and of which quantitative records were available. We used root 
porosity, root/shoot ratio and shoot elongation as representa-
tive of more permanent trait responses to flooding (Colmer and 
Voesenek, 2009; Voesenek and Bailey-Serres, 2015); leaf ni-
trogen (leaf N), leaf phosphorus (leaf P) and SLA to represent 
leaf economics traits (Wright et al., 2004; Pan et al., 2020a); 
and plant height as representative of size-related traits (Diaz 
et al., 2016). Furthermore, we tested individual trait–trait re-
lationships between the seven key plant traits in flood-tolerant 
plants and the role of individual flooding-induced traits in con-
tributing to habitat affinities across a wetness gradient. We 
envisage that this study will inspire research on adaptation to 
environmental stresses in other ecosystems.

MATERIALS AND METHODS

Data compilation

We compiled functional traits on plants recorded in flooded 
habitats, following the definition of the international Ramsar 
Convention (Ramsar Convention Secretariat, 2013) and the ter-
minology guidance on the definition of ‘flooding’ (Sasidharan 
et al., 2017), for both field and laboratory measurements based 
on a combination of expert knowledge of the existing litera-
ture and systematic searches in the Web of Science and Google 
Scholar. The literature search included, but was not limited 
to, the following key words: wetland, marsh, bog, floodplain, 
macrophytes, aquatic plants, hydrophyte, submerged, floating-
leaved, emergent, isoetid, mangrove, root porosity, root/shoot 
ratio, shoot elongation, leaf N, leaf P, SLA, leaf dry matter per 
unit area (LMA) and plant height. We also checked the refer-
ences of several important reviews of eco-physiological traits for 
wetlands and flooding events in the last 15 years (e.g. Voesenek 
et al., 2006; Bailey-Serres and Voesenek, 2008; Voesenek and 
Bailey-Serres, 2015). Moreover, we circulated enquiries around 
our network of wetland/aquatic plant experts for recommenda-
tions for literature that we had possibly overlooked. We used 
The Plant List to eliminate synonyms in species names from 
our database (http://www.theplantlist.org).

Root porosity was quantified mainly as either the percentage 
of the hollow area in the root cross-section or the ratio of hollow 
volume to the whole root volume. These two methods generally 
show agreement in air-filled root porosity (Van Noordwijk and 
Brouwer, 1988). Root/shoot ratio was defined as the root dry 
mass divided by the shoot dry mass. Shoot elongation was cal-
culated as the percentage of the maximum shoot length increase 
after submergence/flooding. We are aware that there are various 
other flooding-induced traits (e.g. radial oxygen loss and leaf 
gas films) that have been emphasized in eco-physiological 
studies. However, they are either qualitative or are represented 
in our database by too few consistently measured observations 
to be included in our statistical analysis.

To evaluate potential drivers of trait–trait relationships, we 
included habitat wetness, habitat type and growth form in our 
analysis.

The Ellenberg moisture indicator values provide insights 
into the extent to which species are known to occur at dif-
ferent extents of habitat wetness (Ellenberg, 1988). These 

indicator values are based on expert knowledge of the gen-
eric distribution of plant species along a gradient of habitat 
wetness, categorized into 12 levels from very dry habitats 
(level 1) to strictly aquatic (level 12). To make the Ellenberg 
moisture indicator applicable for a global analysis, we re-
lated the Ellenberg moisture indicator values to the USDA 
wetland plant classification to derive Ellenberg values for 
the flora of the USA (see details in Supplementary data 
Appendix A).

To obtain more comprehensive insights into the relation-
ships between the traits of the species and the ecological back-
grounds relevant to wetland conditions, we also recorded the 
habitat type for each trait observation according to a modified 
Ramsar classification as presented in Pan et al. (2020b) and we 
added life form to each plant species based on the descriptions 
in the original literature.

For this study, we took species mean trait values to allow 
analysis of trait–trait relationships, as individual studies did 
not provide all traits for the same situation (the distribution 
map of the sampling sites across the globe is shown in Fig. 
2). Our analysis covered a total of 131 species of six life form 
categories (grass, sedge, emergent, submerged, floating-leaved 
and shrub/tree), with 113 species for root porosity, 60 spe-
cies for root/shoot ratio and 32 species for shoot elongation 
(a list of the data sources and plant species can be found in 
Supplementary data Appendix B).

Data analysis

To evaluate how flooding-induced traits relate to the other 
two trait dimensions at the interspecific level, we conducted a 
principal component analysis (PCA) in R (R Core Team, 2018). 
Due to gaps in the dataset, we could not run a PCA on all traits. 
Instead, we ran a PCA on each of the three flooding-induced 
traits separately with all leaf economics and size-related traits. 
Ellenberg moisture indicator values, habitat types and growth 
forms were used to label data points in the PCA to evaluate 
underlying patterns.

Then, we analysed individual trait–trait relationships be-
tween flooding-induced traits, leaf economics and size-
related traits by standardized major axis (SMA) analysis 
(Warton et al., 2006) to estimate how one trait scales against 
another (Warton et al., 2012). The standardized axis slopes 
and coefficients of determination (R2) were calculated using 
the sma() function in the SMATR package (Warton et  al., 
2012) in R (version 3.6.0) software (R Core Team, 2018). 
This analysis provides additional insights into the individual 
co-ordination, and also allows evaluation of the trait–trait re-
lationships among flooding-induced traits and thus whether 
their relationship to leaf economics and size-related traits is 
consistent.

Finally, we ran an ordinary linear regression to examine how 
each flooding-induced trait relates to habitat wetness affinities 
(as represented by Ellenberg moisture indicator values). Data 
of the root/shoot ratio and shoot elongation were log10 trans-
formed before analysis to comply with a normal distribution 
and homogeneity of variance. An alternative analysis, using a 
one-way analysis of variance (ANOVA) on groups of Ellenberg 
moisture indicator values, is presented in Supplementary data 
Appendix C, Table S1, and shows highly similar results.
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RESULTS

The PCA on each of the flooding-induced traits with the other 
two trait dimensions showed largely decoupled patterns. Leaf 
economics traits mainly occupied PCA axis 1, with size-related 
and flooding-induced traits on the other axes. The PCA loading 
scores on the first three PCA axes are shown in Table 1. The 
pattern suggests that adaptation to flooded conditions in general 
does not hinder plant functions in resource acquisition or allo-
cation (the data points labelled with habitat type are provided 

in Supplementary data Appendix C, Fig. S1, and 3-D PCA plots 
can be found in Supplementary data Appendix C, Fig. S2).

Root porosity was to a large extent decoupled from the leaf 
economics trait axis (as represented by leaf N, leaf P and SLA), 
but partly covaries with leaf N. The size-related trait (as repre-
sented by plant height) was positioned on a third trait axis. The 
first two PCA axes accounted for 42.0 and 22.8 % of the total 
variation, respectively (Fig. 3A). Also, the root/shoot ratio was 
to a large extent decoupled from the leaf economics trait axis 
and plant height as a size-related trait. The first two PCA axes 

Table 1. The loading scores of flooding-induced traits, leaf economics traits and size-related traits on the first three principal compo-
nent analysis (PCA) axes

Root porosity    Root/shoot ratio    Shoot elongation    

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

Root porosity  0.40 –0.42 –0.71 Root/shoot ratio  0.03 –0.80 –0.52 Shoot elongation  0.06 –0.87 0.14
Leaf N –0.61 0.14 –0.09 Leaf N  0.58  0.26 –0.28 Leaf N  0.63  0.13 –0.16
Leaf P –0.51 –0.21 –0.52 Leaf P  0.44  0.15 –0.50 Leaf P  0.50 –0.14 –0.67
SLA –0.46 –0.31 0.07 SLA  0.57  0.00 0.35 SLA  0.40  0.38 0.47
Plant height  0.00 0.81 –0.46 Plant height –0.37  0.52 –0.53 Plant height  –0.44  0.24 –0.54
Variation explained(%)  42.0  22.8 15.9 Variation explained (%)  33.4  20.6 19.6 Variation explained (%)  39.2  21.8 17.5

–100 0
Longitude

La
tit

ud
e

100 200

50

0

–50

Fig. 2. The location of the sampling sites. The field measurement data and laboratory measurement data are presented as red and blue dots, respectively. Note that 
the symbols are translucent and that brighter symbols indicate observations/studies at locations in close proximity to one another.
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accounted for 33.3 and 20.6 % of the total variation, respect-
ively (Fig. 3B). A  similar decoupled pattern applies to shoot 
elongation, except for some relationships with SLA. The first 
two PCA axes accounted for 39.2 and 21.8 % of the total vari-
ation, respectively (Fig. 3C). Root porosity tended to be lower 
in shrubs/trees than in grasses and sedges, while neither root/
shoot ratio nor shoot elongation seemed strongly affected by 
life form (Figs. 3D–F) or environmental conditions as summar-
ized by habitat type (Supplementary data Appendix C, Fig. S1).

The trait–trait relationships between flooding-induced traits, 
leaf economics traits and the size-related trait were further 
examined by the SMA analysis. The SMA analysis confirmed 
the largely decoupled nature of the three trait groups. Some 
exceptions included the significant relationships among three 
trait–trait pairs: root porosity–leaf N (R2 = 0.22, P < 0.05), 
root porosity–SLA (R2 = 0.09, P < 0.05) and SLA–plant height 
(R2 = 0.07, P < 0.05) (Table 2). In the case of root porosity–
SLA and SLA–plant height, the explained variance was low.
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Fig. 3. Principal component analysis (PCA) of leaf nitrogen (leaf N), leaf phosphorus (leaf P), specific leaf area (SLA), plant height (Height) and (A, D) root por-
osity (RP), (B, E) root/shoot ratio (RS) and (C, F) shoot elongation (SE). Each point represents one species, which is coloured according to its affinity for habitat 
wetness indicated by its Ellenberg moisture value (A–C) and life form (D–F), respectively. Supplementary data Appendix C, Fig. S1 presents figures with colours 

according to habitat type. 
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The other flooding-induced traits (root/shoot ratio and shoot 
elongation) did not relate significantly to any leaf economics or 
size-related trait.

The SMA analysis confirmed the significant and strong rela-
tionships between the leaf economics traits (leaf N, leaf P and 
SLA) (Table 2). This suggests that the leaf economics spectrum 
is also maintained in flooding-tolerant plants.

In contrast, there was no significant relationship among any 
trait–trait pair of the flooding-induced traits tested (i.e. among 
root porosity, root/shoot ratio and shoot elongation; P > 0.05), 
and the R2 values of effect sizes were only 0.00–0.02 (Table 2).

To understand how an individual flooding-induced trait con-
tributes to the generic habitat affinities for wetness of plant spe-
cies, we further tested the relationships between the Ellenberg 
moisture indicator and individual flooding-induced traits (Fig. 4).  
Among the three flooding-induced traits, root porosity showed a 
significant linear relationship with the Ellenberg moisture indi-
cator with a reasonably high effect size (R2 = 0.30, P < 0.001). 
However, there was no relationship between the Ellenberg 
moisture indicator and root/shoot ratio (R2 = 0.00, P = 0.98), or 
between the Ellenberg moisture indicator and shoot elongation 
(R2 = 0.00, P = 0.53). Hence, among the three flooding-induced 
traits, variation in root porosity significantly contributed to 
habitat affinities of plant species along a wetness gradient. Even 
though the root/shoot ratio and shoot elongation are considered 
important flooding-induced traits, they were not directly related 
to the distribution of plants along a wetness gradient.

DISCUSSION

Flooding-induced traits as a key strategy component in flooding-
tolerant plant species

Our research reveals that the three important flooding-induced 
traits are in independent trait dimensions decoupled from 
the leaf economics and size-related trait dimensions (Fig. 3). 
Moreover, similar to the pattern in terrestrial systems (Diaz 
et  al., 2016), we found that leaf economics traits and size-
related traits also remain largely decoupled from each other in 
flooded ecosystems. This pattern suggests that in addition to 
other dominant trait dimensions, flooding-induced traits play an 
important but different ecological role in adaptation to flooded 
conditions. As leaf economics traits are indicative of habitat 
fertility and corresponding nutrient resources, and size-related 
traits confer a competitive power for light (and water), flooding-
induced traits mainly contribute to coping with flooded envir-
onments. Concurrently, this decoupling of flooding-induced 
traits from leaf economics traits may suggest that adaptations to 
flooded conditions are either inexpensive, or sufficiently bene-
ficial to offset the costs of such adaptations on the plant overall 
resource budget. For example, the extra access to light, CO2 
and O2 gained by shoot elongation may compensate the costs 
thereof (Colmer and Voesenek, 2009). The generally decoupled 
relationships between flooding-induced traits and leaf eco-
nomics traits provide an explanation for the broad distribution 
of aquatic plants (Santamaría, 2002; Chambers et  al., 2008) 
as they allow plant species to occur across a range of flooding 
stressors and habitat nutrient limitations (e.g. from oligotrophic 
bogs to eutrophic floodplains). Moreover, considering the tight 
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associations between leaf economics traits and the whole-plant 
economics spectra including root and stem traits (Freschet 
et al., 2010), we speculate that flooding-induced traits may also 
be decoupled from these whole-plant traits if such spectra also 
exist in flooding-tolerant plants. Together, these results indicate 
that the flooding-tolerant strategies are a key dimension inde-
pendent of other plant strategy components.

In nature, multiple environmental stressors, including 
drought, heat, freezing, shading, infertility and soil salinity, im-
pose pronounced challenges to the adaptation and survival of 
plants (Bohnert et al., 1995; Wolfe and Tonsor, 2014). While 
various adaptive mechanisms have been carefully examined 
from genetic, to morphological, to community points of view 
(Wolfe and Tonsor, 2014; Bechtold, 2018; Liu et al., 2018), an 
integral perspective on a plant’s strategies as a whole is missing. 
From a trait-based perspective, the decoupled flooding-tolerant 
strategy in relation to other plant strategy components may 
have implications for traits specific to other stressful ecosys-
tems, such as waxy leaves in deserts or dauciform roots under 
extreme phosphate deficiencies (e.g. Bakker et  al., 2005), as 
our research provides evidence that certain adaptive strategies 
to stressful habitats can be cheap without causing any trade-
offs in plant general functioning. We hypothesize that such de-
coupled trait dimensions allow plants to adapt to multifarious 
niche dimensions and facilitate species coexistence in stressful 
habitats (Westoby et al., 2002; Li et al., 2015).

Diverse plant strategies enable adaptations to a multifaceted 
stressful environment

Despite their similar functional roles in adapting to flooded 
conditions, the inter-relationships within the three flooding-
induced traits were all non-significant and weak (Table 2, 
P > 0.05 with R2 ranges from 0.00 to 0.02). Moreover, while 
root porosity significantly contributes to the preference of plant 
species along a wetness gradient, root/shoot ratio and shoot 
elongation are not directly linked to the Ellenberg moisture in-
dicator, life form or habitat type (Figs 3 and 4; Supplementary 
data Appendix C, Fig. S1). We provide three non-mutually ex-
clusive explanations for the lack of correspondence between the 
root/shoot ratio and shoot elongation vs. habitat wetness: (1) 
the root/shoot ratio is known to be influenced by other stressors 
as well, such as light, nutrient and different types of ecosystems 
(Jackson et al., 1996; Valladares et al., 2000; Cakmak et al., 
2007); (2) all investigated traits are plastic, and mean species 
responses may not fully capture species responses to flooding-
induced conditions; and (3) other (potentially less permanent) 
flooding-induced traits may be more strongly related to habitat 
wetness (but not yet available in global databases). However, 
even though flooding-induced traits are not all tightly aligned 
along a wetness gradient, these traits may still contribute in con-
junction or accumulatively to adapting to the different stresses 
in a flooded environment.
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Fig. 4. The linear relationships between habitat wetness affinities (represented by Ellenberg moisture indicator) and the three flooding-induced traits. For root 
porosity (R2 = 0.30, P < 0.001, n = 113), root/shoot ratio (R2 = 0.00, P = 0.98, n = 60) and shoot elongation (R2 = 0.00, P = 0.53, n = 32). The root/shoot ratio and 

shoot elongation are log-transformed before analysis to comply with a normal distribution and homogeneity of variance.
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While mostly decoupled, some links were observed between 
flooding-induced traits and specific leaf economics traits. For 
example, we detected a trade-off between root porosity and 
leaf N at the interspecific level (R2 = 0.22, P < 0.01; Table 2). 
The ecological causal links between root porosity and leaf N 
are complicated, and experimental evidence has often been 
contradictory. On the one hand, the formation of root porosity 
impedes the nutrient acquisition efficiency and will lead to 
trade-offs (Kirk, 2003; Hu et al., 2014). On the other hand, the 
production of large numbers of laterals in response to flooded 
conditions may increase the root surface area for nutrient acqui-
sition (Lissner et al., 2003), which cause an indirect correlation 
between root porosity and leaf N.  In addition, increased root 
porosity may enhance oxygen released from the root to oxidize 
NH4

+ to NO3
–. The produced nitrate is the main source of stable 

and storable N for plants (Kirk, 2003), and consequently im-
proves leaf N levels. The balance between these pros and cons 
may differ depending on habitat, with different implications 
for the investment in root porosity formation and leaf N acqui-
sition. Considering the even stronger correlations among leaf 
economics traits, i.e. leaf N–SLA (R2 = 0.28, P < 0.01) and leaf 
N–leaf P (R2 = 0.25, P < 0.01), and the extremely weak cor-
relations of root porosity–leaf P (R2 = 0.02, P > 0.05) and root 
porosity–plant height (R2 = 0.00, P > 0.05), the trade-off be-
tween root porosity and leaf N does not fundamentally change 
our interpretation that root porosity is in a trait dimension de-
coupled from leaf economics traits (Fig. 3).

We also observed two significant but weak relationships 
between SLA and other trait groups, i.e. SLA–root porosity 
(R2 = 0.09, P < 0.01; Table 2) and SLA–plant height (R2 = 0.07, 
P < 0.01; Table 2). Even though the effect sizes are small (9 and 
7 %, respectively), this highlights SLA as a trait inter-related 
with all three trait dimensions simultaneously. Previous studies 
indicate that the relationships between SLA and plant flooding 
tolerance can be either positive or negative depending on life 
form, season and community-weighted SLA (Huber et al., 2009; 
Violle et al., 2011; Douma et al., 2012; Wright et al., 2017). Even 
so, amphibious/aquatic plants in general have a higher SLA than 
terrestrial plants (Mommer and Visser, 2005; Pierce et al., 2012; 
Purcell et  al., 2019). However, the relatively low effect size 
of the three trait–trait pairs does not fundamentally impair the 
overall decoupled pattern of the three trait dimensions.

In combination, the specific connections between different 
trait dimensions indicate that the adaptations to flooded con-
ditions involve rather complex and multifarious strategies as 
expressed in different plant trait dimensions. Multiple trait 
dimensions contribute to ramified but accumulative functions 
to prosper in a flooded environment. We propose dedicated 
multitrait experiments to further examine these trait–trait rela-
tionships. Moreover, we advocate global initiatives to acquire 
a more comprehensive understanding of wetland/freshwater 
plant traits to investigate the complex processes of how envir-
onmental variables regulate plant trait expression under flooded 
conditions (Iversen et al., 2021).

Implications for ecosystem functioning

Clarifying the relationships between wetland-specific traits 
and leaf economics traits is also important for upscaling plant 

functional traits to wetland ecosystem processes, such as me-
thane emissions (Pan et  al., 2019). For instance, the trans-
port of oxygen to the rhizosphere by root porosity (Colmer, 
2003a; Lai et  al., 2011) can suppress methane production 
processes that require strictly anoxic conditions. In contrast, 
leaf N and leaf P are indicative of organic matter quality to 
support decomposition processes (Hobbie, 2015) and may 
hence stimulate methane production by supplying nutrients 
to methane-producing archaea (van Bodegom and Scholten, 
2001; Bhullar et al., 2013a). In addition, methane emissions 
may be further enhanced by the ‘chimney effect’ of wetland 
plants in facilitating methane transport to the atmosphere 
through formation of root and stem porosity (Bhullar et al., 
2013a). These complex and contrasting driving factors make 
it difficult to quantitatively understand the facilitation vs. 
suppression effects of wetland plants on methane emissions 
(Bhullar et al., 2013a). The decoupled relationships between 
leaf economics traits and wetland-specific traits found in this 
study further add to the variation in the impacts of wetland 
plants on methane emissions. Our results thus highlight that 
both flooding-induced traits and other key traits need to be 
considered to adequately predict methane emissions (Sutton-
Grier and Megonigal, 2011; Bhullar et al., 2013b).

CONCLUSIONS

Our results reveal that flooding-induced traits are largely de-
coupled from leaf economics and size-related trait dimensions, 
which suggests that flooding-induced traits constitute a dif-
ferent plant trait dimension. This trait decoupling allows plant 
species to cope with the multifaceted stressful flooded envir-
onment (in terms of flooding, resources and competition). Our 
study indicates that no integral general strategy exists that per-
fectly explains the adaptation of plants to complex flooded en-
vironments. Instead, the multiple facets of flood tolerance plant 
strategies, as shown by the combination of functional traits 
including flooding-induced traits, leaf economics traits and 
size-related traits, together contribute to the survival of plants in 
complex flooded environments and help them prosper globally 
across a wide range of habitat fertilities. These insights pro-
vide a trait-based foundation towards understanding the general 
flood tolerance plant strategies and the functioning of flooded 
ecosystems, as well as adaptations to habitat stress in different 
ecosystems.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Appendix A: 
deriving Ellenberg moisture indicator values for plant species 
in the analysis. Appendix B: a list of plant species name and 
traits analysed in this study. Appendix C: principal component 
analysis (PCA) of leading trait dimension and ANOVA.
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