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WEIGHTED JORDAN HOMOMORPHISMS

M. BREŠAR AND M. L. C. GODOY

Abstract. Let A and B be unital rings. An additive map T : A → B

is called a weighted Jordan homomorphism if c = T (1) is an invertible
central element and cT (x2) = T (x)2 for all x ∈ A. We provide assump-
tions, which are in particular fulfilled when A = B = Mn(R) with n ≥ 2
and R any unital ring with 1

2
, under which every surjective additive map

T : A → B with the property that T (x)T (y) + T (y)T (x) = 0 whenever
xy = yx = 0 is a weighted Jordan homomorphism. Further, we show
that if A is a prime ring with char(A) 6= 2, 3, 5, then a bijective additive
map T : A → A is a weighted Jordan homomorphism provided that
there exists an additive map S : A → A such that S(x2) = T (x)2 for all
x ∈ A.

1. Introduction

Let A and B be unital rings. Recall that an additive map Φ : A → B is
called a Jordan homomorphism if Φ(x ◦ y) = Φ(x) ◦ Φ(y) for all x, y ∈ A,
where x◦y stands for the Jordan product xy+yx of x and y. We say that an
additive map T : A → B is a weighted Jordan homomorphism if c = T (1) is
an invertible element lying in the center of B and x 7→ c−1T (x) is a Jordan
homomorphism, that is,

cT (x ◦ y) = T (x) ◦ T (y) (x, y ∈ A).

Weighted Jordan homomorphisms can be also defined for rings without unity,
see [3, p. 121]. However, we will work only with unital rings in this paper.

Weighted Jordan homomorphisms naturally appear in some preserver prob-
lems. In [8], Chebotar, Ke, Lee, and Zhang used functional identities to prove
that if R is a unital ring with 1

2 and A = Mn(R) with n ≥ 4 (i.e., A is the ring
of n× n matrices over R), then a surjective additive map T : A → A which
preserves zero Jordan products (i.e., T (x)◦T (y) = 0 whenever x◦y = 0) is a
weighted Jordan homomorphism. We also mention more recent papers [6, 7]
which are close to [8] and also involve weighted Jordan homomorphisms.
Further, Alaminos, Brešar, Extremera, and Villena [1] proved that if A and
B are C∗-algebras and T : A → B is a continuous linear map with the
property that for all x, y ∈ A,

(1.1) xy = yx = 0 =⇒ T (x) ◦ T (y) = 0,
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2 M. BREŠAR AND M. L. C. GODOY

then T is a weighted Jordan homomorphism. The proof was based on the
theory of zero product determined algebras which is surveyed in the recent
book [3].

In Section 2, we show that a surjective additive map T : A → B satis-
fying (1.1) is a weighted Jordan homomorphism provided that the ring A

is additively spanned by Jordan products of its idempotents and B is any
ring with 1

2 (Theorem 2.3). The condition on idempotents is fulfilled in any
matrix ring Mn(R) with n ≥ 2, so this theorem yields a generalization and
completion of the aforementioned result of [8] (Corollary 2.4). In the first
step of the proof of Theorem 2.3, which is similar to that in [1], we reduce
the problem to the situation where there exists an additive map S : A → B

such that

(1.2) S(x ◦ y) = T (x) ◦ T (y) (x, y ∈ A).

In the second step, which is based on elementary but tricky calculations, we
show that (1.2) implies that T is a weighted Jordan homomorphism.

The condition (1.2) is a simple, natural generalization of the condition
that a map is a (weighted) Jordan homomorphism, and we find it interesting
in its own right. Our interest also stems from the recent paper [4] in which
this condition unexpectedly occurred when studying problems that are rather
unrelated to those in this paper. We therefore believe that (1.2) deserves a
systematic treatment. In Section 3, we show that if A is a prime ring with
char(A) 6= 2, 3, 5 and T : A → A is a bijective additive map for which there
exists an additive map S : A → A such that (1.2) holds, then T is a weighted
Jordan homomorphism (Theorem 3.8). The proof is more complex than the
proof in Section 2. It combines the results from the theory of functional
identities, the theory of polynomial identities, the classical structure theory
or rings, and linear algebra.

2. Maps satisfying xy = yx = 0 =⇒ T (x) ◦ T (y) = 0

The proof of the main theorem of this section depends on some ideas
presented in the book [3]. However, we cannot refer directly to the results
in this book since it is (mostly) written in the context of algebras over fields
while we wish to work in the context of rings. The following is the ring version
of Theorem 2.15 (in conjunction with Proposition 1.3) and Theorem 3.23 (in
conjunction with Remark 3.24) from [3].

Proposition 2.1. Let A be a unital ring, let B be an additive group, and
let ϕ : A × A → B be a biadditive map. If A is generated as a ring by
idempotents, then:

(a) If ϕ(x, y) = 0 whenever x, y ∈ A are such that xy = 0, then ϕ(x, y) =
ϕ(xy, 1) for all x, y ∈ A.

(b) If ϕ is symmetric and ϕ(x, y) = 0 whenever x, y ∈ A are such that
xy = yx = 0, then 2ϕ(x, y) = ϕ(x ◦ y, 1) for all x, y ∈ A.

The proof of (a) is literally the same as the proof of Lemma 2.2 and
Theorem 2.3 from [3]. Using (a), one can prove (b) by simply following the
proof of Theorem 3.23 from [3]. (We will actually need only (b), but we
stated also (a) to explain the proof of (b)).
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We continue with a simple lemma which will be also needed in the next
section.

Lemma 2.2. Let A and B be unital rings and let T : A → B be a surjective
additive map satisfying

(2.1) 2T (x) ◦ T (y) = T (x ◦ y) ◦ c (x, y ∈ A),

where c = T (1). Assume that B is 2-torsion free (i.e., 2b = 0 with b ∈ B

implies b = 0) and denote the center of B by Z. The following conditions
are equivalent:

(i) T is a weighted Jordan homomorphism.
(ii) c2 ∈ Z.
(iii) c ∈ Z.

Proof. (i) =⇒ (ii). This is a consequence of the definition of a weighted
Jordan homomorphism.

(ii) =⇒ (iii). Let b ∈ A be such that T (b) = 1. Using (2.1) we see that
c2 ∈ Z implies

4[T (x), c] = [T (x ◦ b) ◦ c, c] = [T (x ◦ b), c2] = 0 (x ∈ A)

(here, as usual, [x, y] stands for xy − yx). Since T is surjective and B is
2-torsion free, c ∈ Z follows.

(iii) =⇒ (i). Asssuming that c ∈ Z it follows from (2.1) that 4 = 4T (b2)c.
As B is 2-torsion free this shows that c is invertible with c−1 = T (b2).
Since (2.1) implies that T (x) ◦ T (y) = cT (x ◦ y), T is a weighted Jordan
homomorphism. �

We will say that a ring A is additively spanned by Jordan products of its
idempotents if A is equal to its additive subgroup generated by elements of
the form e ◦ f where e and f are idempotents. By saying that B is a ring
with 1

2 we mean that 1 + 1 is an invertible element in B; such a ring is of

course 2-torsion free. (We remark that under the assumption that 1
2 ∈ B,

the condition (2.1) is equivalent to the condition (1.2) pointed out in Section
1, see the beginning of Section 3).

We are now ready to state the main result of this section.

Theorem 2.3. Let A and B be unital rings. Assume that A is additively
spanned by Jordan products of its idempotents and assume that 1

2 ∈ B. If
T : A → B is a surjective additive map such that for all x, y ∈ A,

(2.2) xy = yx = 0 =⇒ T (x) ◦ T (y) = 0,

then T is a weighted Jordan homomorphism.

Proof. Define ϕ : A×A → B by

ϕ(x, y) = T (x) ◦ T (y).

Note that ϕ is symmetric and that (2.2) shows that ϕ(x, y) = 0 whenever
xy = yx = 0. Since our assumption on A in particular implies that A is
generated by idempotents, it follows from Proposition 2.1 (b) that 2ϕ(x, y) =
ϕ(x ◦ y, 1) for all x, y ∈ A. That is, (2.1) holds (where c = T (1)). In other
words, we have

(2.3) W (T (x ◦ y)) = T (x) ◦ T (y) (x, y ∈ A),
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where W : B → B is defined by

W (x) =
1

2
x ◦ c.

Setting x = y in (2.3) we obtain

(2.4) W (T (x2)) = T (x)2 (x ∈ A).

From y = 1
2

(

(y + 1)2 − y2 − 12
)

we see that B is additively spanned by
squares of its elements. Therefore, W is surjective since T is surjective.
Further, (2.3) shows that

W (W (T (x ◦ y))) = W (T (x) ◦ T (y)) =
1

2
(T (x) ◦ T (y)) ◦ c

and hence

(2.5) [W (W (T (x ◦ y))), c] =
1

2
[T (x) ◦ T (y), c2] (x, y ∈ A).

Let e ∈ A be an idempotent. By (2.4),

(2.6)
1

2
T (e) ◦ c = W (T (e)) = W (T (e2)) = T (e)2.

This implies that [T (e), T (e) ◦ c] = 0, i.e., [T (e)2, c] = 0. Hence, (2.6) shows
that [T (e) ◦ c, c] = 0, i.e.,

[T (e), c2] = 0.

Together with (2.5), this yields

[W (W (T (e ◦ f))), c] = 0

for all idempotents e and f . Since W and T are surjective, our assumption
on A implies that c belongs to the center of B. The desired conclusion that
T is a weighted Jordan homomorphism now follows from Lemma 2.2. �

The following corollary generalizes [8, Theorem 1.1]; in particular, it shows
that the assumption that n ≥ 4 in this theorem is redundant.

Corollary 2.4. Let R be a unital ring with 1
2 and let A = Mn(R), n ≥ 2.

If a surjective additive map T : A → A satisfies (2.2) (in particular, if T

preserves zero Jordan products), then T is a weighted Jordan homomorphism.

Proof. By eij we denote the standard matrix units and by xeij the matrix
whose (i, j) entry is x ∈ R all other entries are 0. Of course, each eii is an
idempotent. Let i 6= j. Note that

xeij + eii and x(eii + eji) + (1− x)(eij + ejj)

are idempotents and

xeij = (xeij + eii)− eii,

xeii =
1

2

((

x(eii + eji) + (1− x)(eij + ejj)
)

◦ eii − xeji − (1− x)eij
)

.

Since 2e = e ◦ e for every idempotent e and since 1
2 ∈ R (and so xeij =

2(12xeij)) it follows that A is additively spanned by Jordan products of idem-
potents. Thus, Theorem 2.3 applies. �
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Remark 2.5. The assumption that 1
2 ∈ R cannot be removed. Indeed,

if R is a ring with char(R) = 2, then any map T : A → A of the form
T (x) = x+ λ(x)1, where λ : A → Z is an additive map, satisfies (2.2). It is
easy to find examples where such a map is surjective but is not a weighted
Jordan homomorphism.

Remark 2.6. Every Jordan homomorphism on a matrix ring Mn(R) is the
sum of a homomorphism and an antihomomorphism [11]. The result of
Corollary 2.4 can thus be stated as that T (x) = c

(

Φ1(x) +Φ2(x)
)

where Φ1

is a homomorphism and Φ2 is an antihomomorphism.

The matrix ring Mn(R) is our basic and motivating example of a ring
satisfying the condition of Theorem 2.3 regarding idempotents. However,
there are other examples.

Example 2.7. Let A and B be unital rings with 1
2 that are additively

spanned by Jordan products of idempotents. It is an easy exercise to show
that the triangular ring Tri(A,M,B), where M is a unital (A,B)-bimodule,
is also additively spanned by Jordan products of idempotents (compare [3,
Corollary 2.5]).

3. Pairs of maps satisfying S(x2) = T (x)2

Until further notice, we assume that A is a unital prime ring with char(A) 6=
2 and S, T : A → A are additive maps satisfying

(3.1) S(x2) = T (x)2 (x ∈ A).

The standard linearization trick shows that (3.1) is equivalent to

(3.2) S(x ◦ y) = T (x) ◦ T (y) (x, y ∈ A).

We assume that T is bijective. Our goal is to prove that, under some addi-
tional restrictions on char(A) which will be imposed later, T is a weighted
Jordan homomorphism.

The center of A will be denoted by Z. Further, we denote c = T (1) and
b = T−1(1). Note that (3.2) shows that

2T (x) = S(x ◦ b) (x ∈ A).

and

(3.3) 2S(x) = T (x) ◦ c (x ∈ A),

and that (3.2) and (3.3) yield

(3.4) T (x ◦ y) ◦ c = 2T (x) ◦ T (y) (x, y ∈ A).

Thus, (3.1) is just a small variation of the condition (3.4) that was already
studied in the preceding section. Under the presence of the element 1

2 , the
two conditions are equivalent.

We need some more notation. By C we denote the extended centroid C of
A. Recall that C is a field containing the center Z (see [2, Section 7.5] for
details). Let x ∈ A. We write deg(x) = n if x is algebraic of degree n over C,
and deg(x) = ∞ if x is not algebraic over C. Set deg(A) = sup{deg(x) |x ∈
A}. It is well known that the condition that deg(A) < ∞ is equivalent to
the condition that A is a PI-ring.
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Our first lemma was essentially proved in [8]. More precisely, noticing
that (3.2) implies

T (y) ◦ T (xyx) = T (x) ◦ T (yxy)

we see that this lemma is evident from the proof of [8, Theorem 2.4] along
with a basic result on functional identities which states that a prime ring A

is a d-free subset of Q = Qml(A), the maximal left ring of quotients of A,
if and only if deg(A) ≥ d [5, Corollary 5.12]. Therefore, we state it without
proof.

Lemma 3.1. If deg(A) ≥ 4, then T is a weighted Jordan homomorphism.

It should be emphasized that Lemma 3.1 covers the case where deg(A) =
∞. We thus only need to consider the case where A is a PI-ring with
deg(A) < 4. The deg(A) = 1 case is trivial.

Lemma 3.2. If deg(A) = 1, then T is a weighted Jordan homomorphism.

Proof. The condition that deg(A) = 1 means that A is commutative, so
c ∈ Z automatically holds and we may apply Lemma 2.2. �

Hence, there are only two cases left: deg(A) = 2 and deg(A) = 3. The
rings that remain to be considered are thus very specific. However, for
problems that can be solved by means of functional identities, the low degree
situations are usually the more difficult ones.

In our next lemma we will not yet need the degree restriction. Its proof
is also based on functional identities. The reader is referred to [5] for the
explanation of some notions that will be used.

Lemma 3.3. There exists a ring monomorphism µ : Z → Z such that

T (zx) = µ(z)T (x) (z ∈ Z, x ∈ A),

S(zx) = µ(z)S(x) (z ∈ Z, x ∈ A).

Proof. Fix z ∈ Z. Since zx ◦ y = x ◦ zy for all x, y ∈ A it follows from (3.2)
that T (zx) ◦ T (y) = T (x) ◦ T (zy), that is,

(3.5) T (zx)T (y) − T (zy)T (x) + T (y)T (zx)− T (x)T (zy) = 0 (x, y ∈ A).

In view of Lemma 3.2, the lemma is trivial if A is commutative. We may thus
assume that A is not commutative, which implies that it is a 2-free subset of
Q [5, Corollary 5.12]. Hence, applying [5, Theorem 4.3] to (3.5) we see that
there exist uniquely determined p1, p2 ∈ Q and maps λ1, λ2 : A → C such
that

T (zx) = T (x)p1 + λ1(x) (x ∈ A),(3.6)

−T (zy) = T (y)p2 + λ2(y) (y ∈ A),(3.7)

T (zx) = −p2T (x)− λ1(x) (x ∈ A),(3.8)

−T (zy) = −p1T (y)− λ2(y) (y ∈ A).(3.9)

Comparing (3.6) and (3.9) we obtain

T (x)p1 − p1T (x) = λ2(x)− λ1(x) ∈ C (x ∈ A).
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Again using the 2-freeness of A along with [5, Theorem 4.3] it follows that
λ1 = λ2 and p1 ∈ C (similarly (3.7) and (3.8) show that p2 ∈ C). Next,
comparing (3.6) and (3.7) we obtain

T (x)(p1 + p2) = −
(

λ1(x) + λ2(x)
)

∈ C (x ∈ A),

and so, again by the 2-freeness and [5, Theorem 4.3], λ1 + λ2 = 0 (and
p1 = −p2). Since we have shown above that λ1 = λ2 and since char(A) 6= 2
by assumption, it follows that λ1 = 0. Thus, T (zx) = T (x)p1 for all x ∈ A.
As above, let b ∈ A be such that T (b) = 1. From p1 = T (b)p1 = T (zb)
we see that p1 ∈ C ∩ A = Z. Defining µ(z) = p1 ∈ Z we thus have
T (zx) = µ(z)T (x) for all x ∈ A. From (3.3) we see that this immediately
implies that S(zx) = µ(z)S(x) holds too.

For any z1, z2 ∈ Z, we have

µ(z1 + z2) = T
(

(z1 + z2)b
)

= T (z1b) + T (z2b) = µ(z1) + µ(z2)

and

µ(z1z2) = T (z1z2b) = µ(z1)T (z2b) = µ(z1)µ(z2),

so µ is a ring endomorphism. Since T is injective we see from µ(z) = T (zb)
that µ is injective too. �

From now on we assume that deg(A) equals 2 or 3. In particular, deg(A) <
∞, which implies that QZ(A), the ring of central quotients of A, is a finite-
dimensional central simple algebra over the field of quotients of Z. This is
the content of Posner’s Theorem, see [2, Theorem 7.58]. The elements of the
ring QZ(A) can be written as z−1x where z ∈ Z \ {0} and x ∈ A.

Lemma 3.4. There exist additive maps S,T : QZ(A) → QZ(A) such that
S|A = S, T |A = T , and S(q2) = T (q)2 for every q ∈ QZ(A).

Proof. For any z ∈ Z \ {0} and x ∈ A, define

S(z−1x) = µ(z)−1S(x).

Assume that z, z′ ∈ Z \ {0} and x, x′ ∈ A are such that z−1x = z′−1x′.
Then z′x = zx′ and hence µ(z′)S(x) = µ(z)S(x′), that is, µ(z)−1S(x) =
µ(z′)−1S(x′). This shows that S is well-defined. It is clear that S|A = S.
Let z, w ∈ Z \ {0} and x, y ∈ A. Then

S(z−1x+ w−1y) = S
(

(zw)−1(wx+ zy)
)

= µ(zw)−1S(wx+ zy)

=µ(z)−1µ(w)−1
(

µ(w)S(x) + µ(z)S(y)
)

= S(z−1x) + S(w−1y),

so S is additive.
Similarly we see that

T (z−1x) = µ(z)−1T (x)

is a well-defined additive map which extends T . Finally,

S
(

(z−1x)2
)

= S(z−2x2) = µ(z2)−1S(x2) = µ(z)−2T (x)2 = T (z−1x)2,

which proves that S(q2) = T (q)2 for every q ∈ QZ(A). �
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Lemma 3.4 shows that there is no loss of generality in assuming that
A = QZ(A) is a central simple algebra such that deg(A) = 2 or deg(A) = 3,
or equivalently, dimZ(A) = 4 or dimZ(A) = 9 (see [5, Theorem C.2]). Fur-
thermore, in light of Corollary 2.4 we may assume that A is not a ring of n×n

matrices, n ≥ 2, over some ring, and hence, by the classical Wedderburn’s
structure theorem, we may assume that A is a division ring.

Lemma 3.5. If deg(A) = 2, then T is a weighted Jordan homomorphism.

Proof. Since deg(A) = 2, there exist an additive map τ : A → Z and a
biadditive map δ : A2 → Z such that

(3.10) x2 = τ(x)x+ δ(x, x)

for every x ∈ A (see [5, Corollary C.3]). We may assume that δ is symmetric,
since otherwise we replace it by (x, y) 7→ 1

2

(

δ(x, y) + δ(y, x)
)

. Linearizing
(3.10) we obtain that for all x, y ∈ A,

x ◦ y = τ(x)y + τ(y)x+ 2δ(x, y).

From (3.3) we thus see that

(3.11) 2S(x) = τ(T (x))c+ τ(c)T (x) + 2δ(T (x), c)

for all x ∈ A. Next, applying S to (3.10) and using (3.1) we obtain

T (x)2 = µ(τ(x))S(x) + µ
(

δ(x, x)
)

c2.

Applying (3.10) and (3.11) we see that this can be rewritten as

τ(T (x))T (x) + δ(T (x), T (x))

=
1

2
µ(τ(x))τ(T (x))c +

1

2
µ(τ(x))τ(c)T (x)(3.12)

+ µ(τ(x))δ(T (x), c) + µ
(

δ(x, x)
)

c2.

Commuting this identity with c we obtain
(

τ(T (x))−
1

2
µ(τ(x))τ(c)

)

[T (x), c] = 0

for all x ∈ A. Accordingly, for each x ∈ A we have either

(3.13) τ(T (x)) =
1

2
µ(τ(x))τ(c)

or [T (x), c] = 0. The set of all x ∈ A that satisfy one of these two conditions
is an additive subgroup of A. Since a group cannot be the union of two
proper subgroups, one of the two conditions must hold for every x ∈ A. If
[T (x), c] = 0 for every x ∈ A, then c ∈ Z and so T is a weighted Jordan
homomorphism by Lemma 2.2. We may thus assume that (3.13) holds for
every x ∈ A.

Note that (3.12) along with c2 = τ(c)c + δ(c, c) now shows that
(1

2
µ(τ(x))τ(T (x)) + µ

(

δ(x, x)
)

τ(c)
)

c ∈ Z.

Therefore, either c ∈ Z or

1

2
µ(τ(x))τ(T (x)) + µ

(

δ(x, x)
)

τ(c) = 0
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for every x ∈ A. Assume that the latter holds. By (3.13), we can rewrite
this identity as

(3.14)
(1

4
µ(τ(x)2) + µ

(

δ(x, x)
)

)

τ(c) = 0.

If τ(c) = 0 then it follows from (3.13) that τ(T (x)) = 0 and hence T (x)2 ∈ Z

for every x ∈ A. Since T is surjective, this means that y2 ∈ Z for every y ∈ A,
which leads to a contradiction that y = 1

2

(

(y + 1)2 − y2 − 1
)

∈ Z for every
y ∈ A. Thus, τ(c) 6= 0 and so (3.14) implies that

1

4
µ(τ(x)2) + µ

(

δ(x, x)
)

= 0

for every x ∈ A. Since µ is injective it follows that

1

4
τ(x)2 = −δ(x, x).

Together with (3.10) this yields

(

x−
1

2
τ(x)

)2
= x2 − τ(x)x+

1

4
τ(x)2 = x2 − τ(x)x− δ(x, x) = 0.

Since, as mentioned before the statement of the lemma, we may assume that
A is a division ring, this implies that x = 1

2τ(x) ∈ Z for every x ∈ A, a con-
tradiction. Therefore, c ∈ Z and so T is a weighted Jordan homomorphism
by Lemma 2.2. �

The case where deg(A) = 3 is more involved. To handle it, we need the
following linear algebra lemma.

Lemma 3.6. Let K be an algebraically closed field with char(K) 6= 2, 3. Let
t ∈ M3(K). Then the set

Sy = {t, t ◦ y, (t ◦ y) ◦ y, ((t ◦ y) ◦ y) ◦ y}

is linearly dependent for every y ∈ M3(K) if and only if t is a scalar matrix.

Proof. The “if” part follows from the Cayley-Hamilton Theorem. To prove
the “only if” part, assume that t is not a scalar matrix. Our goal is to find a
y ∈ A such that the set Sy is linearly independent. Since K is algebraically
closed, we may assume that t is in the Jordan normal form.

We divide the proof into four cases.

1. Assume that

t =





λ 1 0
0 λ 1
0 0 λ





where λ ∈ K. If

y =





0 0 0
1 0 0
0 1 0



 ,

then t ◦ y, (t ◦ y) ◦ y, (t ◦ y) ◦ y) ◦ y are




1 0 0
2λ 2 0
0 2λ 1



 ,





0 0 0
3 0 0
4λ 3 0



 ,





0 0 0
0 0 0
6 0 0



 ,

respectively. It is easy to check that Sy is linearly independent.
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2. Assume that

t =





λ1 1 0
0 λ1 0
0 0 λ2





where λ1, λ2 ∈ K. If

y =





0 0 0
1 0 0
0 1 0



 ,

then t ◦ y, (t ◦ y) ◦ y, (t ◦ y) ◦ y) ◦ y are




1 0 0
2λ1 1 0
0 λ1 + λ2 0



 ,





0 0 0
2 0 0

3λ1 + λ2 1 0



 ,





0 0 0
0 0 0
3 0 0



 ,

respectively. Again, it is easy to see that Sy is linearly independent.
3. Assume that

t =





λ1 0 0
0 λ2 0
0 0 λ3





where λ1, λ2, λ3 ∈ K are not all equal and λ1 + λ2 + λ3 6= 0. If

y =





0 0 1
1 0 0
0 1 0



 ,

then t ◦ y, (t ◦ y) ◦ y, (t ◦ y) ◦ y) ◦ y are




0 0 λ1 + λ3

λ1 + λ2 0 0
0 λ2 + λ3 0



 ,





0 λ1 + λ2 + 2λ3 0
0 0 2λ1 + λ2 + λ3

λ1 + 2λ2 + λ3 0 0



 ,





2λ1 + 3λ2 + 3λ3 0 0
0 3λ1 + 2λ2 + 3λ3 0
0 0 3λ1 + 3λ2 + 2λ3



 ,

respectively. A slightly more tedious but still elementary argument
shows that Sy is linearly independent in this case too.

4. We now consider the last remaining case where

t =





λ1 0 0
0 λ2 0
0 0 −λ1 − λ2





with λ1, λ2 ∈ K and λ1 6= 0. If

y =





1 0 0
1 0 0
0 1 0



 ,
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then t ◦ y, (t ◦ y) ◦ y, (t ◦ y) ◦ y) ◦ y are




2λ1 0 0
λ1 + λ2 0 0

0 −λ1 0



 ,





4λ1 0 0
3λ1 + λ2 0 0

λ2 0 0



 ,





8λ1 0 0
7λ1 + λ2 0 0
3λ1 + 2λ2 0 0



 ,

respectively. One easily checks that Sy is linearly independent.

We have thus proved that for each t that is not a scalar matrix there is a
matrix y such that Sy is linearly independent. �

We are now ready to tackle the deg(A) = 3 case.

Lemma 3.7. If deg(A) = 3 and char(A) is also different from 3 and 5, then
T is a weighted Jordan homomorphism.

Proof. We start similarly as in the proof of Lemma 3.5. As deg(A) = 3, there
exist symmetric multiadditive maps τ : A → Z, α : A2 → Z and δ : A3 → Z

such that

x3 = τ(x)x2 + α(x, x)x + δ(x, x, x)

for every x ∈ A, with δ(x, x, x) being the reduced norm of x. Since, as
pointed out above, Corollary 2.4 enables us to assume that A is a division
ring, δ(x, x, x) 6= 0 for every nonzero x ∈ A. In particular,

γ = µ
(

δ(b, b, b)
)

6= 0

(here, as always, b = T−1(1)).
Let x ∈ A. From (3.4) we see that T (x2) ◦ T (x) = T (x3) ◦ c. Hence,

T (x2) ◦ T (x) =T
(

τ(x)x2 + α(x, x)x + δ(x, x, x)
)

◦ c

=µ(τ(x))T (x2) ◦ c+ µ(α(x, x))T (x) ◦ c

+ µ(δ(x, x, x))c ◦ c.

Since, again by (3.4), T (x2) ◦ c = T (x) ◦ T (x), it follows that

(3.15)
(

T (x2)− µ(τ(x))T (x) − µ(α(x, x))c
)

◦ T (x) = 2µ(δ(x, x, x))c2 .

Define f : A2 → A by

f(x, y) =
1

2
T (x ◦ y)−

1

2
µ(τ(x))T (y) −

1

2
µ(τ(y))T (x) − µ(α(x, y))c.

Observe that f is a symmetric biadditive map which, by (3.15), satisfies

(3.16) f(x, x) ◦ T (x) = 2µ(δ(x, x, x))c2 .

Linearizing this identity we obtain

(3.17) f(x, y) ◦ T (z) + f(z, x) ◦ T (y) + f(y, z) ◦ T (x) = 6µ(δ(x, y, z))c2 .
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By (3.16),

f(b, b) =
1

2
f(b, b) ◦ T (b) = µ(δ(b, b, b))c2 = γc2.

Putting y = z = b in (3.17) we obtain

4f(x, b) + γc2 ◦ T (x) = 6µ(δ(x, b, b))c2 .

Next, applying (3.17) with y = x and z = b we arrive at

f(x, x) + f(x, b) ◦ T (x) = 3µ(δ(x, x, b))c2 .

The last two identities yield

f(x, x) =
(γ

4
c2 ◦ T (x)−

3

2
µ(δ(x, b, b))c2

)

◦ T (x) + 3µ(δ(x, x, b))c2 .

Returning to (3.16), we now have

γ

4

(

(c2 ◦ T (x)) ◦ T (x)
)

◦ T (x)−
3

2
µ(δ(x, b, b))(c2 ◦ T (x)) ◦ T (x)

+3µ(δ(x, x, b))c2 ◦ T (x) = 2µ(δ(x, x, x))c2 .

Since γ 6= 0 and T is surjective, this shows that for each y ∈ A, the set

{c2, c2 ◦ y, (c2 ◦ y) ◦ y, ((c2 ◦ y) ◦ y) ◦ y}

is linearly dependent. We will now use the fact known from the theory
of polynomial identities that the linear dependence can be characterized
through a special identity, see [2, Theorem 7.45]. Denoting by c4 the 4th
Capelli polynomial, this theorem implies that

c4
(

c2, c2 ◦ y, (c2 ◦ y) ◦ y, ((c2 ◦ y) ◦ y) ◦ y, x1, x2, x3
)

= 0

for all y, x1, x2, x3 ∈ A. Since c4 is multilinear, the linearization of this
identity gives
∑

σ∈S6

c4
(

c2, c2◦yσ(1), (c
2◦yσ(2))◦yσ(3), ((c

2◦yσ(4))◦yσ(5))◦yσ(6), x1, x2, x3
)

= 0

for all xi, yj ∈ A, i = 1, 2, 3, j = 1, . . . , 6. Let K be the algebraic closure of

Z and let A = K ⊗Z A. Since each xi and each yj occurs linearly in the last

identity, it follows that t = 1⊗ c2 ∈ A satisfies
∑

σ∈S6

c4
(

t, t ◦ yσ(1), (t ◦ yσ(2)) ◦ yσ(3), ((t ◦ yσ(4)) ◦ yσ(5)) ◦ yσ(6), x1, x2, x3
)

= 0

for all xi, yj ∈ A, i = 1, 2, 3, j = 1, . . . , 6. Take each yi to be equal to y. Our

characteristic assumption implies that 6!u = 0 with u ∈ A implies u = 0, so
we have

c4
(

t, t ◦ y, (t ◦ y) ◦ y, ((t ◦ y) ◦ y) ◦ y, x1, x2, x3
)

= 0

for all xi, y ∈ A, i = 1, 2, 3. We may now again use [2, Theorem 7.45], this
time in the opposite direction, to conclude that the set

{t, t ◦ y, (t ◦ y) ◦ y, ((t ◦ y) ◦ y) ◦ y}

is linearly dependent for every y ∈ A. Since A ∼= M3(K) [2, Theorem 4.39],
Lemma 3.6 shows that t lies in the center of A. Consequently, c2 ∈ Z and
so Lemma 2.2 tells us that T is a weighted Jordan homomorphism. �

We can now state the main result of this section.
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Theorem 3.8. Let A be a prime ring with char(A) 6= 2, 3, 5 and let S, T :
A → A be additive maps such that S(x2) = T (x)2 for every x ∈ A. If T is
bijective, then it is a weighted Jordan homomorphism.

Proof. Apply Lemmas 3.1, 3.2, 3.5, and 3.7. �

Remark 3.9. The conclusion of Theorem 3.8 is that T (x) = cΦ(x) where
Φ is a Jordan automorphism of A. It is well known that, since A is prime,
Φ is either an automorphism or an antiautomorphism [9].

Remark 3.10. The injectivity of T was used only once in the proof of
Theorem 3.8, that is, when showing that µ is injective. If Z is a field, in
particular if A is simple, then µ is automatically injective and so we may
weaken the assumption that T is bijective to T being only surjective.

In our final result we return to the condition studied in Section 2.

Corollary 3.11. Let A be a unital simple ring with char(A) 6= 2, 3, 5. If
A contains a nontrivial idempotent, then every surjective additive map T :
A → A such that for all x, y ∈ A,

xy = yx = 0 =⇒ T (x) ◦ T (y) = 0,

is a weighted Jordan homomorphism.

Proof. It is well known that the existence of one nontrivial idempotent in a
simple ring A implies that A is generated by idempotents [10, Corollaries on
p. 9 and p. 18]. We can therefore repeat the argument from the beginning of
the proof of Theorem 2.3 and conclude that T satisfies condition (3.4), which
is of course an equivalent version of the condition S(x2) = T (x)2 studied in
Theorem 3.8. As pointed out in Remark 3.10, in this setting the injectivity
of T is not needed for reaching the conclusion that T is a weighted Jordan
homomorphism. �

Theorems 2.3 and 3.8 show that in quite general rings, weighted Jordan
homomorphisms are the only bijective additive maps T with the property
that S(x2) = T (x)2 for some additive map S. We conclude the paper with
an example showing that there exist rings in which this does not hold.

Example 3.12. Let A be the Grassmann algebra in two generators over a
field F with char(F ) 6= 2. That is, A is the 4-dimensional algebra with basis
1, u, v, uv where u2 = v2 = uv + vu = 0. For each x ∈ A, let λ(x) be the
element in F satisfying x − λ(x)1 ∈ span{u, v, uv}. Note that x 7→ λ(x) is
an algebra homomorphism from A to F and that x ◦ u = 2λ(x)u for every
x ∈ A. Define S, T : A → A by

T (x) = x+ λ(x)u, S(x) = x+ 2λ(x)u.

Then S and T are linear maps, T is bijective, and

S(x2) =x2 + 2λ(x2)u = x2 + 2λ(x)2u

=x2 + λ(x)(x ◦ u) = (x+ λ(x)u)2 = T (x)2

for every x ∈ A. However, T (1) = 1+ u is not a central element, so T is not
a weighted Jordan homomorphism.
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