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Abstract 

Objectives:  This study compares methods for handling missing data to conduct cost-effectiveness analysis in the 
context of a clinical study.

Methods:  Patients in the Early Endovenous Ablation in Venous Ulceration (EVRA) trial had between 1 year and 
5.5 years (median 3 years) of follow-up under early or deferred endovenous ablation. This study compares complete-
case-analysis (CCA), multiple imputation using linear regression (MILR) and using predictive mean matching (MIPMM), 
Bayesian parametric approach using the R package missingHE (BPA), repeated measures fixed effect (RMFE) and 
repeated measures mixed model (RMM). The outcomes were total mean costs and total mean quality-adjusted life 
years (QALYs) at different time horizons (1 year, 3 years and 5 years).

Results:  All methods found no statistically significant difference in cost at the 5% level in all time horizons, and all 
methods found statistically significantly greater mean QALY at year 1. By year 3, only BPA showed a statistically signifi-
cant difference in QALY between treatments. Standard errors differed substantially between the methods employed.

Conclusion:  CCA can be biased if data are MAR and is wasteful of the data. Hence the results for CCA are likely to be 
inaccurate. Other methods coincide in suggesting that early intervention is cost-effective at a threshold of £30,000 
per QALY 1, 3 and 5 years. However, the variation in the results across the methods does generate some addi-
tional methodological uncertainty, underlining the importance of conducting sensitivity analyses using alternative 
approaches.

Keywords:  Longitudinal missing outcome, Repeated measure, Mixed model, Fixed effect, Multiple imputation, 
Complete-case-analysis, Bayesian parametric approach, Cost-effectiveness analysis
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Introduction
Missing data occurs when one or all variables are miss-
ing for a given subject. This often occurs in longitudinal 
studies and can particularly be a problem in within-study 
cost-effectiveness analysis (CEA) because accurate esti-
mates of total mean cost and quality-adjusted life years 

require full data to be collected on each subject at each 
follow-up time point [1–3].

This study compares six different methods for han-
dling missing data in a cost-effectiveness analysis 
comparing early endovenous ablation versus delayed 
ablation for venous leg ulcer treatment [4]. The original 
cost-effectiveness analysis employed a repeated meas-
ure mixed model (RMM), and reported mean total cost 
of −  £155 (95% CI −  £1262 to £953) and mean total 
QALY of 0.073 (95% CI −  0.06 to 0.20) at 3  years [4]. 
RMM has been shown to have acceptable properties 
in simulation studies [5]. However, as missing data are 
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always unknown, it is recommended to conduct sen-
sitivity analyses to see how robust the results are to 
alternative methods, and this is the primary aim of this 
paper [1]. This work is unable to demonstrate which 
approach is “correct” because we do not know the val-
ues of the missing data. Nevertheless, this paper pro-
vides an interesting case study of “revisional research” 
in health economics [6], in which the original findings 
are challenged by employing more extensive methods 
to assess modelling uncertainty. The methods out-
lined in this paper may also be useful more generally 
to investigators wishing to explore the different ways 
that missing data approaches can be implemented with 
standard statistical software (STATA or R).

Due to the design of the trial, there was very low loss 
to follow-up, but considerable item missingness (see 
“Methods”: “Data”). There are several ways in which 
the chosen missing data approach might influence the 
results: different subjects used in the analysis, differ-
ent number of observations used per subject, different 
statistical models of the missing data mechanism and 
the latent correlation between observed and missing 
observations, or different estimation model to esti-
mate total mean costs and QALYs and the correlation 
between them [7, 8]. This paper addresses this chal-
lenge using six alternative methods: complete case-
analysis (CCA) [9–11], multiple imputation by linear 
regression (MILR), multiple imputation by predic-
tive mean matching (MIPMM) [9, 11–13], repeated 
measure mixed model (RMM) also known as random 
effect, repeated measure fixed effect (RMFE) [14], and a 
Bayesian parametric approach (BPA) using the selec-
tion model in the R package missingHE [15]. All 
methods assume data are Missing Completely at Ran-
dom, given covariates (CD-MCAR) or Missing at Ran-
dom (MAR). Under CD-MCAR, the probability that 
data are missing only depends on observed baseline 
covariates, and under MAR, the probability depends 
only on values of observed outcome data and baseline 
covariates [1]. The package missingHE also provides 
models to explore missing not at random (MNAR) situ-
ations but this is not considered here [5]. Results are 
estimated over different time horizons (and hence with 
different quantities of missing data) of 1, 3 and 5 years. 
In each case we calculate the mean incremental total 
cost and QALY, standard errors, the incremental cost-
effectiveness ratio (ICER) and the cost-effectiveness 
acceptability curve (CEAC). The focus in this paper is 
on alternative statistical methods for handling miss-
ing data. We do not explore other sources of modelling 
uncertainty, such as use of different sets of covariates to 
make predictions or alternative statistical distributions 
of dependent variables [16, 17].

Methods
Data
The Early Endovenous Ablation in Venous Ulceration 
(EVRA) randomised clinical trial evaluated the cost-
effectiveness of early versus deferred endovenous abla-
tion to treat venous leg ulcers. The trial methods and 
patients are described elsewhere [4]. Briefly, resource use 
items in hospital, primary and community care and med-
ications related to the treatment of venous ulceration, 
adverse events or complications were collected by case 
note review and questionnaires completed at baseline 
and monthly thereafter up to 1 year, plus one further tele-
phone follow up between October 2018 and March 2019.

The baseline covariates included in all the estimation 
models were: TREAT is treatment randomised (“early” 
coded as 1 or “delayed” coded as zero). The variable  
WEEKt is the time variable (coded as a set of categorical 
(dummy or factor) variables) representing the week after 
randomisation at which data are observed, from t = 0 
(baseline) to t = 16 (week 260). SIZE, AGE and DURA-
TION are the ulcer size (cm2), subject’s age (years) and 
length of time with ulcer (years), respectively, measured 
at baseline and centred at the means. SITE was coded as 
a factor variable.

Each item of resource use was multiplied by UK unit 
costs obtained from published literature, NHS reference 
costs, and manufacturers’ list prices to calculate overall 
costs within each of these categories for each patient [4]. 
The costs for each individual over their follow-up (from 
randomization to date of censoring for that individual) 
were assigned or apportioned into discrete time periods, 
that corresponded to 12 monthly periods during the first 
year (as follow-ups were monthly) and then yearly peri-
ods thereafter. This allowed discounting to be applied 
(3.5% per year), and facilitated analysis using the MI and 
mixed model in long format (see below).

EQ-5D-5L was collected at baseline, 6 weeks, 6 months, 
12 months, plus one further telephone follow up between 
October 2018 and March 2019, and a utility index was 
calculated at each time point using a published tariff [18]. 
SF-36 was also administered but only up to 1 year, so was 
not used in this paper.

Patients who died during the study were assigned zero 
costs and HRQOL thereafter. Code and example data are 
available in Additional file 1, http://​dx.​doi.​org/​10.​17632/​
j8fmd​wd4jp.6.

Missing data
Due to rigorous trial design and conduct procedures [19], 
there were very few withdrawals or failures to complete 
questionnaires as planned in the study (see Additional 
file  1: Table  S5). Nevertheless, data are incomplete in 
this study for two reasons. First, recruitment of the 450 
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patients into the clinical study across the 20 vascular 
centres took place between October 2013 and Septem-
ber 2016. The study finalised on March 2019. This “stag-
gered” recruitment into the trial meant that patients had 
a minimum of 1  years of follow-up and a maximum of 
5.5 years (median 3 years).

Second, all patients had regular and periodically sched-
uled follow-up during the first year after recruitment, 
but to keep the cost of the research study low, only one 
further telephone follow-up per patient was conducted. 
This took place between October 2018 and March 2019. 
Figure 1 shows how this study design influences the miss-
ing data pattern. A patient recruited in 2014 will have 
complete follow-up during the first year, missing data at 
years 2, 3 and 4, and one follow-up at 5 years (patient A). 
A patient recruited in 2015 will have complete follow-
up during the first year, missing data at years 2 and 3, 
one follow-up at year 4, and missing data for year 5. A 
patient recruited in 2016 (patient C) will have complete 
follow-up during the first year, missing data at year 2, 
one follow-up at year 3, and missing data for years 4 and 
5. This mainly affected collection of EQ-5D, because in 
the absence of telephone questionnaire data, most types 
of resource use and clinical outcomes could be obtained 
from case-notes.

The pattern of missingness was examined using 
descriptive statistics and via the linear logistic model of 
indicators of missing cost and EQ-5D data on treatment 
allocation and a selection of baseline variables (Eq. 1) [1].

(1)
logit(πit) =γ1TREATi + γ2DURATIONi

+ γ3AGEi + γ4SIZEi

+ γ5Sitei + γ6WEEKt

where π denotes the probability that an observation is 
missing in individual i at time t.

Cost-effectiveness analysis was conducted using 
aggregated data—CCA and BPA—and disaggregated 
(longitudinal) data—MI, RMM and RMFE. Table  1 
summarises the approaches. Further details are also 
given in Additional file 1

Repeated measure: mixed model and fixed effect
The effects of the events on the HRQOL and costs were 
computed using repeated measures regression model 
with the differences between subjects ( ςi ) modelled as 
a random effect (RMM) or fixed effects (RMFE) (Eq. 2). 
The RMFE method eliminates unobserved time-invar-
iant confounders without imposing any additional 
assumptions on ςi . The RMM method assumes that 
unobserved heterogeneity ςi is not correlated with 
other controls [20].

Yit is the outcome variable (one model for costs dur-
ing each period t and another for EQ-5D tariff at the 
end of each period t) for each subject i at time point 
t. Hence for the model where the dependent variable 
is cost, Yi0 is set to be zero for all subjects, Yi1 is the 
cost for patient i during the first 4 weeks Yi2 is the cost 
between the 4th and the 8th week, and so on up to Yi12 
(week 52). After that, the periods are set to be yearly, 
so that Yi13 is the cost between week 52 and week 104 

(2)

Yit =β0 + β1TREATi + β2DURATIONi

+ β3AGEi + β4SIZEi + β5Sitei

+β6WEEKt + δTREATi

∗WEEKt + ςi + ǫit

A

B

C

Time-window within which final 
follow-up was taken

Censoring date

20142013 2015 2016 2017 2018 2019

Fig. 1  Schematic relation between recruitment date and missing data pattern for 3 hypothetical patients
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(year 2), and so on up to Yi16 (year 5 or week 260). ςi 
is the random deviation of subject i’s mean costs or 
EQ-5D tariff from the overall mean β0 and ǫit , often 
called within-subject residual across time, is the ran-
dom deviation of Yit from subject i’s mean costs or 
EQ-5D tariff [21, 22]. Yi is the outcome variable for 
each subject i.

In RMM and RMFE estimates of the δ̂  are a (vector of ) 
coefficients for the interactions between treatment 
assignment and period number and hence represents the 
mean incremental cost of early treatment (versus 
delayed) during period t (in the cost model) or the mean 
incremental EQ-5D tariff at follow-up time point t (in the 
EQ-5D model). These analyses were implemented using 
the mixed and xtreg command in STATA 15. To estimate 
total mean incremental cost per patient over a desired 
time horizon (e.g., 3  years), the relevant period coeffi-
cients are simply added up (lincom). Thus, for example, 
where the dependent variable is cost accrued during the 
preceding period, and δ̂1 is the time-treatment interac-
tion coefficient at 4  weeks (~ month 1), δ̂2 at 8  weeks 
(~ month 2), and δ̂3 at 13 weeks (month 3), then the dif-
ference in total mean incremental cost over the first 
3  months is δ̂1 + ̂δ2 + ̂δ3 . To estimate mean total incre-
mental QALY over a given time horizon, the “area under 
the curve” applying the trapezium rule is calculated. 
Hence, using the coefficients from the EQ-5D model over 
the first 3 months (where β̂1 is the difference in EQ-5D at 
baseline, δ̂1 at 4 weeks and δ̂2 at 3 months), the estimated 

mean total incremental QALY over the first 3  months 
would be 0.5 ∗

(
(β1 + δ̂1) ∗

4
52

+ (δ̂1 + δ̂2) ∗
9
52

)
).

Uncertainty was estimated by bootstrapping incremen-
tal mean costs and QALYs [23] and shown by the cost-
effectiveness acceptability curve (CEAC). The bootstrap 
is used here because in the RMFE and RMM approaches, 
we run separate regressions for period costs and EQ-5D. 
In the MI, BPA and CCA approaches, we are able to ana-
lytically calculate the variance–covariance matrix using 
a joint regression of total costs and total QALY (assum-
ing a bivariate normal distribution of the dependent vari-
ables) and so could estimate the CEAC parametrically. In 
the case of the RMM and RMFE models, this option is 
not available and so the bootstrap presents a pragmatic, 
numerical solution to this problem.

Multiple imputation
We implemented MI using three steps. Firstly [24], M 
imputations (completed datasets) were generated under 
an imputation model replacing missing values with “plau-
sible” substitutes, based on distribution of the observed 
data using linear regression (MILR) and predictive mean 
matching (PMM). The variables included in the imputa-
tion models for costs and EQ-5D were treatment, age, 
duration, site, ulcer size, ethnicity, diabetes, history of 
deep vein thrombosis, trial leg and Eq. 5d at baseline [25].

This step was performed by multivariate imputation by 
chained equation (MICE) (also known as fully conditional 

Table 1  Overview of approaches employed to handle missing data

a If aggregate data are used, there will be one observation per patient. If longitudinal data are used, the inputs to the model may consist of several observations per 
patient

RMM repeated measure mixed model, RMFE repeated measure fixed effect, CCA​ complete-case-analysis, MIPMM multiple imputation using predictive mean matching, 
MILR multiple imputation using linear regression, BPA Bayesian parametric approach

RMM and RMFE CCA​ MILR and MIPMM BPA

Number of patients included 
at 3 years

450 44 450 450

Total number of non-missing 
observations included at 
3 yearsa

1929 EQ-5D, 6861 period 
costs

44 total costs, 44 QALY 450 EQ-5D, 450 period costs 377 total costs, 44 QALY

Format of data as input Longitudinal Aggregate Longitudinal Aggregate

Statistical model of the miss-
ing data

Implicit imputation of miss-
ing EQ-5D and period costs

None Explicit imputation of miss-
ing EQ-5D and period costs

Logit model of probability of 
missingness

How are total costs and 
QALY over the desired time 
horizon predicted at indi-
vidual level?

Not necessary Not done Passively in each imputed 
dataset

Missing total cost and QALY 
are parameters to estimate

How are mean total incre-
mental costs and QALY over 
the desired time horizon 
estimated

Weighted sum of EQ5D 
and period cost coefficients 
estimated in the statistical 
model

Bivariate normal regression Bivariate normal regression 
for each imputed dataset, 
synthesised using Rubin’s 
rules

Bivariate normal regression

Estimation of standard errors 
and CEAC

Bootstrap Parametrically Parametrically Parametrically
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specification (FCS) [26] or sequential regression multi-
variate imputation [27]) which is a practical approach 
to generating imputations based on a set of inter-linked 
imputation models. The process using MILR begins by 
choosing the first variable to impute, say costs in the first 
period ( Y1 ). Values for all other variables (both EQ5D at 
each follow up and period costs) to be imputed were then 
filled in using a simple rule (simple random sampling 
with replacement from the observed values). Then, Y1 
was regressed on all other variables and baseline covari-
ates, and then missing values for Y1 were replaced by 
simulated draws from the corresponding posterior pre-
dictive distribution of Y1 . Then, the process was repeated 
for the next variable (e.g., Y2), which was regressed on all 
other variables and using the newly imputed values in Y1 . 
Again, missing values in Y2 were replaced by draws from 
the posterior predictive distribution of Y2 . The process 
was repeated for all other variables with missing values in 
turn: this is called a cycle. In order to stabilize the results, 
the procedure was repeated for 20 cycles to produce a 
single imputed data set, and the whole procedure was 
repeated M times to give M imputed data sets [28–31].

A second method for MI, predictive mean match-
ing (PMM) was also used. PMM is an ad hoc method of 
imputing missing values which combines the standard 
linear regression and the closest-neighbour imputation 
approaches. For each missing value Yi with covariates 
Xi , PMM identify k individual with the nearest value of 
observed Yi—It uses the linear predictions as a distance 
measure to form the set of the nearest neighbours (suit-
able “donor”) consisting of the complete value—, it then 
randomly draws an imputed value from this set. By draw-
ing from the observed data, PMM preserves the distribu-
tion of the observed values in the missing part of the data 
which makes it more robust than the fully parametric lin-
ear approach [32]. Possible donors were set with 10 clos-
est neighbours as suggested in Morris et al. [33].

Step 2 was to perform M = 40 imputations [34], and 
finally, step 3, the results obtained from the 40 com-
pleted-data analyses were combined into a single multi-
ple-imputation result using Rubin’s rules [35]. Analyses 
were implemented using the mi suite of commands in 
STATA 15.

Monte Carlo Errors (MCE) and the fraction of miss-
ing information (FMI) were calculated to indicate the 
stability of the model. FMI and MCE reflect the vari-
ability of MI results across repeated uses of the same 
imputation procedure and are useful for determining 
an adequate number of imputations to obtain stable MI 
results [13].

For each of the m complete datasets, total cost and 
total QALY over 1 year, 3 years and 5 years for each sub-
ject were imputed passively using the same formulas 

given in the section for repeated measures. The differ-
ence between repeated measures and MI being that in 
the RMM and RMFE approaches, estimates of total mean 
cost and QALY for the group as a whole were made by 
linear combination (lincom) of the coefficients, while MI 
imputes a total cost and QALY for each subject, and then 
proceeds to estimate mean incremental cost and QALYs 
for the group as a whole using bivariate normal regres-
sion (sureg in STATA 15). Coefficients from this regres-
sion were then combined across the multiple imputed 
datasets using Rubin’s rules (mi estimate) [34]. The 
bootstrap was not used with MI as this can be complex 
and time-consuming [36]. Instead, the CEAC was calcu-
lated parametrically from the coefficients and covariance 
matrix of the bivariate normal regression.

Complete case analysis
Total cost and total QALY were calculated for each indi-
vidual i over the relevant time horizon T (1, 3 or 5 years) 
(Eq. 3). Any subject with a missing period cost or EQ-5D 
in one the relevant time horizon was dropped (as total 
cost and total QALY for individual i at time T cannot be 
calculated if any period costs or EQ-5D values up to T are 
missing). A bivariate normal regression was performed at 
each time horizon for total costs and total QALY (Eq. 3), 
where Yi is a (cost, QALY) pair for individual i. The CEAC 
was calculated using the bootstrap (parametric estimates 
were also tried and made no noticeable difference to the 
results so are not reported).

Bayesian parametric approach (BPA)
The dataset for BPA consists of total observed cost and 
total observed QALY for each individual over the time 
period of interest (1, 3 or 5  years), along with baseline 
control variables. Hence one total cost and one total 
QALY observation per subject are used as dependent 
variables in the analyses, in the same way as the CCA 
approach. However, unlike CCA, all individuals are 
included in the analysis dataset. In BPA each unobserved 
quantity (total cost or total QALY) in the model is han-
dled as if it were a parameter [37–40].

The BPA was implemented based on Markov Chain 
Monte Carlo (MCMC) using the R function selection, 
within the missingHE package [37]. BPA requires the 
specification of four models: the first two are the estima-
tion models for the total QALY and total cost variables 
(Y) assuming these data are bivariate normally distrib-
uted (as Eq. 3) and the last two are the auxiliary models 

(3)
Yi = β0 + β1eq5d0i + β

2
TREATi

+ β3DURATIONi + β4AGEi

+ β5SIZEi + β6SITEi + εi
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which are fitted (similarly to Eq. 1) to estimate the prob-
ability Y is missing using logistic regressions.

The four models include baseline covariates of treat-
ment allocation, ulcer duration, ulcer size, age, and site. 
And the auxiliary models also include the length of fol-
low-up in the study, as the probability of missingness 
increases with time since baseline. Non-informative pri-
ors were used for the precision of the dependent vari-
ables, which were varied from 0.001 to 0.01 in sensitivity 
analyses. Incremental mean costs and QALY were com-
puted from the estimation models and the CEAC was 
calculated parametrically from the variance–covariance 
matrix.

The original cost-effectiveness analysis for the EVRA 
trial coded SITE as a random effect. The documentation 
for BPA states that covariates can be included either as 
fixed or random effects [41], but despite our best efforts 
and attempting to contact the software authors for advice 
without reply, we were unable to implement this feature. 
Hence in this paper we implemented all models using 
fixed effects for SITE for comparability.

Results
Pattern of missingness
No baseline data were missing. 74% of subjects had com-
plete data (costs and EQ-5D) at 1 year, 10% at year 3 and 
25% at year 5 (Table 2). This pattern arises from the stag-
gered recruitment and because the final questionnaire 
was administered at a fixed calendar point irrespective of 
when the subject was recruited.

The logistic model showed the probability that a value 
is missing in costs and EQ-5D are related to the time in 
follow-up, age at baseline and site (p < 0.0001), see Addi-
tional file 1: Tables S6, S7. As EQ-5D tend to change over 
time since surgery (see Additional file  1: Table  S9), and 
EQ-5D are more likely to be missing at longer follow-up, 
this suggests that the probability of an item being miss-
ing may be correlated with values of observed outcomes 
(MAR). However, it cannot be ruled out that data might 

be MNAR (that is, missingness correlated with unob-
served outcomes).

Only subjects with complete aggregate data were used 
in CCA: year 1, n = 338; year 3, n = 44 and year 5, n = 147. 
The BPA included all the 450 subjects. The data for RMM 
and MI included all the longitudinal observations for all 
follow-ups as an unbalanced panel.

Cost effectiveness analysis
Table 3 shows a summary of the results of the cost-effec-
tiveness-analysis with the six different approaches at each 
time point. All methods agreed that there was no statisti-
cally significant difference in cost at the 5% level at any 
time horizon. Early intervention was associated with 
statistically significantly greater mean QALY among all 
methods at year 1. BPA showed a statistically significant 
difference at year 3, while other methods tended towards 
greater QALY for the intervention, but this did not reach 
statistical significance.

At 3  years early intervention dominated according 
to RMM, RMFE and BPA methods. The ICER accord-
ing to CCA was £6075/QALY, £319/QALY using PMM 
and £627/QALY using MILR. All methods suggested 
that early intervention is cost-effective at a threshold of 
£30,000 per QALY at 1-, and 3-year time horizons. At a 
threshold of £30,000/QALY, the estimated probability 
that the intervention was cost-effective was 93% using 
RMM, 91% using RMFE and 58% using CCA, see Fig. 2.

When we compare the two methods for multiple impu-
tation, MIPMM show a loss of efficiency of 0.03% in costs 
using M = 40 and 0.8% in QALY while MILR shows 0.20% 
and 1.3% for costs and QALY, respectively. MCE were less 
than 10% of the standard errors (SE) in both methods, 
indicating reasonable stability of the models. As would 
be expected, imputations with MIPMM correspond more 
closely than MILR to the distribution of observed data 
(Additional file 1: Fig. S1).

RMM and RMFE showed greatest standard errors 
(SE), 482 and 525, respectively at year 1 for incremental 

Table 2  Missing data pattern

Time point Missing pattern (Costs, EQ-5D)

Complete cost and complete 
EQ5D

Complete cost and missing 
EQ5D

Missing cost and complete 
EQ5D

Missing cost 
and missing 
EQ5D

At 1-year 74%
N = 333

19%
N = 85

0.2%
N = 1

7%
N = 31

At 3-years 9.7%
N = 44

74%
N = 333

0% 16.3%
N = 73

At 5-years 25.3%
N = 114

7%
N = 31

0% 67.7%
N = 305
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mean costs than other methods (Fig.  3a). CCA showed 
the greatest SE at year 3 and BPA at year 5, 831 and 807, 
respectively. MIPMM showed the lowest SE at all time 
horizons. Regarding QALY at year 1, CCA and BPA 
showed greater SE than other methods (Fig.  3b). BPA 
presented the highest SE at year 3 and 5. Other methods 
showed similar SE for incremental mean QALY at years 
1, 3 and 5.

Discussion
This paper compared six methods for handling missing 
data empirically, some in common use and others less so, 
using a real data set with several follow-up points over 
a long time period. We have attempted to use a similar 
estimation model in each case, so that differences arise 
mainly from the number of subjects and observations per 
subject that comprise the data, and the assumed latent 
correlation between observed and missing data.

The original cost-effectiveness analysis employed 
RMM, and reported mean total cost of − £155 (95% CI 
− £1262 to £953) and mean total QALY of 0.073 (95% CI 
− 0.06 to 0.20) at 3 years [4]. The very small differences 
arise in this paper because the original paper coded SITE 
as a random effect. In this paper, we code SITE as a factor 
variable (fixed effect). All the approaches coincide in esti-
mating statistically significantly greater QALY at 1  year, 
but only BPA showed a statistically significant difference 

in QALY at 3 years. RMM, RMFE, MILR, MIPMM and 
BPA suggest the mean difference in QALY is positive (in 
favour of early intervention). However, the mean coef-
ficient for incremental cost is negative in some methods 
and positive in others, leading to differences in the ICER.

CCA is the simplest method to implement. However, 
because subjects with any incomplete observations are 
discarded, it can be considered wasteful of the available 
data. Hence it is likely that the standard errors are over-
estimates, arising from the low number of observations. 
CCA can also be biased if data are MAR. Hence the ICER 
for CCA could be inaccurate. Other methods coincide 
in suggesting that early intervention is cost-effective at a 
threshold of £30,000 per QALY at 1-, 3- and 5-year time 
horizons. However, the variation in the ICER across the 
methods does generate some additional methodological 
uncertainty, underlining the importance of conducting 
sensitivity analyses using alternative methods.

BPA offers a principled framework for handling miss-
ing data under the assumption of MAR. BPA includes 
all individuals but uses aggregate data for the depend-
ent variables. This means that if a subject has one miss-
ing EQ-5D follow-up, then the QALY for that individual 
would be recorded as missing, and previous (or future) 
follow-ups for EQ-5D for that individual would be 
ignored. This means BPA can also be considered waste-
ful when (as is the case here) many individuals have some 

Table 3  Results of the models

RMM repeated measure mixed model, RMFE repeated measure fixed effect, CCA​ complete-case-analysis, MIPMM multiple imputation using predictive mean matching, 
MILR multiple imputation using linear regression, BPA Bayesian parametric approach, QALY quality-adjusted life years, ICER incremental cost ratio

Time point RMM RMFE CCA​ MIPMM MILR BPA

Differences in 
mean costs 
(standard error) 
(95% confidence 
interval) (£)

1-year N = 450
− 70 (482)
CI (− 1014 to 874)

N = 450
− 93 (525)
CI (− 1123 to 936)

N = 338
− 4 (326)
CI (− 644 to 636)

N = 450
50 (295)
CI (− 528 to 627)

N = 450
(307)
CI (− 534 to 669)

N = 450
137(305)
CI (− 340 to 665)

3-years N = 450
− 159 (565)
CI (− 1265 to 949)

N = 450
− 180 (610)
CI (− 1375 to 
1015)

N = 44
215 (831)
CI (− 1531 to 148)

N = 450
25 (312)
CI (− 586 to 637)

N = 450
58 (328)
CI (− 583 to 700)

N = 450
− 38 (360)
CI (− 637 to 556)

5-years N = 450
− 93 (651)
CI (− 1369 to 
1184)

N = 450
− 111 (697)
CI (− 1477 to 
1255)

N = 147
464 (751)
CI (− 1008 to 
1936)

N = 450
8 (333)
CI (− 645 to 661)

N = 450
57 (354)
CI (− 637 to 751)

N = 450
1200 (807)
CI (− 122 to 2536)

Differences mean 
QALY (standard 
error) (95% confi-
dence interval)

1-year N = 450
0.05 (0.02)
CI (0.02 to 0.08)

N = 450
0.05 (0.02)
CI (0.02 to 0.08)

N = 338
0.04 (0.02)
CI (0.01 to 0.07)

N = 450
0.05 (0.02)
CI (0.01 to 0.08)

N = 450
0.05 (0.02)
CI (0.01 to 0.08)

N = 450
0.05(0.02)
CI (0.02 to 0.78)

3-years N = 450
0.07 (0.07)
CI (− 0.06 to 0.20)

N = 450
0.07 (− 0.07)
CI (− 0.06 to 0.20)

N = 44
0.04 (0.13)
CI (− 0.21 to 0.29)

N = 450
0.08 (0.05)
CI (− 0.04 to 0.20)

N = 450
0.09 (0.08)
CI (− 0.07 to 0.25)

N = 450
0.12 (0.13)
CI (0.09 to 0.34)

5-year N = 450
0.05 (0.11)
CI (− 0.16 to 0.26)

N = 450
0.05 (0.11)
CI (− 0.16 to 0.26)

N = 147
0.01 (0.12) CI 
(− 0.24 to 0.25)

N = 450
0.05 (0.08)
CI (− 0.10 to 0.20)

N = 450
05 (0.12)
CI (− 0.20 to 0.31)

N = 450
0.16 (0.17)
CI (− 0.03 to 0.58)

ICER £/QALY 1-year Dominant Dominant Dominant 1082 1430 2728

3-years Dominant Dominant 6075 319 627 Dominant 

5-years Dominant Dominant 59,500 159 1010 7394
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missing EQ-5D, in the sense that some relevant data is 
ignored. Hence it might be reasonable to conclude that 
the large standard errors generated by BPA at 3 and 
5 years in this example are over-estimates.

MI, RMM and RMFE employ all the available longitu-
dinal period cost and EQ-5D observations in all the sub-
jects. Hence, they can be considered efficient methods 
in the sense that every item of observed data is used in 
the analysis model. This is important when there is sub-
stantial item missingness, as we have in this dataset. They 
are straightforward to implement using standard soft-
ware. RMM and RMFE would not be a suitable option if 
there were considerable missing baseline covariates that 
needed to be included in the analysis model (selec-
tion and CCA share this limitation). There were slight 
differences between RMM and RMFE. This may be due 
to the cluster size.

MI has been widely recommended for cost-effectiveness 
analysis [1, 42–44]. MI can impute both missing outcome 
data and missing baseline data. Also, simulation studies 
have found that MIPMM offers a better fit to the data [45]. 
Some caution is needed when using MIPMM if there are 
few donors in the vicinity of an incomplete case, leading to 

a risk of bias [33]. Also, if a donor is selected for many indi-
viduals or repeatedly used by the same individual across 
imputations this will lead to inefficiency, underestimating 
the between-imputation variance. MI can compute the 
variance–covariance matrix of total mean cost and total 
mean QALY using parametric assumptions, while RMM 
and RMFE estimates costs and EQ-5D separately and uses 
bootstrap simulations to estimate the correlation between 
total mean cost and total mean QALY. This makes both 
RMM and RMFE rather slow to compute, though some 
analysts may favour semi-parametric methods such as 
bootstrap when data are not normally distributed.

Strengths and limitations
This study has compared the missing data approaches 
reported in Gohel et al. [4] against a wider set of meth-
ods for handling missing data. We included approaches 
that are commonly used, and others less so [1, 9], in a 
case study with a long follow up and a high proportion 
of item missingness There are also some limitations that 
need to be taken into account. First, other missing data 
approaches are available [46–48]. We only examined 
MAR mechanisms here. If data are MNAR then this 

Fig. 2  Cost-effectiveness acceptability curves at 3 years. RMM Repeated measure mixed model, RMFE Repeated measure fixed effect, MIPMM 
multiple imputation using predictive men matching, MILR multiple imputation using linear regression, CCA​ complete-case-analysis, BPA Bayesian 
parametric approach
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may give rise to bias. The data could have been mod-
elled as a three-level multilevel MI (time, subject and 
site). When the percentage of missing data is large MI 
strategies that do not take into account the intra-cluster 
correlation can underestimate the variance of the treat-
ment effect [7, 49, 50]. Other Bayesian models could 
also have been tried to model sites as random effects 
[5, 51]. Also, costs and QALY were assumed normally 
distributed for the simplicity of modelling [52]. In this 
case study the standard errors for RM models were 
generally greater than for MIPMM. However, since we 
do not know the true values of the missing data, we 
cannot generalize about which method is “correct”.

Conclusion
The variation in the results across the methods under-
line the importance of conducting sensitivity analyses 
using alternative approaches to missing data. Further 
work might consider models for handling non-nor-
mal distributions and more complex missing data 
mechanisms.
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