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Abstract
A C-semigroup (respectively a D-semigroup) is a positioned numerical semigroup S such
that g(S) = F(S)+m(S)−1

2 (respectively g(S) = F(S)+m(S)−2
2 ). In this paper we study these

semigroups giving formulas for the Frobenius number, pseudo-Frobenius number, and
type. Furthermore, we give algorithms for computing the whole set of C-semigroups and
D-semigroups.
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1. Introduction
Let Z be the set of integers and N = {x ∈ Z | x ≥ 0}. A numerical semigroup

is a nonempty subset S of N that is closed under addition, contains the zero element,
and whose complement in N is finite. Numerical semigroups appear in several areas of
mathematics and there are several interesting combinatorial invariants of a semigroup (see
for example [11]). Notable numerical semigroup invariants include the Frobenius number,
multiplicity, and gender of S that are F(S) = max {x ∈ Z | x ̸∈ S}, m(S) = min(S\{0}),
and g(S) = card(N\S), respectively.

Given a rational number q, we denote by ⌊q⌋ = max {z ∈ Z | z ≤ q}, and ⌈q⌉ =
min {z ∈ Z | z ≥ q}.

Let k be a positive integer. A numerical semigroup S is k-positioned if for all x ∈ N\S
we have that k − x ∈ S. The F(S)-positioned numerical semigroups are the symmetric
numerical semigroups studied in [6], [1] and [7]. The F(S) + m(S)-positioned numerical
semigroups (respectively F(S) + m(S) + 1-positioned) called positioned numerical semi-
groups (respectively almost-positioned) are studied in [2] (respectively [3]). Thus a nu-
merical semigroup S is positioned if for all x ∈ N\S we have that F(S) + m(S) − x ∈ S.
In [2, Proposition 5] it is shown that if S is a positioned numerical semigroup then
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⌈F(S)+1
2 ⌉ ≤ g(S) ≤ ⌊F(S)+m(S)−1

2 ⌋. The aim of this paper is to study the positioned
numerical semigroups S for which g(S) = ⌊F(S)+m(S)−1

2 ⌋. In order to study this we dis-
tinguish two cases depending on the parity of F(S) + m(S). A C-semigroup (respectively
a D-semigroup) is a positioned numerical semigroup S such that g(S) = F(S)+m(S)−1

2
(respectively g(S) = F(S)+m(S)−2

2 ).
Let A be a nonempty subset of N. We denote by ⟨A⟩ the submonoid of (N,+) generated

by A, that is,

⟨A⟩ =
{

n∑
i=1

λi ai | n ∈ N\ {0} , a1, . . . , an ∈ A, and λ1, . . . , λn ∈ N
}
.

It is well known (see for example [11]) that ⟨A⟩ is a numerical semigroup if and only if
gcd(A) = 1.

If S is a numerical semigroup and S = ⟨A⟩ then we say that A is a system of generators
of S. Moreover, if S ̸= ⟨B⟩ for all B  A, then we say that A is a minimal system of
generators of S. In [11] it is proved that every numerical semigroup S admits a unique
minimal system of generators and its cardinality is upper bounded by m(S). We denote by
msg(S) the minimal system generators of S. Its cardinality is the embedding dimension
of S, denoted by e(S).

A numerical semigroup is irreducible if it cannot be expressed as the intersection of
two numerical semigroups properly containing it. In [10] it is shown that a numerical
semigroup is irreducible if and only if it is either a symmetric or a pseudo-symmetric
numerical semigroup. This class of semigroups is quite interesting in numerical semigroup
theory (see for instance [6], [1], [5]) and there are numerous characterizations for it.

Proposition 1.1. [11, Proposition 4.4] Let S be a numerical semigroup. S is symmetric
(resp. pseudo-symmetric) if and only if F(S) is odd (resp. even) and x ∈ Z\S implies
F(S) − x ∈ S (resp. x ∈ Z\S implies that either F(S) − x ∈ S or x = F(S)

2 ).

Given a numerical semigroup S, we say that an integer x is a pseudo-Frobenius number if
x ∈ Z\S and x+s ∈ S for all s ∈ S\{0}. We denote by PF(S) the set of pseudo-Frobenius
numbers of S, and its cardinality is the type of S, denoted by t(S).

In section 2 we show that S is a C-semigroup if and only if S = S′ ∪ {F(S′)} with S′ a
symmetric numerical semigroup different from N and ⟨{2, 3}⟩. We will also give formulas
for Frobenius number, pseudo-Frobenius numbers and type of a C-semigroup in terms of
its minimal system of generators.

Let S be a numerical semigroup and msg(S) = {n1, . . . , np}. We say that an element
s ∈ S has unique expression if there exists a unique n-tuple (λ1, . . . , λp) ∈ Np such that
s = λ1n1 + · · · + λpnp.

In section 3 we see that S is a D-semigroup if and only if F(S)+m(S)
2 ∈ msg(S) and

F(S) + m(S) has unique expression in S. The same way, as before, we show that S is a
D-semigroup if and only if S = S′ ∪ {F(S′), F(S′)

2 } with S′ a pseudo-symmetric numerical
semigroup with F(S′) > 2m(S′). Again, we will also give formulas for the Frobenius
number, pseudo-Frobenius numbers and type of a D-semigroup in terms of its minimal
system of generators.

Finally, in section 4, the study done in the previous sections along with [4] allows us to
give a procedure to compute the whole set of C-semigroups and D-semigroups with given
Frobenius number and multiplicity.

2. C-semigroups
Recall that a C-semigroup is a positioned numerical semigroup S with g(S) = F(S)+m(S)−1

2 .
Our aim in this section is to characterize this type of numerical semigroups.



220 J. C. Rosales, M. B. Branco and M. C. Faria

A numerical semigroup {0,m(S) →} is sometimes called in the literature half-line or
ordinary and it will be denoted here by ∆(m).
Proposition 2.1. If m ∈ N\{0, 1}, then ∆(m) is a C-semigroup.
Proof. The half-line ∆(m) is a positioned numerical semigroup with m(∆(m)) = m,
F(∆(m)) = m−1 and g(∆(m)) = m−1. Then we deduce that g(∆(m)) = F(∆(m))+m(∆(m))−1

2
and thus ∆(m) is a C-semigroup. �

Given a numerical semigroup S, denote by
Q(S) = {x ∈ S | 1 ≤ x ≤ F(S) + m(S) − 1} .

Its cardinality is denoted by q(S).
It is easy to prove our next result which is deduced in [2, Proposition 5].

Lemma 2.2. Let S be a positioned numerical semigroup. Then
(1) ϕ : N\S → Q(S), defined by ϕ(x) = F(S) + m(S) − x is an injective map.
(2) g(S) ≤ q(S).
(3) S is a C-semigroup if and only if g(S) = q(S).

Note that if m ∈ msg(S) and x ∈ S\{0,m} then m−x ̸∈ S and so we have the following
result.
Lemma 2.3. Let S be a numerical semigroup and m ∈ msg(S). If x ∈ {1, . . . ,m− 1} ∩S
then m− x ∈ {1, . . . ,m− 1} ∩ N\S.

From the previous lemma we can state the next result.
Lemma 2.4. Let S be a numerical semigroup such that F(S)+m(S) ∈ msg(S). Then the
following conditions hold:

(1) ψ : Q(S) → N\S, defined by ψ(x) = F(S) + m(S) − x is a injective map.
(2) q(S) ≤ g(S).

Theorem 2.5. Let S be a positioned numerical semigroup. Then S is a C-semigroup if
and only if F(S) + m(S) ∈ msg(S).
Proof. Necessity. If F(S) + m(S) ̸∈ msg(S), then there exists {x, y} ⊆ S\{0} such that
F(S) + m(S) = x + y. By Lemma 2.2, we deduce that ϕ is not a surjective map and so
g(S) < q(S). By using again (3) of the same lemma, we have that S is not a C-semigroup.

Sufficiency. By using Lemmas 2.2 and 2.4, we conclude that g(S) ≤ q(S) and q(S) ≤
g(S). Hence, g(S) = q(S) and by (3) of Lemma 2.2 we obtain that S is a C-semigroup. �

Given a numerical semigroup S, we denote by M(S) = max(msg(S)). It is easy to
prove the following result.
Lemma 2.6. Let S be a numerical semigroup. If F(S) + m(S) ∈ msg(S), then M(S) =
F(S) + m(S).

The following result is well-known and appears in [11].
Lemma 2.7. Let S be a numerical semigroup and let x ∈ S. Then S\{x} is a numerical
semigroup if and only if x ∈ msg(S).

Proposition 2.8. If S is a C-semigroup, then S = S\{M(S)} is a symmetric numerical
semigroup with m(S) = m(S) and F(S) = F(S) + m(S).
Proof. Using Theorem 2.5 and Lemma 2.6, we obtain that M(S) = F(S) + m(S). By
Lemma 2.7, we get that S is numerical semigroup with m(S) = m(S) and F(S) = F(S) +
m(S).

In order to prove that S is symmetric, we will see that if x ∈ N\S then F(S) − x ∈ S.
If x ∈ N\S, then either x ∈ N\S or x = M(S). We distinguish two cases.
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• If x = M(S), then F(S) − x = M(S) −M(S) = 0 ∈ S
• If x ∈ N\S, then F(S) + m(S) − x ∈ S and so F(S) + m(S) − x ∈ S or F(S) +

m(S) − x = M(S). If F(S) + m(S) − x = M(S), then x = 0, which contradicts
x ∈ N\S. Hence F(S) − x ∈ S and thus S is symmetric.

�
The next result it easy to prove.

Lemma 2.9. If S is a numerical semigroup such that S ̸= N, then S ∪ {F(S)} is again a
numerical semigroup.

The following result can be deduce of [9, Lemmas 1.2 and 1.3].

Lemma 2.10. Let S be a symmetric numerical semigroup such that S ̸∈ {N, ⟨2, 3⟩} and
let S = S ∪ {F(S)}. Then S is a numerical semigroup with F(S) = F(S) − m(S) and
m(S) = m(S).

Proposition 2.11. If S is a symmetric numerical semigroup such that S ̸= N, then
S = S ∪ {F(S)} is a positioned numerical semigroup.

Proof. We distinguish two cases.
• If S = ⟨2, 3⟩ then S = N and thus S is a positioned numerical semigroup.
• If S ̸= ⟨2, 3⟩, then by Lemma 2.10, we have that m(S) = m(S) and F(S)+m(S) =

F(S). Whence, if x ∈ N\S, then x ∈ N\S and so F(S) − x ∈ S. Consequently,
F(S) + m(S) − x ∈ S and thus S is a positioned numerical semigroup.

�
A numerical semigroup S is called a UESYsemigroups if there exists S′ symmetric such

that S = S′ ∪ {F(S′)}.

Proposition 2.12. [9, Theorem 1.8] Let S be a numerical semigroup such that S ̸= N .
The following conditions are equivalent.

(1) S is a UESYsemigroup.
(2) F(S) + m(S) ∈ msg(S) and g(S) = F(S)+m(S)−1

2 .

Theorem 2.13. Let S be a numerical semigroup such that S ̸= N. Then S is a C-
semigroup if and only if S is a UESYsemigroup.

Proof. Necessity. If S is a C-semigroup, then g(S) = F(S)+m(S)−1
2 . By Theorem 2.5, we

have that F(S) + m(S) ∈ msg(S). Hence, by applying Proposition 2.12, we obtain that S
is a UESYsemigroup.

Sufficiency. If S is a UESYsemigroup then there exist a symmetric numerical semigroup
S′ such that S = S′∪{F(S′)} with S′ ̸∈ {⟨2, 3⟩,N}. By Propositions 2.11 and 2.12, we have
that S is a positioned semigroup and g(S) = F(S)+m(S)−1

2 . Whence S is a C-semigroup. �
By using Theorem 2.13 and [9, Corollary 1.9 and Theorem 1.14] we obtain the following

result.

Proposition 2.14. Let S be a C-semigroup . Then the following conditions hold.
(1) F(S) = M(S) − m(S).
(2) g(S) = M(S)−1

2 .
(3) PF(S) = {M(S) − x | x ∈ msg(S) and x ̸= M(S)} and t(S) = e(S) − 1.

Note that N is the unique numerical semigroup with embedding dimension one which
is not C-semigroup and so there are no C-semigroups with embedding dimension one.

In [11] it is proved that, if S is a numerical semigroup with e(S) = 2, then S is symmetric
and g(S) = F(S)+1

2 . We deduce that if S is a C-semigroup with e(S) = 2, then this forces
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m(S) = 2. Since all symmetric numerical semigroups are positioned (see [2]) we obtain
the next result.

Proposition 2.15. The set of C-semigroups with embedding dimension two is equal to
{⟨2, 2k + 1⟩ | k ∈ N\{0}}.

It is well known that if S is a numerical semigroup, then e(S) ≤ m(S) and t(S) ≤ m−1
(see [11]). The next aim, in this section, is to show that for given m and e integers (resp.
m and t integers) such that 3 ≤ e ≤ m (resp. 2 ≤ t ≤ m− 1) there exists a C-semigroup
with multiplicity m and embedding dimension e (resp. with multiplicity m and type t).

The next lemmas are known and they are in [9].

Lemma 2.16. [9, Lemma 1.13] Let S be a symmetric numerical semigroup with m(S) ≥ 3.
Then e

(
S ∪ {F(S)}

)
= e(S) + 1 and t

(
S ∪ {F(S)}

)
= e(S).

Lemma 2.17. [9, Lemma 1.16] Let m and e be integers such that 2 ≤ e ≤ m − 1. Then
there exists a symmetric numerical semigroup S with m(S) = m and e(S) = e.

Proposition 2.18. Let m and e be integers such that 3 ≤ e ≤ m. Then there exists a
C-semigroup S with m(S) = m and e(S) = e.

Proof. By Lemma 2.17, there exists a symmetric numerical semigroup S′ with m(S′) = m
and e(S′) = e − 1. Suppose that S = S′ ∪ {F(S′)}. Then S is a UESYsemigroup and,
by Theorem 2.13, is a C-semigroup. Further, by Lemmas 2.10 and 2.16, we obtain that
m(S) = m and e(S) = e. �
Remark 2.19. Observe that S is a symmetric numerical semigroup if and only if t(S) = 1.
Besides, by the previous comment to Proposition 2.15 about the multiplicity, we obtain
that the set of C-semigroups with type one is equal to {⟨2, 2k + 1⟩ | k ∈ N\{0}}.

Proposition 2.20. Let m and t be integers such that 2 ≤ t ≤ m− 1. Then there exists a
C-semigroup S with m(S) = m and t(S) = t.

Proof. By Lemma 2.18, there exists a C-semigroup S with m(S) = m and e(S) = t+ 1.
By applying Proposition 2.14, t(S) = t. �
Example 2.21. The numerical semigroup S′ = ⟨7, 11⟩ is a symmetric numerical semigroup
with F(S′) = 59. Hence S′ ∪ {F(S′)} = ⟨7, 11, 59⟩ is a UESYsemigroup and, by Theorem
2.13, is a C-semigroup. Using Proposition 2.14, we have that F

(
S′∪{F(S′)}

)
= 59−7 = 52,

g
(
S′ ∪ {F(S′)}

)
= 59−1

2 = 29, PF
(
S′ ∪ {F(S′)}

)
= {59 − 7, 59 − 11} = {52, 48} and

t
(
S′ ∪ {F(S′)}

)
= 2.

3. D-semigroups
Recall that aD-semigroup is a positioned numerical semigroup S with g(S) = F(S)+m(S)−2

2 .
Our aim in this section is to characterize these types of numerical semigroups.

Example 3.1. Let us see that S = ⟨6, 7, 11⟩ is a D-semigroup.
In fact S = {0, 6, 7, 11, 12, 13, 14, 17,→} and thus F(S) = 16, m(S) = 6,
N\S = {1, 2, 3, 4, 5, 8, 9, 10, 15, 16} and g(S) = 10.
Moreover {F(S) + m(S) − x | x ∈ N\S}= {21, 20, 19, 18, 17, 14, 13, 12, 7, 6} ⊆ S and so S
is positioned. Since g(S) = F(S)+m(S)−2

2 , we obtain that S is a D-semigroup

Lemma 3.2. If S is a positioned numerical semigroup and F(S)+m(S) is an even number,
then F(S)+m(S)

2 ∈ S.

Proof. Since S is positioned, if F(S)+m(S)
2 ∈ N\S then F(S) + m(S) − F(S)+m(S)

2 ∈ S.
Hence F(S)+m(S)

2 ∈ S, a contradiction. �
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Lemma 3.3. Let S be a positioned numerical semigroup. Then S is a D-semigroup if
and only if g(S) = q(S) − 1.

Proof. If S be a positioned numerical semigroup, then g(S) + q(S) = F(S) + m(S) − 1.
Hence, we obtain that S is a D-semigroup (i.e. 2g(S) = F(S) + m(S) − 2) if and only if
g(S) = q(S) − 1. �

Lemma 3.4. If S is a D-semigroup, then F(S)+m(S)
2 ∈ msg(S) and F(S) + m(S) has

unique expression in S.

Proof. By Lemma 3.2, we have that F(S)+m(S)
2 ∈ S. Since S is a D-semigroup, then S ̸= N

and so F(S)+m(S)
2 ̸= 0. If F(S)+m(S)

2 ̸∈ msg(S), then there exist x, y ∈ S\{0} such that
F(S)+m(S)

2 = x+ y. Hence F(S) + m(S) = 2x+ 2y = x+ (x+ 2y) = (2x+ y) + y. Now, by
using Lemma 2.2, we obtain that {x, 2x, 2x+ y} ⊆ Q(S) and {x, 2x, 2x+ y} ∩ϕ(N\S) = ∅
and thus q(S) ≥ g(S) + 3.

If F(S) + m(S) has not unique expression in S, then there exist x, y ∈ S\{0} such
that F(S) + m(S) = x + y and F(S)+m(S)

2 ̸∈ {x, y}. By Lemma 2.2 again, we get that
q(S) ≥ g(S) + 2.

In both cases, we have that if F(S)+m(S)
2 ̸∈ msg(S) or if F(S) + m(S) does not have

unique expression in S, then g(S) ̸= q(S) − 1. But this contradicts Lemma 3.3, since S is
a D-semigroup. �
Theorem 3.5. Let S be a positioned numerical semigroup. Then S is a D-semigroup if
and only if F(S)+m(S)

2 ∈ msg(S) and F(S) + m(S) has unique expression in S.

Proof. Necessity. This is an immediate consequence of the Lemma 3.4.
Sufficiency. From the hypothesis, we deduce that F(S)+m(S)

2 is the unique element in
Q(S)\Im(ϕ) (in view of of Lemma 2.2) and thus g(S) = q(S) − 1. By using Lemma 3.3,
we have that S is a D-semigroup. �
Lemma 3.6. If S is a D-semigroup, then

S = S\
{F(S) + m(S)

2
,F(S) + m(S)

}
is a numerical semigroup.

Proof. As by Theorem 3.5, we have that F(S)+m(S)
2 ∈ msg(S), then, by applying Lemma

2.7, S′ = S\
{

F(S)+m(S)
2

}
is a numerical semigroup. Using again Theorem 3.5, F(S)+m(S)

has unique expression in S. We can deduce that F(S) + m(S) ∈ msg(S′) and in the same
way S = S′\{F(S) + m(S)} is a numerical semigroup. �
Proposition 3.7. If S is a D-semigroup, then

S = S\
{F(S) + m(S)

2
,F(S) + m(S)

}
is a pseudosymmetric numerical semigroup with 2m(S) < F(S).

Proof. Obviously F(S) = F(S) + m(S). We need to show that S is a pseudosymmetric
numerical semigroup (i.e. x ∈ Z\S implies that either F(S) − x ∈ S or x = F(S)

2 ).
We have that if x ∈ N\S then either x ∈ N\S or x = F(S)+m(S)

2 or x = F(S) + m(S).
We distinguish three cases.

• If x ∈ N\S then F(S) + m(S) − x ∈ S and so F(S) − x ∈ S. Hence either
F(S) − x ∈ S or F(S) − x = F (S)

2 or F(S) − x = F(S). As the last two cases are
not possible, we get that F(S) − x ∈ S.
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• If x = F(S)+m(S)
2 , then 2x = F(S), contradicting that 2x ̸= F(S).

• If x = F(S) + m(S), then x = F(S) and F(S) − x = F(S) − F(S) = 0 ∈ S.
Since F(S) + m(S) is even, then F(S) ̸= m(S) − 1 and so F(S) > m(S). Therefore
m(S) = m(S) and F(S) > 2m(S). �

As a consequence of [8, Lemmas 31 and 32 ] we obtain the following.

Lemma 3.8. Let S be a pseudosymmetric numerical semigroup with F(S) > 2m(S). Then
S = S ∪ {F(S)

2 ,F(S)} is a numerical semigroup, m(S) = m(S) and F(S) = F(S) − m(S)

Proposition 3.9. Let S be a pseudosymmetric numerical semigroup with F(S) > 2m(S).
Then S = S ∪ {F(S)

2 ,F(S)} is a positioned numerical semigroup.

Proof. From Lemma 3.8 we obtain that S is a numerical semigroup, m(S) = m(S) and
F(S) = F(S) − m(S). We need to see that S is positioned. If x ∈ N\S then x ∈ N\S
and x ̸= F(S)

2 . Since S is pseudosymmetric, we obtain that F(S) − x ∈ S ⊆ S. Hence
F(S) + m(S) − x ∈ S and so S is positioned. �

A numerical semigroup S is called PEPSY-semigroup if there exist S′ pseudosymmetric
numerical semigroup such that S = S′ ∪

{
F (S′), F(S′)

2

}
.

A PEPSY-semigroup that is not a half-line is called PEPSYNHL-semigroup.
From this definitions we have the following results of [8].

Lemma 3.10. [8, Proposition 30] A numerical semigroup S is a PEPSY-semigroup if and
only if one of the following conditions holds:

(1) S is half-line.
(2) there exists a pseudo-symmetric numerical semigroup S′ with F (S′) > 2m(S′) and

S = S′ ∪
{
F (S′), F(S′)

2

}
.

Lemma 3.11. [8, Theorem 33] Let S not be half-line. The following conditions are equiv-
alent:

(1) S is a PEPSY-semigroup,
(2) F(S)+m(S)

2 ∈ msg(S), F(S)+m(S) has unique expression in S and g(S) = F(S)+m(S)−2
2 .

Theorem 3.12. A semigroup S is a D-semigroup if and only if S is a PEPSYNHL-
semigroup.

Proof. Necessity. If S is a D-semigroup, then we have that F(S) + m(S) is even and
thus S is not half-line. Besides, we have that g(S) = F(S)+m(S)−2

2 and, by Theorem 3.5,
F(S)+m(S)

2 ∈ msg(S) and F(S) + m(S) has unique expression in S. Hence we conclude, by
Lemma 3.11, that S is a PEPSYNHL-semigroup.

Sufficiency. Suppose that S is a PEPSYNHL-semigroup. By using Lemma 3.10, there
exists a pseudo-symmetric numerical semigroup S′ with F (S′) > 2m(S′) and S = S′ ∪{
F (S′), F(S′)

2

}
. By Lemma 3.8 and Proposition 3.9, we get that S is positioned and

m(S′) = m(S) and F(S) = F(S′)−m(S′). As S′ is pseudo-symmetric then g(S′) = F(S′)+2
2

and g(S) = g(S′) − 2. Therefore, we can conclude that g(S) = F(S′)+2
2 − 2 = F(S)+m(S)−2

2
and so S is a D-semigroup. �

As a consequence of Lemma 3.10 and Theorem 3.12 we obtain the following result.

Corollary 3.13. The set of all D-semigroups is equal to{
S′ ∪ {F(S′), F(S′)

2
} | S′ pseudo-symmetric semigroup with F(S′) > 2m(S′)

}
.
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The next results give us formulas for the Frobenius number and pseudo-Frobenius num-
bers of a D-semigroup. The first (resp. second) is a consequence of Theorem 3.12 and
[8, Corollary 34] (resp. Theorem 3.12 and [8, Lemma 35 and Theorem 38]).

Proposition 3.14. If S is a D-semigroup, then F(S) ≤ 2M(S) − m(S). Moreover,
F(S) = 2x−m(S) for some x ∈ msg(S) such that 2x > M(S) and 2x has unique expression
in S.

Proposition 3.15. If S is a D-semigroup, then t(S) = e(S) − 1. Moreover, PF(S) ={
F(S) + m(S) − x | x ∈ msg(S) and x ̸= F(S)+m(S)

2

}
.

4. The algorithm
Given positive integers m and F , we denote by

P (m,F ) = {S | S is a positioned semigroup with m(S) = m, and F(S) = F} ,

and P(m,F ) =
{
S ∈ P (m,F ) | g(S) = ⌊F +m− 1

2
⌋
}
.

The aim of this section is to show how to construct an algorithm to compute all elements
in P(m,F ).
Clearly, if C(m,F ) = {S ∈ P (m,F ) | S is a C-semigroup} and
D(m,F ) = {S ∈ P (m,F ) | S is a D-semigroup}, then

P(m,F ) =
{
C(m,F ) if F +m is odd
D(m,F ) if F +m is even .

4.1. Case m + F odd
Since g(N) = 0 we have that N is not a C-semigroup. By Remark 2.19, we deduce that

the whole set of C-semigroups with m(S) = 2 is equal to {⟨2, 2k + 1⟩ | k ∈ N\{0}}. Since
F(⟨2, 2k+ 1⟩) = 2k− 1, then F is an odd integer if and only if C(2, F ) ̸= ∅. Therefore, we
can conclude that C(2, F ) = {⟨2, F + 2⟩}.

From now on we assume that m ≥ 3. Clearly, if S is a numerical semigroup and
m(S) = m, then F(S) ≥ m − 1. If F(S) = m − 1 then S = ∆(m) is a half-line, and by
Proposition 1, it is C-semigroup. Therefore, we have that C(m,m− 1) = {∆(m)}.

So let us assume that 3 ≤ m < F and F +m is odd. From Lemma 2.10 and Theorem
2.13 we deduce the next result.

Proposition 4.1. With the above notation, we have that

C(m,F ) = {S ∪ {F(S)} | S is a symmetric
numerical semigroup,m(S) = m and F(S) = F +m} .

We denote by I(m,F ) the set of all irreducible numerical semigroups with multiplicity
m and Frobenius number F . Recall that a numerical semigroup is symmetric (respectively
pseudo-symmetric) if it is irreducible with Frobenius number odd (respectively even).

Lemma 4.2. [4, Proposition 13] Let m and F be integers such that F ≥ 3. Then
I(m,F ) ̸= ∅ if and only if m ≤ F +2

2 and m - F .

As a consequence of Proposition 4.1 and Lemma 4.2 we have the following.

Proposition 4.3. With the above notation, we have that C(m,F ) ̸= ∅ if and only if
m - F .
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Now, we are able to give an algorithm to compute the whole set C(m,F ).

Algorithm 1
INPUT: Integeres m and F such that 3 ≤ m < F , F +m is odd and m - F .
OUTPUT: The set C(m,F ).

1: Compute the set I(m,F ) applying [4, Algorithm 22]
2: Return C(m,F ) = {S ∪ {F +m} | S ∈ I(m,F +m)}.

Example 4.4. Let us compute the whole set C(6, 13).
(1) Compute the set I(6, 19) applying [4, Algorithm 22]. We start by the root of the

tree ⟨6, 10, 11, 14, 15⟩ and we obtain that
I(6, 19) = {⟨6, 10, 11, 14, 15⟩, ⟨6, 8, 10, 15, 17⟩, ⟨6, 9, 11, 14, 16⟩, ⟨6, 8, 9⟩}.

(2) C(6, 13) = {⟨6, 10, 11, 14, 15, 19⟩, ⟨6, 8, 10, 15, 17, 19⟩, 6, 9, 11, 14, 16, 19⟩, ⟨6, 8, 9, 19} .

4.2. Case m + F even
From previous results we have that there are no D-semigroups with multiplicity 1 and 2.

On the other hand, as a half-line is not a D-semigroup we obtain that if S is a D-semigroup
then F(S) > m(S). So let us assume that 3 ≤ m < F and F +m is even.

As a consequence of Theorem 3.12 and Lemma 3.8 we have the following.

Proposition 4.5. With the above notation, we have that

D(m,F ) =
{
S ∪ {F +m,

F +m

2
} | S is a pseudosymmetric

numerical semigroup,m(S) = m and F(S) = F +m} .

From Lemma 4.2 and Proposition 4.5 we deduce the next result.

Proposition 4.6. With the above notation, we have that D(m,F ) ̸= ∅ if and only if
m - F .

We conclude by giving an algorithm that will allow us to compute the whole set D(m,F )

Algorithm 2
INPUT: Integeres m and F such that 3 ≤ m < F , F +m is even and m - F .
OUTPUT: The set D(m,F ).

1: Compute the set I(m,F ) applying [4, Algorithm 22]
2: Return D(m,F ) =

{
S ∪ {F +m, F +m

2 } | S ∈ I(m,F +m)
}

.
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