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Abstract

The Dempster–Shafer theory of evidence (DST) has

been widely used to handle uncertainty‐based in-

formation. It is based on the concept of basic prob-

ability assignment (BPA). Belief intervals are easier to

manage than a BPA to represent uncertainty‐based
information. For this reason, several uncertainty mea-

sures for DST recently proposed are based on belief

intervals. In this study, we carry out a study about the

crucial mathematical properties and behavioral re-

quirements that must be verified by every uncertainty

measure on belief intervals. We base on the study

previously carried out for uncertainty measures on

BPAs. Furthermore, we analyze which of these prop-

erties are satisfied by each one of the uncertainty

measures on belief intervals proposed so far. Such a

comparative analysis shows that, among these mea-

sures, the maximum of entropy on the belief intervals

is the most suitable one to be employed in practical

applications since it is the only one that satisfies all the

required mathematical properties and behaviors.

KEYWORD S

behavioral requirements, belief intervals, conflict, mathematical
properties, non‐specificity, uncertainty measures

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. International Journal of Intelligent Systems Published by Wiley Periodicals LLC

Serafín Moral‐García and Joaquín Abellán contributed equally to this study.

https://orcid.org/0000-0002-8513-9081
https://orcid.org/0000-0001-9018-5165
mailto:seramoral@decsai.ugr.es
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22432&domain=pdf&date_stamp=2021-05-06


1 | INTRODUCTION

The Dempster–Shafer theory of evidence (DST)1,2 has been widely used to represent and handle
uncertainty‐based information in many areas such as medical diagnosis,3 decision making
support,4,5 face recognition,6 or pattern classification.7,8 DST is an extension of Probability
Theory (PT); it is based on the concept of basic probability assignment (BPA), a generalization of
the probability distribution concept in PT.

In DST, it is essential to quantify the uncertainty‐based information associated with a BPA,
and it is still an open problem. Many measures to quantify the uncertainty involved in a BPA
have been developed so far. A summary of most of them can be found in Reference [9]. Klir and
Wierman10 provided a set of mathematical properties that have to be satisfied by every measure
that quantifies the uncertainty involved in a BPA. That study was extended by Abellán and
Masegosa in Reference [11], where a set of behavioral requirements for uncertainty measures in
DST was also proposed.

So far, the only uncertainty measure on BPAs that verifies all the crucial mathematical
properties and behaviors is the upper entropy.12 However, the procedures developed so far to
compute this measure12‐15 are pretty complex. For this reason, many alternative measures have
been proposed in the last years, such as the Deng entropy,16,17 or the one of Jiroušek and
Shenoy.18 But none of these measures satisfies all the necessary mathematical properties and
behaviors.

Belief intervals for singletons, whose lower and upper bounds are, respectively, the mini-
mum and maximum support of information represented by the BPA in the corresponding
singleton, have recently received considerable attention for calculating the uncertainty‐based
information involved in a BPA.19‐22 In fact, they are easier to manage than the BPA to represent
the uncertainty‐based information, as explained in Reference [19]. Belief intervals have also
been used in Reference [23] for quantifying the uncertainty‐based information involved in a D‐
number,24 a generalization of the concept of BPA in DST.

Hence, in recent works, several uncertainty measures on belief intervals have been devel-
oped. More specifically, Yang and Han25 proposed an uncertainty measure based on a distance
function of intervals; such a measure was improved by Xinyang, Fuyuan, and Yong26; Wang
and Song27 proposed an uncertainty measure based on the relations among the central values of
the belief intervals; in Reference [21], we developed a new uncertainty measure that consists of
the maximum of entropy on the set of probability distributions compatible with the belief
intervals.

In this study, we carry out a study about the mathematical properties that have to be
satisfied by every uncertainty measure on belief intervals. We also analyze the crucial beha-
vioral requirements for measures of this category. This study is based on the one carried out by
Abellán and Masegosa,11 but such a study is valid for uncertainty measures on BPAs, and the
one carried out in this study is for uncertainty measures on belief intervals.

Moreover, we analyze which of the mathematical properties and behaviors established as
essential in our study are satisfied by each one of the uncertainty measures on belief intervals
proposed so far. Such a comparative analysis is useful to select the most suitable uncertainty
measure on belief intervals in practical applications. It is shown that the maximum of entropy
on the set of probability distributions consistent with the belief intervals is the only one that
verifies all the crucial mathematical properties and behavioral requirements for this type of
measure.
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This paper is organized as follows: Section 2 describes DST, the main uncertainty measures
developed so far on BPAs and belief intervals, and the set of essential mathematical properties
and behaviors for uncertainty measures on BPAs. The study about the required mathematical
properties and behaviors for uncertainty measures on belief intervals is detailed in Section 3.
Section 4 analyzes the mathematical properties and behavioral requirements of the uncertainty
measures on belief intervals proposed so far. Conclusions are given in Section 5.

2 | BACKGROUND

2.1 | Dempster–shafer theory of evidence

Let us assume that we have a finite set of possible alternatives X x x= { , …, }n1 . Let X℘( ) denote
the set of all the subsets of X .

The DST1,2 is based on the BPA concept. A BPA is a mapping →m X: ℘( ) [0, 1] such that
∅m ( ) = 0 and∑

∈
m A( ) = 1

A X℘( )
.

If ⊆A X verifies that m A A( ) > 0, is said to be a focal element of m.
A given BPAm on X has a belief function, Belm, and a plausibility function, Plm, associated

with it. They are defined as follows:

∑ ∑ ∀ ∈
∣ ⊆ ∣ ∩ ≠∅

Bel A m B Pl A m B A X( ) = ( ), ( ) = ( ), ℘( ).m

B B A

m

B B A

(1)

Clearly, ∀ ⊆ ≤A X Bel A Pl A, ( ) ( )m m . The interval Bel A Pl A[ ( ), ( )]m m is known as the belief
interval of A.

In addition,

∀ ⊆Pl A Bel A A X( ) = 1 − ( ), ,m m (2)

where A denotes the complement of A.
For a given BPA m on X , there exists a credal set† associated with it. It is determined by:

 ∈ ∣ ≤ ∀ ⊆p X Bel A p A A X= { ( ) ( ) ( ) },m m (3)

where  X( ) is the set of all probability distributions on X . We may note that the condition
≤ ∀ ∈Bel A p A A X( ) ( ) ℘( )m is equivalent to ≤ ≤ ∀ ∈Bel A p A Pl A A X( ) ( ) ( ) ℘( )m m due to the

equality expressed in Equation (2).
Let us suppose now that X and Y are finite sets. Let m be a BPA on the product space

X Y× . The marginal BPA of m on ↓X m, X , is defined in the following way:

∑ ∀ ⊆↓

∣

m A m R A X( ) = ( ), ,X

R A R= X

(4)

being RX the projection of R on X . The definition of the marginal BPA of m on ↓Y m, Y , is
analogous.

2.2 | Uncertainty measures in DST

Let X x x= { , …, }n1 be a finite set of possible alternatives.
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The Shannon entropy28 is a well‐established measure of uncertainty in classical PT. It is
defined, for a probability distribution p on X , in the following way:

∑S p p x p x( ) = ({ })log ( ({ })).
i

n

i i

=1

2 (5)

In classical possibility theory, the Hartley measure29 is known to be suitable to quantify
uncertainty. It is defined as follows:

∣ ∣ ∀ ⊆H A A A X( ) = log ( ), .2 (6)

The type of uncertainty captured by S is usually called conflict, while the one quantified by
H is known as non‐specificity.

Yager30 established that, in DST, both conflict and non‐specificity coexist; conflict appears
when the information is focused on disjunct sets, whereas non‐specificity appears when the
information is focused on sets with cardinality greater than 1. In consequence, both Shannon
entropy and Hartley measure must be properly extended to DST.

The Hartley measure was generalized to DST by Dubois and Prade.31 Such a generalization
is defined in the following way:

∑ ∣ ∣
∈

GH m m A A( ) = ( )log ( ).
A X℘( )

2 (7)

Several uncertainty measures were proposed for the generalization of the Shannon entropy
to DST. One of the most remarkable of them was the Dissonance measure,30 defined as follows:

∑
⊆

Diss m m A Pl A( ) = − ( )log ( ( )).
A X

m2 (8)

But none of the candidates proposed for the generalization of S satisfies all the crucial
properties for this type of measure in DST.

Afterward, a measure of total uncertainty in DST was proposed by Harmanec and Klir.12 It
consists of the maximum of entropy on the credal set associated with m m, ( ), defined in
Equation (3):

∈
S m S p*( ) = max { ( )}.

p m( )
(9)

This measure was established by Klir and Wierman10 as suitable to quantify uncertainty‐
based information in DST because it verifies a set of desirable properties.

Nonetheless, the algorithms proposed so far in References [12‐15] for the computation of S*
are very complex. Thus, alternative measures to S* have been introduced in the last years. For
instance, the Deng entropy was proposed in References [16,17]. It is determined by:

⎛
⎝⎜

⎞
⎠⎟∑

⊆
∣ ∣

E m m A
m A

( ) = − ( )log
( )

2 − 1
.d

A X
A2 (10)

However, as shown by Abellán,32 this function does not satisfy most of the essential mathe-
matical properties and presents some problematic behaviors. Modifications of the Deng entropy
were developed in References [33,34], but they also violate most of the crucial mathematical
properties for uncertainty measures in DST.35
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Some recent total uncertainty measures use the plausibility transformation,36,37 defined in
the following way:

∑
∀Pt x

Pl x

Pl x
i n( ) =

({ })

({ })
, = 1, 2, …, .i

m i

j

n
m j=1

(11)

A total uncertainty measure consisting of the sum of GH and the Shannon entropy of the
plausibility transformation was introduced by Jiroušek and Shenoy18:

∑H m Pt x Pt x GH m( ) = − ( )log ( ( )) + ( ).JS

i

n

i i

=1

2 (12)

Pan et al.,38 proposed a total uncertainty measure also based on the plausibility transfor-
mation. It is defined as follows:

∑
⊆

H m m A Pm A GH m( ) = − ( )log ( ( )) + ( ),PQ

A X

2 (13)

where ∑ ∀ ⊆
∈

Pm A Pt x A X( ) = ( ),
x A

.
We showed in Reference [21] that neither HJS nor HPQ satisfy all the required mathematical

properties and behaviors for uncertainty measures in DST.

2.2.1 | Uncertainty measures on belief intervals

Belief intervals have attracted considerable interest to quantify uncertainty‐based information in DST.
Let m be a BPA on X , and Belm and Plm its associated belief and plausibility functions,

respectively.
Let us consider the corresponding set of belief intervals for singletons:

 ∀Bel x Pl x i n= {[ ({ }), ({ })], = 1, …, }.m m i m i (14)

The set of belief intervals m has associated the following credal set21:

  ∈ ∣ ∈ ∀p X p x Bel x Pl x i n( ) = { ( ) ({ }) [ ({ }), ({ })], = 1, …, },m i m i m i (15)

where  X( ) is the set of all probability distributions on X .
As shown in References [21,27], this set of probability intervals is reachable, which means that,

∀i n= 1, …, , and ∀ ∈v Bel x Pl x{ ({ }), ({ })}i m i m i , there exists  ∈p ( )v mi
such that p x v({ }) =v i ii

.
We show below the total uncertainty measures proposed so far on m.

• The total uncertainty measure defined by Yang and Han in Reference [25] TUM I( )m , utilizes
the following distance measure for intervals:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥d a b a b

a b a b b a b a
([ , ], [ , ]) =

+

2
−

+

2
+
1

3

−

2
−

−

2
.I

1 1 2 2
1 1 2 2

2
1 1 2 2

2

(16)

Then, TUMI is defined as follows:

 ∑TUM
n

d Bel x Pl x( ) = 1 −
3

([ ({ }), ({ })], [0, 1]).I
m

i

n

I
m i m i

=1

(17)

MORAL‐GARCÍA AND ABELLÁN | 5



• In Reference [26], Xinyang, Fuyuan, and Yong developed a total uncertainty measure on
belief intervals to solve some drawbacks of the previous one. Such a measure employs the
following distance function for intervals:

d a b a b a a b b([ , ], [ , ]) = ( − ) + ( − ) .E
I

1 1 2 2 1 2
2

1 2
2 (18)

The uncertainty measure introduced by Xinyang, Fuyuan, and Yong is defined in the fol-
lowing way:

 ⎡⎣ ⎤⎦∑TUM d Bel x Pl x( ) = 1 − ([ ({ }), ({ })], [0, 1]) .E
I

m

i

n

E
I

m i m i

=1

(19)

• The total uncertainty measure proposed by Wang and Song in Reference [27] is defined as
follows:


⎡
⎣⎢

⎤
⎦⎥

∑SU
Bel x Pl x Bel x Pl x

Pl x Bel x

( ) = −
({ }) + ({ })

2
log

({ }) + ({ })

2

+
({ }) − ({ })

2
.

m

i

n
m i m i m i m i

m i m i

=1

2

(20)

• We proposed in Reference [21] a total uncertainty measure on belief intervals that consists of
the maximum of entropy on the credal set associated with the belief intervals:

 
 ∈

S S p*( ( )) = max ( ).m
p ( )m

(21)

2.2.2 | Properties and behaviors for total uncertainty measures on BPAs

According to the research carried out by Abellán and Masegosa in Reference [11], every total
uncertainty measure on BPAs TUM must verify the following mathematical properties:

1. Probabilistic consistency: If m is a BPA on X such that all its focal elements are sin-
gletons, then TUM must coincide with the Shannon entropy:

∑ ( )TUM m m x m x( ) = ({ })log { } .
i

n

i i

=1

2 (22)

2. Set consistency: Ifm is a BPA on X such thatm A( ) = 1 for some ⊆A X , then TUM must
collapse to the Hartley measure:

∣ ∣TUM m A( ) = log .2 (23)

3. Range: TUM must take values in n[0, log ( )]2 .
4. Subadditivity: Let X and Y be finite sets andm a BPA on the product space X Y× . Let ↓m X

and ↓m Y be the marginal BPAs of m on X and Y , respectively. Then, it must hold that:

≤ ↓ ↓TUM m TUM m TUM m( ) ( ) + ( ).X Y (24)
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5. Additivity: Let us suppose that m is a BPA on a product space X Y× , where X and Y

are finite sets. Let ↓m X and ↓m Y be the marginal BPAs of m on X and Y , respectively.
Let us assume that the marginal BPAs are not‐interactive, that is, m A B( × ) =

∀ ⊆ ⊆↓ ↓m A m B A X B Y( ) ( ) ,X Y , and m C( ) = 0 if ≠C A B× . Then, TUM must verify that:

↓ ↓TUM m TUM m TUM m( ) = ( ) + ( ).X Y (25)

6. Monotonicity: TUM has to highlight consistently a decrease or increase of uncertainty‐
based information. Formally, if m1 and m2 are two BPAs on X such that  ⊆m m1 2

, then it
must hold that:

≤TUM m TUM m( ) ( ).1 2 (26)

Abellán and Masegosa, in Reference [11], concluded that a total uncertainty measure on
BPAs TUM , in addition to these mathematical properties, must satisfy the following behavioral
requirements:

1. The complexity of the calculation of TUM must not be too high.
2. It has to be possible to decomposeTUM into two measures that respectively quantify conflict

and non‐specificity.
3. TUM has to be sensitive to changes in the BPA, directly or via its parts of conflict and non‐

specificity.
4. The extension of TUM to more general theories than DST must be possible.

3 | MATHEMATICAL PROPERTIES AND BEHAVIORAL
REQUIREMENTS OF TOTAL UNCERTAINTY MEASURES
ON BELIEF INTERVALS

We must take into account the following issues for a total uncertainty measure on the set of
belief intervals m, determined via Equation (14):

• When there is a single probability distribution compatible with this set of intervals, which
occurs if, and only if, ∀Bel x Pl x i n({ }) = ({ }) = 1, …,m i m i , then a total uncertainty measure
on m has to coincide with the well‐established uncertainty measure in PT, the Shannon
entropy.

• If it is only known that the information is focused on a single subset ⊆A X with ∣ ∣ ≥A 2, that
is, ∀ ∀ ∉Bel x i n Pl x x A({ }) = 0 = 1, …, , ({ }) = 0m i m i i and ∀ ∈Pl x x A({ }) = 1m i i , then a to-
tal uncertainty measure on m may have to coincide with the one established as appropriate
in classical possibility theory. Nevertheless, as pointed by Wang and Song in Reference [5], it
should be considered that the uncertainty in a classical set depends on its cardinality.
Consequently, in these cases, it is only crucial that a total uncertainty measure on m is an
increasing function of ∣ ∣A .

• In the study carried out by Abellán and Masegosa in Reference [11], it was established that
the range of a total uncertainty measure on BPAs has to be equal to n[0, log ]2 , as in PT.
However, this point is debatable since in DST there are more kinds of uncertainty than in PT
and, thus, arguments for a larger range might be reasonable. Nonetheless, a total uncertainty
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measure on m must be nonnegative. The value 0 must be reached if, and only if, the
information is focused on a singleton, that is, Bel x Pl x({ }) = ({ }) = 1m i m i for some
∈i n{1, …, } and ∀ ∈Bel x Pl x j n({ }) = ({ }) = 0 {1, …, }m j m j with ≠j i. It can be stated that it is

the only case in which there is no uncertainty. Furthermore, where there is an absolute lack
of information, that is, when Bel x({ }) = 0m i and ∀Pl x i n({ }) = 1 = 1, …,m i , a total un-
certainty measure on m must attain its maximum value.

• As happens with BPAs, a total uncertainty measure on m has to be consistent when an
increase or decrease of information is produced. In terms of belief intervals, the set of belief
intervals associated with a BPA m1,  ∀Bel x Pl x i n= {[ ({ }), ({ })], = 1, …, }m m i m i1 1 1

, involves
more uncertainty‐based information than the one corresponding to another BPA
 ∀m Bel x Pl x i n, = {[ ({ }), ({ })], = 1, …, }m m i m i2 2 2 2

, if

⊆ ∀Bel x Pl x Bel x Pl x i n[ ({ }), ({ })] [ ({ }), ({ })], = 1, …, .m i m i m i m i1 1 2 2
(27)

As we show in the following proposition, the condition given in Equation (27) is equivalent
to the fact that the set of probability distributions consistent with m1

is contained in the one
compatible with m2

.

Proposition 1. It holds that:

   ⊆ ⇔ ⊆ ∀Bel x Pl x Bel x Pl x i n( ) ( ) [ ({ }), ({ })] [ ({ }), ({ })], = 1, …, .m m m i m i m i m i1 2 1 1 2 2

Proof. Let us suppose that Bel x Bel x({ }) < ({ })m i m i1 2
, for some ∈i n{1, …, }. As m1

is
reachable,  ∃ ∈p ( )i m1

such that p x Bel x Bel x({ }) = ({ }) < ({ })i i m i m i1 2
, which implies

that  ∉p ( )i m2
.

Likewise, if Pl x Pl x({ }) > ({ })m i m i1 2
, then  ∃ ∈p ( )i m

′
1

such that p x({ }) =i i
′

Pl x Pl x({ }) > ({ })m i m i1 2
, and, thus,  ∉p ( )i m

′
2
.

In consequence, if    ⊆( ) ( )m m1 2
, then the condition given in Equation (27) must

be satisfied.
Let us assume now that

⊆ ∀Bel x Pl x Bel x Pl x i n[ ({ }), ({ })] [ ({ }), ({ })], = 1, …, .m i m i m i m i1 1 2 2

If  ∈p ( )m1
, then:

≤ ≤ ≤ ≤ ∀Bel x Bel x p x Pl x Pl x i n({ }) ({ }) ({ }) ({ }) ({ }), = 1, …, .m i m i i m i m i2 1 1 2

Hence,

≤ ≤ ∀Bel x p x Pl x i n({ }) ({ }) ({ }), = 1, …, ,m i i m i2 2

and we conclude that  ∈p ( )m2
. □

Deng and Jiang, in Reference [5], analyzed this requirement for total uncertainty measures
on belief intervals by utilizing the criterion established to decide whether a certain BPA m1
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contains the uncertainty‐based information involved by another one m2 : ≥Bel A Bel A( ) ( )m m1 2

and ≤ ∀ ⊆Pl A Pl A A X( ) ( ),m m1 2
. We may note that this condition is stronger than the one

imposed in Equation (27).
Let us suppose now that X x x= { , …, }n1 and Y y y= { , …, }n1 ′ are finite sets. Letm be a BPA

on the product space X Y× , and Belm and Plm the belief and plausibility functions asso-
ciated with m, respectively. Let us consider the set of belief intervals for singletons corre-
sponding to m:

 Bel x y Pl x y i n j n= {[ ( , ), ( , )], = 1, …, , = 1, …, ′}.m m i j m i j (28)

Let  ( )m denote the credal set consistent with m. Let us consider the lower and upper
probability functions corresponding to m, determined as follows:

 
   

∀ ⊆
∈ ∈

P A p A P A p A A X*( )( ) = min ( ), *( )( ) = max ( ), .m
p

m
p( ) ( )m m

(29)

In Reference [21], we defined the projections of the set of belief intervals corresponding to a
BPA defined on a product space on the marginal sets. Such a definition is based on the one
given in Reference [39] for probability intervals.

The set of belief intervals resulting from projecting m on X is defined in the following way:

  ∣ ∀↓ l u l P x Y u P x Y i n= {[ , ] = *( )( × ), = *( )( × ), = 1, 2, …, }.m
X

i i i m i i m i (30)

The definition of the projection of m on ↓Y , m
Y , is analogous.

For a total uncertainty measure on the belief intervals associated with a BPA defined on a
product space, it is important that, when it is projected in the marginal sets, the total un-
certainty does not decrease. This is related to the subadditivity property for total uncertainty
measures on BPAs. Nevertheless, if a total uncertainty measure is based on belief intervals, it is
much more coherent that this requirement is imposed through the projections of the intervals
rather than the ones of the BPA. We pointed this issue in Reference [21] for the total un-
certainty measure on belief intervals that we introduced in that work, where we also showed
via an example that the belief intervals of the marginal BPAs might not coincide with the
marginalization of the belief intervals.

Let  ↓( )m
X and  ↓( )m

Y denote the credal sets corresponding to ↓m
X and ↓m

Y , respectively. If
these credal sets are independent, then the value of a total uncertainty measure on m must

coincide with the sum of the total uncertainty values on ↓m
X and ↓m

y. This is associated with the
additivity property for total uncertainty measures on BPAs, but, again, it makes more sense to
consider the marginal belief intervals than the marginal BPAs.

For independence of credal sets, the concept of strong independence40 is commonly used in
the literature. According to this concept, there is independence under  ( )m if, and only if,

     ↓ ↓( )( ) ( )CH( ) = × ,m m
X

m
Y (31)

where CH denotes the convex hull.
Hence, a total uncertainty measure on  TUM, ( )m m , must satisfy the following mathe-

matical properties:

MORAL‐GARCÍA AND ABELLÁN | 9



1. Probabilistic consistency: When ∀Bel x Pl x i n TUM({ }) = ({ }) = 1, …, , ( )m i m i m has to
collapse to the Shannon entropy:

 ∑TUM Bel x Bel x( ) = − ({ })log ( ({ })).m

i

n

m i m i

=1

2 (32)

2. Generalized set consistency: If ∃ ⊆A X with ∣ ∣ ≥A 2 such that Bel x({ }) =m i

∀ ∀ ∉i n Pl x x A0 = 1, …, , ({ }) = 0m i i , and ∀ ∈Pl x x A({ }) = 1m i i , then TUM ( )m must take
the form:

 ∣ ∣TUM f A( ) = ( ),m (33)

being  →f : an increasing function.
3. Coherent range: TUM ( )m has to be non‐negative. It must hold that TUM ( ) =m

⇔ Bel x Pl x0 ({ }) = ({ }) = 1m i m i for some ∈i n{1, …, } and Bel x Pl x({ }) = ({ }) = 0m j m j

∀ ≠j n j i= 1, …, , .
The maximum value of TUM ( )m must be attained when Bel x({ }) = 0m i

and ∀Pl x i n({ }) = 1, = 1, …,m i .
4. Monotonicity: Letm1 andm2 be two BPAs on X whose respective sets of belief intervals are
m1

and m2
. If it holds that:

⊆ ∀Bel x Pl x Bel x Pl x i n[ ({ }), ({ })] [ ({ }), ({ })], = 1, …, ,m i m i m i m i1 1 2 2
(34)

then TUM must verify that:

 ≤TUM TUM( ) ( ).m m1 2
(35)

5. Subadditivity: Letm be a BPA on a product space X Y× and m its associated set of belief
intervals. Let us assume that ↓m

X and ↓m
Y are the projections of m on X and Y , respectively.

Then, TUM must satisfy:

  ≤ ↓ ↓( ) ( )TUM TUM TUM( ) + .m m
X

m
Y (36)

6. Additivity: Letm be a BPA on a product space X Y× and m its corresponding set of belief

intervals. Let ↓m
X and ↓m

Y be the projections of m on X and Y , respectively.

Let    ↓( )( ),m m
X , and  ↓( )m

Y denote the credal sets consistent with  ↓,m m
X ,

and ↓m
Y , respectively. If there is strong independence under  ( )m , that

is,      ↓ ↓( )( ) ( )CH( ) = ×m m
X

m
Y , then TUM must verify the following equality:

  ↓ ↓( ) ( )TUM TUM TUM( ) = + .m m
X

m
Y (37)

With total uncertainty measures on BPAs, in some cases, depending on the form of the
uncertainty measure, it makes more sense to consider the submultiplicativity and multi-
plicativity properties than subadditivity and additivity. Such properties, for total uncertainty
measures on belief intervals, are defined in the following way taking into account the definition
of additivity and subadditivity for this type of measures:
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Submultiplicativity: Letm be a BPA on a product space X Y× and m its associated set of
belief intervals. Let ↓m

X and ↓m
Y be the projections of m on X and Y , respectively. Then, TUM

must verify that:

  ≤ ↓ ↓( ) ( )TUM TUM TUM( ) × .m m
X

m
Y (38)

Multiplicativity: Letm be a BPA on a product space X Y× and m its corresponding set of

belief intervals. Let ↓m
X and ↓m

Y be the projections of m on X and Y , respectively. Let

   ↓( )( ),m m
X , and  ↓( )m

Y denote the credal sets associated with  ↓,m m
X , and ↓m

Y , respec-

tively. If there is strong independence under  ( )m , that is,      ↓ ↓( )( ) ( )CH( ) = ×m m
X

m
Y ,

then TUM must satisfy the following equality:

  ↓ ↓( ) ( )TUM TUM TUM( ) = × .m m
X

m
Y (39)

For total uncertainty measures on BPAs, submultiplicativity and multiplicativity are es-
sentially equivalent to subadditivity and additivity, as pointed by Yang et al.41

Regarding the behavioral requirements for total uncertainty measures on belief intervals,
the following points must be taken into consideration:

• As explained in References [19,21], belief intervals are easier to manage than BPAs to
represent uncertainty‐based information. So, uncertainty measures on belief intervals are,
generally, faster to calculate than uncertainty measures on BPAs. Even so, a total uncertainty
measure on belief intervals must not require a very complex calculation.

• When belief intervals are used to quantify uncertainty‐based information, conflict and
non‐specificity also coexist, as pointed by Wang and Song.27 Therefore, a total uncertainty
measure on belief intervals must not conceal both kinds of uncertainty, as happens with total
uncertainty measures on BPAs.
∘ On the one hand, according to Wang and Song,27 the non‐specificity of a certain belief
interval is measured via its span. But, indeed, it is wanted to measure the non‐specificity of
the whole set of belief intervals m. The non‐specificity value must be equal to 0 if, and
only if, there is a unique probability distribution consistent with the belief intervals, that is,

∀Bel x Pl x i n({ }) = ({ }) = 1, …,m i m i . The maximum value of non‐specificity must be at-
tained when all the probability distributions are compatible with the belief intervals,
which happens if, and only if, Bel x({ }) = 0m i and ∀Pl x i n({ }) = 1 = 1, …,m i . So, it makes
sense that the non‐specificity value of a total uncertainty measure on m indicates how
large is the set of probability distributions corresponding to m.

∘ On the other hand, the conflict of m represents the distribution of the belief and plau-
sibility values of the elements of X .27 Thus, the conflict value of a total uncertainty
measure on belief intervals should be related with the Shannon entropy. The maximum
value of conflict must be obtained when only the uniform probability distribution belongs
to  ( )m (in this case, there is no non‐specificity). If the plausibility value for an element of
X is equal to 1, then, due to the reachability of a set of belief intervals, the belief values for
the rest of the elements of X are equal to 0. In these situations, a degenerate probability
distribution is consistent with m, and it can be considered that there is no conflict; the
only type of uncertainty existing in these cases is non‐specificity, which depends on how
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large is  ( )m . Hence, it is logical that the conflict value of m coincides with the mini-
mum conflict value of all the probability distributions compatible with m.

• As happens with total uncertainty measures on BPAs, a total uncertainty measure on belief
intervals must be sensitive to changes in the belief intervals. It must be remarked that, if a
certain belief interval is widened (narrowed), then the non‐specificity value may increase
(decrease). In contrast, in these cases, the conflict value might decrease (increase). Conse-
quently, it makes sense that, when there are changes in the belief intervals, the total un-
certainty value keeps equal and the conflict and non‐specificity values vary. Hence, a total
uncertainty measure on belief intervals has to be sensitive to changes in the belief intervals,
directly or via its parts of conflict and non‐specificity.

• In the study carried out by Abellán and Masegosa,11 it was pointed that every total
uncertainty measure in DST must be extensible to more general theories. Nonetheless, in
most of the more general theories than DST, the evidence can be expressed via a lower
probability function, which always has associated an upper probability function (see
Reference [42], for more details). In consequence, in more general theories than DST, the
lower and upper probability values for singletons can be considered and, thus, the ex-
tension of a total uncertainty measure on belief intervals to more general theories than
DST is always possible.

Therefore, every total uncertainty measure on  TUM, ( )m m , must satisfy the following
behavioral requirements:

1. The calculation of TUM ( )m must not be too complex.
2. It has to be possible to decompose TUM ( )m into two measures that coherently indicate,

respectively, the conflict and non‐specificity values corresponding to m.
3. TUM ( )m must be sensitive to changes in the belief intervals, directly or through its com-

ponents of conflict and non‐specificity.

4 | ANALYSIS OF PROPERTIES AND BEHAVIORS FOR
TOTAL UNCERTAINTY MEASURES ON BELIEF
INTERVALS

Let X x x= { , …, }n1 be a finite set of possible alternatives. Let m be a BPA on X Bel, m the belief
function associated withm, and Plm its corresponding plausibility function. Let us consider the
set of belief intervals for singletons m, determined via Equation (14), and the credal set
consistent with it  ( )m , given by Equation (15).

In this section, we analyze which of the total uncertainty measures on belief intervals
proposed so far, described in Section 2.2.1, satisfy each one of the essential mathematical
properties for total uncertainty measures on belief intervals, exposed in Section 3.

• Probabilistic consistency: If ∀Bel x Pl x i n({ }) = ({ }) = 1, …,m i m i , it is easy to deduce that

both TUM ( )I
m and TUM ( )E

I
m may differ from the Shannon entropy. In constrast, in these

situations,  ∑SU Bel x Bel x( ) = − ({ })log ( ({ }))m i

n
m i m i=1 2 , i.e SU ( )m collapses to the Shannon

entropy. Clearly, in these cases,  I( )m contains a single probability distribution and S I*( ( ))m

coincides with the Shannon entropy.
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• Generalized set consistency: Let us suppose that ∃ ⊆A X such that Bel x({ }) =m i

∀ ∀ ∈i n Pl x x A0 = 1, …, , ({ }) = 1m i i , and ∀ ∉Pl x x A({ }) = 0m j j . For ∈x Ai , it holds that
d Bel x Pl x d([ ({ }), ({ })], [0, 1]) = ([0, 1], [0, 1]) = 0I

m i m i
I . For ∉x Ai , it is satisfied that

d Bel x Pl x d([ ({ }), ({ })], [0, 1]) = ([0, 0], [0, 1]) =I
m i m i

I 1

3
. Hence, in these scenarios,

 ∑ ⇒
∉

∣ ∣ ∣ ∣
TUM TUM( ) = 1 − 3 = 1 − =I

m n x A

A

n

A

n
I1 1

3i
satisfies generalized set con-

sistency.
In these cases,


⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∑

∑ ∑ ∑ ∣ ∣⇒
∈ ∉ ∈

SU
Bel x Pl x Bel x Pl x

Pl x Bel x

A

( ) = −
({ }) + ({ })

2
log

({ }) + ({ })

2

+
({ }) − ({ })

2

= −
1

2
log

1

2
+
1

2
+ 0 = 1 =

m

i

n
m i m i m i m i

m i m i

x A x A x A

=1

2

2

i i i

SU verifies the generalized set consistency property.

Concerning TUME
I , we have that, for ∈x A d Bel x Pl x d, ([ ({ }), ({ })], [0, 1]) = ([0, 1], [0, 1]) = 0i E

I
m i m i E

I .

For ∉x A d x Pl x d, ([({ }), ({ })], [0, 1]) = ([0, 0], [0, 1]) = 1i E
I

i m i
I .

Therefore,

 ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑

∑ ∑

∑ ∑ ∣ ∣

∈ ∉

∈ ∉

TUM d Bel x Pl x

d d

A

( ) = 1 − ([ ({ }), ({ })], [0, 1])

= 1 − ([0, 1], [0, 1]) + 1 − ([0, 0], [0, 1])

= 1 − 0 = ,

E
I

m

i

n

E
I

m i m i

x A

E
I

x A

E
I

x A x A

=1

i i

i i

which implies that TUME
I satisfies the generalized set consistency property.

We may observe that, in these cases, the probability distribution p̂ of maximum entropy,
among the ones belonging to  ( )m , is given by:

⎧
⎨⎪
⎩⎪
∣ ∣

∈

∉

p x A
if x A

if x A

ˆ ({ }) =

1

0
i

i

i

It holds that

 
⎛
⎝⎜

⎞
⎠⎟∑

∣ ∣ ∣ ∣
∣ ∣
∣ ∣

∣ ∣ ∣ ∣
∈

S S p
A A

A
A

A A*( ( )) = ( ˆ) = −
1
log

1
=

1
log ( ) = log ( ).m

x A

2 2 2

i

Since log2 is an increasing function, it is deduced that S* verifies generalized set consistency.
• Coherent range: The range of TUMI is equal to [0, 1].25 The minimum value of
d Bel x Pl x([ ({ }), ({ })], [0, 1])I

m i m i is reached when Bel x({ }) = 0m i and Pl x({ }) = 1m i . Such a
minimum value is equal to 0. In consequence, when Bel x({ }) = 0m i and

∀Pl x i n TUM({ }) = 1 = 1, …, ,m i
I attains its maximum value, which is equal to 1. The

maximum value of d Bel x Pl x([ ({ }), ({ })], [0, 1])I
m i m i is obtained when Bel x({ }) =m i

Pl x({ }) = 0m i or Bel x Pl x({ }) = ({ }) = 1m i m i . In both cases, such a value is equal to 3 .
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In this way, TUMI is equal to 0 if, and only if, Bel x Pl x({ }) = ({ }) = 1m i m i for some
∈i n{1, …, } and ∀ ∈ ⧹Bel x Pl x j n i({ }) = ({ }) = 0 {1, …, } { }m j m j .

It can be checked that ⇔d Bel x Pl x Bel x([ ({ }), ({ })], [0, 1]) = 0 ({ }) = 0E
I

m i m i m i and

Pl x({ }) = 1m i . Thus,TUME
I obtains its maximum value, which is equal to n, when Bel x({ }) = 0m i

and ∀Pl x i n({ }) = 1 = 1, …,m i . Now, d Bel x Pl x([ ({ }), ({ })], [0, 1]) = 1E
I

m i m i if, and only if

⇔Bel x Pl x Bel x Pl x( ({ })) + (1 − ({ })) = 1 ({ }) = ({ }) = 0m i m i m i m i
2 2 or Bel x({ }) =m i Pl x({ }) = 1m i .

So, TUME
I is equal to 0 if, and only if, ∃ ∈i n{1, …, } such that Bel x Pl x({ }) = ({ }) = 1m i m i and

∀ ∈ ⧹Bel x Pl x j n i({ }) = ({ }) = 0 {1, …, } { }m j m j . We may note that

⎛
⎝⎜

⎞
⎠⎟ ⇔

∨ ∀

Bel x Pl x Bel x Pl x

Bel x Pl x Bel x Pl x i n

({ }) + ({ })

2
log

({ }) + ({ })

2
= 0

({ }) = ({ }) = 0 ({ }) = ({ }) = 1, = 1, …, .

m i m i m i m i

m i m i m i m i

2

Therefore, SU is equal 0 if, and only if, ∃ ∈i n{1, …, } such that Bel x Pl x({ }) = ({ }) = 1m i m i

and ∀ ∈ ⧹Bel x Pl x j n i({ }) = ({ }) = 0 {1, …, } { }m j m j . The maximum value of Pl x Bel x({ }) − ({ })

2
m i m i is

attained when Bel x({ }) = 0m i and ∀Pl x i n({ }) = 1 = 1, …,m i . In these situations,

( )− log
Bel x Pl x Bel x Pl x({ }) + ({ })

2 2
({ }) + ({ })

2
m i m i m i m i also reaches its maximum value, ∀i n= 1, …, , and,

thus, the maximum value of SU is attained.
As we argued in Reference [21], the minimum value of  S*( ( ))m , which is equal to 0, is

obtained if, and only if,  ( )m just contains a degenerate probability distribution, which
happens if, and only if, Bel x Pl x({ }) = ({ }) = 1m i m i for some ∈i n{1, …, } and

∀ ∈ ≠Bel x Pl x j n j i({ }) = ({ }) = 0 {1, …, },m j m j . Furthermore, when all the probability dis-

tributions on X belong to  ( )m , that is, when Bel x({ }) = 0m i and
 ∀Pl x i n S({ }) = 1 = 1, …, , *( ( ))m i m attains its maximum value. Thus, the four total un-

certainty measures on belief intervals proposed so far have a coherent range.

• Monotonicity: Let m1 and m2 be two BPAs on X and m1
and m2

their respective sets of
belief intervals. Let us assume that

⊆ ∀Bel x Pl x Bel x Pl x i n[ ({ }), ({ })] [ ({ }), ({ })], = 1, …, .m i m i m i m i1 1 2 2
(40)

Deng and Jiang, in Reference [5], showed via counterexamples that, in these situations, it
does not always hold that  ≤SU SU( ) ( )m m1 2

nor that  ≤TUM TUM( ) ( )I
m

I
m1 2

. In con-
trast, they demonstrated that  ≤TUM TUM( ) ( )E

I
m E

I
m1 2

is always satisfied in these scenarios.
In these cases,    ⊆( ) ( )m m1 2

and, obviously,    ≤S S*( ( )) *( ( ))m m1 2
. Hence, TUME

I and
S* verify the monotonicity property, unlike TUMI and SU .

• Subadditivity/submultiplivativity and additivity/multiplicativity: Since a blog( × ) =

∀ ∈a b a blog( ) + log( ) , , for SU and S*, the subadditivity and additivity properties make
more sense than submultiplicativity and multiplicativity. In contrast, for the interval
distance‐based total uncertainty measures, the submultiplicativity and multiplicativity re-
quirements are more appropriate than subadditivity and additivity.41 The following example
shows that both TUMI and TUME

I violate the submultiplicativity property.

Example 1. Let X x x x= { , , }1 2 2 and Y y y= { , }1 2 be finite sets. We denote
∀z x y i j= ( , ), = 1, 2, 3, = 1, 2ij i j . Let us consider the following BPA m on the product

space X Y× :
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m z m X Y( ) = 0.8, ( × ) = 0.2.11

We have the following set of belief intervals for singletons m:

→

→

→

→

→

→

z

z

z

z

z

z

[0.8, 1],

[0, 0.2],

[0, 0.2],

[0, 0.2],

[0, 0.2],

[0, 0.2].

11

12

21

22

31

32

The marginal set of belief intervals on ↓X , m
X , is given by:

→

→

→

x

x

x

[0.8, 1],

[0, 0.2],

[0, 0.2].

1

2

3

The set of the projections of the belief intervals on ↓Y , m
Y , is the following one:

→

→

y

y

[0.8, 1],

[0, 0.2].
1

2

We have:













⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

↓

↓

↓

↓ ( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

TUM d d

TUM d d

TUM d d

TUM d d

TUM d d

TUM d d

( ) = 1 −
3

6
( ([0.8, 1], [0, 1]) + 5 × ([0, 0.2], [0, 1]))

= 1 −
3

6

0.8

3
+ 5 ×

0.8

3
= 0.2,

= 1 −
3

3
( ([0.8, 1], [0, 1]) + 2 × ([0, 0.4], [0, 1]))

= 1 −
3

3
×

0.8

3
+
2 × 0.6

3
=
1

3
,

= 1 −
3

2
( ([0.8, 1], [0, 1]) + ([0, 0.6], [0, 1]))

= 1 −
3

2
×

0.8

3
+

0.4

3
= 0.4,

( ) = 1 − ([0.8, 1], [0, 1]) + 5 × 1 − ([0, 0.2], [0, 1])

= (1 − 0.8) + 5 × (1 − 0.8) = 6 × 0.2 = 1.2,

= 1 − ([0.8, 1], [0, 1]) + 2 × 1 − ([0, 0.2], [0, 1])

(1 − 0.8) + 2 × (1 − 0.8) = 3 × 0.2 = 0.6,

= 1 − [0.8, 1], [0, 1] + 1 − [0, 0.2], [0, 1]

= 0.2 + 0.2 = 0.4.

I
m

I I

I
m
X I I

I
m
Y I I

E
I

m E
I

E
I

E
I

m
X

E
I

E
I

E
I

m
Y

E
I

E
I

Hence,
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  ↓ ↓( ) ( )TUM TUM TUM× =
0.4

3
< 0.2 = ( ).I

m
X I

m
Y I

m

  ↓ ↓( ) ( )TUM TUM TUM× = 0.24 < 1.2 = ( ).E
I

m
X

E
I

m
Y

E
I

m

In the following example, it is shown that TUMI and TUME
I do neither satisfy the multi-

plicativity property:

Example 2. Let us suppose that X x x x= { , , }1 2 2 and Y y y= { , }1 2 are finite sets and that
we have the following BPA m on X Y× :

m z m z m z({ }) =
1

3
, ({ }) =

1

3
, ({ }) =

1

3
,11 21 31

where ∀z x y i j= ( , ), = 1, 2, 3, = 1, 2ij i j . The set of belief intervals for singletons, m, is
given by:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

→

→

→

→

→

→

z

z

z

z

z

z

1

3
,
1

3
,

[0, 0],

1

3
,
1

3
,

[0, 0],

1

3
,
1

3
,

[0, 0].

11

12

21

22

31

32

Let ↓m
X and ↓m

Y denote the projections of m on X and Y , respectively. They are
determined by:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

→

→

→

→

→

x

x

x

y

y

1

3
,
1

3
,

1

3
,
1

3
,

1

3
,
1

3
,

[1, 1],

[0, 0],

1

2

3

1

2

It is easy to observe that, in this case,      ↓ ↓( )( ) ( )CH( ) = ×m m
X

m
Y . It

holds that:
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⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠⎟

↓

↓

↓

↓

( )

( )

( )

( )

( )

TUM d d

TUM d

TUM d d

TUM d d

TUM d

TUM d d

( ) = 1 −
3

6
3 ×

1

3
,
1

3
, [0, 1] + 3 × ([0, 0], [0, 1])

= 1 −
3

6
× 3 ×

1

6
+
(0.5)

3
+

3

3
= 0.3354,

= 1 −
3

3
3 ×

1

3
,
1

3
, [0, 1]

= 1 − 3 ×
1

6
+
(0.5)

3
= 0.6709,

= 1 −
3

2
( ([1, 1], [0, 1]) + ([0, 0], [0, 1]))

= 1 −
3

2
×

2

3
= 0.

( ) = 3 × 1 −
1

3
,
1

3
, [0, 1] + 3 × 1 − ([0, 0], [0, 1]) = 0.7639,

= 3 × 1 −
1

3
,
1

3
, [0, 1] = 0.7639,

= 1 − ([1, 1], [0, 1]) + 1 − ([0, 0], [0, 1]) = 0.

I
m

I I

I
m
X I

I
m
Y I I

E
I

m E
I

E
I

E
I

m
X

E
I

E
I

m
Y

E
I

E
I

2 2

2 2

Consequently,

  

  

≠

≠

↓ ↓

↓ ↓

( ) ( )
( ) ( )

TUM TUM TUM

TUM TUM TUM

× = 0.6709 × 0 = 0 0.3354 = ( ),

× = 0.7639 × 0 = 0 0.7639 = ( ).

I
m
X I

m
Y I

m

E
I

m
X

E
I

m
Y

E
I

m

The following example shows that SU does not satisfy the subadditivity requirement.

Example 3. Let X= x x x{ , , }1 2 3 and Y y y= { , }1 2 be finite sets and m the following BPA
on the product space X Y× :

m z z z z m z z m X Y( , , , ) = 0.7, ( , ) = 0.1, ( × ) = 0.2,11 12 21 22 31 32

where ∀z x y i j= ( , ), = 1, 2, 3, = 1, 2ij i j .
We have the following set of belief intervals for singletons m:

→

→

→

→

→

→

z

z

z

z

z

z

[0, 0.9],

[0, 0.9],

[0, 0.9],

[0, 0.9],

[0, 0.3],

[0, 0.3].

11

12

21

22

31

32

We consider the projections of the belief intervals on X and Y , which we denote ↓m
X

and ↓m
Y , respectively:
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→

→

→

→

→

x

x

x

y

y

[0, 1],

[0, 1],

[0, 0.6],

[0, 1],

[0, 1],

1

2

3

1

2

It holds that:







⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

↓

↓

( )

( )

SU

SU

SU

( ) = 4 × −
0.9

2
log

0.9

2
+

0.9

2
+ 2 × −

0.3

2
log

0.3

2
+

0.3

2
= 4.9947,

= 2 × −
1

2
log

1

2
+
1

2
− 0.3 log 0.3 = 2.5211,

= 2 × −
1

2
log

1

2
+
1

2
= 2.

m

m
X

m
Y

2 2

2 2

2

In this way:

  ↓ ↓( ) ( )SU SU SU( ) = 4.9947 > 4.5211 = 2.5211 + 2 = + .m m
X

m
Y

We show with an example below that SU does also not verify additivity.

Example 4. Let X x x x= { , , }1 2 3 and Y y y= { , }1 2 be finite sets. Let us suppose that we
have the following BPA m on the product space X Y× :

m X Y( × ) = 1.

We denote ∀z x y i j= ( , ) = 1, 2, 3, = 1, 2ij i j . The set of belief intervals for singletons, m,
is given by:

→

→

→

→

→

→

z

z

z

z

z

z

[0, 1],

[0, 1],

[0, 1],

[0, 1],

[0, 1],

[0, 1].

11

21

12

22

31

32

The projections of m on X and Y , which we denote ↓m
X and ↓m

Y , respectively, are the
following ones:

→

→

→

→

→

x

x

x

y

y

[0, 1],

[0, 1],

[0, 1],

[0, 1],

[0, 1],

1

2

3

1

2

It is obvious that, in this case,      ↓ ↓( )( ) ( )CH( ) = ×m m
X

m
Y . We have that:
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⎛
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⎞
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( )

( )
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SU

SU

( ) = 6 × −
1

2
log

1

2
+
1

2
= 6 × 1 = 6,

= 3 × −
1

2
log

1

2
+
1

2
= 3 × 1 = 3,

= 2 × −
1

2
log

1

2
+
1

2
= 2 × 1 = 2.

m

m
X

m
Y

2

2

2

Therefore,

  ≠ ↓ ↓( ) ( )SU SU SU( ) = 6 5 = + .m m
X

m
Y

We demonstrated in Reference [21] that S* verifies both subadditivity and additivity under
the definitions given here for such properties.

Concerning the behavioral requirements, we must remark the following issues:

• Once it is disposed of the belief intervals, the computation of TUM TUM,I E
I , and SU is direct.

The procedure that we presented in Reference [21] to calculate S* is not as direct as the
calculation of the other total uncertainty measures on belief intervals, although the com-
plexity is also not very high.

• So far, it has not been possible to decompose the total uncertainty measures that employ
distance functions of belief intervals, TUMI and TUME

I , into two measures that respectively
quantify conflict and non‐specificity.

In contrast, SU can be rewritten as follows:


⎛
⎝⎜

⎞
⎠⎟∑

∑

SU
Bel x Pl x Bel x Pl x

Pl x Bel x

( ) = −
({ }) + ({ })

2
log

({ }) + ({ })

2

+
({ }) − ({ })

2
.

m

i

n
m i m i m i m i

i

n
m i m i

=1

2

=1

The first term of the previous expression indicates conflict, whereas the second one corre-
sponds to non‐specificity. In fact, the second term is equal to 0 if, and only if,

∀Bel x Pl x i n({ }) = ({ }) = 1, …,m i m i (the span of all the belief intervals is equal to 0). Also,
the first term indicates how the belief and plausibility values for singletons are distributed.
However, when ∃ ∈i n{1, …, } such that Pl x({ }) = 1m i , the conflict value indicated by SU
might not be equal to 0. It is undesirable because, in these cases, there is no conflict in the
belief intervals, as argued in Section 3.

In Reference [21], we proposed the following decomposition for S*:

     S S S S*( ( )) = ( * − *)( ( )) + *( ( )),m m m (41)

where  S*( ( ))m is the minimum of entropy on  ( )m . The non‐specificity value of S* is
quantified by the first term of Equation (41). Indeed, it is equal to 0 if, and only if,  ( )m
contains a unique probability distribution, and  S S( * − *)( ( ))m attains its maximum value
when all the probability distributions on X belong to  ( )m .  S*( ( ))m captures the conflict
part of  S*( ( ))m . As we argued in Reference [21], S* reaches its minimum value, 0, when a
degenerate probability distribution belongs to  ( )m . Thus, the decomposition of S* into
conflict and non‐specificity measures is pretty logical.
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• It is easy to observe that the distance functions utilized in TUMI and TUME
I are sensitive

to changes in the belief and plausibility values. So, both uncertainty measures are
directly sensitive to changes in the belief intervals. Also, the values

( )− log
Bel x Pl x Bel x Pl x({ }) + ({ })

2 2
({ }) + ({ })

2
m i m i m i m i and Pl x Bel x({ }) − ({ })

2
m i m i may vary when the belief and

plausibility values for singletons change, ∀i n= 1, …, . In consequence, SU is sensitive to
changes in the belief intervals via its parts of conflict and non‐specificity. We showed in
Reference [21] that the value of  S*( ( ))m might not vary when changes in the belief
intervals are produced. Nevertheless, we illustrated that, in those situations, the conflict and
non‐specificity values vary even though the total uncertainty value keeps constant. There-
fore,  S*( ( ))m is sensitive to changes in the belief intervals via its parts of conflict and
non‐specificity, although not directly.

Table 1 summarizes the mathematical properties satisfied by the total uncertainty measures
on belief intervals developed so far. Likewise, Table 2 shows a summary of the behavioral
requirements of such measures.

We must remark the following issues about the mathematical properties:

• The four total uncertainty measures on belief intervals provide a logical result when it is only
known that the information is focused on a subset of the set of possible alternatives since all
of them verify generalized set consistency.

• The ranges of TUM TUM SU, ,I
E
I , and S* are all coherent.

• When the belief intervals are reduced to a single probability distribution, both SU and S*

obtain a logical result, which coincides with the well‐established uncertainty value for

TABLE 2 Summary of the behavioral requirements of the total uncertainty measures on belief intervals
proposed so far

Behavioral requirement TUMℐ TUME
ℐ SU S*

Complexity Low Low Low Medium

Separation No No Improvable Coherent

Sensitivity Yes Yes Yes Yes

TABLE 1 Summary of the mathematical properties satisfied by the total uncertainty measures on belief
intervals proposed so far

Property TUMℐ TUME
ℐ SU S*

Probabilistic consistency No No Yes Yes

Generalized set consistency Yes Yes Yes Yes

Coherent range Yes Yes Yes Yes

Monotonicity No Yes No Yes

Subadditivity/submultiplicativity No No No Yes

Additivity/multiplicativity No No No Yes
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probability distributions (the Shannon entropy). It does not occur with the total uncertainty
measures based on distance functions of intervals.

• Unlike TUMI and SU S, * and TUME
I are consistent when an increase or decrease of

uncertainty‐based information expressed via the belief intervals is produced (monotonicity
property).

• S* is the only uncertainty measure on belief intervals that verifies subadditivity and ad-
ditivity, which implies that it is the only one that produces coherent results when it is defined
over a set of belief intervals on a product space that can be decomposed into more sim-
ple sets.

• Consequently, only S* satisfies all the required mathematical properties for total uncertainty
measures on belief intervals.

Regarding the behavioral requirements, the following points are remarkable:

• The calculation of S* is a little bit more complex than TUM TUM,I E
I , and SU , although the

complexity is also not very high.
• Both SU and S* can be decomposed into two measures that respectively capture conflict and
non‐specificity, unlike the intervals distance‐based total uncertainty measures. The separa-
tion of SU is not as coherent as the one of S* since the conflict value of SU might not be
equal to 0 when the plausibility value for a singleton is equal to 1, which is not very logical.

• The four total uncertainty measures on belief intervals are sensitive to changes in the belief
intervals, directly or through their parts of conflict and non‐specificity.

Therefore, even though the computation of S* is a little bit more complex than the other
total uncertainty measures on belief intervals, S* is the only total uncertainty measure on belief
intervals so far that satisfies all the essential mathematical properties and behavioral require-
ments for this kind of measure.

5 | CONCLUSIONS

Belief intervals are easier to manage than BPAs to represent uncertainty‐based information in
DST. For this reason, they have recently received considerable attention for developing un-
certainty measures in DST. In this study, total uncertainty measures on belief intervals have
been considered.

On the one hand, we have carried out a study about the crucial mathematical properties
and behavioral requirements for total uncertainty measures on belief intervals. Such a study
has been based on the one previously carried out for total uncertainty measures on BPAs. It
has been highlighted that, when the belief intervals are reduced to a single probability
distribution, a total uncertainty measure on the belief intervals must coincide with the one
well‐established in classical PT, that is, the Shannon entropy; if it is only known that the
information expressed via the belief intervals is focused on a subset of possible alternatives,
then a total uncertainty measure must take the form of an increasing function with respect
to the cardinality of that subset; the range of a total uncertainty measure on belief intervals
must be coherent: the minimum value, which has to be equal to 0, must be attained if, and
only if, the information is focused on a singleton, and the maximum value when all the
probability distributions are consistent with the belief intervals; a total uncertainty measure
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on belief intervals has to be consistent with an increase or decrease of information ex-
pressed by the belief intervals; the values of a total uncertainty measure on a set of belief
intervals corresponding to a BPA defined over a joint space that can be decomposed into
more simple sets must be coherent. Our proposed set of behavioral requirements for total
uncertainty measures on belief intervals reveals that the computation of a measure of this
type must not be too complex; it has to be possible to separate a total uncertainty measure
on belief intervals into two ones that coherently indicate conflict and non‐specificity, re-
spectively; a total uncertainty measure on belief intervals has to be sensitive to changes in
the belief intervals, directly or via conflict and non‐specificity.

On the other hand, we have analyzed which of the essential mathematical properties
and behavioral requirements proposed in our study are satisfied by each one of the total
uncertainty measures on belief intervals proposed so far. We have shown that all of these
measures have a coherent range, and produce logical results when it is just known that the
information expressed through the belief intervals is focused on a subset of alternatives.
Nonetheless, the interval distance‐based total uncertainty measures may not coincide with
the Shannon entropy when a unique probability distribution is compatible with the belief
intervals, unlike the total uncertainty measure of Wang and Song (SU ) and the maximum of
entropy. One of the interval distance‐based total uncertainty measures and SU might not be
consistent with an increase or decrease of information expressed the belief intervals, while
the other total uncertainty measure based on intervals distance and the maximum of en-
tropy always coherently reflect that increase or decrease of information; the maximum of
entropy is the only total uncertainty measure so far that provides coherent results with
belief intervals associated with BPAs defined over joint spaces that can be decomposed into
more simple sets. The maximum of entropy is more complex to calculate than the other
total uncertainty measures on belief intervals developed so far, although the complexity is
also not very high. Furthermore, we have shown that SU and the maximum of entropy can
be separated into two measures that respectively quantify conflict and non‐specificity,
whereas, so far, it has not been possible to decompose the interval distance‐based total
uncertainty measures in this way. It must be remarked that the separation of the maximum
of entropy is more coherent than the one of SU since the conflict value of the second
measure is not always equal to 0 when the plausibility value of a certain singleton is equal
to 1, which is not desirable. Also, it has been argued that all the total uncertainty measures
on belief intervals proposed so far are sensitive to changes in the belief intervals, directly or
through its parts of conflict and non‐specificity.

Therefore, it can be concluded that, even though the maximum of entropy requires a higher
computational complexity than the other total uncertainty measures on belief intervals, it is the
most appropriate total uncertainty measure on belief intervals to be employed in practical
applications because it is the only one so far that satisfies all the necessary mathematical
properties and behavioral requirements for this kind of measure.

ENDNOTE
†A credal set is a closed and convex set of probability distributions.
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