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Abstract 

Context:  Bile acids (BA) are known for their role in intestinal lipid absorption and can 
also play a role as signaling molecules to control energy metabolism. Prior evidence 
suggests that alterations in circulating BA levels and in the pool of circulating BA are 
linked to an increased risk of obesity and a higher incidence of type 2 diabetes in middle-
aged adults.
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Objective: We aimed to investigate the association between plasma levels of BA with 
cardiometabolic risk factors in a cohort of well-phenotyped, relatively healthy young 
adults.
Methods:  Body composition, brown adipose tissue, serum classical cardiometabolic 
risk factors, and a set of 8 plasma BA (including glyco-conjugated forms) in 136 young 
adults (age 22.1 ± 2.2 years, 67% women) were measured.
Results:  Plasma levels of chenodeoxycholic acid (CDCA) and glycoursodeoxycholic acid 
(GUDCA) were higher in men than in women, although these differences disappeared after 
adjusting for body fat percentage. Furthermore, cholic acid (CA), CDCA, deoxycholic acid 
(DCA), and glycodeoxycholic acid (GDCA) levels were positively, yet weakly associated, 
with lean body mass (LBM) levels, while GDCA and glycolithocholic acid (GLCA) levels 
were negatively associated with 18F-fluorodeoxyglucose uptake by brown adipose 
tissue. Interestingly, glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), and 
GUDCA were positively associated with glucose and insulin serum levels, HOMA index, 
low-density lipoprotein cholesterol, tumor necrosis factor alpha, interleukin (IL)-2, and 
IL-8 levels, but negatively associated with high-density lipoprotein cholesterol, ApoA1, 
and adiponectin levels, yet these significant correlations partially disappeared after the 
inclusion of LBM as a confounder.
Conclusion:  Our findings indicate that plasma levels of BA might be sex dependent 
and are associated with cardiometabolic and inflammatory risk factors in young and 
relatively healthy adults.

Key Words: biomarkers, cardiometabolic risk, brown adipose tissue, dyslipidemia, insulin resistance

Obesity is a major health problem that increases the risk of 
cardiometabolic disorders such as dyslipidemia, insulin re-
sistance, hypertension, and diseases such as type 2 diabetes 
(T2D) and cardiovascular diseases (CVD) (1). Even though 
CVD usually manifests clinically at middle-age, its onset 
takes place in the first decades of life (2). In fact, the inci-
dence of CVD is worryingly increasing among the young 
population (2). Thus, early detection of alterations in the 
cardiometabolic profile of young individuals may allow the 
identification of high-risk individuals and treat them ad-
equately (3). For this reason, the discovery and implemen-
tation of novel predictive biomarkers may help in detecting 
the onset of (cardio)metabolic diseases, enabling early pre-
vention and intervention strategies (4).

Bile acids (BA) are synthesized in hepatocytes from chol-
esterol by enzymes of the cytochrome P450 family and can 
subsequently be conjugated with glycine (~75%) or taurine 
(~25%) to form primary BA that are secreted into the bile 
(5). Due to their emulsifying properties, BA support the 
intestinal absorption of dietary lipids and fat-soluble vita-
mins during the digestion process (6). Primary BA can be 
absorbed by enterocytes present in the ileum to be trans-
ported via the portal vein to hepatocytes (7). Alternatively, 
primary BA can be metabolized by gut microbiota to form 
secondary BA (8), which can be absorbed in the colon 
(7). The process in which primary and secondary BA are 

reabsorbed to again reach the liver is termed enterohepatic 
circulation. Primary and secondary BA also reach the sys-
temic circulation (9) from where they can reach peripheral 
tissues and organs and exert signaling functions to regulate 
glucose and lipid metabolism (10, 11) predominantly medi-
ated by nuclear and G protein-coupled receptors (GPCRs) 
(12).

Interestingly, several studies have shown significant dif-
ferences in BA amount between individuals, in particular, 
higher circulating BA levels in obese than in lean females 
(13), and between the sexes, namely, higher circulating BA 
levels in males than in females (13, 14). Several observa-
tional studies have shown that higher levels and alterations 
in the pool of circulating BA are linked to an increased risk 
of obesity and a higher incidence of T2D (15). On the con-
trary, it has been reported that lower serum levels of total 
BA were associated with higher presence and severity of 
coronary artery disease and myocardial infarction (16). 
Bearing that in mind, a recent meta-analysis concluded 
that circulating BA levels are not associated with adiposity 
but with higher fecal BA excretion (17). Some studies have 
shown a link between BA and altered glucose metabolism, 
with levels of some circulating BA being positively asso-
ciated with insulin resistance (18, 19). This observational 
evidence has led to interventions targeting BA metabolism 
through the use of BA sequestrants (20). Crucially, some 
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of the improvements in glucose metabolism observed 
after bariatric surgery in T2D individuals might be re-
lated to changes in the pool of circulating BA (21). Despite 
these findings, the relationship between plasma BA with 
cardiometabolic risk factors in young adults, a population 
where the incidence of CVD is rapidly increasing, remains 
to be elucidated.

In the present study, we aimed to investigate the associ-
ation between plasma levels of BA and cardiometabolic risk 
factors in a well-phenotyped cohort of relatively healthy 
young adults.

Methods

Study Population

This study was performed using baseline measurements 
from the ACTIBATE study that primarily aimed at 
investigating the effect of exercise on brown adipose tissue 
(BAT) activity (ClinicalTrials.gov ID: NCT02365129) (22). 
The study included 136 young healthy adults (45 male 
and 91 female participants), as shown in Table 1. All par-
ticipants were recruited via advertisements in electronic 
media and leaflets, and all gave their written informed be-
fore enrollment. The inclusion criteria were: age from 18 
to 25 years; being sedentary, that is, less than 20 minutes 
of moderate or vigorous physical activity on < 3  days/

week (self-reported); not smoking; stable body weight 
over the past 3 months (changes < 3 kg); not presenting 
any cardiometabolic disease (eg, hypertension or diabetes); 
not taking any medication that might affect cardiovascular 
function; having no history of cancer among first-degree 
relatives. The study protocol and design were approved by 
the Human Research Ethics Committee of the University of 
Granada (n°924) and the Servicio Andaluz de Salud, in ad-
herence with the Declaration of Helsinki (2013).

Cardiometabolic Risk Factors

Anthropometry and body composition
Waist circumference was measured in the minimum perim-
eter with a measuring tape (at 1-mm precision), at the end 
of a normal breath expiration, with the arms relaxed on 
both sides of the body. When the minimum perimeter could 
not be detected, such as in people who were overweight 
or obese, the measurements were taken just 2  cm above 
the umbilicus, following a horizontal plane. Body weight 
and height were measured using a SECA model 799 elec-
tronic column scale and a stadiometer (SECA, Hamburg, 
Germany). Lean body mass (LBM), body fat mass, and 
visceral adipose tissue were determined with a Hologic 
Discovery Wi dual-energy x-ray absorptiometer (DXA) 
(Hologic, Marlborough, MA, USA). Body mass index 

Table 1.  Age, anthropometry, body composition and cardiometabolic profile of the subjects included in the study (n = 136)

All (n) Mean SD Men (n) Mean SD Women (n) Mean SD P value (sex)

Age, y 136 22.1 2.2 45 22.3 2.3 91 21.9 2.2 0.319
ANTHROPOMETRY AND BODY COMPOSITION
Waist circumference, cm 130 81.0 13.8 43 89.9 15.2 87 76.5 10.5 <0.001
BMI, kg/m2 136 24.9 4.6 45 26.8 5.5 91 23.9 3.7 0.002
LBM, kg 136 41.8 9.7 45 52.8 7.2 91 36.3 5.0 <0.001
LMI, kg/m2 136 14.7 2.4 45 17.2 2.1 91 13.5 1.4 <0.001
FMI, kg/m2 136 8.8 3.0 45 8.1 3.6 91 9.1 2.7 0.094
Body fat mass, kg 136 24.7 8.8 45 24.8 11.0 91 24.6 7.5 0.884
Body fat percentage, % 136 35.5 7.6 45 29.7 7.6 91 38.3 5.9 <0.001
VAT mass, g 136 336 174 45 418 176 91 296 159 <0.001
CLINICAL PARAMETERS
Glucose, mg/dL 132 87.6 6.6 43 88.9 7.4 89 87.0 6.1 0.134
Insulin, μIU/mL 132 8.3 4.9 43 9.1 6.4 89 8.0 4.0 0.638
Total cholesterol, mg/dL 132 165 32 43 160 31 89 168 33 0.183
HDL-C, mg/dL 132 53 11 43 46 7 89 56 11 <0.001
LDL-C, mg/dL 132 96 25 43 97 26 89 96 25 0.990
Triglycerides, mg/dL 132 83 45 43 88 47 89 80 43 0.313
HOMA index 132 1.8 1.2 43 2.1 1.6 89 1.7 1.0 0.562
C-reactive protein, mg/L 132 2.4 3.4 43 2.1 2.3 89 2.5 3.8 0.937
Systolic pressure, mm Hg 134 117 12 44 125 11 90 113 10 <0.001
Diastolic pressure, mm Hg 134 70.9 7.6 44 72.2 9.2 90 70.3 6.7 0.185

Data are presented as mean and SD. P values are obtained from analyses of the variance after log10 transformation of all blood parameters.
Abbreviations: ATP III, National Cholesterol Education Program Adult Treatment Panel III; BMI, body mass index; FMI, fat mass index; HDL-C, high-density 
lipoprotein cholesterol; HOMA, homeostatic model assessment; LDL-C, low-density lipoprotein cholesterol; LMI, lean mass index; VAT, visceral adipose tissue.
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(BMI), lean mass index (LMI), and fat mass index (FMI) 
were calculated by dividing body weight, LBM, and body 
fat mass (in kg) by the square of the height (in cm), respect-
ively. Body fat percentage was calculated as the body fat 
mass divided by the total body mass and multiplied by 100.

Brown adipose tissue assessment
Activation of BAT was assessed after a personalized cooling 
protocol for each participant, carried out on 2 independent 
days and extensively described elsewhere (23). Briefly, par-
ticipants were first exposed for 30 minutes in a warm room 
to allow for acclimation, before the transfer to a mild-cold 
room. Participants then wore a cooling vest (Polar Products 
Inc., Stow, OH, USA) and the water temperature was slightly 
decreased until they reached a shivering state. After 48 to 
72 hours, the participants went to the hospital where they 
were exposed to the same cooling protocol for 2 hours at 
~4 ºC above their shivering threshold. After 1 hour of cold 
exposure, a bolus of ~185 MBq of 18F-fluorodeoxyglucose 
(18F-FDG) was injected, and a positron emission tomog-
raphy/computed tomography (PET/CT) scan (Siemens 
Biograph 16 PET/CT, Siemens Healthcare, Erlangen, 
Germany) was performed 2 hours later. The 18F-FDG-PET/
CT scans were analyzed using the open-source Beth Israel 
plugin for the FIJI program (24). The determination of BAT 
volume and 18F-FDG uptake was based on an individualized 
standardized uptake value (SUV) of [1.2/ (LBM/body mass)] 
(25), with a Hounsfield Unit range from −190 to −10. The 
BAT volume was determined as the number of pixels in this 
range with an SUV value above the SUV threshold. The BAT 
activity was determined as the mean SUV (SUVmean), that 
is, the mean quantity of 18F-FDG in the above same pixels, 
and the peak SUV (SUVpeak), that is, the mean of the 3 
highest 18F-FDG uptake values in 3 pixels within a volume 
of <1 cm3. BAT radiodensity was calculated as a proxy of 
the fat content (26). We also quantified the 18F-FDG uptake 
in the descending aorta (as reference tissue), subcutaneous 
white adipose tissue in the dorsocervical and tricipital areas, 
as well as in several skeletal muscles (paracervical, sterno-
cleidomastoid, scalene, longus colli, trapezius, parathoracic, 
supraspinatus, subscapular, deltoid, pectoralis major, and 
triceps braquis muscles at both the left and right sides of 
the body). Lastly, we grouped different skeletal muscles for 
these analyses as previously described (27).

Blood parameters
Blood samples were collected from the antecubital 
vein at baseline after at least 10 hours of fasting in the 
morning (8:00 to 9:00 am) (22). Samples were collected 
in Vacutainer Tubes and immediately centrifuged to ob-
tain serum (Vacutainer SST II Advance tubes) and plasma 
(Vacutainer Hemogard tubes, containing potassium salt of 

EDTA as an anticoagulant), of which aliquots were stored 
at −80 °C until analyses. Serum samples were used for the 
assessment of blood cardiovascular risk factors (except for 
leptin and adiponectin, which were determined in plasma), 
while plasma samples were used for BA quantitation. A de-
tailed description of all the parameter determinations is 
listed in the Supplementary Information (28).

Determination of Plasma Bile Acid Levels

Primary BA, namely, cholic acid (CA), chenodeoxycholic acid 
(CDCA), glycocholic acid (GCA), and glycochenodeoxycholic 
acid (GCDCA), as well as secondary BA, specifically, 
glycodeoxycholic acid (GDCA), deoxycholic acid (DCA), 
glycolithocholic acid (GLCA), and glycoursodeoxycholic 
acid (GUDCA), were assessed in plasma samples using a val-
idated liquid chromatography–tandem mass spectrometry 
(LC-MS/MS) method. Supplementary Table 1 (28) lists the 
targeted BA. Full description of BA determinations is listed 
in Supplementary Information (28).

Statistical Analysis

Categorical and continuous variables were used to describe 
the clinical characteristics of the study participants. Since 
plasma BA levels, serum cardiometabolic, and inflamma-
tory risk factors did not follow a normal distribution, we 
log10-transformed the variables to achieve normal distribu-
tion. We subsequently evaluated whether plasma BA levels 
were different between men and women using analyses of 
variance (ANOVA). Since body composition parameters 
differed between men and women, we next investigated 
whether observed sex differences in plasma BA levels per-
sisted after adjusting for body composition parameters 
using analyses of covariance (ANCOVA). Since the associ-
ation between plasma BA levels and cardiometabolic risk 
factors followed a similar direction in men and women 
separately (no statistical interaction, Supplementary Figure 
1) (28), these analyses were also performed including both 
sexes together (all P > 0.05). Pearson correlations between 
plasma BA levels with cardiometabolic and inflammatory 
risk factors were performed using R software (R Studio, 
Boston, MA, USA). Multiple linear regressions were con-
ducted to determine the association of plasma BA levels with 
cardiometabolic risk factors after adjusting for LBM and 
body fat percentage. BA correlation plots were built using 
the R package “corrplot”. Supplementary Figures 1 and 
2 (28) were built using the GraphPad Prism version 8.0.0 
for Windows (GraphPad Software, San Diego, California, 
USA). ANOVAs, ANCOVAs, and chi-square tests were per-
formed with SPSS (v. 22.0, IBM SPSS Statistics, IBM), with 
a level of significance set at P < 0.05.
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Results

The characteristics of the participants are shown in Table 
1. Compared with women (n = 91), men (n = 45) had lower 
body fat percentage (−23%), lower serum HDL-C (−18%), 
and higher SBP (+11%) (all P < 0.001, Table 1). We did 
not find significant differences in the other cardiometabolic 
parameters (all P ≥ 0.05, Table 1).

Plasma Levels of Chenodeoxycholic Acid and 
Glycoursodeoxycholic Acid Are Higher in Men 
Than in Women

Plasma BA levels were similar between men and women 
(Table 2), except for CDCA and GUDCA, which were higher 
in men (+40% and +31%, respectively). Based on the body 
composition differences observed between sexes (Table 1) 
and to explore to what extent the different body compo-
nents could be contributing to plasma levels of BA, we re-
peated these analyses including the BMI, LMI, and body 
fat mass as confounders, and the differences for CDCA and 
GUDCA persisted (data not shown). Intriguingly, the dif-
ferences in plasma CDCA and GUDCA levels between men 
and women only disappeared when adjusting for body fat 
percentage (P = 0.119 and P = 0.141, respectively, Table 2).

Plasma Levels of Bile Acids Are Positively 
Associated With the Amount of Lean Body Mass 
and Negatively Associated With Brown Adipose 
Tissue Levels

We found that plasma levels of CA, GCA, CDCA, GCDCA, 
DCA, and GDCA were positively correlated with LBM and 
LMI (0.17 ≤ r ≤ 0.20; P ≤ 0.049, Fig. 1), whereas only plasma 
levels of GUDCA were negatively correlated with body fat 
percentage (r = −0.22; P = 0.011, Fig. 1). It has been shown 

that a single dose of CDCA (15 mg/kg) increases human 
BAT 18F-FDG uptake (29), a thermogenic tissue associated 
with improved cardiometabolic health (30). In the present 
study, plasma levels of CDCA were not related to any BAT-
related outcomes (all P ≥ 0.05, Fig. 1), while plasma levels 
of GDCA and GLCA were negatively correlated with BAT 
volume (r = −0.23; P = 0.009 and r = −0.25; P = 0.003, 
respectively), BAT SUV mean (r  =  −0.22; P  =  0.012 and 
r  =  −0.26; P  =  0.003, respectively) and BAT SUV peak 
(r = −0.17; P = 0.048 and r = −0.21; P = 0.017, respect-
ively), but not with BAT radiodensity (all P  ≥  0.05; Fig. 
1). We studied the correlation between plasma levels of 
BA with 18F-FDG uptake by other tissues (Supplementary 
Figure 2) (28). No associations were found between plasma 
BA levels and 18F-FDG uptake by skeletal muscle, subcuta-
neous adipose tissue at the dorsocervical or tricipital areas, 
or descending aorta as reference tissue (Supplementary 
Figure 2) (28), suggesting that plasma levels of GDCA and 
GLCA are solely related to BAT 18F-FDG uptake.

The Association of Plasma Levels of Bile Acids 
With Cardiometabolic and Inflammatory Risk 
Factors Partially Disappear When Adjusting for 
Lean Body Mass

We found that plasma levels of GCA and GCDCA were 
positively correlated with the concentration of serum al-
kaline phosphatase, glucose, and insulin, as well as the 
HOMA index (0.17  ≤  r  ≤  0.26; P  <  0.05, Fig. 2), while 
only plasma levels of GUDCA were positively correlated 
with serum glucose levels (r  =  0.19; P  =  0.031, Fig. 2). 
On the other hand, plasma levels of GCA, GCDCA, and 
GUDCA were negatively correlated with the serum HDL-C 
and ApoA1 levels (−0.34  ≤  r  ≤  −0.20; P  <  0.05, Fig. 2). 
Furthermore, plasma levels of GCA and GCDCA were 

Table 2.  Comparison of plasma levels of primary and secondary bile acids between men and women (n = 133)

Men (n=43) Women (n=90) P P1

Bile Acid Mean SD Mean SD

PRIMARY (CA) CA 36.5 61.7 23.5 40.8 0.131 0.255
 GCA 2.8 3.3 2.0 1.9 0.136 0.230
SECONDARY (CA) DCA 21.7 18.2 16.9 19.2 0.075 0.221
 GDCA 3.0 2.4 2.0 2.1 0.067 0.288
PRIMARY (CDCA) CDCA 0.7 0.9 0.5 0.7 0.039 0.119
 GCDCA 7.3 5.4 5.4 3.8 0.072 0.303
SECONDARY (CDCA) GLCA 5.1 4.6 4.6 4.3 0.374 0.976

GUDCA 21.3 17.1 16.2 20.3 0.010 0.141

Data are presented as mean and SD. P values are derived from analyses of variance (ANOVA). P1 values are derived from the analyses of covariance adjusting for 
body fat percentage. Plasma bile acids levels were log10 transformed.
Abbreviations: CA, cholic acid; GCA, glycocholic acid; CDCA, chenodeoxycholic acid; glycochenodeoxycholic acid. DCA, deoxycholic acid; GDCA, 
glycodeoxycholic acid, GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid.
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negatively correlated with plasma levels of adiponectin 
(r = −0.21; P = 0.018 and r = −0.18; P = 0.045, respectively, 
Fig. 2). Additionally, we also found that plasma levels of 
GCA were positively correlated with plasma levels of the 
pro-inflammatory cytokines interleukin (IL)-8 and tumor 
necrosis factor alpha (r  = 0.23; P = 0.015 and r  = 0.21; 
P = 0.027), whereas the plasma levels of GDCA were posi-
tively related with IL-2 and IL-8 (r = 0.22; P = 0.025 and 
r = 0.21; P = 0.048) (Figure S3) (28). Since circulating BA 
are weakly correlated with LBM in this cohort (Fig. 1), we 
performed a sensitivity analysis, which showed that most of 
the significant correlations between plasma BA levels and 
cardiometabolic risk factors disappeared after adjusting 
for LBM (Table S2) (28), while all significant correlations 
remained when body fat percentage was included in the 
model. The correlations between plasma levels of BA and 
the inflammatory risk factors persisted after adjusting for 
LBM and body fat percentage (data not shown)

Discussion

Here, we aimed to investigate whether plasma levels 
of BA were related to cardiometabolic risk factors in a 

well-phenotyped cohort of relatively healthy young adults. 
The findings indicate that CDCA and GUDCA levels were 
higher in men than in women, but these differences dis-
appeared after adjusting for body fat percentage. We also 
observed that plasma BA levels were not related to adi-
posity; however, CA, CDCA, DCA, and GDCA levels were 
positively related to LBM. Furthermore, levels of GDCA 
and GLCA were negatively related to 18F-FDG-uptake by 
BAT. Interestingly, plasma levels of GCA, GCDCA, and 
GUDCA were weakly related to adverse cardiometabolic 
and inflammatory profiles, albeit these associations par-
tially disappeared when LBM was included as a confounder 
in the model.

Plasma levels of CDCA and GUDCA were higher in 
men than in women, which is in concurrence with other 
studies (13, 14). A study that included individuals with a 
wide age range (20-70 years) showed that men had higher 

Figure 2.  Correlations between plasma levels of bile acids concen-
trations with cardiometabolic risk factors in young adults (n  =  133). 
Every colored box represents a significant correlation coefficient (all 
P < 0.05), whereas invisible (white) boxes represent nonsignificant cor-
relations. Values within the boxes represent the r of Pearson coefficient. 
All blood parameters were log10 transformed. Abbreviations: ALP, al-
kaline phosphatase; ApoA1, apolipoprotein A1; ApoB, apolipoprotein 
B; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic 
acid; GCA, glycocholic acid; GCDCA glycochenodeoxycholic acid; 
GDCA, glycodeoxycholic acid; GGT, gamma-glutamyl transferase; 
GLCA, glycolithocholic acid; GTP, phosphoglycerate kinase; GUDCA, 
glycoursodeoxycholic acid; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol.

Figure 1.  Correlations between plasma levels of bile acids with body 
composition and brown adipose tissue parameters in young adults 
(n  =  133). Every colored box represents a significant correlation co-
efficient (all P  <  0.05), whereas invisible (white) boxes represent 
nonsignificant correlations. Values within the boxes express the r of 
Pearson coefficient. Bile acids concentration values were log10 trans-
formed. Abbreviations: BAT, brown adipose tissue; CA, cholic acid; 
CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic 
acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic 
acid; GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; 
SUV, standardized uptake value.
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serum concentrations of CA, CDCA, UDCA, and GUDCA 
than women (13), while another study in older adults (53 ± 
15  years) found that serum CA and CDCA levels were 
higher in men than women (14). In our study, the differ-
ences in plasma levels of CDCA and GUDCA disappeared 
when adjusting for body fat percentage. However, none of 
the aforementioned studies considered the differences in 
body fat composition between men and women in their 
analyses. Several possible hypotheses have been proposed 
to explain the higher BA levels in men compared to women, 
such as differences in (i) sex hormone levels (eg, estrogen 
and progesterone); (ii) medication (eg, statins); (iii) total 
cholesterol levels; or (iv) body fat distribution (13). Of spe-
cial interest are the differences in levels of estrogen and 
progesterone in women, as their circulating levels exhibit 
significant variations during the premenopausal, meno-
pause, and postmenopausal stages (31). Since the group of 
women included in the aforementioned studies significantly 
differed in menopause stages (13, 14), our results might be 
not comparable to cohorts with women within different 
menopause stages. Future studies should include estrogen 
and progesterone as potential confounders in their ana-
lyses, as well as other factors that can have an impact on 
them (eg, the use of contraceptive pills (32)). Furthermore, 
it is well known that the body fat distribution between men 
and women is different. Women generally have a larger 
body fat percentage as they are more likely to accumulate 
fat subcutaneously and on their lower extremities than men 
(33). Ideally, to study whether plasma levels of BA are dif-
ferent between men and women, both groups should be 
matched in terms of body fat composition, which was not 
the case (Table 1) in our study. Therefore, we adjusted the 
analysis for body composition outcomes (ie, BMI, LBM, 
and body fat percentage), which showed that body fat per-
centage could be partially explaining the differences ob-
served in plasma levels of CDCA and GUDCA between 
men and women.

We observed that plasma levels of BA were not related 
to adiposity levels (Fig. 1). Accordingly, a recent meta-
analysis, including 42 studies in humans, concluded that 
there are no significant differences in serum or plasma 
BA levels between obese and lean individuals. This meta-
analysis study demonstrated that BA excretion in the 
feces was higher in obese individuals, suggesting that BA 
removal and/or production was higher upon obesity con-
ditions (17). Therefore, future studies should include the 
measurement of BA both in blood and feces to allow the 
estimation of BA removal.

In this study, we found that plasma levels of CDCA 
and CA were not related to BAT, whereas plasma levels of 
GDCA and GLCA were negatively correlated with BAT. 
Preclinical studies have shown a link between BA and BAT 

activation, but findings were controversial (29, 34-36). 
Injection of CA in mice increased energy expenditure via 
the BA receptor Takeda G-protein receptor 5 (TGR5) pre-
sent in BAT and skeletal muscle (34). Another study showed 
that the cardiometabolic benefits of the injection of CA 
were independent of BAT activation in diet-induced obese 
mice (35). Alternatively, mice fed with CDCA showed an 
increase in the uncoupling protein 1 (UCP1) gene expres-
sion levels in BAT, the molecular hallmark of BAT activity 
(36). A human study showed that the injection of CDCA 
(15 mg/kg) for 2 days increased BAT 18F-FDG uptake and 
energy expenditure in women (29), suggesting that CDCA 
injection enhances human cardiometabolic health via BAT 
activation. However, most of the studies that investigated 
the effect of BA on BAT metabolism used oral adminis-
tration of BA (34-36), making the comparison between 
those findings and the findings of the current study impos-
sible. Whether there exists a link between circulating CA, 
CDCA, GDCA, and GLCA and BAT activity at baseline 
conditions (which probably will differ from the response 
to a BA acute administration) remains to be further ex-
plored in humans.

Our results reveal that plasma levels of BA (GCA and 
GCDCA) are related to an adverse cardiometabolic and 
inflammatory profiles. However, when LBM was included 
as a confounder, many of these associations disappeared. 
Plasma levels of CA, DCA, and CDCA have been reported 
to be positively associated with homeostatic model assess-
ment (HOMA) index and insulin levels in T2D patients (18). 
Similar to our study, plasma GCA, GDCA, and GUDCA 
levels were positively associated with HOMA index in a 
cohort of healthy adults (19). Additionally, it is known 
that BA can act as pro-inflammatory molecules when they 
are dysregulated (37) and can drive the expression of pro-
inflammatory genes in hepatocytes (38), although this phe-
nomenon should be further investigated. Curiously, none of 
these studies investigated whether those significant correl-
ations were independent of body composition parameters. 
Preclinical studies have shown that BA can modulate in-
sulin secretion, glucose homeostasis, and immune response 
via activation of the TGR5 and the farnesoid X receptor 
(FXR) (34, 39), supporting that the activation of these re-
ceptors by BA may be a possible therapy for combating 
cardiometabolic diseases. Additionally, our results suggest 
that the relationship of GCA and GCDCA with an adverse 
cardiometabolic profile could be driven by LBM. Since 
skeletal muscle represents approximately 40% of the total 
body mass in humans and is linked to lower insulin resist-
ance (40) and expresses both FXR and TGR5 receptors 
(41), further research is needed to understand the physio-
logical relevance of this association between plasma levels 
of BA and LBM.
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Limitations

Our study suffers from an inherent limitation of a 
cross-sectional design and, thus, no causality can be es-
tablished. The study population included young and rela-
tively healthy adults; therefore, these findings may not 
be extrapolatable to even younger, older, or unhealthy 
people. We did not measure estrogen or progesterone levels 
in women, nor did we register whether they were taking 
contraception pills. Moreover, we only analyzed glycine-
conjugated BA but not taurine-conjugated BA. Additionally, 
the 18F-FDG-PET/CT scan was static (a limitation in the es-
timation of cold-induced BAT metabolic activity (42)), and 
while 18F-FDG uptake is the most commonly used method, 
it also suffers from limitations in the assessment of BAT 
metabolic activity (43).

Conclusion

Our study reveals that plasma levels of BA might be sex de-
pendent. Moreover, the findings indicate that plasma levels 
of BA are associated with cardiometabolic and inflamma-
tory risk factors in young and relatively healthy adults. 
Further prospective studies are needed to confirm these re-
sults and to unveil the putative role of circulating BA in the 
onset and development of cardiometabolic diseases.
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