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Abstract 

An important aspect to be considered in Group Decision Making problems is the study of consensus. Since in these 
problems it is desirable that the final decision is widely accepted, improving the consensus degree in a fair way is a very 
interesting task. This paper analyses the improvement in the consensus degrees -obtained by applying Manhattan distance- 
when the experts’ preferences are slightly modified using one of the properties of the Uniform distribution. We carry out an 
experimental study that shows the enhancement in different cases to which Uniform extension has been applied, with 
different number of both, experts and alternatives.  
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1. Preliminaries 

In a Group Decision-Making (GDM) problem, a group of elements – experts – have to choose a solution 
from a group of alternatives and for this, each of these so called experts expresses their opinions –preferences– 
[1]. Therefore, there are several individual decisions –individual preferences– to reach one only collective 
decision. We will be often interested in that this collective decision is reached with the highest possible level of 
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agreement among the experts, that is, it is desirable that exits consensus among the experts in the final 
collective decision.  

Understanding consensus as a complete agreement may set out some difficulties, as this total consensus is 
certainly difficult to achieve. For this reason, in this paper we will make use of the concept “soft consensus 
degree” to evaluate the level of consensus [1, 2]. Thus, the consensus degree may be understood as a function 
that may take values between 0 (in which case we will talk about “null consensus”) and 1 (and we will then talk 
about “full consensus”). Following what we stated before, it is desirable that the consensus degree shows a 
value close to 1. To deal with this situation we will use Fuzzy sets theory which has proven to be a useful tool, 
especially with fuzzy preference relations [3, 4, 5].  

In order to measure the level of consensus among the experts’ preferences, various distance functions may 
be considered [6]. We will take into account one of the most used, the Manhattan distance function [6, 7, 8] due 
to its simplicity and efficiency. 

Different authors have used probability theory and probability distributions in GDM problems with fuzzy 
relations in various situations. This is the case of the Normal distribution in interval-valued fuzzy preference 
relations [9], Uniform distribution on values in hesitant fuzzy elements in hesitant fuzzy preference relations 
[10], Spearman's coefficient in the consensus measure for fuzzy preference relations [11] or in determining 
consensus thresholds in linguistic group decision-making problems [12]. 

This paper considers a new application of the Uniform distribution, in this case in a framework of GDM 
problems with fuzzy preference relations in which the differences between the experts' preferences are 
measured by the Manhattan distance function. The aim is to analyse whether the use of this novel technique 
allows improving the degrees of consensus in those problems that are involved in this study. 

The structure of the paper is as follows: section 2 introduces basic concepts about GDM problems with 
fuzzy preference relations and the new proposal. In section 3 we introduce design and conditions of the 
comparative study and analyse the results obtained in it. Finally, we end this paper with the Conclusion section. 

2. The GDM problem with fuzzy preference relations 

A set of experts, E = {e1,.., en} (n ≥ 2), expresses their preferences about a set of alternatives, X = {x1,.., xm} 
(m ≥ 2), to reach a collective decision. The experts express their preferences using fuzzy preference relations, 
i.e. every expert gives his/her preference of  xi over  xj ,  i,j Î {1,2,..., m} [3, 4, 5]. 
Definition. Let X be a set of alternatives in a GDM problem.  A fuzzy preference relation on  X  is defined as a 
function   p:X×X → [0,1]: 

 

where 0 indicates minimum preference and 1 expresses maximum preference. It is common to use a matrix to 
denote the fuzzy preference relation, P = (pij), and to consider one for each experts that participate in the 
decision procedure.  
     The reciprocal property,  pji + pij = 1 with  i,j Î {1,2,..., m}, is a popular assumption when dealing with a 
fuzzy preference relation.   

Using the experts' individual preference matrices we obtain a collective preference matrix by aggregating all 
the individual preferences matrices. The aggregation operation by a quantifier guided Ordered Weighted 
Averaging (OWA) operator is carried out as [13]: 

 

with pcij collective preference, pkij individual preference for each expert ek Î E, s  a function that allows a 
permutation operation:  and Q a fuzzy linguistic quantifier of fuzzy majority 
that allows the calculation of the weights vector, W = [w1,…, wn].  
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The notion of fuzzy majority and its alternative representations have been discussed in the literature [1].  
 

 
 

Fig. 1. Consensus model with distance functions and aggregation operators. 

2.1. The Consensus Question 

To measure the level of consensus between  individual and collective preferences, it is necessary to evaluate 
the distance among their preferences. Various distance functions may be used to get this goal [6]. In this paper 
we consider the Manhattan distance function [7, 8]. 
Definition.  Let A = {a1,...,an} and B = {b1,...,bn} be two vectors of real numbers. The Manhattan distance 
function is defined as: 

   

Given their equivalence, it is possible and customary to consider the proximity -similarity- among the 
experts´ preferences instead of taking into account their separation -distance-. Accordingly, in this paper we use 
the function  s = 1– d  to quantify the similarity between the different preferences [7,8].  

Figure 1 shows the consensus model described above. 

2.2. The Uniform extension 

This paper proposes to modify the fuzzy preference relation of each expert by extendind their preferences 
using one of the properties of the uniform distribution.  

It is known [14] that the discrete uniform distribution on a finite number of points assigns the same 
probability to each of them. The continuous uniform distribution translates this idea to the continuous case, 
where the sample space of the uniform random variable has an unconuntable number of points and the events 
of interest are subsets of the outcome space that have a well defined measure -length in one dimension, area in 
the plane and so on-. This distribution assigns to any subset of the outcome space a probability proportional to 
the size -measure- of the set,  regardless of its shape or position.  

Focusing on this last idea, we introduce the concept of uniform extension as follows. 
Definition (Uniform extension).  Let pkij be the preference of alternative xi over alternative xj for expert ek. The 
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Uniform extension of pkij in u is defined as: 
 

As an example, let us consider the case of an expert –expert number 5, e5– who prefers alternative 2 over 
alternative 3 in 0.7, p523 = 0.7, and let us assume u = 0.05. We propose to substitute the preference 0.7 for the 
preference [0.65, 0.75] where any of the values of such interval has the same opportunity of being chosen, i.e. 
any value in the range is equally valid. 
       In this situation the consensus model is modified as represented in Figure 2.  
 
 

 
 

Fig. 2. Consensus model with Uniform extension. 
 

3. Comparative Study 

At this point, we carry out a strategy similar to the one we already used in our previous papers [7, 8], which 
consists of comparing values of consensus degrees for randomly generated GDM problems with/without 
Uniform extension. We take into account several values for experts and alternatives. To calculate consensus 
degrees we use the Manhattan distance.  This process is shown in Figure 3. 

We generate 100 random GDM problems with a specific number of experts (2,3,4) and a fixed number of 
alternatives (3,4,5). The OWA operator is the Average and the value for the Uniform extension is u = 0.1. 

This study attempts to answer two questions: 
- Is the consensus degree higher for Uniform extension? 
- If so, how much higher is it? 

Table 1. If the Uniform extension is applied, is the consensus degree higher? 

Alt/Exp 2 3 4 

3 yes /99% yes /100% yes /100% 

4 yes /100% yes /100% yes /100% 

5 yes /100% yes /100% yes /100% 

( )[max(0, ),min( ,1)] [0,1] with 0,1k k
ij ijp u p u u- + Ì Î
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Table 2 and its graphic representation in figure 4 allow us to answer the second question. Table 2 shows the 

growth in the values of the consensus degree (in percentage) when the uniform extension is applied. The results 
corroborate those obtained in Table 1 and lay bare the fact that the use of Uniform Extension notably improves 
the values of the degrees of consensus. It is also observed that for a given value of experts, the improvement 
obtained with different alternatives does not change too much except in the case of 2 experts and 5 alternatives. 

Table 2. Growth in the consensus degree resultant from applying Uniform extension (percentage) 

Alt/Exp 2 3 4 

3 16,25% 17,37% 18,96% 

4 16,28% 17,59% 18,45% 

5 14,41% 17,43% 18,61% 

 
The analysis reveals that the levels of consensus increase with the use of Uniform extension as the number 

of experts increases. Thus, the average of growth for 3 alternatives is 17.53% (Table 3) but, according to the 
number of experts, it ranges between 16.25% for 2 experts and 18.96% for 4 experts more than a 2.5% of 
difference. In addition, we can see that the growth is around 17% (17.23%, Table 3) for the three cases 
according to the alternatives, but it is not so for the growth according to the number of experts that, as said 
before, grows according to the number of experts.  Thus, a growth of more than 1% is appreciable for each 
increase of one unit in the number of experts: 15.65%, 17.43% and 18.61%, which seems to indicate that there 
exists a regularity behaviour in these growths. This regularity behaviour is observable in the graph of Figure 4. 
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Table 3. Growth average values in the consensus degree according to the number of experts and alternatives (percentage) 

Alternatives  Experts   

3 17,53% 2 15,65%  

4 17,44% 3 17,43%  

5 16,72% 4 18,61% 17,23% 

 

The ranking according to the growth in the consensus degree from highest to lowest percentages is 
(Experts/Alternatives):  4/3, 4/5, 4/2, 3/4, 3/5, 3/3, 2/4, 2/3 and 2/5. As seen above, the number of expert 
classifies but not so the number of alternatives. 

 

 
Fig. 4. Consensus degree in percentages. 

  

4. Conclusion 

In this paper we have introduce a new tool to improve consensus degrees by slightly modifying the 
preferences of each of the experts in certain situations of group decision making, the so called Uniform 
extension. All preferences are modified in the same way, avoiding discrimination among individual preferences 
depending on how they separate from the collective preference. The distances between individual and 
collective preferences have been calculated by using the Manhattan distance. A comparative study of consensus 
degrees with/without the Uniform extension is carried out with different number of experts and alternatives. To 
manage the distance function, the average operator has been used as an aggregator operator. 

The results of the comparative study reveals two interesting issues. First, the consensus degree is higher 
when the Uniform extension is used than when it is not. Second, the obtained improvements reach almost 20%. 
It is also observed that the number of experts seems to directly affect the percentage of improvement, while the 
number of alternatives does not influence this percentage. 

Future research directions could address this problem by considering different distance functions following 
one of our current work lines and showing a theoretical point of view by conducting in-depth research on it. 
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