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Abstract 

Affective states are expressed in an individual’s physical appearance, ranging from facial expressions 

and body postures, to indicators of physiological arousal (e.g. a blush). Confirming the claimed 

communicative function of these markers, humans are capable of distinguishing between a variety of 

discrete emotion displays. In an attempt to explain the underlying mechanism, characteristic bodily 

changes within the observer including physiological arousal and mimicry have been suggested to 

facilitate the interpretation of an expression. The current study aims to create a holistic picture of 

emotion perception by (1) using three different sources of emotional information (prototypical facial 

expressions, bodily expressions and subtle facial cues) and (2) measuring changes in multiple 

physiological signals (facial electromyography, skin conductance level, skin temperature and pupil 

size). While participants clearly discriminated between perceived emotional expressions in their 

interpretations, a robust physiological signature across response modalities was not found. From an 

evolutionary perspective, this absence could be explained by the lacking functionality of affect sharing 

in a non-interactive experimental context. Consequentially, emotional alignment in body and mind 

might only take place in real social situations, which should be considered in future research. 
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1. Introduction 

Humans are highly responsive to others’ displays of emotions. While these can differ in form, 

content and context, they share the potential to resonate in the observer’s body: For example, one’s 

heart starts beating faster when seeing a person blush during a talk, one’s eyes get wet when watching 

a grieving person in the movies and even a smiling face in an ad can make the observer mirror the 

expression. From a functional perspective, physiological changes in the context of emotion perception 

have been suggested to assist the identification of the observed person’s affective state (Niedenthal, 

2007; Prochazkova & Kret, 2017). In the current study, we aim to shed light on the perception of 

discrete emotional expressions, emotion cues, and their corresponding physiological dynamics. 

Non-verbal communication of emotion to conspecifics is a shared mechanism among social 

animals to sustain life in groups (Kim et al., in press; Kret et al., 2020). Communicating emotional 

states can have direct survival benefits: For example, signalling disgust when faced with rotten food or 

displaying fear when a predator is approaching can inform conspecifics to adjust their behaviour 

(Curtis et al., 2011; Marsh et al., 2005; Seidel et al., 2010). In the long run, understanding and 

responding to emotions of group members can strengthen social bonds (Fischer & Manstead, 2016; 

Keltner & Haidt, 1999; Palagi et al., 2020). While leading research on emotion displays in humans has 

focused on prototypical facial expressions (Ekman et al., 1980; Ekman, 1992, 1993), the repertoire of 

nonverbal emotion signals is a lot broader in real life: Not only the face but the entire body is critically 

involved in communicating affect, via posture, movements, or gestures (Dael et al., 2012; de Gelder, 

2009; Witkower & Tracy, 2019). On top of that, changes in physiological arousal can be reflected on 

an individual’s face such as a blush or dilated pupils. These ‘emotional byproducts’ can provide 

additional cues to the observer (Kret, 2015; Levenson, 2003; Shariff & Tracy, 2011). To date, we are 

still limited in our knowledge about how different types of expressions are processed and perceived 

(e.g. Crivelli et al., 2016; Kret & Straffon, 2018).  

Concertedly with central nervous system processes, physiological responses, i.e. (de-

)activations of the peripheral nervous system, accompany and might even inform the emotional 

experience elicited in observers. For example, changes in facial muscle activity associated with 

distinct affective states (Brown & Schwartz, 1980; Ekman & Rosenberg, 2005) have frequently been 

described during viewing of images with prototypical emotional facial expressions (e.g. Bornemann et 

al., 2012; Rymarczyk et al., 2011; Varcin et al., 2019). Further, increases in sympathetic arousal as 

indexed by changes in electrodermal activity (e.g. Banks et al., 2012; Tsunoda et al., 2008; Vrana & 

Gross, 2004) or pupil dilation (Burley et al., 2017; Jessen et al., 2016; Kret, Stekelenburg, et al., 2013) 

have been observed when participants were presented to different prototypical facial emotion displays. 

In contrast to specific facial muscle activations, however, changes in these markers of sympathetic 

activity were suggested to arise from perceiving highly emotionally arousing stimuli in general, 

independent of the affective content (Bradley et al., 2008; Bradley et al., 2017). Activation of the 
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parasympathetic branch of the autonomic nervous system (ANS), resulting in an initial decrease in 

heart rate (reflecting a freezing response), has specifically been described when being exposed to 

expressions of anger (Noordewier et al., 2020; Roelofs et al., 2010; however see: Dimberg, 1982). 

While these findings support the general idea that perceived emotional expressions resonate within the 

observer’s body, only little is known about the generalizability of effects over expression modalities 

and over physiological channels since those are rarely directly compared (however see Alpers et al., 

2011; Kret, Stekelenburg, et al., 2013). Using multiple physiological measures, the current study will 

explore the specificity of bodily responses when perceiving prototypical facial expressions of emotion, 

bodily expressions of emotion, and subtle emotion cues. 

In line with influential emotion theories that highlight bodily states as constitutive parts of 

affect, such as the James-Lange Theory of Emotion (James, 1884; Lange, 1912) or the Somatic marker 

hypothesis (Damasio, 1996), researchers have tried to identify patterns in ANS activity for the 

experience of distinct emotional states (Friedman, 2010). Although physiological information might 

not be sufficient for a precise classification (Siegel et al., 2018), integrated signals from multiple 

bodily systems as well as predictions about one’s affective state have been proposed to inform 

subjective emotional experience (Garfinkel & Critchley, 2013; Pace-Schott et al., 2019). But how does 

this relate to cases in which our own body becomes a platform to reflect other individuals’ emotions 

on? Spontaneous mimicry of emotional expressions has not only been suggested to influence the 

emotional experience of the mimicker on multiple levels (Hatfield et al., 1993; Prochazkova & Kret, 

2017) but also to facilitate recognition of the mimicked individual’s emotions (Niedenthal, 2007; 

Palagi et al., 2020). The role of mimicry in emotion recognition is, to date, mostly investigated in 

facial muscle activity and evidence for a supporting role is mixed (against: Blairy et al., 1999; Hess & 

Blairy, 2001; for: Sato et al., 2013; meta-analysis: Holland et al., 2020). Importantly, physiological 

responses to another person’s emotional expression can go beyond facial mimicry (Prochazkova & 

Kret, 2017) and access to a variety of signals and their integration might be crucial to facilitate 

emotion recognition.  

The current study investigates how perceiving emotional expressions, varying in display 

modality and content, affects the observer’s interpretation and physiology: we (1) measured multiple 

bodily signals while participants were presented with prototypical facial and bodily expressions of 

emotion as well as to subtle facial emotion cues and (2) asked participants to report how they 

interpreted the emotion and how intensely they perceived it. This approach allowed us to explore the 

possibility of distinct bodily responses to different emotional expressions and to evaluate their 

subjective interpretations, thus gaining insight in emotion processing on multiple levels. 
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2. Method 

2.1. Participants 

In total, 71 students from Leiden University, the Netherlands, participated in the experiment 

(42 female, Mage = 23.36, SD = 3.22, Range: 19 – 34 years-old). Inclusion criteria were normal or 

corrected-to-normal vision, no regular use of medication or other substances and no prior psychiatric 

or neuropsychological disorders. Informed consent was provided prior to participation and participants 

were reimbursed with either 3 course credits or 10.5€. The experimental procedures were in 

accordance with the Declaration of Helsinki and the study was reviewed and approved by the 

Psychology Ethics Committee of Leiden University (CEP18-1029/406; November 2018). Out of the 

71 subjects we tested, there were technical problems for three subjects with regard to facial 

electromyography, skin conductance and skin temperature recordings and, for three different subjects, 

pupil size was not measured during the experiment (both N = 68). 

 

2.2. Stimuli 

Pictures for the three different expression modalities, namely face, body and subtle cues, were 

taken from existing stimulus databases and edited in Adobe Photoshop (version CC). For the 

prototypical facial expressions, we selected pictures of 8 identities from the NimStim set of Facial 

Expressions (Tottenham et al., 2009), displaying happy, angry, sad, fearful and neutral expressions 

respectively (40 stimuli in total; overall recognition rate in validation studies: M = 82.14% and SD = 

5.42%). The bodily expressions were taken from the bodily expressive action stimulus test (BEAST; 

de Gelder & Van den Stock, 2011) and, similarly, our set encompassed 8 identities displaying happy, 

angry, sad, fearful and neutral postures each (40 stimuli in total; overall recognition rate in validation 

studies: M = 94.93% and SD = 2.29%). The backgrounds of the facial and bodily stimuli were cut out 

and replaced with a uniform grey background (RGB: 145, 145, 145). In addition, grey-scale versions 

of all body stimuli were created in order to control for effects of clothing colour, and a Gaussian blur 

was applied to their faces in order to control for facial expressions. In addition, three subtle facial cue 

stimuli (blush, dilated pupils and tears) were created by manipulating the neutral expression of each of 

the eight identities resulting in 24 subtle cue stimuli (for an example, see Fig. 1A). For the ‘dilated 

pupils’ stimuli, the original pupil size in each picture was increased to be clearly visible, on average by 

23%. The ‘tears’ stimuli were made by artificially adding a tear on the actor’s left cheek, increasing 

the redness of the sclera by making the veins more visible, and adding a reflection and watery blur to 

the eyes. Lastly, ‘blush’ stimuli were created by increasing the redness in the cheek region. In total, 

there were 104 stimuli. 
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2.3. Procedure 

After participants provided informed consent, physiological data acquisition tools were 

applied, starting with electrodes for skin conductance level (SCL), then electrodes for facial 

electromyography (EMG) and lastly a skin temperature (SKT) sensor (for more details, see 

measurements section). In order to allow the signals to reach a stable baseline, a rest period of 

approximately 10 minutes passed before starting the data collection. In total, participants had to 

perform three tasks: a passive viewing task (PVT), an emotion labelling task (ELT) and an emotional 

dot-probe task, of which only the first two will be discussed in the scope of this paper. During both the 

PVT and the ELT, eye-tracking data was recorded (see measurements section) and a chin rest was 

used to ensure a stable head position.  

The tasks were presented using Eprime (version 2; Schneider et al., 2002) on a Dell S2240Tb 

21.5 inches touch screen (1920x1080 resolution, 60 Hz refresh rate). The background colour of all 

screens (fixation, stimulus, blank) was set to grey (145,145,145). All participants first completed the 

PVT, thus allowing us to measure the initial response to the emotional expressions without a 

secondary task. Each trial started with the presentation of a fixation cross for 500ms, which was 

followed by a 4000ms presentation of one of the above described stimuli (460x510 pixels). The 

stimulus presentations were separated by a 3500ms, 4000ms or 4500ms blank screen to the next trial 

(inter-trial interval duration varied between participants). Due to a coding error, a fearful face instead 

of a face with added tears was presented for one of the 8 stimulus identities and had to be excluded 

from data analysis (7 instead of 8 trials for this stimulus category). Apart from that, each of the 

remaining 102 stimuli was presented once, in a randomized order. After taking a short break, 

participants continued the experiment with the ELT. Each trial started with a fixation cross lasting 

500ms and followed by one of the expressions for 1s. Afterwards, a question appeared next to the 

stimulus, asking participants to indicate which of the 5 expression categories, namely angry, happy, 

scared (in the following referred to as ‘fearful’), sad or neutral was displayed in the picture. In a 

second step, they had to rate how emotionally intense they perceived the stimulus, using a slider from 

neutral to very emotional (on a scale 0-100). There were not time constraints on the ratings and each 

expression was rated twice (208 trials; see Fig. 2b for a visualization of the tasks). The eyetracking 

recording was stopped and all electrodes were de-attached for the subsequent emotional dotprobe task. 

Upon completion of all three tasks, participant filled in the self-report version of the Liebowitz Social 

Anxiety Scale (LSAS-SR; Fresco et al., 2001; Liebowitz, 1987), the Autism Spectrum Quotient (AQ; 

Baron-Cohen et al., 2001) and the short version of the Empathy Quotient (EQ; Baron-Cohen & 

Wheelwright, 2004) in the respective order. As the questionnaire scores were not included into the 

main analyses, descriptive statistics of these measures can be found in Table 1 in Online Resource 2. 

The total duration of the study was approximately 90min. 
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Fig. 1 (a) Visualization of the subtle cue stimuli for one stimulus identity. The respective neutral facial 

expression from the NimStim set of Facial Expressions (first; Tottenham et al., 2009) was manipulated 

by adding a blush (second), tears (third) or dilated pupils (last). (b) Trial structure of the Passive 

Viewing task (left) and the Emotion Labelling task (right) 

 

2.4. Measurements 

Pupil size. Eyetracking data was recorded using a Tobii X2-60 eyetracker (sampling rate 60 

Hz) to which event marker were sent via the presentation software. Filtering of the data as well as 

artifact identification and rejection were undertaken in the PhysioData Toolbox (Sjak-Shie, 2019) 

according to the guidelines described in Kret and Sjak-Shie (2019).  

EMG. Facial muscle activity related to the observation of emotional expression was measured 

over Corrugator supercilii and Zygomaticus major regions (in the following referred to as “corrugator” 

and “zygomaticus”). In total, five 4mm reusable AG/AgCl surface electrodes were attached on the 

participant’s face: two over each region of interest in the left side of the face and one ground electrode 

on the centre of the forehead, just below the hairline, according to the guidelines by Fridlund and 

Cacioppo (1986). Data was recorded with the Dual Wireless EMG BioNomadix System (Biopac, 2000 

Hz sampling rate). The initial preprocessing of the raw EMG data was performed in the PhysioData 

Toolbox (Sjak-Shie, 2019). Before rectification of the signal, a 28Hz high-pass FIR, a 200Hz low-pass 

FIR and a 50Hz (Notch) filter were applied to the EMG data.  
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Skin conductance. The electrodes measuring changes in SCL were attached to the index finger 

and the ring finger of the participant’s non-dominant hand. Data was recorded with the EDA 100C 

Biopac Systems module from (2000 Hz sampling rate, Gain: 5µV, 10Hz low-pass filter) and event 

triggers were sent from the presentation software via parallel port. Within the PhysioData Toolbox 

(Sjak-Shie, 2019), the recorded data was filtered with a 2Hz low-pass filter (Chênes et al., 2013).  

Skin temperature. A fast response thermistor (TSD202A, Biopac) was placed below the 

participants’ right cheekbone to record changes in cheek temperature. Data was acquired with the 

SKT100C Biopac Systems module (2000 Hz sampling rate,: Gain 2°F/V, 10Hz low-pass filter). 

Similar to the other measures, the PhysioData Toolbox (Sjak-Shie, 2019) was used for further filtering 

(1Hz low-pass; Chênes et al., 2013).  

 

2.5. Data analysis 

In order to shed light on different aspects of the processing of emotional expressions, we 

defined three different analyses aiming at the investigation of (1) subjective interpretation, (2) 

physiological signal changes and (3) the linkage between the two levels, see Fig. 2 for a visualization 

and further explanation. Since the third analysis was based on a small number of observations and 

should be considered as a pilot test, further information about it can only be found in Online Resource 

4. Before starting data analysis, we looked for irregularities in each dependent variable. Importantly, 

for the physiological measures, we integrated information from a repeated visual inspection with 

statistical and literature-based thresholds. An overview of the outlier criteria can be found in the 

Online Resource 1. In addition, missing trials in the EMG, SKT and SCL recordings were replaced 

with missing values (subject 8: 3 trials and subject 21: 2 trials). The data for all physiological channels 

within the windows of interest was downsampled by exporting average values within five 100ms time 

bins before stimulus onset for the baseline window and 75 100ms time bins after stimulus onset for the 

response window. Lastly, a baseline correction was performed by subtracting the baseline from all 

data points of the corresponding response window for each trial. While the entire response window (4s 

stimulus presentation and 3.5 seconds blank screen) was used in the analysis of the relatively slowly 

changing SCL and SKT signals (Dawson et al., 2016; Shearn et al., 1990), EMG activity was only 

examined during stimulus presentation (Kret, Roelofs, et al., 2013; Kret, Stekelenburg, et al., 2013). In 

order to avoid distortions by the initial light reflex during the time period 2s-4s after stimulus onset 

following stimulus onset (Bradley et al., 2008) and the onset of the blank screen 4s after stimulus 

onset, the analysis on pupil size changes was restricted to the last two seconds of stimulus 

presentation.  
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Fig. 2 Visualization of the three analysis approaches. In Analysis 1, the subjective interpretation 

(emotion recognition and intensity judgments) of the different emotional expressions was examined. 

In Analysis 2, the effect of perceiving different emotional expressions belonging to the same modality 

on the shape of five different physiological signals was explored. In Analysis 3, trial-wise summary 

measures of expression-specific signal changes in all physiological channels were taken to fit a model 

on self-reported emotion labels and the generalizability of these observed patterns was evaluated using 

different data sets (test sample, inaccurate trials and subtle emotional cues; see Online Resource 4 for a 

more detailed description) 

 

2.5.1.  Analysis 1 (Behavioural analysis) 

In the behavioural analysis, we investigated whether the specific content of the emotional 

expressions (categories: happy, angry, sad or fearful versus neutral) as well as the modality with which 

it was displayed (face versus body) had an influence on recognition performance as well as on the 

perceived intensity in the ELT. Thus, in the first step, we looked at differences in the accuracy of 

recognizing specific emotional expressions from different expression modalities. Investigating the data 

on a trial level, we fitted a binomial generalized linear mixed-effects model on accuracy (0 or 1) with 

emotion category, expression modality, and an interaction between the two of them as predictors. In 

order to account for individual differences in overall emotion recognition abilities, we included a 

random intercept for the subject variable.  

In order to examine whether the perceived intensity of an emotional expression systematically 

varied depending on expressed emotion and/or the expression modality, we fitted a linear mixed-

effects model on the intensity ratings of each participant with regard to the facial and bodily 

expressions. As in the analysis above, emotion category, expression modality and an interaction 

between the two of them were defined as fixed effects and we added a random intercept for each 

subject.  



10 
 

Finally, we examined the ratings of subtle facial cues. Given that their nature was largely 

different from the other stimuli (i.e. artificially created and exclusively added to neutral facial 

expressions), we kept the analysis for this modality separate. Further, we focused on their perceived 

intensity since there is no past evidence to indicate that a specific emotion is associated with these 

cues, hence, they cannot be accurately labelled (see Table 2 in Online Resource 2 for an overview of 

the provided emotion labels). Thus, we used cue type (tear, blush, dilated pupils versus no cue/neutral) 

as the sole predictor in the LMM on the intensity scores and added a random intercept for the subject 

variable.  

All three models were fitted using the lme4 package (v1.1-23; Bates et al., 2015) in R 3.6.3 (R 

Core Team, 2020). After fitting a model, post-hoc pairwise comparisons between factor levels and 

their interactions were calculated by contrasting estimated mariginal means with the emmeans package 

(v1.4.8; Lenth, 2020). Reporting the test results of all pairwise comparisons would exceed the scope of 

this paper which is why they are listed in the Tables 3-8 in Online Resource 2. Online Resource 2 also 

contains the description and results of analyses in which we explored the effect of demographic and 

personality variables on emotion recognition performance and perceived intensity of emotional 

expressions.  

 

2.5.2.  Analysis 2 (Physiological analysis) 

In the analysis of physiological data, we were specifically interested in identifying expression-

specific changes in the shape of each physiological signal related to passive viewing of emotional 

expressions. Thus, we aimed to describe the entire time course in the response window of interest 

which differed in duration depending on the signals’ temporal dynamics (see Data preprocessing). For 

modeling changes in pupil size, SKT and SCL, we extended the approach from studies looking at 

factors affecting pupil dilatation (Quesque et al., 2019; Wehebrink et al., 2018) and employed higher-

order polynomials in Linear Mixed Models (LMMs). Given the fast changes in EMG activity related 

to affective states (Van Boxtel, 2010) as well as variations in response shapes (Cacioppo et al., 1988), 

we did not expect higher-order polynomials to reliable capture signal changes in the two EMG 

channels within the 4 seconds response window. In previous research on perception of static emotional 

expressions, EMG data was mostly analyzed over time periods of 1.5 – 2.5 seconds (Bornemann et al., 

2012; Hermans et al., 2009; Rymarczyk et al., 2011, 2016; Sato et al., 2008) and, even if longer time 

windows were looked at, the EMG signal was averaged over time (Kret, Stekelenburg, et al., 2013; 

Vrana & Gross, 2004). To keep the temporal resolution similar across measures and still allow for a 

fine-grained description of the EMG time courses, we therefore chose to identify time bins in which 

the stimulus content affected the signal rather than describing the signal as a whole, similar to the 
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approach of Achaibou and colleagues (2008). The two analysis approaches will be outlined in more 

detail below. 

Pupillometry, skin conductance & skin temperature. The time courses of the pupil size data, 

SCL data and the SKT data were modeled using growth curve analysis (Mirman, 2014) with the nlme 

package (Pinheiro et al., 2020) in R statistic (R Core Team, 2020). Three separate analyses were done 

for the three emotional expression modalities (prototypical facial expressions, bodily expressions and 

subtle facial cues). LMMs were fitted as follows: In order to capture the shape of the signal, first- and 

second-order orthogonal polynomials were used to model changes in pupil size, and first-, second- and 

third-order polynomials were chosen for the SCL and SKT models based on visual inspection of the 

overall shape of the time courses per subject. Within each expression’s modality, emotion category 

(subtle: cue type) of the stimulus was included as categorical predictor (prototypical facial/bodily: 

angry, happy, sad, fearful and neutral; subtle: blush, dilated pupils, tears and neutral). Since these 

predictors of interest were assumed to influence the shape of the signal, interactions with the 

polynomials were added as fixed-effects to the models. Given the observed individual differences in 

the overall shape of the time series, a random intercept and random slopes of the polynomials were 

defined on a subject level. In order to account for autocorrelation between subsequent data points, an 

autoregressive structure with trials nested in subject as grouping factor was included. The Nelder-

Mead technique was chosen as optimization method. Given the complex model structure, we increased 

the maximum number of iterations as well as the maximum number of iterations for the optimization 

step inside optimization (msMaxIter) up to 5000, and the number of iterations for the EM algorithm 

(niterEM) as well as the maximum number of evaluations up to 1000. Since the model residuals were 

not normally distributed, we additionally applied clustered bootstrapping to estimate the confidence 

intervals of the coefficients. Thus, in addition to the parametric approach of determining statistical 

significance of fixed effects with conditional F-Tests and marginal significance of fixed-effect 

coefficients conditional t-tests, their respective non-parametric confidence intervals were calculated. 

Given the large number of statistical parameters, only the results of the F-tests and the interpretation 

of the analysis will be reported in the text whereas the t-statistics and the nonparametric confidence 

intervals can be found in Tables 1-6 in Online Resource 3. Based on previous findings (e.g. Bradley et 

al., 2008, 2017; Kosonogov et al., 2017; Lang et al., 1993), we additionally explored the possibility 

whether overall emotional intensity, instead of specific emotion expression categories, could explain a 

large amount of variation in the physiological signal changes (see Online Resource 3, Tables 10-12 

and Fig. 2). Given that our stimuli were not controlled for global and local brightness and contrast, 

pupil size changes related to emotional content might have been altered in our analyses. For 

conciseness, these results are only reported in Online Resource 3 (Tables 7-9 and Fig. 1). 

Facial EMG. Since there was no empirical evidence to expect any exact shape of the two 

EMG signals throughout our stimulus presentation window (4 seconds), our analysis aimed to 
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determine the parts of the signal in which a specific emotional expression differed significantly from 

the respective neutral expression. Here, we extended on an approach by Achaibou and colleagues 

(2008) who tested for significant differences in EMG activity during stimulus presentation by 

calculating t-tests between activations related to angry versus happy facial expressions in 100ms time 

bins. In contrast to their analysis, however, we (1) ran multilevel models instead of t-tests (including 

random variation and using the nlme package (Pinheiro et al., 2020), in consistence with the other here 

reported analyses), (2) compared each emotion category (happy, angry, fearful and sad) against neutral 

as a control condition and (3) used a split-half approach (i.e. first tested for effects in half of the 

sample [training set] and then validated the significant results in the other half [test set]). The two sets 

were matched by gender but, apart from that, randomly generated. This third adjustment was taken to 

allow for hypothesis-free exploration in one half of the data and confirmatory tests in the other half 

(Wagenmakers et al., 2012). As for the pupil size data, the SCL data and the SKT data, separate 

analyses were performed for the different expression modalities. Further, data from the corrugator 

region and the zygomaticus region were analysed separately and, similarly to Achaibou et al. (2008), 

only two conditions were contrasted in one test (i.e. one emotion category against neutral). Thus, for 

each of the 40 100ms time bins and for each presented emotional expression, we fitted separate LMMs 

on the mean EMG activity (filtered + rectified, see preprocessing) of the corrugator and the 

zygomaticus with emotion category as fixed effect and ID as random effect on the test sample. If one 

emotion category was significantly different from neutral in a time bin (p < .05), the same model was 

tested using the data from the test sample. Only if the difference between the signal related to the 

emotional versus the neutral expression was significant in both the training and the test sample, the 

EMG signal was regarded to be affected by the presentation of the respective emotional expression 

within this time bin. 

3. Results 

3.1. Behavioural results (Analysis 1) 

Prototypical facial and bodily expressions of emotion. The model on accuracy in emotion 

recognition yielded significant main effects of emotion category, χ2(4) = 185.788, p < .001, and 

modality (body versus face), χ2(1) = 39.921, p < .001. Importantly, the significant interaction between 

emotion category and expression modality, χ2(4) = 203.438, p < .001, sheds more light on the 

interplay between the two variables affecting accuracy in emotion recognition (see Fig. 3a below and 

Table 3 in Online Resource 2). Overall, while emotions were better recognized compared to a neutral 

expression when expressed by the face, the opposite was observed for the body. Specifically, within 

the bodily expressions, the neutral expression was significantly better recognized than all emotional 

bodily expressions, except for fear (although numerically consistent). Fearful body expressions were 

better recognized than angry, happy and sad bodily expressions. Finally, both angry and sad bodily 
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expressions were more likely to be labeled correctly than their happy counterparts. In contrast, when 

emotions were presented on the face, happy facial expressions were best recognized, followed by 

angry and fearful facial expressions, which received higher accuracy rates than sad and neutral facial 

expressions. Lastly, neutral facial expressions were least well recognized. When comparing between 

modalities, there was no difference in the Odds for labeling sad facial and bodily expressions 

accurately. However, while angry, happy and fearful expressions were more likely to be accurately 

recognized when they were displayed on the face, neutral expressions were more easily recognized 

from the body (see Table 4 in Online Resource 2). 

Both emotion category and modality were significant predictors in the model on perceived 

emotional intensity, category: χ2(4) = 1683.950, p < .001; modality: χ2(1) = 3.865, p = .049. The 

significant interaction between the two predictor variables highlighted their interdependency, χ2(4) 

=149.356, p < .001 (see Fig. 3b and Table 5 in Online Resource 2). Within the facial expression 

modality, intensity ratings were lower for sad expressions compared to the three other emotions and 

both happy and fearful expressions received lower intensity scores than angry expressions but did not 

significantly differ from each other. In contrast, happy expressions received the second lowest 

intensity scores for the bodily expressions and were rated significantly lower in intensity than angry, 

sad and fearful expressions while these three did not significantly differ from each other. When 

comparing the two expression modalities, angry, happy and fearful expressions were all perceived as 

more intense when they were displayed on the face whereas there was no difference for sad 

expressions (see Table 6 in Online Resource 2). 
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Fig. 3 (a) Predicted accuracies of labeling stimuli belonging to the four emotion categories (angry, 

happy, sad, fearful) and neutral within the body (red) and face (blue) modality and (b) their respective 

predicted intensity ratings. Predicted intensity ratings for the subtle facial expressions by cue type are 

illustrated in (c). Whiskers represent confidence intervals. Significant differences between factor levels 

are indicated by adding a bracket (red = between categories within bodily expressions, blue = between 

categories within facial expressions, grey = within category across modalities OR between subtle cue 

types). Straight line = p < .001, dashed line = p < .01, dotted line = p < .05 

 

Subtle facial cues. A separate model on the perceived intensity of the subtle facial cues 

revealed that the presence of a cue was a significant predictor of the intensity rating, χ2(3) = 2007.92, 

p < .001. Crucially, facial expressions with dilated pupils were not rated as more intense than the same 

expressions with average pupil sizes (neutral). In contrast, stimuli with a blush received higher ratings 

than both stimuli without a cue and dilated pupils. Faces with tears were rated as significantly more 

intense than faces with the two other cue types and compared to neutral (see Fig. 3c and Tables 7 and 

8 in Online Resource 2). 
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3.2. Physiological results (Analysis 2) 

3.2.1. Skin conductance 

Prototypical facial expressions. In the LMM, the linear polynomial was a significant predictor 

of the changes in SCL, Flinear (1,181345) = 9.457, p = 0.002. Further, all interactions between emotion 

category and the three polynomials were significant, Flinear*category (4,181345) = 5.596, p < 0.001; 

Fquadratic*category(4,181345) = 12.274, p < 0.001; Fcubic*category (4,181345) = 15.145, p < 0.001, indicating 

that the shape of the signal differed for emotional as compared to neutral expressions. Looking at the t-

statistics (Table 1 in Online Resource 3) as well as the predicted value graphs (Fig. 4a) for distinct 

emotion categories, the presentation of angry, happy and sad facial expressions were more strongly 

associated with an initial peak at around 2s and a decline over time which was strongest for happy 

expressions. A cubic component in the signal was observed following fearful faces, which however 

was not as strong as the other categories and without the pronounced peak at the beginning. Notably, 

only the interaction between angry facial expressions and the cubic trend did not include 0 in the 

bootstrap confidence intervals for the model coefficients, indicating that exclusively this effect was 

robust.  

 

Bodily expressions. As for the model on facial expressions, the linear polynomial significantly 

predicted SCL measurements, Flinear (1,181420) = 9.981, p = 0.002. In addition, the linear and cubic 

polynomials were involved in significant interaction terms with emotion category ,Flinear*category (4, 

181420) = 22.935, p < .001; Fcubic*category (4, 181420) = 5.541, p < .001, suggesting that the expression 

of emotion via the body also had an effect on the shape of SCL measurements. In this modality, 

however, only happy and, to lesser degree, fearful expressions were related with an increase in SCL 

magnitude whereas angry expressions rather yielded a stronger decline compared to neutral 

expressions (see Fig. 4B). While, in general, SCLs also decreased over time for sad bodily 

expressions, this decrease followed a cubic shape compared to neutral expressions. The bootstrap 

analysis could not confirm the robustness of directionalities of effects in this model (see Table 2 in 

Online Resource 3 for all statistics). 
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Fig. 4 Predicted time course of the baseline-corrected skin conductance level signal (SCL) related to 

passive viewing of (a) prototypical facial expressions and (b) bodily expressions by emotion category 

as well as (c) subtle facial cues by cue type. The shaded areas indicate standard errors of the predicted 

means. Coloured arrows indicate robust results in the clustered bootstrap analysis  

 

Subtle facial cues. In the last SCL model, the linear polynomial was again identified as 

significant predictor, Flinear (1,140024) = 8.855, p = .003, as were the interactions between all three 

polynomials and emotion category, Flinear*category (3, 140024) = 16.339, p < 0.001; Fquadratic*category(3, 

140024) = 45.746, p < 0.001; Fcubic*category (3, 140024) = 11.745, p < 0.001. Thus, the presence of facial 

signs of emotional involvement, without the context of prototypical emotion displays, also affected 

SCL properties: based on the statistics (Table 3 in Online Resource 3) and predicted time courses (Fig. 

4c) for the three cue types versus neutral (no cue), the SCL signal decreased to a lesser degree for 

faces with an added blush and faces with dilated pupils, with even a slight late increase for the latter. 

Moreover, when observing faces with added tears, SCLs of participants increased steeply, with a peak 

around 2.5s and a fast decline. Importantly, the coefficient for the interaction between the quadratic 

trend and tears cue category was the only coefficient which was consistently below 0 in the bootstrap 

samples, pointing out the stability of the observed peak in SCL for tears.  
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3.2.2. Skin temperature 

Prototypical facial expressions. While only the linear polynomial and the cubic polynomial 

were significant predictors of the SKT signal in the response window, Flinear (1,182620) = 5.622, p = 

.018; Fcubic (1, 182620) = 4.909, p = 0.027, all interactions between the three polynomials and emotion 

category became significant model terms, Flinear*category (4, 182620) = 8.518, p < .001; Fquadratic*category(4, 

182620) = 6.948, p < .001; Fcubic*category (4, 182620) = 4.757, p = .001. Emotional versus neutral facial 

expressions therefore also seemed to affect changes in SKT differently. Looking at the model statistics 

(Table 4 in Online Resource 3) and predicted value plots (Fig. 5a), there was a stronger increase in 

SKT following happy and fearful expressions and a diminished late increase following angry 

expressions compared to neutral ones. In addition, after an initial increase, cheek temperature already 

declined after approximately 6s for sad and fearful expressions while this was not the case for the 

other facial expression categories. Importantly, no coefficient for any predictor was consistently larger 

or smaller than 0 in the bootstrap analysis.  

 

Bodily expressions. In the model describing SKT changes associated with viewing bodily 

expressions of emotions, the linear polynomial as well as the three interactions between each 

polynomial and emotion category were significant, Flinear (1, 182845) = 4.220, p = .040; Flinear*category (4, 

182845) = 9.937, p < .001; Fquadratic*category(4, 182845) = 20.160, p < .001; Fcubic*category (4, 182845) = 

6.151, p < .001. Examining the effect of emotion in a body posture on the shape of the signal more 

closely, SKT rose for all emotions compared to neutral (Fig. 5b). However, while this increase was 

roughly linear for angry expressions, both happy and fearful expressions were related to a more cubic-

like signal shape with stronger increases at the very beginning and end of the response window. On 

top of that, SKT first decreased after viewing sad expressions and only started to increase after approx. 

2.5s. The coefficient describing this initial dip was also the only coefficient for which the confidence 

interval of the bootstrap analysis did not include zero, indicating its stability (see Table 15 in Online 

Resource 3 for an overview). 
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Fig. 5 Predicted time course of the baseline-corrected skin temperature signal (SKT) related to passive 

viewing of (a) prototypical facial expressions and (b) bodily expressions by emotion category as well 

as (c) subtle facial cues by cue type. The shaded areas indicate standard errors of the predicted means. 

Coloured arrows indicate robust results in the clustered bootstrap analysis 

 

Subtle facial cues. Both linear and cubic polynomials significantly predicted changes in SKT 

in the subtle facial cue model, Flinear (1, 141599) = 7.225, p = .007; Fcubic (1, 141599) = 5.227, p = .022. 

Additionally, all interactions between the emotion category and the three polynomials were significant 

, Flinear*category (3, 141599) = 5.543, p = 0.001; Fquadratic*category(3, 141599) = 24.200, p < .001; Fcubic*category 

(3, 141599) = 5.095, p = 0.002. Thus, adding subtle emotional cues to a neutral picture might already 

make a difference in the characteristics of SKT changes in the observer. Consulting the model 

statistics (Table 6 in Online Resource 3) and the predicted value graph (Fig. 5c), both faces with added 

tears and faces with added dilated pupils were associated with an initial dip. While this dip turned into 

an increase after approximately 2s for the first (reaching a similar temperature level as the faces 

without cue), it did not for the latter. Faces with a blush yielded a strong increase in cheek temperature 

which attenuated over time. The subsequent bootstrap analysis did not support the directionality of any 

of the effects. 

 

3.2.3.  Facial EMG  

Corrugator supercilii. The split-half tests on differences in facial muscle activity between 

emotional and neutral expressions within distinct time bins yielded emotion- as well as time-specific 
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findings. When viewing happy compared to neutral facial expressions, activity over the corrugator 

supercilii region was significantly reduced in both our training and test sample 500ms, 600ms, 1600ms 

and 3800ms after stimulus onset (all ps < 0.05). Further, while 200ms and 600ms after stimulus onset, 

angry facial expressions yielded lower EMG activity compared to neutral expressions, the same 

observation was made for fearful facial expressions 3600ms after stimulus onset. Lastly, we did not 

find a replicable effect of sad facial expressions on the EMG signal (see Fig. 6a below and Table 13 in 

Online Resource 3). The analyses on the other expression modalities revealed that neither any of the 

emotional bodily expression nor any of the emotional facial cues had a consistent effect on the 

Corrugator signal in the training and the test sample. 

 

Zygomaticus major. EMG activity over the zygomaticus major region was consistently 

elevated for happy versus neutral facial expressions starting 700ms after stimulus onset and almost 

throughout the entire stimulus presentation (700ms – 2600ms, 2800 - 2900ms, 3200 - 3900ms; all ps < 

.05). Moreover, seeing a fearful facial expressions was related to an enhanced EMG signal 1800-

2200ms after stimulus onset in both training and test sample. Activations during the presentation of 

both angry and sad facial expressions did not differ significantly from neutral expressions (see Fig. 6b 

and Table 14 in Online Resource 3). On top of that, activity over the Zygomaticus major region was 

not observed to be altered if any of the emotional bodily expressions or facial cues compared to their 

neutral counterparts were shown. 

 

 

Fig. 6 Time course of the filtered, baseline-corrected and z-scored facial electromyography (EMG) 

signal over (a) the corrugator supercilii region and (b) the zygomaticus major region related to passive 

viewing of prototypical facial expressions by emotion category. The coloured shaded areas around the 

values indicate standard errors of the predicted means. Coloured vertical lines (and grey-shaded 

background sareas between them) highlight time bins in which the EMG signal when viewing an 

emotional expression is significantly different from neutral in both samples (training and test), with 

the colour indicating the corresponding emotion category 
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4. Discussion 

The aim of our study was to explore how expressions of emotion resonate in an observer’s 

body and mind. The results show that while participants distinguished between different emotional 

expressions in self-reports, physiological changes were not strictly corresponding to distinct emotion 

categories. Most observed increases and decreases in SCL and SKT were not robust. Specific facial 

muscle (de-)activations, in contrast, were reproducibly found following facial but not bodily 

expressions of emotions. Within the subtle emotional cue modality, faces with tears were not only 

perceived as emotionally intense but also elicited a robust peak in observers’ skin conductance levels. 

In the remainder of the discussion, we elaborate on these key findings in more detail. 

Participants were well able to recognize all emotional expressions but showed variation across 

categories, with happy facial expressions being the most easily identified (see also Kret, Stekelenburg, 

et al., 2013; Martinez et al., 2016). On the physiological level, happy facial expressions also elicited 

the most prolonged changes in zygomaticus and corrugator activity, replicating previous findings (e.g. 

Rymarczyk et al., 2011; Vrana & Gross, 2004). Bodily expressions and subtle facial cues, on the 

contrary, did not have a significant impact on the EMG recordings (but see Tamietto et al., 2009 for 

different results). Taken behavioural and EMG findings together, mimicry of observed facial 

expressions might have facilitated emotion recognition (Holland et al., 2020). While this consideration 

is in line with emotion theories highlighting the role of bodily states, inconsistent relationships 

between discrete emotion categories and other physiological markers might seem puzzling at first. In 

the past, negative facial expressions (Banks et al., 2012), and specifically anger (Kreibig, 2010), have 

been associated with increases in SCL (but see Vrana & Gross, 2004 for different results). In our 

study, we could indeed find a consistent cubic trend in the SCL signal related to angry facial 

expressions, indicating an early peak. In addition, cheek temperature dropped following sad bodily 

expressions (see Salazar-López et al., 2015 for similar findings on negative images with low arousal). 

Apart from these results, robust SCL and SKT responses to discrete prototypical expressions could not 

be identified. Interestingly, the addition of tears to a neutral expression resulted in a steady peak in the 

observers’ SCL. Perceiving tears, thus, induced sympathetic arousal which substantiates their 

suggested function as an effective call for social support (Balsters et al., 2013; Gračanin et al., 2018).  

From a functional standpoint, the lack of a consistent autonomic tuning to prototypical 

emotional expressions does make sense: Instead of requiring affect sharing for informative or 

affiliative purposes, our passive viewing task provided subjects with a stream of static and posed 

displays of emotion without a relevant social context (Fridlund, 1991; Hess & Fischer, 2013). They 

were automatically put in the role of a passive observer, knowing that a displayed individual was not 

receiving any information about their own expressions. Importantly, the opportunity to interact with a 

social stimulus was described to be highly influential in social attention (Laidlaw et al., 2011). 

Similarly, knowing that the counterpart has access to one’s own expressions can alter observational 



21 
 

tendencies, enhance social signalling and promote prosocial choices (Cañigueral & Hamilton, 2019; 

Frith, 2009; Gobel et al., 2015). Based on experimental evidence looking at different aspects of social 

cognition and behaviour, Schilbach and colleagues (2013) called for a turn to a ‘second-person 

neuroscience’: Social phenomena should be investigated in real social settings with two (or more) 

actively-involved individuals, allowing to examine dynamics between, rather than only within, 

individuals. Recent findings successfully expanded this approach to the physiological level: 

Cooperation as a facet of prosocial behaviour was found to be positively associated with two 

interactants’ synchronisation in SCLs (Behrens et al., 2020). Consequently, while facial mimicry of 

discrete emotions might inform the automatic categorization of emotional expressions in passive 

observers, the ANS might only be strongly activated by social signals in real social settings, with the 

dynamics between interactants reflecting their (emotional) alignment.  

In the future, studies should try to overcome these limitations by keeping experimental 

paradigms as close to real life as possible. In cases in which passive observation of stimuli is required, 

it can already be beneficial to use dynamic and more naturalistic expressions. Compared to static and 

posed emotional expressions, this type of stimuli was shown to elicit stronger facial mimicry 

(Rymarczyk et al., 2011; Sato et al., 2008). In attempts to link physiological changes with subjective 

experience of others’ emotions, it would, additionally, be interesting to include measures of 

interoceptive abilities. As understanding one’s own body has already successfully been linked to 

understanding one’s own emotions (Critchley & Garfinkel, 2017; Kanbara & Fukunaga, 2016), 

accurate interoceptive inferences might also be important prerequisites to connect to others’ emotions 

(Arnold et al., 2019). 

To sum up, we confirmed existing evidence that the interpretation of emotional expressions 

depends on both the modality of the expression as well as the affective content. However, even if only 

information from the face or the body was available, emotion signals were still accurately perceived. 

Given that these situations become more frequent due to digitalization or safety measures during the 

COVID-19 pandemic, it is reassuring to know that emotion recognition as essential process is not 

severely affected. Using static and posed expressions, we did not find convincing evidence for a 

physiological signature of discrete emotions in the observer. Based on recent perspectives on social 

cognition, an actual alignment in emotional states, which goes beyond emotion recognition, might 

only happen in a ‘real’ social context. As a consequence, in order to describe a link between the 

sharing of emotions on different levels of observation (experiential and physiological), future studies 

should involve interactive paradigms and examine the role of variables indexing an individual’s access 

to internal signals. A mechanistic understanding could eventually inform the development of 

interventions which target the identification of other’s emotions and, thus, facilitate building social 

connections. 
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