Positioned numerical semigroups with maximal gender as function of multiplicity and Frobenius number

J. C. Rosales ${ }^{1(D)}$, M. B. Branco *2 ${ }^{(D)}$, M. C. Faria ${ }^{3}$ (D)
${ }^{1}$ Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spain
${ }^{2}$ Departamento de Matemática, Universidade de Évora, 7000 Évora, Portugal
${ }^{3}$ Área Departamental de Física, Instituto Sup. Eng. de Lisboa, 1959-007 Lisboa, Portugal

Abstract

A C-semigroup (respectively a D-semigroup) is a positioned numerical semigroup S such that $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$ (respectively $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$). In this paper we study these semigroups giving formulas for the Frobenius number, pseudo-Frobenius number, and type. Furthermore, we give algorithms for computing the whole set of C-semigroups and D-semigroups.

Mathematics Subject Classification (2020). 20M14, 11D07
Keywords. numerical semigroups, positioned numerical semigroups, C-semigroups, D-semigroups tree, Frobenius number, multiplicity and gender

1. Introduction

Let \mathbb{Z} be the set of integers and $\mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 0\}$. A numerical semigroup is a nonempty subset S of \mathbb{N} that is closed under addition, contains the zero element, and whose complement in \mathbb{N} is finite. Numerical semigroups appear in several areas of mathematics and there are several interesting combinatorial invariants of a semigroup (see for example [11]). Notable numerical semigroup invariants include the Frobenius number, multiplicity, and gender of S that are $\mathrm{F}(S)=\max \{x \in \mathbb{Z} \mid x \notin S\}, \mathrm{m}(S)=\min (S \backslash\{0\})$, and $\mathrm{g}(S)=\operatorname{card}(\mathbb{N} \backslash S)$, respectively.
Given a rational number q, we denote by $\lfloor q\rfloor=\max \{z \in \mathbb{Z} \mid z \leq q\}$, and $\lceil q\rceil=$ $\min \{z \in \mathbb{Z} \mid z \geq q\}$.

Let k be a positive integer. A numerical semigroup S is k-positioned if for all $x \in \mathbb{N} \backslash S$ we have that $k-x \in S$. The $\mathrm{F}(S)$-positioned numerical semigroups are the symmetric numerical semigroups studied in [6], [1] and [7]. The $\mathrm{F}(S)+\mathrm{m}(S)$-positioned numerical semigroups (respectively $\mathrm{F}(S)+\mathrm{m}(S)+1$-positioned) called positioned numerical semigroups (respectively almost-positioned) are studied in [2] (respectively [3]). Thus a numerical semigroup S is positioned if for all $x \in \mathbb{N} \backslash S$ we have that $\mathrm{F}(S)+\mathrm{m}(S)-x \in S$. In [2, Proposition 5] it is shown that if S is a positioned numerical semigroup then

[^0]$\left\lceil\frac{\mathrm{F}(S)+1}{2}\right\rceil \leq \mathrm{g}(S) \leq\left\lfloor\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}\right\rfloor$. The aim of this paper is to study the positioned numerical semigroups S for which $\mathrm{g}(S)=\left\lfloor\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}\right\rfloor$. In order to study this we distinguish two cases depending on the parity of $\mathrm{F}(S)+\mathrm{m}(S)$. A C-semigroup (respectively a D-semigroup) is a positioned numerical semigroup S such that $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$ (respectively $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$).

Let \mathcal{A} be a nonempty subset of \mathbb{N}. We denote by $\langle\mathcal{A}\rangle$ the submonoid of $(\mathbb{N},+)$ generated by \mathcal{A}, that is,

$$
\langle\mathcal{A}\rangle=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in \mathcal{A} \text {, and } \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\} .
$$

It is well known (see for example [11]) that $\langle\mathcal{A}\rangle$ is a numerical semigroup if and only if $\operatorname{gcd}(\mathcal{A})=1$.

If S is a numerical semigroup and $S=\langle\mathcal{A}\rangle$ then we say that \mathcal{A} is a system of generators of S. Moreover, if $S \neq\langle\mathcal{B}\rangle$ for all $\mathcal{B} \varsubsetneqq \mathcal{A}$, then we say that \mathcal{A} is a minimal system of generators of S. In [11] it is proved that every numerical semigroup S admits a unique minimal system of generators and its cardinality is upper bounded by $\mathrm{m}(S)$. We denote by $\operatorname{msg}(S)$ the minimal system generators of S. Its cardinality is the embedding dimension of S, denoted by e (S).

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it. In [10] it is shown that a numerical semigroup is irreducible if and only if it is either a symmetric or a pseudo-symmetric numerical semigroup. This class of semigroups is quite interesting in numerical semigroup theory (see for instance [6], [1], [5]) and there are numerous characterizations for it.

Proposition 1.1. [11, Proposition 4.4] Let S be a numerical semigroup. S is symmetric (resp. pseudo-symmetric) if and only if $\mathrm{F}(S)$ is odd (resp. even) and $x \in \mathbb{Z} \backslash S$ implies $\mathrm{F}(S)-x \in S$ (resp. $x \in \mathbb{Z} \backslash S$ implies that either $\mathrm{F}(S)-x \in S$ or $x=\frac{\mathrm{F}(S)}{2}$).
Given a numerical semigroup S, we say that an integer x is a pseudo-Frobenius number if $x \in \mathbb{Z} \backslash S$ and $x+s \in S$ for all $s \in S \backslash\{0\}$. We denote by $\operatorname{PF}(S)$ the set of pseudo-Frobenius numbers of S, and its cardinality is the type of S , denoted by $\mathrm{t}(S)$.

In section 2 we show that S is a C-semigroup if and only if $S=S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}$ with S^{\prime} a symmetric numerical semigroup different from \mathbb{N} and $\langle\{2,3\}\rangle$. We will also give formulas for Frobenius number, pseudo-Frobenius numbers and type of a C-semigroup in terms of its minimal system of generators.

Let S be a numerical semigroup and $\operatorname{msg}(S)=\left\{n_{1}, \ldots, n_{p}\right\}$. We say that an element $s \in S$ has unique expression if there exists a unique n-tuple $\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \mathbb{N}^{p}$ such that $s=\lambda_{1} n_{1}+\cdots+\lambda_{p} n_{p}$.

In section 3 we see that S is a D-semigroup if and only if $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \operatorname{msg}(S)$ and $\mathrm{F}(S)+\mathrm{m}(S)$ has unique expression in S. The same way, as before, we show that S is a D-semigroup if and only if $S=S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right), \frac{\mathrm{F}\left(S^{\prime}\right)}{2}\right\}$ with S^{\prime} a pseudo-symmetric numerical semigroup with $\mathrm{F}\left(S^{\prime}\right)>2 \mathrm{~m}\left(S^{\prime}\right)$. Again, we will also give formulas for the Frobenius number, pseudo-Frobenius numbers and type of a D-semigroup in terms of its minimal system of generators.
Finally, in section 4, the study done in the previous sections along with [4] allows us to give a procedure to compute the whole set of C-semigroups and D-semigroups with given Frobenius number and multiplicity.

2. C-semigroups

Recall that a C-semigroup is a positioned numerical semigroup S with $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$. Our aim in this section is to characterize this type of numerical semigroups.

A numerical semigroup $\{0, \mathrm{~m}(S) \rightarrow\}$ is sometimes called in the literature half-line or ordinary and it will be denoted here by $\Delta(m)$.
Proposition 2.1. If $m \in \mathbb{N} \backslash\{0,1\}$, then $\Delta(m)$ is a C-semigroup.
Proof. The half-line $\Delta(m)$ is a positioned numerical semigroup with $\mathrm{m}(\Delta(m))=m$, $\mathrm{F}(\Delta(m))=m-1$ and $\mathrm{g}(\Delta(m))=m-1$. Then we deduce that $\mathrm{g}(\Delta(m))=\frac{\mathrm{F}(\Delta(m))+\mathrm{m}(\Delta(m))-1}{2}$ and thus $\Delta(m)$ is a C-semigroup.

Given a numerical semigroup S, denote by

$$
Q(S)=\{x \in S \mid 1 \leq x \leq \mathrm{F}(S)+\mathrm{m}(S)-1\}
$$

Its cardinality is denoted by $\mathrm{q}(S)$.
It is easy to prove our next result which is deduced in [2, Proposition 5].
Lemma 2.2. Let S be a positioned numerical semigroup. Then
(1) $\phi: \mathbb{N} \backslash S \rightarrow Q(S)$, defined by $\phi(x)=\mathrm{F}(S)+\mathrm{m}(S)-x$ is an injective map.
(2) $\mathrm{g}(S) \leq \mathrm{q}(S)$.
(3) S is a C-semigroup if and only if $\mathrm{g}(S)=\mathrm{q}(S)$.

Note that if $m \in \operatorname{msg}(S)$ and $x \in S \backslash\{0, m\}$ then $m-x \notin S$ and so we have the following result.
Lemma 2.3. Let S be a numerical semigroup and $m \in \operatorname{msg}(S)$. If $x \in\{1, \ldots, m-1\} \cap S$ then $m-x \in\{1, \ldots, m-1\} \cap \mathbb{N} \backslash S$.

From the previous lemma we can state the next result.
Lemma 2.4. Let S be a numerical semigroup such that $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}(S)$. Then the following conditions hold:
(1) $\psi: Q(S) \rightarrow \mathbb{N} \backslash S$, defined by $\psi(x)=\mathrm{F}(S)+\mathrm{m}(S)-x$ is a injective map.
(2) $\mathrm{q}(S) \leq \mathrm{g}(S)$.

Theorem 2.5. Let S be a positioned numerical semigroup. Then S is a C-semigroup if and only if $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}(S)$.
Proof. Necessity. If $\mathrm{F}(S)+\mathrm{m}(S) \notin \operatorname{msg}(S)$, then there exists $\{x, y\} \subseteq S \backslash\{0\}$ such that $\mathrm{F}(S)+\mathrm{m}(S)=x+y$. By Lemma 2.2, we deduce that ϕ is not a surjective map and so $\mathrm{g}(S)<\mathrm{q}(S)$. By using again (3) of the same lemma, we have that S is not a C-semigroup.

Sufficiency. By using Lemmas 2.2 and 2.4, we conclude that $\mathrm{g}(S) \leq \mathrm{q}(S)$ and $\mathrm{q}(S) \leq$ $\mathrm{g}(S)$. Hence, $\mathrm{g}(S)=\mathrm{q}(S)$ and by (3) of Lemma 2.2 we obtain that S is a C-semigroup.

Given a numerical semigroup S, we denote by $M(S)=\max (\operatorname{msg}(S))$. It is easy to prove the following result.
Lemma 2.6. Let S be a numerical semigroup. If $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}(S)$, then $M(S)=$ $\mathrm{F}(S)+\mathrm{m}(S)$.

The following result is well-known and appears in [11].
Lemma 2.7. Let S be a numerical semigroup and let $x \in S$. Then $S \backslash\{x\}$ is a numerical semigroup if and only if $x \in \operatorname{msg}(S)$.
Proposition 2.8. If S is a C-semigroup, then $\bar{S}=S \backslash\{M(S)\}$ is a symmetric numerical semigroup with $\mathrm{m}(\bar{S})=\mathrm{m}(S)$ and $\mathrm{F}(\bar{S})=\mathrm{F}(S)+\mathrm{m}(S)$.
Proof. Using Theorem 2.5 and Lemma 2.6, we obtain that $M(S)=\mathrm{F}(S)+\mathrm{m}(S)$. By Lemma 2.7, we get that \bar{S} is numerical semigroup with $\mathrm{m}(\bar{S})=\mathrm{m}(S)$ and $\mathrm{F}(\bar{S})=\mathrm{F}(S)+$ $\mathrm{m}(S)$.

In order to prove that \bar{S} is symmetric, we will see that if $x \in \mathbb{N} \backslash \bar{S}$ then $\mathrm{F}(\bar{S})-x \in \bar{S}$. If $x \in \mathbb{N} \backslash \bar{S}$, then either $x \in \mathbb{N} \backslash S$ or $x=M(S)$. We distinguish two cases.

- If $x=M(S)$, then $\mathrm{F}(\bar{S})-x=M(S)-M(S)=0 \in \bar{S}$
- If $x \in \mathbb{N} \backslash S$, then $\mathrm{F}(S)+\mathrm{m}(S)-x \in S$ and so $\mathrm{F}(S)+\mathrm{m}(S)-x \in \bar{S}$ or $\mathrm{F}(S)+$ $\mathrm{m}(S)-x=M(S)$. If $\mathrm{F}(S)+\mathrm{m}(S)-x=M(S)$, then $x=0$, which contradicts $x \in \mathbb{N} \backslash \bar{S}$. Hence $\mathrm{F}(\bar{S})-x \in \bar{S}$ and thus \bar{S} is symmetric.

The next result it easy to prove.
Lemma 2.9. If S is a numerical semigroup such that $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\}$ is again a numerical semigroup.

The following result can be deduce of [9, Lemmas 1.2 and 1.3].
Lemma 2.10. Let S be a symmetric numerical semigroup such that $S \notin\{\mathbb{N},\langle 2,3\rangle\}$ and let $\bar{S}=S \cup\{\mathrm{~F}(S)\}$. Then \bar{S} is a numerical semigroup with $\mathrm{F}(\bar{S})=\mathrm{F}(S)-\mathrm{m}(S)$ and $\mathrm{m}(\bar{S})=\mathrm{m}(S)$.

Proposition 2.11. If S is a symmetric numerical semigroup such that $S \neq \mathbb{N}$, then $\bar{S}=S \cup\{\mathrm{~F}(S)\}$ is a positioned numerical semigroup.

Proof. We distinguish two cases.

- If $S=\langle 2,3\rangle$ then $\bar{S}=\mathbb{N}$ and thus \bar{S} is a positioned numerical semigroup.
- If $S \neq\langle 2,3\rangle$, then by Lemma 2.10, we have that $\mathrm{m}(\bar{S})=\mathrm{m}(S)$ and $\mathrm{F}(\bar{S})+\mathrm{m}(\bar{S})=$ $\mathrm{F}(S)$. Whence, if $x \in \mathbb{N} \backslash \bar{S}$, then $x \in \mathbb{N} \backslash S$ and so $\mathrm{F}(S)-x \in S$. Consequently, $\mathrm{F}(\bar{S})+\mathrm{m}(\bar{S})-x \in \bar{S}$ and thus \bar{S} is a positioned numerical semigroup.

A numerical semigroup S is called a UESYsemigroups if there exists S^{\prime} symmetric such that $S=S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}$.
Proposition 2.12. [9, Theorem 1.8] Let S be a numerical semigroup such that $S \neq \mathbb{N}$. The following conditions are equivalent.
(1) S is a UESYsemigroup.
(2) $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}(S)$ and $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$.

Theorem 2.13. Let S be a numerical semigroup such that $S \neq \mathbb{N}$. Then S is a C semigroup if and only if S is a UESYsemigroup.
Proof. Necessity. If S is a C-semigroup, then $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$. By Theorem 2.5, we have that $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}(S)$. Hence, by applying Proposition 2.12, we obtain that S is a UESYsemigroup.

Sufficiency. If S is a UESYsemigroup then there exist a symmetric numerical semigroup S^{\prime} such that $S=S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}$ with $S^{\prime} \notin\{\langle 2,3\rangle, \mathbb{N}\}$. By Propositions 2.11 and 2.12 , we have that S is a positioned semigroup and $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-1}{2}$. Whence S is a C-semigroup.

By using Theorem 2.13 and [9, Corollary 1.9 and Theorem 1.14] we obtain the following result.

Proposition 2.14. Let S be a C-semigroup. Then the following conditions hold.
(1) $\mathrm{F}(S)=M(S)-\mathrm{m}(S)$.
(2) $\mathrm{g}(S)=\frac{M(S)-1}{2}$.
(3) $\operatorname{PF}(S)=\{M(S)-x \mid x \in \operatorname{msg}(S)$ and $x \neq M(S)\}$ and $\mathrm{t}(S)=\mathrm{e}(S)-1$.

Note that \mathbb{N} is the unique numerical semigroup with embedding dimension one which is not C-semigroup and so there are no C-semigroups with embedding dimension one.

In [11] it is proved that, if S is a numerical semigroup with e $(S)=2$, then S is symmetric and $\mathrm{g}(S)=\frac{\mathrm{F}(S)+1}{2}$. We deduce that if S is a C-semigroup with $\mathrm{e}(S)=2$, then this forces
$\mathrm{m}(S)=2$. Since all symmetric numerical semigroups are positioned (see [2]) we obtain the next result.

Proposition 2.15. The set of C-semigroups with embedding dimension two is equal to $\{\langle 2,2 k+1\rangle \mid k \in \mathbb{N} \backslash\{0\}\}$.

It is well known that if S is a numerical semigroup, then $\mathrm{e}(S) \leq \mathrm{m}(S)$ and $\mathrm{t}(S) \leq m-1$ (see [11]). The next aim, in this section, is to show that for given m and e integers (resp. m and t integers) such that $3 \leq e \leq m$ (resp. $2 \leq t \leq m-1$) there exists a C-semigroup with multiplicity m and embedding dimension e (resp. with multiplicity m and type t).

The next lemmas are known and they are in [9].
Lemma 2.16. [9, Lemma 1.13] Let S be a symmetric numerical semigroup with $\mathrm{m}(S) \geq 3$. Then $\mathrm{e}(S \cup\{\mathrm{~F}(S)\})=\mathrm{e}(S)+1$ and $\mathrm{t}(S \cup\{\mathrm{~F}(S)\})=\mathrm{e}(S)$.
Lemma 2.17. [9, Lemma 1.16] Let m and e be integers such that $2 \leq e \leq m-1$. Then there exists a symmetric numerical semigroup S with $\mathrm{m}(S)=m$ and $\mathrm{e}(S)=e$.
Proposition 2.18. Let m and e be integers such that $3 \leq e \leq m$. Then there exists a C-semigroup S with $\mathrm{m}(S)=m$ and $\mathrm{e}(S)=e$.
Proof. By Lemma 2.17, there exists a symmetric numerical semigroup S^{\prime} with $\mathrm{m}\left(S^{\prime}\right)=m$ and $\mathrm{e}\left(S^{\prime}\right)=e-1$. Suppose that $S=S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}$. Then S is a UESYsemigroup and, by Theorem 2.13, is a C-semigroup. Further, by Lemmas 2.10 and 2.16 , we obtain that $\mathrm{m}(S)=m$ and $\mathrm{e}(S)=e$.
Remark 2.19. Observe that S is a symmetric numerical semigroup if and only if $\mathrm{t}(S)=1$. Besides, by the previous comment to Proposition 2.15 about the multiplicity, we obtain that the set of C-semigroups with type one is equal to $\{\langle 2,2 k+1\rangle \mid k \in \mathbb{N} \backslash\{0\}\}$.
Proposition 2.20. Let m and t be integers such that $2 \leq t \leq m-1$. Then there exists a C-semigroup S with $\mathrm{m}(S)=m$ and $\mathrm{t}(S)=t$.
Proof. By Lemma 2.18, there exists a C-semigroup S with $\mathrm{m}(S)=m$ and $\mathrm{e}(S)=t+1$. By applying Proposition 2.14, $\mathrm{t}(S)=t$.
Example 2.21. The numerical semigroup $S^{\prime}=\langle 7,11\rangle$ is a symmetric numerical semigroup with $\mathrm{F}\left(S^{\prime}\right)=59$. Hence $S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}=\langle 7,11,59\rangle$ is a UESYsemigroup and, by Theorem 2.13, is a C-semigroup. Using Proposition 2.14, we have that $\mathrm{F}\left(S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}\right)=59-7=52$, $\mathrm{g}\left(S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}\right)=\frac{59-1}{2}=29, \operatorname{PF}\left(S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}\right)=\{59-7,59-11\}=\{52,48\}$ and $\mathrm{t}\left(S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right)\right\}\right)=2$.

3. D-semigroups

Recall that a D-semigroup is a positioned numerical semigroup S with $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$. Our aim in this section is to characterize these types of numerical semigroups.
Example 3.1. Let us see that $S=\langle 6,7,11\rangle$ is a D-semigroup.
In fact $S=\{0,6,7,11,12,13,14,17, \rightarrow\}$ and thus $\mathrm{F}(S)=16, \mathrm{~m}(S)=6$, $\mathbb{N} \backslash S=\{1,2,3,4,5,8,9,10,15,16\}$ and $\mathrm{g}(S)=10$.
Moreover $\{\mathrm{F}(S)+\mathrm{m}(S)-x \mid x \in \mathbb{N} \backslash S\}=\{21,20,19,18,17,14,13,12,7,6\} \subseteq S$ and so S is positioned. Since $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$, we obtain that S is a D-semigroup
Lemma 3.2. If S is a positioned numerical semigroup and $\mathrm{F}(S)+\mathrm{m}(S)$ is an even number, then $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in S$.
Proof. Since S is positioned, if $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \mathbb{N} \backslash S$ then $\mathrm{F}(S)+\mathrm{m}(S)-\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in S$. Hence $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in S$, a contradiction.

Lemma 3.3. Let S be a positioned numerical semigroup. Then S is a D-semigroup if and only if $\mathrm{g}(S)=\mathrm{q}(S)-1$.
Proof. If S be a positioned numerical semigroup, then $\mathrm{g}(S)+\mathrm{q}(S)=\mathrm{F}(S)+\mathrm{m}(S)-1$. Hence, we obtain that S is a D-semigroup (i.e. $2 \mathrm{~g}(S)=\mathrm{F}(S)+\mathrm{m}(S)-2$) if and only if $\mathrm{g}(S)=\mathrm{q}(S)-1$.
Lemma 3.4. If S is a D-semigroup, then $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \operatorname{msg}(S)$ and $\mathrm{F}(S)+m(S)$ has unique expression in S.
Proof. By Lemma 3.2, we have that $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in S$. Since S is a D-semigroup, then $S \neq \mathbb{N}$ and so $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \neq 0$. If $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \notin \mathrm{msg}(S)$, then there exist $x, y \in S \backslash\{0\}$ such that $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2}=x+y$. Hence $\mathrm{F}(S)+\mathrm{m}(S)=2 x+2 y=x+(x+2 y)=(2 x+y)+y$. Now, by using Lemma 2.2, we obtain that $\{x, 2 x, 2 x+y\} \subseteq Q(S)$ and $\{x, 2 x, 2 x+y\} \cap \phi(\mathbb{N} \backslash S)=\emptyset$ and thus $\mathrm{q}(S) \geq \mathrm{g}(S)+3$.

If $\mathrm{F}(S)+\mathrm{m}(S)$ has not unique expression in S, then there exist $x, y \in S \backslash\{0\}$ such that $\mathrm{F}(S)+\mathrm{m}(S)=x+y$ and $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \notin\{x, y\}$. By Lemma 2.2 again, we get that $\mathrm{q}(S) \geq \mathrm{g}(S)+2$.

In both cases, we have that if $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \notin \mathrm{msg}(S)$ or if $\mathrm{F}(S)+\mathrm{m}(S)$ does not have unique expression in S, then $\mathrm{g}(S) \neq \mathrm{q}(S)-1$. But this contradicts Lemma 3.3, since S is a D-semigroup.
Theorem 3.5. Let S be a positioned numerical semigroup. Then S is a D-semigroup if and only if $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \operatorname{msg}(S)$ and $\mathrm{F}(S)+\mathrm{m}(S)$ has unique expression in S.
Proof. Necessity. This is an immediate consequence of the Lemma 3.4.
Sufficiency. From the hypothesis, we deduce that $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2}$ is the unique element in $Q(S) \backslash \operatorname{Im}(\phi)$ (in view of of Lemma 2.2) and thus $\mathrm{g}(S)=\mathrm{q}(S)-1$. By using Lemma 3.3, we have that S is a D-semigroup.
Lemma 3.6. If S is a D-semigroup, then

$$
\bar{S}=S \backslash\left\{\frac{\mathrm{~F}(S)+\mathrm{m}(S)}{2}, \mathrm{~F}(S)+\mathrm{m}(S)\right\}
$$

is a numerical semigroup.
Proof. As by Theorem 3.5, we have that $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \operatorname{msg}(S)$, then, by applying Lemma 2.7, $S^{\prime}=S \backslash\left\{\frac{\mathrm{~F}(S)+\mathrm{m}(S)}{2}\right\}$ is a numerical semigroup. Using again Theorem 3.5, $\mathrm{F}(S)+\mathrm{m}(S)$ has unique expression in S. We can deduce that $\mathrm{F}(S)+\mathrm{m}(S) \in \operatorname{msg}\left(S^{\prime}\right)$ and in the same way $\bar{S}=S^{\prime} \backslash\{\mathrm{F}(S)+\mathrm{m}(S)\}$ is a numerical semigroup.
Proposition 3.7. If S is a D-semigroup, then

$$
\bar{S}=S \backslash\left\{\frac{\mathrm{~F}(S)+\mathrm{m}(S)}{2}, \mathrm{~F}(S)+\mathrm{m}(S)\right\}
$$

is a pseudosymmetric numerical semigroup with $2 \mathrm{~m}(\bar{S})<\mathrm{F}(\bar{S})$.
Proof. Obviously $\mathrm{F}(\bar{S})=\mathrm{F}(S)+\mathrm{m}(S)$. We need to show that \bar{S} is a pseudosymmetric numerical semigroup (i.e. $x \in \mathbb{Z} \backslash \bar{S}$ implies that either $\mathrm{F}(\bar{S})-x \in \bar{S}$ or $x=\frac{\mathrm{F}(\bar{S})}{2}$).

We have that if $x \in \mathbb{N} \backslash \bar{S}$ then either $x \in \mathbb{N} \backslash S$ or $x=\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2}$ or $x=\mathrm{F}(S)+\mathrm{m}(S)$. We distinguish three cases.

- If $x \in \mathbb{N} \backslash S$ then $\mathrm{F}(S)+\mathrm{m}(S)-x \in S$ and so $\mathrm{F}(\bar{S})-x \in S$. Hence either $\mathrm{F}(\bar{S})-x \in \bar{S}$ or $\mathrm{F}(\bar{S})-x=\frac{F(\bar{S})}{2}$ or $\mathrm{F}(\bar{S})-x=\mathrm{F}(\bar{S})$. As the last two cases are not possible, we get that $\mathrm{F}(\bar{S})-x \in \bar{S}$.
- If $x=\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2}$, then $2 x=\mathrm{F}(\bar{S})$, contradicting that $2 x \neq \mathrm{F}(\bar{S})$.
- If $x=\mathrm{F}(S)+\mathrm{m}(S)$, then $x=\mathrm{F}(\bar{S})$ and $\mathrm{F}(\bar{S})-x=\mathrm{F}(\bar{S})-\mathrm{F}(\bar{S})=0 \in \bar{S}$.

Since $\mathrm{F}(S)+\mathrm{m}(S)$ is even, then $\mathrm{F}(S) \neq \mathrm{m}(S)-1$ and so $\mathrm{F}(S)>\mathrm{m}(S)$. Therefore $\mathrm{m}(S)=\mathrm{m}(\bar{S})$ and $\mathrm{F}(\bar{S})>2 \mathrm{~m}(\bar{S})$.

As a consequence of [8, Lemmas 31 and 32] we obtain the following.
Lemma 3.8. Let S be a pseudosymmetric numerical semigroup with $\mathrm{F}(S)>2 \mathrm{~m}(S)$. Then $\bar{S}=S \cup\left\{\frac{\mathrm{~F}(S)}{2}, \mathrm{~F}(S)\right\}$ is a numerical semigroup, $\mathrm{m}(\bar{S})=\mathrm{m}(S)$ and $\mathrm{F}(\bar{S})=\mathrm{F}(S)-\mathrm{m}(S)$
Proposition 3.9. Let S be a pseudosymmetric numerical semigroup with $\mathrm{F}(S)>2 \mathrm{~m}(S)$. Then $\bar{S}=S \cup\left\{\frac{\mathrm{~F}(S)}{2}, \mathrm{~F}(S)\right\}$ is a positioned numerical semigroup.
Proof. From Lemma 3.8 we obtain that \bar{S} is a numerical semigroup, $\mathrm{m}(\bar{S})=\mathrm{m}(S)$ and $\mathrm{F}(\bar{S})=\mathrm{F}(S)-\mathrm{m}(S)$. We need to see that \bar{S} is positioned. If $x \in \mathbb{N} \backslash \bar{S}$ then $x \in \mathbb{N} \backslash S$ and $x \neq \frac{\mathrm{F}(S)}{\frac{2}{S}}$. Since S is pseudosymmetric, we obtain that $\mathrm{F}(S)-x \in S \subseteq \bar{S}$. Hence $\mathrm{F}(\bar{S})+\mathrm{m}(\bar{S})-x \in \bar{S}$ and so \bar{S} is positioned.

A numerical semigroup S is called PEPSY-semigroup if there exist S^{\prime} pseudosymmetric numerical semigroup such that $S=S^{\prime} \cup\left\{F\left(S^{\prime}\right), \frac{\mathrm{F}\left(S^{\prime}\right)}{2}\right\}$.

A PEPSY-semigroup that is not a half-line is called PEPSYNHL-semigroup.
From this definitions we have the following results of [8].
Lemma 3.10. [8, Proposition 30] A numerical semigroup S is a PEPSY-semigroup if and only if one of the following conditions holds:
(1) S is half-line.
(2) there exists a pseudo-symmetric numerical semigroup S^{\prime} with $F\left(S^{\prime}\right)>2 \mathrm{~m}\left(S^{\prime}\right)$ and $S=S^{\prime} \cup\left\{F\left(S^{\prime}\right), \frac{\mathrm{F}\left(S^{\prime}\right)}{2}\right\}$.
Lemma 3.11. [8, Theorem 33] Let S not be half-line. The following conditions are equivalent:
(1) S is a PEPSY-semigroup,
(2) $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \mathrm{msg}(S), \mathrm{F}(S)+\mathrm{m}(S)$ has unique expression in S and $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$.

Theorem 3.12. A semigroup S is a D-semigroup if and only if S is a PEPSYNHLsemigroup.
Proof. Necessity. If S is a D-semigroup, then we have that $\mathrm{F}(S)+\mathrm{m}(S)$ is even and thus S is not half-line. Besides, we have that $\mathrm{g}(S)=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$ and, by Theorem 3.5, $\frac{\mathrm{F}(S)+\mathrm{m}(S)}{2} \in \operatorname{msg}(S)$ and $\mathrm{F}(S)+\mathrm{m}(S)$ has unique expression in S. Hence we conclude, by Lemma 3.11, that S is a PEPSYNHL-semigroup.

Sufficiency. Suppose that S is a PEPSYNHL-semigroup. By using Lemma 3.10, there exists a pseudo-symmetric numerical semigroup S^{\prime} with $F\left(S^{\prime}\right)>2 \mathrm{~m}\left(S^{\prime}\right)$ and $S=S^{\prime} \cup$ $\left\{F\left(S^{\prime}\right), \frac{\mathrm{F}\left(S^{\prime}\right)}{2}\right\}$. By Lemma 3.8 and Proposition 3.9, we get that S is positioned and $\mathrm{m}\left(S^{\prime}\right)=\mathrm{m}(S)$ and $\mathrm{F}(S)=\mathrm{F}\left(S^{\prime}\right)-\mathrm{m}\left(S^{\prime}\right)$. As S^{\prime} is pseudo-symmetric then $\mathrm{g}\left(S^{\prime}\right)=\frac{\mathrm{F}\left(S^{\prime}\right)+2}{2}$ and $\mathrm{g}(S)=\mathrm{g}\left(S^{\prime}\right)-2$. Therefore, we can conclude that $\mathrm{g}(S)=\frac{\mathrm{F}\left(S^{\prime}\right)+2}{2}-2=\frac{\mathrm{F}(S)+\mathrm{m}(S)-2}{2}$ and so S is a D-semigroup.

As a consequence of Lemma 3.10 and Theorem 3.12 we obtain the following result.
Corollary 3.13. The set of all D-semigroups is equal to

$$
\left\{\left.S^{\prime} \cup\left\{\mathrm{F}\left(S^{\prime}\right), \frac{\mathrm{F}\left(S^{\prime}\right)}{2}\right\} \right\rvert\, S^{\prime} \text { pseudo-symmetric semigroup with } \mathrm{F}\left(S^{\prime}\right)>2 \mathrm{~m}\left(S^{\prime}\right)\right\} .
$$

The next results give us formulas for the Frobenius number and pseudo-Frobenius numbers of a D-semigroup. The first (resp. second) is a consequence of Theorem 3.12 and [8, Corollary 34] (resp. Theorem 3.12 and [8, Lemma 35 and Theorem 38]).

Proposition 3.14. If S is a D-semigroup, then $\mathrm{F}(S) \leq 2 M(S)-\mathrm{m}(S)$. Moreover, $\mathrm{F}(S)=2 x-\mathrm{m}(S)$ for some $x \in \operatorname{msg}(S)$ such that $2 x>M(S)$ and $2 x$ has unique expression in S.

Proposition 3.15. If S is a D-semigroup, then $\mathrm{t}(S)=\mathrm{e}(S)-1$. Moreover, $\operatorname{PF}(S)=$ $\left\{\mathrm{F}(S)+\mathrm{m}(S)-x \mid x \in \operatorname{msg}(S)\right.$ and $\left.x \neq \frac{\mathrm{F}(S)+\mathrm{m}(S)}{2}\right\}$.

4. The algorithm

Given positive integers m and F, we denote by

$$
\begin{aligned}
P(m, F)= & \{S \mid S \text { is a positioned semigroup with } \mathrm{m}(S)=m \text {, and } \mathrm{F}(S)=F\}, \\
& \text { and } \mathfrak{P}(m, F)=\left\{S \in P(m, F) \left\lvert\, \mathrm{g}(S)=\left\lfloor\frac{F+m-1}{2}\right\rfloor\right.\right\} .
\end{aligned}
$$

The aim of this section is to show how to construct an algorithm to compute all elements in $\mathfrak{P}(m, F)$.
Clearly, if $C(m, F)=\{S \in P(m, F) \mid S$ is a C-semigroup $\}$ and
$D(m, F)=\{S \in P(m, F) \mid S$ is a D-semigroup $\}$, then

$$
\mathfrak{P}(m, F)= \begin{cases}C(m, F) & \text { if } F+m \text { is odd } \\ D(m, F) & \text { if } F+m \text { is even } .\end{cases}
$$

4.1. Case $m+F$ odd

Since $\mathrm{g}(\mathbb{N})=0$ we have that \mathbb{N} is not a C-semigroup. By Remark 2.19, we deduce that the whole set of C-semigroups with $\mathrm{m}(S)=2$ is equal to $\{\langle 2,2 k+1\rangle \mid k \in \mathbb{N} \backslash\{0\}\}$. Since $\mathrm{F}(\langle 2,2 k+1\rangle)=2 k-1$, then F is an odd integer if and only if $C(2, F) \neq \emptyset$. Therefore, we can conclude that $C(2, F)=\{\langle 2, F+2\rangle\}$.

From now on we assume that $m \geq 3$. Clearly, if S is a numerical semigroup and $\mathrm{m}(S)=m$, then $\mathrm{F}(S) \geq m-1$. If $\mathrm{F}(S)=m-1$ then $S=\Delta(m)$ is a half-line, and by Proposition 1, it is C-semigroup. Therefore, we have that $C(m, m-1)=\{\Delta(m)\}$.

So let us assume that $3 \leq m<F$ and $F+m$ is odd. From Lemma 2.10 and Theorem 2.13 we deduce the next result.

Proposition 4.1. With the above notation, we have that

$$
\begin{aligned}
C(m, F) & =\{S \cup\{\mathrm{~F}(S)\} \mid S
\end{aligned} \quad \text { is a symmetric } .
$$

We denote by $\mathfrak{I}(m, F)$ the set of all irreducible numerical semigroups with multiplicity m and Frobenius number F. Recall that a numerical semigroup is symmetric (respectively pseudo-symmetric) if it is irreducible with Frobenius number odd (respectively even).

Lemma 4.2. [4, Proposition 13] Let m and F be integers such that $F \geq$ 3. Then $\mathfrak{I}(m, F) \neq \varnothing$ if and only if $m \leq \frac{F+2}{2}$ and $m \nmid F$.

As a consequence of Proposition 4.1 and Lemma 4.2 we have the following.
Proposition 4.3. With the above notation, we have that $C(m, F) \neq \varnothing$ if and only if $m \nmid F$.

Now, we are able to give an algorithm to compute the whole set $C(m, F)$.

```
Algorithm 1
INPUT: Integeres \(m\) and \(F\) such that \(3 \leq m<F, F+m\) is odd and \(m \nmid F\).
OUTPUT: The set \(C(m, F)\).
1: Compute the set \(\mathfrak{I}(m, F)\) applying [4, Algorithm 22]
2: Return \(C(m, F)=\{S \cup\{F+m\} \mid S \in \mathfrak{I}(m, F+m)\}\).
```

Example 4.4. Let us compute the whole set $C(6,13)$.
(1) Compute the set $\Im(6,19)$ applying [4, Algorithm 22]. We start by the root of the tree $\langle 6,10,11,14,15\rangle$ and we obtain that $\Im(6,19)=\{\langle 6,10,11,14,15\rangle,\langle 6,8,10,15,17\rangle,\langle 6,9,11,14,16\rangle,\langle 6,8,9\rangle\}$.
(2) $C(6,13)=\{\langle 6,10,11,14,15,19\rangle,\langle 6,8,10,15,17,19\rangle, 6,9,11,14,16,19\rangle,\langle 6,8,9,19\}$.

4.2. Case $m+F$ even

From previous results we have that there are no D-semigroups with multiplicity 1 and 2 . On the other hand, as a half-line is not a D-semigroup we obtain that if S is a D-semigroup then $\mathrm{F}(S)>\mathrm{m}(S)$. So let us assume that $3 \leq m<F$ and $F+m$ is even.

As a consequence of Theorem 3.12 and Lemma 3.8 we have the following.
Proposition 4.5. With the above notation, we have that

$$
\begin{aligned}
& D(m, F)=\left\{\left.S \cup\left\{F+m, \frac{F+m}{2}\right\} \right\rvert\, S\right. \text { is a pseudosymmetric } \\
& \quad \text { numerical semigroup, } \mathrm{m}(S)=m \text { and } \mathrm{F}(S)=F+m\} .
\end{aligned}
$$

From Lemma 4.2 and Proposition 4.5 we deduce the next result.
Proposition 4.6. With the above notation, we have that $D(m, F) \neq \varnothing$ if and only if $m \nmid F$.

We conclude by giving an algorithm that will allow us to compute the whole set $D(m, F)$

```
Algorithm 2
INPUT: Integeres \(m\) and \(F\) such that \(3 \leq m<F, F+m\) is even and \(m \nmid F\).
OUTPUT: The set \(D(m, F)\).
```

1: Compute the set $\Im(m, F)$ applying [4, Algorithm 22]
2: Return $D(m, F)=\left\{\left.S \cup\left\{F+m, \frac{F+m}{2}\right\} \right\rvert\, S \in \mathfrak{I}(m, F+m)\right\}$.

Acknowledgment. We thank the anonymous referees for their detailed suggestions and comments, which have greatly improved this article.

References

[1] V. Barucci, D.E. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc. 598, 1997.
[2] M.B. Branco, M.C. Faria and J.C. Rosales, Positioned numerical semigroups, Quaest. Math. 44, 679-691, 2021.
[3] M.B. Branco, M.C. Faria and J.C. Rosales, Almost-positioned numerical semigroups, Results Math. 76, 1-14, 2021.
[4] M.B. Branco, I. Ojeda and J.C. Rosales, The set of numerical semigroups of a given multiplicity and Frobenius number, Port. Math. 78, 147-167, 2021.
[5] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum 35, 63-83, 1987.
[6] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25, 748-751, 1973.
[7] J.C. Rosales, On symmetric numerical semigroups, J. Algebra 182, 422-434, 1996.
[8] J.C. Rosales, Adding or removing on element from a Pseudo- symmetric numerical semigroup, Boll. Unione Mat. Ital. 9, 681-696, 2006.
[9] J.C. Rosales, Numerical semigroups that differ from a Symmetric numerical semigroups in one element, Algebra Colloq. 15, 23-32, 2008.
[10] J.C. Rosales and M.B. Branco, Irreducible numerical semigroups, Pacific J. Math. 209, 131-143, 2003.
[11] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups, Springer Science \& Business Media, 2009.

[^0]: *Corresponding Author.
 Email addresses: jrosales@ugr.es (J. C. Rosales), mbb@uevora.pt (M. B. Branco), mfaria@adf.isel.ipl.pt (M. C. Faria)
 Received: 15.04.2021; Accepted: 14.09.2021

