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Abstract
We introduce a new family of horizon-penetrating coordinate systems for the
Schwarzschild black hole geometry that feature time coordinates, which are specific
Cauchy temporal functions, i.e., the level sets of these time coordinates are smooth,
asymptotically flat, spacelike Cauchy hypersurfaces. Coordinate systems of this kind
are well suited for the study of the temporal evolution of matter and radiation fields
in the joined exterior and interior regions of the Schwarzschild black hole geom-
etry, whereas the associated foliations can be employed as initial data sets for the
globally hyperbolic development under the Einstein flow. For their construction, we
formulate an explicit method that utilizes the geometry of—and structures inherent
in—the Penrose diagramof the Schwarzschild black hole geometry, thus relying on the
corresponding metrical product structure. As an example, we consider an integrated
algebraic sigmoid function as the basis for the determination of such a coordinate sys-
tem. Finally, we generalize our results to the Reissner–Nordström black hole geometry
up to the Cauchy horizon. The geometric construction procedure presented here can
be adapted to yield similar coordinate systems for various other spacetimes with the
same metrical product structure.
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1 Introduction

In a certain class of 4-dimensional Lorentzian manifolds, there exist preferred 2-
dimensional submanifolds with induced metrics that are locally and conformally
equivalent to the actual Lorentzian metrics. These submanifolds may be used to ana-
lyze the global causal structures of the underlying Lorentzian manifolds. For first
applications of this approach to the Schwarzschild, Reissner–Nordström, and Kerr
geometries, we refer the reader to, e.g., [5, 6, 15, 18, 23]. As can be seen, i.a., from
these first applications, one of the most prominent examples of such preferred 2-
dimensional submanifolds are the 2-surfaces containing the two double principal null
directions in a Petrov type D solution of the vacuum Einstein field equations in general
relativity [19, 38], which can be employed to study the causal structures of black hole
geometries, for instance, by means of Penrose diagrams [10, 35]. In particular, this
concept of analyzing the causal structures of 4-dimensional Lorentzian manifolds is
especially useful in the context of global hyperbolicity, which is a specific condition
on the causal structures of Lorentzianmanifolds that gives rise to foliations by smooth,
spacelike Cauchy hypersurfaces. Thus, it is relevant for the initial value formulation
of the Einstein field equations (see, e.g., [8]), where one works with spacelike Cauchy
hypersurfaces as initial data sets and derives solutions evolving this data forward
and backward in time. Examples of such foliations of the maximal globally hyper-
bolic extensions of some spherically symmetric Lorentzian 4-manifolds by spacelike
Cauchy hypersurfaces that are maximal or have constant mean curvature can be found
in [1, 4, 12, 14, 30, 31, 37, 41].

In this work, we focus on an explicit construction procedure of global coordinate
systems for a specific globally hyperbolic subset of the family of spherically sym-
metric vacuum geometries, namely the Schwarzschild black hole geometry, which are
related to foliations by smooth, asymptotically flat, spacelike Cauchy hypersurfaces.
The Schwarzschild black hole geometry is isometric to a subset of the maximally
extended Schwarzschild geometry, viz. regions I and II [40], and may be used in order
to describe the final equilibrium state of the dynamical evolution of the gravitational
field of an isolated, nonrotating, uncharged black hole. More precisely, we present a
2-dimensional construction procedure of a new family of horizon-penetrating coor-
dinate systems with Cauchy temporal functions (Cauchy coordinates) covering the
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joined exterior and interior regions of the Schwarzschild black hole geometry, where
we deform the geometric shape of the associated Penrose diagram from a trapezoid
into a centrally symmetric diamond via affine as well as homotopy transformations,
and formulate conditions for the determination of families of smooth functions foli-
ating this diamond. These functions are identified with smooth, spacelike Cauchy
hypersurfaces in the Schwarzschild black hole geometry, which are asymptotically
flat at spacelike infinity, encounter the curvature singularity only asymptotically, and
yield regular foliations across the event horizon. Hence, the labels of these hyper-
surfaces are Cauchy temporal functions on the Schwarzschild black hole geometry,
and may serve as time variables of the aforementioned global coordinate systems.
For the study of other families of horizon-penetrating coordinate systems related to
foliations with similar boundary conditions and spatial slices with trumpet geometry,
which, however, rely on different geometric construction procedures and do not, in
general, yield foliations that cover the entire Schwarzschild black hole geometry up
to the singularity, see [11, 22]. Having a coordinate system of the above type at one’s
disposal may be advantageous in the derivation of propagators for matter and radiation
fields in a Schwarzschild black hole background geometry in the framework of (rel-
ativistic) quantum theory. Moreover, the foliations associated with these coordinate
systems can be used as initial data sets for the globally hyperbolic development of the
Schwarzschild black hole geometry under the Einstein flow, tracing its evolution over
time.

The paper is organized as follows. In Sect. 2, we first recall the main geometrical
and topological aspects of the Schwarzschild black hole geometry, present a derivation
of compactified Kruskal–Szekeres coordinates, and study the corresponding Penrose
diagram.We then give a brief account of the notions of Cauchy surfaces and time-type
functions. Subsequently, in Sect. 3, we introduce our geometric method for the explicit
construction of horizon-penetrating Cauchy coordinate systems for the Schwarzschild
black hole geometry. We also prove that the level sets of the time variables of these
coordinate systems are in fact Cauchy hypersurfaces. The details of a specific example
based on an integrated algebraic sigmoid function are worked out in Sect. 4. In Sect. 5,
we generalize our results to the Reissner–Nordström black hole geometry up to the
Cauchy horizon. Finally, we conclude with a brief outlook on future research projects
in Sect. 6.

2 Preliminaries

2.1 The Schwarzschild black hole geometry and compactified Kruskal–Szekeres
coordinates

The Schwarzschild black hole geometry (M, g) is a connected, smooth, globally
hyperbolic and asymptotically flat Lorentzian 4-manifold with M being homeo-
morphic to R

2 × S2 and a spherically symmetric metric g, referred to as the
Schwarzschild metric, which constitutes a 1-parameter family of solutions of the vac-
uum Einstein field equations Ric(g) = 0. In the standard Schwarzschild coordinates
(t, r , θ, ϕ) ∈ R × R>0 × (0, π) × [0, 2π), this metric takes the form [36]
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g =
[
1 − 2M

r

]
dt ⊗ dt −

[
1 − 2M

r

]−1

dr ⊗ dr − r2 gS2 , (1)

where the parameter M ∈ R>0 coincides with the ADM mass of the black hole
geometry, and

gS2 = dθ ⊗ dθ + sin2 (θ) dϕ ⊗ dϕ

is the metric on the unit 2-sphere. This representation of the Schwarzschild metric
is defined for all r ∈ R>0\{2M} and features two types of singularities, namely a
spacelike curvature singularity at r = 0 and a coordinate singularity at r = 2M , with
the latter being the location of the event horizonM∩∂ J−(I +), that is, the boundary of
the causal past of future null infinity. The Schwarzschild black hole geometrymay thus
be separated into two connected components: the component BI := R×R>2M × S2,
which is the domain of outer communication, and the component BII := R×(0, 2M)×
S2, which is the future trapped region or black hole region M\J−(I +) �= ∅. We
remark that on BI, the Schwarzschild time coordinate t is a Cauchy temporal function,
i.e., it yields a foliation of this region by smooth, spacelike Cauchy hypersurfaces (see
Sect. 2.3). However, due to the degeneracy of the Schwarzschild coordinates at—and
the violation of the staticity of the Schwarzschild metric across—the event horizon,
the level sets of t do not foliate the Schwarzschild black hole geometry.

We next recall the usual derivation of compactified Kruskal–Szekeres coordinates,
which we restrict, for the purposes of the present work, to the region BI ∪ BII. These
coordinates are regular for all values of r ∈ R>0, locate the event horizon at finite
coordinate values, and result in a compactification of the spacetime required for the
construction of Penrose diagrams. We begin by transforming the Schwarzschild coor-
dinates into Eddington–Finkelstein double-null coordinates [13, 15]

TEF :
{
R × R>0 × (0, π) × [0, 2π) → R × R × (0, π) × [0, 2π)

(t, r , θ, ϕ) 	→ (u, v, θ, ϕ)

with

{
u = t − r� and v = t + r� for BI
u = t + r� and v = −t + r� for BII ,

where

r� := r + 2M ln

∣∣∣∣ r

2M
− 1

∣∣∣∣ ∈
{
R for BI
R<0 for BII

is the Regge–Wheeler coordinate, and v−u ∈ R for BI as well as v+u ∈ R<0 for BII.
The Schwarzschild metric in Eddington–Finkelstein double-null coordinates reads

g = 1

2

∣∣∣∣1 − 2M

r

∣∣∣∣ (du ⊗ dv + dv ⊗ du) − r2 gS2 .
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We then apply the transformation into the Kruskal–Szekeres double-null coordinate
system

TKS1 :
⎧⎨
⎩
R × R × (0, π) × [0, 2π) →

(
−π

2
,
π

2

)
×

(
0,

π

2

)
× (0, π) × [0, 2π)

(u, v, θ, ϕ) 	→ (U , V , θ, ϕ)

with

{
tan (U ) = −e−u/(4M) and tan (V ) = ev/(4M) for BI

tan (U ) = eu/(4M) and tan (V ) = ev/(4M) for BII ,

where tan (U ) tan (V ) ∈ R<0 for BI and tan (U ) tan (V ) ∈ (0, 1) for BII. Finally, we
transform the Kruskal–Szekeres double-null coordinates into a compactified form of
the usual Kruskal–Szekeres spacetime coordinates [23, 39]

TKS2 :

⎧⎪⎪⎨
⎪⎪⎩

(
−π

2
,
π

2

)
×

(
0,

π

2

)
× (0, π) × [0, 2π) →

(
−π

4
,
π

4

)
×

(
−π

4
,
π

2

)

×(0, π) × [0, 2π)

(U , V , θ, ϕ) 	→ (T , X , θ, ϕ)

with

T = U + V

2
and X = −U + V

2
for BI ∪ BII ,

where T ∈ (|X − π/4| − π/4,−|X − π/4| + π/4) and X ∈ (0, π/2) for BI and T ∈
(|X |, π/4) and X ∈ (−π/4, π/4) for BII. Using these coordinates, the Schwarzschild
metric can be represented as

g = 32M3 e−r/(2M)

cos2 (U ) cos2 (V ) r
(dT ⊗ dT − dX ⊗ dX) − r2 gS2 .

We note in passing that the Kruskal–Szekeres time coordinate T is a temporal function
onBI∪BII (cf.Definition 2.2 in Sect. 2.3). Furthermore, even thoughKruskal–Szekeres
spacetime coordinates are more general than required, they are—and yield represen-
tations of geometric quantities that are—nevertheless still fairly simple and easy to
handle. However, if desired, onemay as well work with different types of compactified
horizon-penetrating coordinate systems derived from, e.g., Gullstrand–Painlevé coor-
dinates, Lemaître coordinates, or advanced Eddington–Finkelstein coordinates [20,
24, 29].

2.2 Penrose diagram of the Schwarzschild black hole geometry

Due to the particular product structure of the Schwarzschild metric, that is,

g = g(2)
L ⊕ g(2)

R on M = M
(2)
L × M

(2)
R (2)
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Table 1 Relations between Schwarzschild and Kruskal–Szekeres asymptotics

r → ∞ r → 2M r → 0 t → ±∞
BI T = ± [X − π/2] T = ±X T = ∓ [X − π/2], T = ±X

BII T = ±X T = π/4 T = ∓X

with
g(YL + YR, ZL + ZR) = g(2)

L (YL, ZL) + g(2)
R (YR, ZR)

for Y k, Zk ∈ �
(
TM(2)

k

)
, k ∈ {L,R}, and the identification

T
(
M

(2)
L × M

(2)
R

) = TM(2)
L ⊕ TM(2)

R ,

where g(2)
L and g(2)

R are 2-dimensional Lorentzian and Riemannian metrics on

M
(2)
L

∼= M\SO(3) ∼= R
2 and M

(2)
R

∼= S2 ,

respectively, any causal vector with respect to g is also a causal vector with respect to
g(2)
L [9, 42]. This makes it possible to analyze the causal relations between different

points in—and thus understanding the global causal structure of—the Schwarzschild
black hole geometry using a Penrose diagram, where the metric g(2)

L on this diagram
is locally as well as conformally equivalent to the actual metric g with every point
corresponding to a 2-sphere. For the construction of this Penrose diagram, we employ
the relations

⎧⎪⎪⎨
⎪⎪⎩

sin (2T )

sin (2X)
= tanh

(
t/(4M)

)
and

cos (2T )

cos (2X)
= − coth

(
r�/(4M)

)
for BI

sin (2T )

sin (2X)
= − coth

(
t/(4M)

)
and

cos (2T )

cos (2X)
= − tanh

(
r�/(4M)

)
for BII

between the Schwarzschild and the compactified Kruskal–Szekeres spacetime coordi-
nates, which lead to the asymptotics shown in Table 1. These asymptotics may be used
to define the relevant structures of the Penrose diagram, namely future/past timelike
infinity i± = (T = ±π/4, X = π/4), future/past null infinity I ± = {(T , X) | T =
±(−X + π/2) and π/4 < X < π/2}, spacelike infinity i0 = (T = 0, X = π/2),
the event horizon at {(T , X) | T = X and 0 ≤ X ≤ π/4}, and the location of the
curvature singularity at {(T , X) | T = π/4 and − π/4 ≤ X ≤ π/4}. We depict the
Penrose diagram of the Schwarzschild black hole geometry BI ∪ BII in Fig. 1.

2.3 Cauchy surfaces and time-type functions

We now recall the concepts of Cauchy surfaces and time-type functions.

Definition 2.1 A Cauchy surface of a connected, time-orientable Lorentzian manifold
(M, g) is any subset N ⊂ M that is closed and achronal, and has the domain of
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Fig. 1 Penrose diagram of the
exterior and interior regions of
the Schwarzschild black hole
geometry

dependence D(N) = M, i.e., it is intersected by every inextensible timelike curve
exactly once.

A Cauchy surface is therefore a topological hypersurface [28], which can be approxi-
mated by a smooth, spacelike hypersurface [3]. Moreover, if (M, g) admits a Cauchy
surface, it is globally hyperbolic [17].

Definition 2.2 We let (M, g) be a connected, time-orientable Lorentzian manifold. A
function t: M → R is called a

1. generalized time function if it is strictly increasing on any future-directed causal
curve.

2. time function if it is a continuous generalized time function.
3. temporal function if it is a smooth function with future-directed, timelike gradient

∇t = gtν∂ν .

According to [2, 16], there is the following relation between time-type functions and
the notion of global hyperbolicity.

Proposition 2.3 Any connected, time-orientable, globally hyperbolic Lorentzian man-
ifold (M, g) contains a Cauchy temporal function t, that is, a temporal function for
which the level sets t−1( . ) are smooth, spacelike Cauchy hypersurfaces (Nt)t∈R with
Nt := {t} × N and Nt ⊂ J−(Nt′) for all t < t′.

We remark that a coordinate system (t, x) on M, where t ∈ R is a Cauchy temporal
function and x are coordinates on N, may be understood as corresponding to an
observer who is co-moving along the flow lines of the Killing field �(TM) � K = ∂t.

3 Geometric construction procedure of horizon-penetrating Cauchy
coordinates for the Schwarzschild black hole geometry

We begin by simplifying the geometric shape of the Penrose diagram of the
Schwarzschild black hole geometry BI ∪ BII transforming the trapezoid shown in
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Fig. 2a into a centrally symmetric diamond as in Fig. 2f. In more detail, we first
rotate the trapezoid counter-clockwise about an angle of π/4 rad (Fig. 2a → Fig. 2b)
employing the transformation

T(1) :

⎧⎪⎨
⎪⎩

(
−π

4
,
π

4

)
×

(
−π

4
,
π

2

)
→

(
0,

π

2
√
2

)
×

(
− π

2
√
2
,

π

2
√
2

)

(T = T (0), X = X (0)) 	→ (T (1), X (1))

(3)

with

T (1) = T (0) + X (0)

√
2

and X (1) = −T (0) + X (0)

√
2

,

where T (1) < X (1) + π/(2
√
2) for −π/(2

√
2) < X (1) ≤ 0. We then deform the

resulting trapezoid into a rectangle (Fig. 2b → Fig. 2c) by identifying the line

{
(T (1), X (1))

∣∣ T (1) = X (1) + π/(2
√
2) and − π/(2

√
2) ≤ X (1) ≤ 0

}

with the line

{
(T (1), X (1))

∣∣ 0 ≤ T (1) ≤ π/(2
√
2) and X (1) = −π/(2

√
2)

}

applying the transformation

T(2) :

⎧⎪⎨
⎪⎩

(
0,

π

2
√
2

)
×

(
− π

2
√
2
,

π

2
√
2

)
→

(
0, π

2
√
2

)
×

(
− π

2
√
2
, π

2
√
2

)

(T (1), X (1)) 	→ (T (2), X (2))

(4)

with

T (2) = T (1) and X (2) = T (1)/2 − X (1)

T (1)
√
2/π − 1

.

Subsequently, we translate the rectangle by the distance−π/(4
√
2) along the ordinate

(Fig. 2c → Fig. 2d) and rotate it clockwise about an angle of arctan (1/2) rad (Fig. 2d
→ Fig. 2e) using the mappings

T(3) :

⎧⎪⎨
⎪⎩

(
0,

π

2
√
2

)
×

(
− π

2
√
2
,

π

2
√
2

)
→

(
− π

4
√
2
, π

4
√
2

)
×

(
− π

2
√
2
, π

2
√
2

)

(T (2), X (2)) 	→ (T (3), X (3))

(5)

with
T (3) = T (2) − π

4
√
2

and X (3) = X (2)
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Geometric representations of the transformations (3)–(7)

as well as

T(4) :

⎧⎪⎨
⎪⎩

(
− π

4
√
2
,

π

4
√
2

)
×

(
− π

2
√
2
,

π

2
√
2

)
→

(
− π√

10
, π√

10

)
×

(
−

√
5
2

π
4 ,

√
5
2

π
4

)

(T (3), X (3)) 	→ (T (4), X (4))

(6)

with

T (4) = 2T (3) − X (3)

√
5

and X (4) = T (3) + 2X (3)

√
5

,

where

T (4) < 	

(
X (4) +

√
5

2

π

4

)
	

(
− 3π

4
√
10

− X (4)
)[

2X (4) +
√
5

2

π

2

]

+ 	

(
X (4) + 3π

4
√
10

)
	

(√
5

2

π

4
− X (4)

)
1

2

[
−X (4) +

√
5

2

π

4

]

and

− 	

(
X (4) +

√
5

2

π

4

)
	

(
3π

4
√
10

− X (4)
)
1

2

[
X (4) +

√
5

2

π

4

]

+ 	

(
X (4) − 3π

4
√
10

)
	

(√
5

2

π

4
− X (4)

)[
2X (4) −

√
5

2

π

2

]
< T (4) .
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Here, 	( . ) := [1 + sgn( . )]/2 is the Heaviside step function. Lastly, we employ the
shear transformation

T(5) :

⎧⎪⎨
⎪⎩

(
− π√

10
,

π√
10

)
×

(
−

√
5

2

π

4
,

√
5

2

π

4

)
→

(
− π√

10
, π√

10

)
×

(
−

√
5
2

π
4 ,

√
5
2

π
4

)

(T (4), X (4)) 	→ (T (5), X (5))

(7)
with

V = T (5) = T (4) and W = X (5) = 3T (4)

4
+ X (4) ,

where 4|X (5)|/5−π/
√
10 < T (5) < −4|X (5)|/5+π/

√
10, in order to obtain the cen-

trally symmetric diamond (Fig. 2e→ Fig. 2f). The composition of the transformations
(3)–(7) yields the relations

V = 2√
10 [π − X − T ]

(
−(X + T )2 + π

[
X + 2T − π

4

])

W = 5

2
√
10 [π − X − T ]

(
−(X + T )2 + π

2

[
3X + T − π

2

])
.

(8)

Next, we formulate conditions for the determination of specific indexed families of
smooth functions (Vλ(W ) | λ ∈ R) that foliate the diamond:

(C1) Limit conditions: V±∞(W ) = ±4

5

[−|W | + μ
]

(C2) Boundary conditions: Vλ(±μ) = 0 ∀ λ ∈ R

(C3) Smoothness condition: V|λ|<∞(W ) ∈ C∞(
(−μ,μ),R

)

(C4) Causality conditions: −4

5
< ∂WVλ <

8

5

4W − π
√
10

10Vλ − π
√
10

and 0 < ∂λVλ∀W ∈ (−μ,μ)

(C5) Symmetry condition: λ 	→ −λ ⇔ (Vλ,W ) 	→ (−Vλ,W ) ,

whereμ := √
5/2π/4.We note that the limit conditions in (C1) define the geometrical

shape of the diamond, while the boundary conditions in (C2) specify the starting
point and the endpoint of the functions Vλ. Besides, the first boundary condition
(Vλ,W ) = (0,+μ) gives rise to asymptotic flatness at spacelike infinity, whereas
the second boundary condition (Vλ,W ) = (0,−μ) ensures that the functions hit the
curvature singularity only asymptotically. The meaning of the smoothness condition
in (C3) is obvious. Moreover, the causality conditions in (C4) constrain the functions
to be spacelike on the one hand, and nonintersecting on the other. Direct computations
show that these conditions imply that the gradient∇λ on BI∪BII is future-directed and
timelike, and hence that λ is a temporal function. The reflection symmetry provided
by the symmetry condition in (C5), however, is only incorporated for convenience.
Therefore, it is not strictly required andmay be dropped if desired. Finally, we consider
the indices λ of such families as the time variables of new global coordinate systems
on BI ∪ BII defined via the general transformation
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TC :

⎧⎪⎪⎨
⎪⎪⎩

(
−π

4
,
π

4

)
×

(
−π

4
,
π

2

)
× (0, π) × [0, 2π) → R ×

(
−π

4
,
π

2

)

×(0, π) × [0, 2π)

(T , X , θ, ϕ) 	→ (λ, X ′, θ, ϕ)

with
λ = λ(T , X) and X ′ = X .

We now prove that the level sets of the time variables λ, which are by the above
construction smooth, spacelike, nonintersecting, asymptotically flat, and foliate the
entire Schwarzschild black hole geometry, constitute Cauchy hypersurfaces.

Proposition 3.1 We let S ≡ Sλ0 be homeomorphic to the subset

{λ0} ×
(

−π

4
,
π

2

)
× S2 ⊂ BI ∪ BII

of the joined exterior and interior regions of the Schwarzschild black hole geometry,
where this subset is a level set of the time coordinates λ at λ0 = const. Then, S is a
Cauchy hypersurface.

Proof We begin by noting thatS is closed in BI ∪ BII, which is an immediate conse-
quence of the fact that its complement

Sc ∼= R\{λ0} ×
(

−π

4
,
π

2

)
× S2

is open. Moreover, as the time coordinates λ are temporal functions on BI ∪ BII, that
is, BI ∪ BII is stably causal [26], any connected causal curve through this region can
intersectS at most once. Thus,S is achronal. It remains to be shown that the domain
of dependence D(S) = BI ∪ BII. To this end, it suffices to demonstrate that the total
Cauchy horizon H(S) of S is empty, using a proof by contradiction. Hence, we
suppose that there exists a point p in the future Cauchy horizon H+(S). Since S is
achronal and edgeless, p is the future endpoint of a null geodesic γ ⊂ H+(S), which
is past inextensible in BI ∪ BII [40]. From this, it follows that γ ⊂ J+(S) ∩ J−(p).
Furthermore, as BI ∪ BII is globally hyperbolic, J+(S) ∩ J−(p) is contained in a
compact set. And given that γ cannot be imprisoned in a compact set that is stably
causal [25], we are led to a contradiction. Accordingly, H+(S) = ∅. Due to time
duality, we can argue that the same holds true for H−(S), and therefore H(S) = ∅.

��

4 Application to an integrated algebraic sigmoid function

In this section, we study a simple example of the families (Vλ(W ) | λ ∈ R), which is
based on an integrated algebraic sigmoid function. To be more precise, since our 2-
dimensional diagrammatic representation of the Schwarzschild black hole geometry
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(a) (b)

Fig. 3 Diamond representation of the Schwarzschild black hole geometry with smooth functions Vλ(W )

defined in (10) for index values λ ∈ ±{0, 0.2, 0.5, 0.9, 1.5, 3, 8} (a) and Penrose diagram of the
Schwarzschild black hole geometry with level sets of the Cauchy temporal function λ specified in
(11) for values in {−10,−3.2,−1.6,−0.9,−0.45,−0.1, 0.28, 0.8, 2.1, 6.5} (blue curves) and with level
sets of the normalized Schwarzschild time coordinate t/M ∈ ±{0, 1.24, 2.77, 4.75, 7.78} for BI and
t/M ∈ ±{0, 0.86, 1.96, 3.58, 6.09} for BII (aquamarine curves) for comparison (b)

BI ∪ BII is in the form of a centrally symmetric diamond, we are interested in a
smooth approximation of the absolute value function |W | (see the limit conditions in
(C1)). By considering the derivative of the absolute value function, namely the signum
function sgn(W ), we may easily find such a smooth approximation in terms of the
integral of a hyperbolic tangent, an arctangent function, or an algebraic function. In
the following, we work out the horizon-penetrating Cauchy coordinate system and the
metric representation associated with the algebraic sigmoid function approximation

sgn(W ) ≈ |λ|W√
1 + λ2W 2

, (9)

where λ serves as approximation parameter, because this example can be treated
completely analytically. Thus, integrating (9) and imposing the conditions defined in
(C1)–(C5), we obtain

Vλ(W ) = 4

5λ

[√
1 + λ2μ2 −

√
1 + λ2W 2

]
(10)

(for an illustration, see Fig. 3a). Inverting this expression with respect to λ and substi-
tuting the relations specified in (8) gives rise to the transformation from compactified
Kruskal–Szekeres spacetime coordinates into the horizon-penetrating Cauchy coordi-
nates

TC :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
−π

4
,
π

4

)
×

(
−π

4
,
π

2

)
× (0, π) × [0, 2π) → R

×
(

−π

4
,
π

2

)
× (0, π) × [0, 2π)

(T , X , θ, ϕ) 	→ (λ, X ′, θ, ϕ)
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with

λ = 5V (T, X)

2

√[
W (T, X)2 − 25V (T, X)2

16
+ 5π2

32

]2
− 5π2W (T, X)2

8

and X ′ = X .

(11)
The Schwarzschild metric formulated via these coordinates reads

g = 32M3 e−r/(2M)

[15πλ + √
160 + 25π2λ2 ]4 cos2 (U ) cos2 (V ) r

[
400π2 C 2

λ dλ ⊗ dλ − 40π CλCX ′

× (dλ ⊗ dX ′ + dX ′ ⊗ dλ) + (
4C 2

X ′ − [
15πλ +

√
160 + 25π2λ2

]4 )
dX ′ ⊗ dX ′ ] − r2 gS2 ,

where

Cλ := 20 [4X ′ − 5π ]√
160 + 25π2λ2

−
√
5π√

5πλ2 [X ′ − π/4]2 − 2 [4X ′ − 3π ]
[
10λ (8X ′2 − 2πX ′ − π2)√

160 + 25π2λ2
+ 3 (4X ′ − 3π)

]

CX ′ := 10
[
5π2λ2 + πλ

√
160 + 25π2λ2 + 8

]

+
√
5π

(
15πλ + √

160 + 25π2λ2
)(
5πλ2 [X ′ − π/4] − 4

)
√
5πλ2 [X ′ − π/4]2 − 2 [4X ′ − 3π ] .

We depict the foliation of the Schwarzschild black hole geometry by the level sets of
λ in the Penrose diagram in Fig. 3b.

5 Generalization to the Reissner–Nordström black hole geometry

We generalize our results to the Reissner–Nordström black hole geometry up to the
Cauchy horizon. This spacetime is, like the Schwarzschild black hole geometry, a
connected, smooth, globally hyperbolic and asymptotically flat Lorentzian 4-manifold
(M, g) withM being homeomorphic to R2 × S2. It is, however, based on the unique
2-parameter family of exact, spherically symmetric solutions g of the more general
Einstein–Maxwell equations, which can be used to analyze the final equilibrium state
of the dynamical evolution of the gravitational field of an isolated, electrically charged,
spherically symmetric black hole. We begin by performing the replacement

1 − 2M

r
→ 1 − 2M

r
+ Q2

r2
=: �(r)

r2

in the gtt and grr components of the Schwarzschild metric (1), where the parameter
Q ∈ R denotes the electrical charge of the black hole geometry satisfying the relation
0 < |Q| < M , and the two real-valued roots r± := M±√

M2 − Q2 of the function�:
R>0 → [−M2+Q2,∞) define an outer and an inner event horizon, respectively. This
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replacement gives rise to the Schwarzschild-type representation of the nonextreme
Reissner–Nordström metric [27, 32]

g = �

r2
dt ⊗ dt − r2

�
dr ⊗ dr − r2 gS2 . (12)

We point out that the canonical Reissner–Nordström black hole geometry comprises
the three connected components BI := R×R>r+ × S2, BII := R× (r−, r+)× S2, and
BIII := R × (0, r−) × S2, which have a causal structure that is qualitatively different
from the one of the Schwarzschild case, as BIII contains a curvature singularity at
r = 0 with timelike character and, more importantly for the present purpose, the
inner event horizon at r = r− is a Cauchy horizon. Consequently, since our geometric
construction procedure requires the underlying Lorentzian manifold to be globally
hyperbolic, we consider only the region BI ∪ BII of the Reissner–Nordström black
hole geometry up to the Cauchy horizon. We then transform the Schwarzschild-type
coordinates into compactified Kruskal–Szekeres-type coordinates

TKS :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R × R>0 × (0, π) × [0, 2π) →
(

−π

4
,
π

2

)

×
(

−π

4
,
π

2

)
× (0, π) × [0, 2π)

(t, r , θ, ϕ) 	→ (T , X , θ, ϕ)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T = 1

2
arctan

(
sinh (αt)

cosh (αr�)

)
and X = − 1

2
arctan

(
cosh (αt)

sinh (αr�)

)
+ π	(r�)

2
for BI

T = − 1

2
arctan

(
cosh (αt)

sinh (αr�)

)
+ π	(r�)

2
and X = − 1

2
arctan

(
sinh (αt)

cosh (αr�)

)
for BII ,

where T ∈ (|X − π/4| − π/4,−|X − π/4| + π/4) and X ∈ (0, π/2) for BI and
T ∈ (|X |, π/2 − |X |) and X ∈ (−π/4, π/4) for BII. Here, the Regge–Wheeler
coordinate is defined as

r� := r + r2+
r+ − r−

ln

∣∣∣∣ rr+ − 1

∣∣∣∣ − r2−
r+ − r−

ln

(
r

r−
− 1

)

and α := (r+ −r−)/(2r2+) is a positive constant. The Reissner–Nordströmmetric (12)
written in terms of these coordinates takes the form

g =
r+ r−

( r
r− − 1

)1−r2−/r2+ e−2αr

α2 cos2 (U ) cos2 (V ) r2
(dT ⊗ dT − dX ⊗ dX) − r2 gS2 .

Next, we employ the method introduced in Sect. 3 and work out the details of the
analog of the specific integrated algebraic sigmoid function application (10) within
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(a) (b)

Fig. 4 Penrose diagram of the Reissner–Nordström black hole geometry up to the Cauchy horizon (a) and
the same Penrose diagram with level sets of the Cauchy temporal function λ defined in (13) for values
in ±{0, 0.3, 0.65, 1.1, 2, 4} (blue curves) and with level sets of the normalized Schwarzschild-type time
coordinate t/M ∈ ±{0, 1.24, 2.77, 4.75, 7.78} for BI and t/M ∈ ±{0, 0.86, 1.96, 3.58, 6.09} for BII
(aquamarine curves) for comparison (b)

the present framework. To this end, we have to perform the same steps as before,
however, we may now omit transformation (4), because the Penrose diagram of the
regionBI∪BII of theReissner–Nordströmblack hole geometry is already rectangularly
shaped (cf. Fig. 4a). This in turn leads to the first causality condition in (C4) assuming
the form |∂WVλ| < 4/5. Accordingly, we obtain the transformation from the above
compactified Kruskal–Szekeres-type coordinates into the horizon-penetrating Cauchy
coordinates

TC :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
−π

4
,
π

2

)
×

(
−π

4
,
π

2

)
× (0, π) × [0, 2π) → R

×
(

−π

4
,
π

2

)
× (0, π) × [0, 2π)

(T , X , θ, ϕ) 	→ (λ, X ′, θ, ϕ)

with

λ = 6T + 2X − π√
10

[
(T − X)2 − π2

4

][
T + X − π

2

]
[T + X ]

and X ′ = X . (13)

Expressed via these coordinates, the Reissner–Nordström metric reads

g = r+ r− (r/r− − 1)1−r2−/r2+ e−2αr

α2 cos2 (U ) cos2 (V ) r2

[
G 2dλ ⊗ dλ

+ E G√
1 + E 2

(dλ ⊗ dX ′ + dX ′ ⊗ dλ) − dX ′ ⊗ dX ′

1 + E 2

]
− r2 gS2 ,
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where

E :=
√
5

2

⎡
⎣λ

(
X ′ − π

8

)
+

√
1

10
+ π2λ2

64

⎤
⎦

and

G := 1

10λ2

[(
1

10
+ π2λ2

64

)(
1 + E 2)]−1/2

⎡
⎣3

√
1 + E 2 − E −

√
8 + 5π2λ2

4

⎤
⎦ .

We emphasize that the metric coefficients gλλ and gλX ′ are, despite their appearance,
also regular at λ = 0, which can be directly seen from the limits

lim|λ|→0
E = 1

2
√
2

and lim|λ|→0
G =

√
10

27

[
4X ′2 − πX ′ − π2

2

]
∈

(
−

√
5

2

π2

24
, 0

)
.

Therefore, this metric representation is nondegenerate everywhere on BI ∪BII. More-
over, direct computations show that the gradient of the time coordinate λ defined in
(13) is future-directed and timelike. And by using a proof similar to the one of the
Schwarzschild case (see the end of Sect. 3), one can demonstrate that the level sets of
this time coordinate are Cauchy hypersurfaces. Thus, λ is a Cauchy temporal function.
The associated foliation of the region BI ∪ BII of the Reissner–Nordström black hole
geometry is illustrated in the Penrose diagram in Fig. 4b. We note in passing that in
the Schwarzschild limit |Q| → 0, some of the level sets of λ lose their Cauchy prop-
erty. This stems from the fact that all level sets located in the region above the line
3T = −X + π/2 intersect the curvature singularity of the Schwarzschild trapezoid.
Hence, one obtains only a foliation of the limiting spacetime by spacelike hypersur-
faces.

6 Outlook

As a future research project, we plan on generalizing our method and results to the
axially symmetric Kerr black hole geometry up to the Cauchy horizon, which involves
two significant challenges. On the one hand, due to the existence of nonvanishing cross
terms, the nonextreme Kerr metric does not have the particular product structure (2),
making it impossible to directly locally relate the causal structure of the Kerr black
hole geometry to that of the corresponding Penrose diagram similar to the cases of the
spherically symmetric black hole geometries. On the other hand, the time variable of
the usual Kruskal–Szekeres-type coordinate system for the nonextreme Kerr geom-
etry [7, 34] is not a temporal function, which is in contrast to the Kruskal–Szekeres
time variables of the Schwarzschild and nonextreme Reissner–Nordström geometries.
Since this aspect is, however, paramount for the present method, we are required to
first modify the construction of the analytic Kruskal–Szekeres-type extension of the
nonextreme Kerr geometry accordingly. Otherwise, we could also work with a differ-
ent horizon-penetrating coordinate system, which already features a time coordinate
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that is a temporal function (for an example, see the coordinate system analyzed in, e.g.,
[33]), as the basis for our geometric approach altogether. While this may seem more
suitable at first glance, the use of such a coordinate system could lead to yet unfore-
seen obstacles that would have to be resolved as well. In addition to this research
project, we intend to apply our construction method to other spacetimes having the
same metrical product structure as the Schwarzschild and Reissner–Nordström black
hole geometries, thereby focusing on conceptual issues and the applicability of the
method itself, as well as on the determination of the associated Cauchy coordinate
systems.
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9. Chruściel, P.T.: Elements of General Relativity. Birkhäuser, Cham (2020)
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