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For a Riemannian manifold M , possibly with boundary, we consider the Riemannian 
product M × Rk with a smooth positive function that weights the Riemannian 
measures. In this work we characterize parabolic hypersurfaces with non-empty 
boundary and contained within certain regions of M × Rk with suitable weights. 
Our results include half-space and Bernstein-type theorems in weighted cylinders. 
We also generalize to this setting some classical properties about the confinement 
of a compact minimal hypersurface to certain regions of Euclidean space according 
to the position of its boundary. Finally, we show interesting situations where the 
statements are applied, some of them in relation to the singularities of the mean 
curvature flow.
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1. Introduction

Weighted manifolds are Riemannian manifolds where a positive function weights the Hausdorff measures 
associated to the Riemannian distance. They provide a useful generalization of Riemannian geometry, with 
connections to many interesting topics including geometric flows and optimal transport, see Morgan [34, 
Ch. 18] and Espinar [21, Sect. 4].

Most of the curvature and differential operators in a Riemannian manifold have a weighted counterpart. 
For instance, in a manifold M with smooth weight eψ it is possible to define the drifted Laplacian Δψ and 
the Bakry-Émery-Ricci tensor Ricψ, that extend the classical notions of the Laplacian operator and the 
Ricci tensor in M , see Section 2.1. In particular, we can introduce the parabolicity property in the weighted 
setting by following the approach of Impera, Pigola and Setti in [28] for Riemannian manifolds with non-
empty boundary. More precisely, we say that M is ψ-parabolic if any function u bounded from above such 
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that Δψu � 0 on M and ∂u/∂ν � 0 along ∂M must be constant (here ν is the inner normal over ∂M). 
According to the maximum principle and the Hopf lemma for the drifted Laplacian, see Proposition 2.1, 
any compact manifold M is ψ-parabolic. Nevertheless, the class of ψ-parabolic manifolds is considerably 
larger than the class of compact manifolds, as it is illustrated in Remark 2.2.

In this paper we consider a Riemannian product M × Rk with weight eψ. Our main objective is to 
characterize weighted parabolic hypersurfaces having non-empty boundary and controlled weighted mean 
curvature. The ψ-mean curvature of a two-sided hypersurface is the function Hψ in (2.4) defined by Gro-
mov [26] and Bayle [3], who studied critical points with empty boundary of the weighted area functional. 
More recently, the authors considered in [6] critical hypersurfaces for the area with free boundary. Our 
results in the present work classify hypersurfaces with bounded ψ-mean curvature confined into certain 
regions of M × Rk, and entire horizontal graphs with constant ψ-mean curvature and free boundary in a 
Riemannian cylinder M × R under certain behavior of the Bakry-Émery-Ricci tensor. As a consequence, 
we deduce half-space and Bernstein type theorems for hypersurfaces with non-empty boundary in some 
weighted manifolds. Related results for hypersurfaces with empty boundary have been established by many 
authors in several previous works, see for instance [41,32,20,38,10,9,30,8,7,21,16,14,40,13,1,15,2,19,27,33]. 
We also generalize to the weighted context some well-known enclosure properties for compact minimal sur-
faces with boundary in R3, like the convex hull property, the hyperboloid theorem and the cone theorem, 
see [17, Ch. 6]. The motivation for these statements is showing that, for compact ψ-minimal hypersurfaces, 
the position of the boundary can determine the position of the whole hypersurface.

The arguments employed in our proofs rely on a simple and unified approach that applies to several 
situations. First, we take a function u on M × Rk having a geometric meaning, in the sense that its level 
hypersurfaces are horizontal slices, vertical cylinders, round spheres, . . . , etc. Next, we compute the weighted 
Laplacian Δψu and the boundary term ∂u/∂ν in order to find geometric and analytical conditions ensuring 
that Δψu � 0 and ∂u/∂ν � 0. From here we can deduce the results by using the maximum principle in 
Proposition 2.1 or the Liouville type property satisfied by parabolic hypersurfaces. With this scheme of 
work in mind we can now give a more detailed description of the paper.

In Section 3 we consider the height function π(p, t) := t for points (p, t) in a cylinder M ×R with weight 
eψ. This leads to half-space results for hypersurfaces with free boundary in ∂M×R or tangent to a horizontal 
slice M × {s}, see Theorem 3.2 and Proposition 3.11. The case of compact ψ-minimal hypersurfaces with 
boundary in a horizontal slice is also discussed, see Proposition 3.9. In Section 4 we analyze the angle 
function θ :=

〈
ξ, N

〉
, where ξ is the parallel vertical vector field in M × R and N is a unit normal to the 

hypersurface. As a consequence, we derive in Theorem 4.2 a Bernstein type result for horizontal multigraphs 
with constant ψ-mean curvature and free boundary in ∂M × R. From here we establish in Corollaries 4.4
and 4.6 some criteria ensuring uniqueness of the horizontal slices as solutions to the Bernstein problem 
in M × R with free boundary in ∂M × R. Finally, in Section 5 we study the squared distance function
d(p, t) := |t|2 for points (p, t) in a Riemannian product M × Rk. In particular, we prove in Theorem 5.2 a 
classification result for hypersurfaces inside M × Bk(r) and with boundary tangent to the round cylinder 
M × Sk−1(r) (here Bk(r) and Sk−1(r) denote the round ball and sphere of radius r > 0 in Rk centered 
at the origin). As we explain in Remark 5.3 the technique allows also to characterize hypersurfaces in Rk

with boundary tangent to a round sphere Sk−1(r) or with free boundary in a smooth solid cone with vertex 
at the origin. Enclosure properties associated to the functions π and d are obtained in Proposition 3.12, 
Corollary 3.14 and Proposition 5.7. As we illustrate at the end of the paper, the arguments can be adapted 
to infer analogous results in other situations.

The exposition contains several examples involving interesting weights. Since our ambient manifold is 
the Riemannian product M ×Rk it is natural to consider product weights eh(p) ev(t). Indeed, in Lemma 2.4
we see that, in a cylinder M × R, these weights are the unique ones for which any horizontal slice has 
constant weighted mean curvature. In some cases we can improve our results by assuming that the vertical 
component ev(t) is a radial or homogeneous weight in Rk. We also discuss the setting where M × Rk is 
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a gradient Ricci soliton with respect to eψ, i.e., the Bakry-Émery-Ricci tensor Ricψ is proportional to the 
metric tensor. Some perturbations of a gradient Ricci soliton are allowed, as that as the product of mixed 
solitons.

As we have already mentioned, there is a connection between weighted manifolds and geometric flows. 
More precisely, some ψ-minimal hypersurfaces appear as singularities of the mean curvature flow, see Exam-
ple 2.3 and the references therein. In relation to this, Yamamoto [42] has recently discovered that ψ-minimal 
hypersurfaces in shrinking gradient Ricci solitons model certain type I singularities of the Ricci-mean curva-
ture flow. As consequences of our statements we provide characterization, inexistence results and enclosure 
properties that apply in particular for self-shrinkers, self-expanders and translating solitons with non-empty 
boundary in Euclidean space.

We finish this introduction by pointing out that the method employed is also valid for hypersurfaces with 
empty boundary; in this case, no assumption on the boundary is needed and the Neumann condition in the 
definition of parabolic manifold is void, and so trivially satisfied.

2. Preliminaries

In this section we introduce basic definitions and recall some results that will be used throughout the 
paper. The content is organized into several subsections.

2.1. Weighted manifolds and drifted Laplacian

By a weighted manifold we mean a connected oriented manifold Mn+1, possibly with smooth boundary 
∂M , together with a Riemannian metric g :=

〈
· , ·

〉
, and a C1 positive function eψ, that weights the 

Hausdorff measures in (M, g). In particular, the weighted volume of a Borel set Ω and the weighted area of 
a hypersurface Σ in M are defined by

Vψ(Ω) :=
∫
Ω

eψ dv, Aψ(Σ) :=
∫
Σ

eψ da,

where dv and da denote, respectively, the volume and area elements in (M, g).
In a manifold with a C2 weight ψ there are generalized curvature notions involving the curvatures of 

(M, g) and the derivatives of ψ. An extension of the Riemannian Ricci tensor Ric is the Bakry-Émery-Ricci 
tensor Ricψ, see [34, p. 182] and the references therein, which is the 2-tensor

Ricψ := Ric −∇2ψ, (2.1)

where ∇2 stands for the Hessian operator in (M, g). The Bakry-Émery-Ricci curvature at a point x ∈ M in 
the direction of a tangent vector w ∈ TxM is the number (Ricψ)x(w, w). When we write Ricψ � c for some 
c ∈ R we mean that (Ricψ)x(w, w) � c |w|2 for any x ∈ M and any w ∈ TxM . The notation | · | refers to 
the Riemannian length of tangent vectors in M . If equality Ricψ = c g holds then it is said that (M, g) is a 
c-gradient Ricci soliton with respect to eψ.

Most of the classical differential operators in (M, g) have a weighted counterpart. For the Laplacian 
operator Δ in (M, g) this is given by the drifted Laplacian or ψ-Laplacian Δψ, see [25, Sect. 3.6]. This is 
the second order linear operator

Δψu := Δu +
〈
∇ψ,∇u

〉
, (2.2)

where u ∈ C2(M) and ∇ denotes the gradient of functions in (M, g). If we have Δψu � 0 on M then u is a 
ψ-subharmonic function.
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Due to its local nature, the strong maximum principle for uniformly elliptic operators on Euclidean 
domains [23, Thm. 3.5] is also satisfied for the drifted Laplacian Δψ on weighted manifolds, see [25, Cor. 8.15]. 
There is also a weighted version of the Hopf boundary point lemma, that can be deduced as in the Euclidean 
case [23, Lem. 3.4] by using a radial barrier comparison function. For future reference we state both results 
in the next proposition.

Proposition 2.1. Let M be a connected Riemannian manifold with weight eψ and u ∈ C2(M) a ψ-
subharmonic function in M \ ∂M . Then, we have:

(i) if u achieves its maximum in M \ ∂M then u is constant,
(ii) if there is x0 ∈ ∂M such that u(x) < u(x0) for any x ∈ M \∂M then (∂u/∂ν)(x0) < 0, where ν denotes 

the inner unit normal along ∂M .

From the previous proposition, if M is compact and u ∈ C2(M) is a ψ-subharmonic function with 
∂u/∂ν � 0 along ∂M , then u is constant. Following the definition of parabolic Riemannian manifold with 
boundary in [29], we say that a weighted manifold is weighted parabolic or ψ-parabolic when the following 
Liouville-type property holds: if a function u ∈ C2(M) is bounded from above, ψ-subharmonic in M \ ∂M , 
and satisfies the Neumann condition ∂u/∂ν � 0 along ∂M , then u is constant. A compact manifold M is 
always ψ-parabolic.

Remark 2.2. By using the coarea formula as in [24, Thm. 1], see also [25, Sect. 11.5], we may infer parabolicity 
criteria for complete non-compact weighted manifolds relying on growth properties of the weighted measures. 
For instance, if there is x0 ∈ M \∂M such that 

∫∞
t V −1

ψ (t) dt = ∞ (resp. 
∫∞

Aψ(t)−1 dt = ∞), where Vψ(t)
(resp. Aψ(t)) is the weighted volume (resp. weighted area) of the open metric ball B(x0, t) (resp. metric 
sphere S(x0, t) intersected with M \ ∂M), then M is ψ-parabolic. So, a complete non-compact weighted 
manifold with Vψ(M) < ∞ is ψ-parabolic. As an example, any smooth domain M ⊆ Rn+1 with Gaussian 
weight e−|x|2/2 is weighted parabolic.

2.2. Hypersurfaces in weighted manifolds

Let Σ be a smooth hypersurface, possibly with smooth boundary ∂Σ, in a Riemannian manifold (Mn+1, g)
with a weight eψ. The ψ-divergence in Σ of a C1 vector field X over Σ is defined by

divΣ,ψ X := divΣ X +
〈
∇ψ,X

〉
,

where divΣ X is the divergence of X with respect to the induced Riemannian metric g|Σ. In the previous 
definition the term ∇ψ can be replaced with the gradient ∇Σψ of ψ in (Σ, g|Σ) when X is tangent to Σ. 
The ψ-Laplacian in Σ is the second order linear operator

ΔΣ,ψu := divΣ,ψ(∇Σu) = ΔΣu +
〈
∇Σψ,∇Σu

〉
, (2.3)

where ΔΣ stands for the Laplacian in (Σ, g|Σ). Note that ΔΣ,ψ coincides with the drifted Laplacian in 
(2.2) of the Riemannian manifold (Σ, g|Σ) with weight eψ. We say that Σ is ψ-parabolic if such a weighted 
manifold is weighted parabolic.

We will always assume that Σ is a two-sided hypersurface, so that there is a global Gauss map on Σ, i.e., 
a smooth unit normal vector N along Σ in (M, g). By following [26, Sect. 9.4.E], see also [3, Sect. 3.4.2], we 
introduce the ψ-mean curvature of Σ by means of equality

Hψ := − divΣ,ψ N = nH −
〈
∇ψ,N

〉
, (2.4)
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where H is the mean curvature of Σ with respect to N in (M, g). We say that Σ has constant ψ-mean 
curvature (resp. Σ is ψ-minimal) if Hψ is constant (resp. Hψ = 0) on Σ. In case ∂Σ �= ∅ we say that Σ
has free boundary in ∂M if ∂Σ = Σ ∩ ∂M and Σ is orthogonal to ∂M along ∂Σ. It is known that Σ is a 
hypersurface with constant ψ-mean curvature and free boundary in ∂M if and only if Σ is a critical point of 
the weighted area functional for compactly supported variations preserving ∂M and the weighted volume, 
see [6, Cor. 3.3].

Example 2.3. In Rn+1 with radial weight ec|x|2/2, c ∈ {−1, 1}, a two-sided hypersurface Σ is ψ-minimal if 
and only if nH(x) = c 

〈
x, N(x)

〉
for any x ∈ Σ. It was shown by Colding and Minicozzi [11, Lem. 2.2], [12, 

Sect. 1.1] that this identity is also satisfied by the self-similar solutions to the Euclidean mean curvature 
flow called self-shrinkers for c = −1 and self-expanders for c = 1. On the other hand, in Rn+1 = Rn × R

with product weight eψ(p,t) := et, the weighted minimal hypersurfaces are those for which nH =
〈
ξ, N

〉
, 

where ξ denotes the unit vertical vector field in Rn+1. These hypersurfaces are called translating solitons
since their evolution under the Euclidean mean curvature flow is given by translations.

2.3. Weighted cylinders

For a complete oriented Riemannian manifold Mn, possibly with smooth boundary ∂M , the Riemannian 
cylinder of base M is the Riemannian product M×R, where we consider the standard metric in R. We refer 
the reader to the book [35, Ch. 7] for basic facts about the geometry of M ×R that will be used henceforth.

As usual, the tangent space to M×R at a point x = (p, t) is identified with TpM×R. We denote by ξ the 
vertical vector field ξ(x) := (0, 1). This is a unit vector field on M ×R which is tangent along the boundary 
∂M × R. Moreover, ξ is a parallel vector field, i.e., DXξ = 0 for any vector field X, where D stands for 
the Levi-Civita connection in M × R. For any s ∈ R, we define the horizontal slice Ms := M × {s}. As ξ
provides a Gauss map on Ms, then Ms is a totally geodesic hypersurface with free boundary in ∂M ×R.

For Riemannian cylinders it is natural to seek weights eψ such that any horizontal slice has constant 
ψ-mean curvature. In the next lemma we show that these are the product weights, thus extending the 
particular case M ⊆ Rn proved in [4, Thm. 2.1 (i)].

Lemma 2.4. Let eψ be a weight in a Riemannian cylinder Mn × R. Then, any horizontal slice Ms has 
constant ψ-mean curvature c(s) if and only if there are functions h ∈ C∞(M) and v ∈ C∞(R) such that 
ψ(p, t) = h(p) + v(t).

Proof. By equation (2.4) we have Hψ = −
〈
∇ψ, ξ

〉
on Ms since Ms is totally geodesic and ξ is a Gauss map 

on Ms. If ψ(p, t) = h(p) + v(t) then Ms has constant ψ-mean curvature c(s) := −v′(s). Conversely, take a 
weight eψ such that Ms has constant ψ-mean curvature c(s) for any s ∈ R. Given p ∈ M , let ψp : R → R

be the smooth function ψp(t) := ψ(p, t). Note that ψ′
p(t) =

〈
∇ψ, ξ

〉
(p, t) = −Hψ(p, t) = −c(t). Thus, c(t) is 

a smooth function on R, and

ψ(p, t) = ψp(t) = ψp(0) −
t∫

0

c(s) ds.

Hence, if we define h(p) := ψ(p, 0) and v(t) := − 
∫ t

0 c(s) ds, then we get h ∈ C∞(M), v ∈ C∞(R), and 
ψ(p, t) = h(p) + v(t), as we claimed. �

If eψ(p,t) := eh(p) ev(t) is a product weight on M ×R, then, for any point x = (p, t) ∈ M , and any pair of 
tangent vectors (w1, λ1), (w2, λ2), the Bakry-Émery-Ricci tensor satisfies
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(Ricψ)x
(
(w1, λ1), (w2, λ2)

)
= (Rich)p(w1, w2) − v′′(t)λ1 λ2, (2.5)

where Rich stands for the Bakry-Émery-Ricci tensor in M with respect to the weight eh. As a consequence, 
if M is a c-gradient Ricci soliton with respect to eh, then M ×R is a c-gradient Ricci soliton for the product 
weight eh(p) e−ct2/2. The converse is true by a splitting result of Petersen and Wylie [37, Lem. 2.1] that we 
can prove very shortly from Lemma 2.4.

Corollary 2.5. If the Riemannian cylinder Mn × R is a c-gradient Ricci soliton with respect to a weight 
eψ, then there exist h ∈ C∞(M) and v ∈ C∞(R) such that ψ(p, t) = h(p) + v(t). Moreover, M and R are 
c-gradient Ricci solitons with respect to the weights eh and ev, respectively.

Proof. Let us see that the ψ-mean curvature of any horizontal slice Ms is constant. By equation (2.4) we 
know that Hψ = −

〈
∇ψ, ξ

〉
on Ms. For any vector w tangent to Ms it is clear that

w
(〈
∇ψ, ξ

〉)
= (∇2ψ)(w, ξ) +

〈
∇ψ,Dwξ

〉
= Ric(w, ξ) − Ricψ(w, ξ) = −c

〈
w, ξ

〉
= 0,

where we have used that ξ is parallel, equation (2.1), and that Ric(w, ξ) = 0 for any w. From Lemma 2.4
there are h ∈ C∞(M) and v ∈ C∞(R) such that ψ(p, t) = h(p) + v(t). Finally, by equation (2.5) we deduce 
that M and R are c-gradient Ricci solitons with respect to eh and ev. �

We finish this section with some definitions. By a horizontal multigraph in M ×R we mean a two-sided 
connected hypersurface Σ with a Gauss map N such that the associated angle function θ :=

〈
ξ, N

〉
satisfies 

θ � 0 on Σ. For instance, if Ω is a smooth domain in M and ϕ ∈ C∞(Ω), then the horizontal graph given 
by

Gr(ϕ) := {(p, t) ∈ M ×R ; p ∈ Ω, t = ϕ(p)}

is a horizontal multigraph. Along Gr(ϕ) we will always consider the downward unit normal

N := (∇Mϕ,−1)√
1 + |∇Mϕ|2

,

where ∇Mϕ denotes the Riemannian gradient of ϕ in M . When Ω = M we will say that Gr(ϕ) is an entire 
horizontal graph.

3. Analysis of the height function

In a Riemannian cylinder Mn×R the height function is the vertical projection, i.e., the smooth function 
π : M × R → R defined by π(p, t) := t. In this section we employ this function to prove uniqueness and 
enclosure results for hypersurfaces with boundary in some weighted cylinders. The reader is referred to the 
Introduction for an account of related works when the boundary is empty.

We begin with a lemma where we gather some basic computations.

Lemma 3.1. Let Mn × R be a Riemannian cylinder with a weight eψ. Take a two-sided hypersurface Σ in 
M × R with Gauss map N and inner conormal ν along ∂Σ. Denote by θ :=

〈
ξ, N

〉
the associated angle 

function and by Hψ the ψ-mean curvature. Then, we have:

(i) ΔΣ,ψπ = Hψ θ +
〈
∇ψ, ξ

〉
on Σ,

(ii) ∂π/∂ν =
〈
ξ, ν

〉
along ∂Σ.
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Proof. It is clear that ∇π = ξ on M ×R. Hence ∇Σπ = ξ − θN , and so

ΔΣπ = divΣ(∇Σπ) = −θ divΣ N = nH θ,

since ξ is a parallel vector field and divΣ N = −nH. From (2.3) and (2.4) we get

ΔΣ,ψπ = nH θ +
〈
∇ψ, ξ

〉
−

〈
∇ψ,N

〉
θ = Hψ θ +

〈
∇ψ, ξ

〉
,

which proves (i). On the other hand, note that

∂π

∂ν
=

〈
∇Σπ, ν

〉
=

〈
∇π, ν

〉
=

〈
ξ, ν

〉
,

because ν is tangent to Σ. This proves (ii). �
Now we obtain uniqueness results by applying the ψ-parabolicity condition of Σ to the height function 

π. For this we will consider situations where ΔΣ,ψπ � 0 on Σ and ∂π/∂ν � 0 along ∂Σ. Note that π|Σ � a

if and only if Σ is contained in the lower horizontal half-space M × (−∞, a]. The fact that π|Σ is constant 
is equivalent to that Σ is inside some horizontal slice Ms := M × {s}.

Recall that the product weights in M × R are the unique ones for which any slice Ms has constant 
ψ-mean curvature, see Lemma 2.4. In this setting we can prove a half-space theorem for hypersurfaces with 
boundary tangent to some horizontal slice or with free boundary in ∂M ×R.

Theorem 3.2. Let Mn × R be a Riemannian cylinder with a product weight eψ(p,t) := eh(p) ev(t), where 
h ∈ C∞(M) and v ∈ C∞(R). Suppose that there are λ � 0 and a ∈ R such that v′(t) � λ for any t � a. 
Let Σ be a two-sided, connected and ψ-parabolic hypersurface contained in M× (−∞, a]. Suppose that either 
|Hψ| � λ or Σ is a horizontal multigraph with Hψ � λ.

(i) If Σ is tangent to Ma along ∂Σ, then Σ ⊆ Ma and the ψ-mean curvature of Ma equals λ.
(ii) If Σ is complete and has free boundary in ∂M × R, then Σ = Ms for some horizontal slice of ψ-mean 

curvature λ.

Proof. The height function satisfies π|Σ � a. We have 
〈
∇ψ, ξ

〉
= v′ ◦ π � λ on Σ because π|Σ � a and 

v′(t) � λ for any t � a. By Lemma 3.1 we deduce that π is ψ-subharmonic on Σ. This is clear when Σ is a 
multigraph with Hψ � λ. Indeed

ΔΣ,ψπ = Hψ θ + v′ ◦ π � Hψ θ + λ � 0

since θ ∈ [−1, 0] on Σ. In the case |Hψ| � λ on Σ we get

ΔΣ,ψπ = Hψ θ + v′ ◦ π � −|Hψ| |θ| + λ � 0

because |θ| � 1. On the other hand, if Σ is tangent to Ma along ∂Σ or has free boundary in ∂M ×R, then 
∂π/∂ν =

〈
ξ, ν

〉
= 0 along ∂Σ. In the first case this is obvious since ξ is normal to Ma. In the second one this 

comes from the fact that ν equals the inner normal to ∂M ×R along ∂Σ whereas ξ is tangent to ∂M ×R. 
Anyway, by the ψ-parabolicity of Σ it follows that π|Σ is constant, i.e., Σ ⊆ Ms for some s ∈ R. Moreover, 
equality ΔΣ,ψπ = 0 yields v′(s) = λ, which is equivalent by (2.4) to that the ψ-mean curvature of Ms with 
respect to −ξ equals λ. Finally, if Σ is complete with ∂Σ = Σ ∩ (∂M ×R), then Σ = Ms. �
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Remarks 3.3. (i). The hypothesis v′(t) � λ for any t � a is equivalent to that Hψ(t) � λ for any t � a, 
where Hψ(t) denotes the ψ-mean curvature of the horizontal slice Mt with respect to −ξ.

(ii). By replacing π with −π in the previous proof we see that the thesis is also true whenever |Hψ| � λ

or Σ is a multigraph with Hψ � λ contained in an upper horizontal half-space M × [a, +∞) such that 
v′(t) � −λ for any t � a.

(iii). When λ = 0 the hypotheses mean that Σ is either ψ-minimal or a horizontal multigraph with 
Hψ � 0. The conclusion entails that the horizontal slice containing Σ is ψ-minimal.

(iv). The thesis fails if we do not assume some boundary condition. This is illustrated by a closed half-
sphere of radius 

√
n about 0 in Rn+1 with Gaussian weight e−|x|2/2.

Examples 3.4. When v(t) := −c t2/2 with c > 0 the theorem is valid for hypersurfaces with |Hψ| � λ

contained in M×(−∞, −λ/c] or in M×[λ/c, +∞). This includes ψ-minimal hypersurfaces within the regions 
t � 0 or t � 0. When v(t) := λ t the result holds for hypersurfaces with |Hψ| � |λ| inside M × (−∞, a] if 
λ > 0, or inside M × [a, +∞) if λ < 0. In particular, by Corollary 2.5, the statement applies to c-gradient 
Ricci solitons of product type M ×R with c � 0. A special case occurs when M is an Einstein manifold of 
Ricci curvature c > 0 and eψ(p,t) := e−ct2/2. Observe that the theorem is satisfied for weighted parabolic self-
shrinkers and translating solitons with boundary, as defined in Example 2.3. Indeed, it implies non-existence 
of complete, parabolic, translating solitons within a lower horizontal half-space and with free boundary in a 
vertical cylinder. In relation to this, we recall that the half-space theorem for self-shrinkers and translating 
solitons with empty boundary was studied by Pigola and Rimoldi [38, Thm. 3], Cavalcante and Espinar [8, 
Thm. 1.1, Thm. 1.4], and Kim and Pyo [31].

For compact ψ-minimal hypersurfaces we can reason as in the proof of Theorem 3.2 to infer the following 
consequence.

Corollary 3.5. Let Mn × R be a Riemannian cylinder with a product weight eψ(p,t) := eh(p) ev(t), where 
h ∈ C∞(M) and v ∈ C∞(R). Suppose that Σ ⊂ M × R is a two-sided, compact, connected, ψ-minimal 
hypersurface with free boundary in ∂M × R. If v′ ◦ π does not change sign over Σ, then Σ = Ms for some 
s ∈ R with v′(s) = 0. In particular, M is compact.

Example 3.6. Let M ⊂ Rn be a smooth region and Σ ⊂ M × R a two-sided, compact and connected 
hypersurface with free boundary in ∂M ×R. From the corollary, it follows that:

(i) if Σ is a self-shrinker / self-expander contained in M × (−∞, 0] or M × [0, +∞), then M is compact and 
Σ = M × {0},

(ii) Σ cannot be a translating soliton.

A situation extending the unweighted setting where Theorem 3.2 and Corollary 3.5 are applied is a 
Riemannian cylinder M × R with horizontal weight eh(p). Note that any horizontal slice Ms is a minimal 
hypersurface for such a weight. We immediately deduce the following consequence containing half-space and 
Bernstein type results in this case.

Corollary 3.7. Consider a Riemannian cylinder Mn ×R with weight eψ(p,t) := eh(p), for some h ∈ C∞(M). 
Let Σ be a two-sided and complete hypersurface with free boundary in ∂M × R. Suppose that one of the 
following conditions holds:

(i) Σ is ψ-parabolic, ψ-minimal and contained in a lower or upper horizontal half-space,
(ii) Σ is ψ-minimal and compact,
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(iii) Σ is a compact horizontal multigraph such that Hψ does not change sign,
(iv) M is compact and Σ is an entire horizontal graph with Hψ constant.

Then Σ = Ms for some s ∈ R.

Example 3.8. The corollary applies in M × R for M compact with constant weight. It is also valid in 
Rn×R with weight eψ(p,t) := e−c|p|2/2 and c ∈ R. For the mixed Gaussian-Euclidean weight obtained when 
c > 0 isoperimetric and area-minimizing hypersurfaces have been studied, respectively, by Fusco, Maggi and 
Pratelli [22], Doan [18], and Doan and Nam [20].

The technique employed in the proof of Theorem 3.2 allows also to derive the following statement for 
compact ψ-minimal hypersurfaces with boundary in a horizontal slice.

Proposition 3.9. Let Mn × R be a Riemannian cylinder with a product weight eψ(p,t) := eh(p) ev(t), where 
h ∈ C∞(M) and v ∈ C∞(R). Consider a two-sided, compact and connected ψ-minimal hypersurface Σ ⊂
M ×R. Suppose that there is a ∈ R such that one of these conditions holds:

(i) Σ ⊂ M × (−∞, a], v′ ◦ π � 0 in Σ and ∂Σ ⊂ Ma,
(ii) Σ ⊂ M × [a, +∞), v′ ◦ π � 0 in Σ and ∂Σ ⊂ Ma.

Then Σ ⊆ Ma and v′(a) = 0.

Example 3.10. As an application of the previous proposition, we conclude that:

(i) in M ×R with weight eψ(p,t) := eh(p), any compact, connected ψ-minimal hypersurface Σ contained in 
a horizontal half-space F and with ∂Σ ⊂ ∂F satisfies Σ ⊂ ∂F ,

(ii) there is no compact self-shrinker Σ of Rn+1 contained in a horizontal slab Rn × [0, a] with a > 0 or 
Rn × [a, 0] with a < 0, and such that ∂Σ ⊂ {t = a},

(iii) if Σ is a compact self-expander of Rn+1 within a horizontal half-space Rn × (−∞, a] with a � 0 or 
Rn × [a, +∞) with a � 0, and such that ∂Σ ⊂ {t = a}, then Σ ⊂ {t = 0}.

(iv) there is no compact translating soliton Σ of Rn+1 contained in a horizontal half-space Rn × [a, +∞)
and such that ∂Σ ⊂ {t = a}.

In Examples 3.4 we have seen that the half-space result in Theorem 3.2 holds for hypersurfaces with 
boundary which are ψ-minimal for the Gaussian weight. We now show that the arguments can be extended 
to more general Euclidean radial weights, including the log-concave ones. Though the statement is also 
satisfied when Hψ θ � 0, we only consider the minimal case Hψ = 0.

Proposition 3.11. Consider a radial weight eψ(x) := eδ(|x|) in Rn+1 such that δ is a C1 non-increasing 
function with δ′(0) = 0. Let Σ be a two-sided, connected, ψ-parabolic and ψ-minimal hypersurface contained 
in a closed half-space F with 0 ∈ ∂F . If 

〈
n, ν

〉
� 0 along ∂Σ, where n is the unit normal to ∂F pointing 

outside F , then Σ is contained in a hyperplane parallel to ∂F . Moreover, if ψ is non-constant on Σ, then 
Σ ⊆ ∂F .

Proof. We denote P := ∂F and consider the height function πP (x) :=
〈
x, n

〉
with x ∈ Rn+1. Computations 

as in the proof of Lemma 3.1 lead to

ΔΣ,ψ πP = Hψ θP +
〈
∇ψ, n

〉
,
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where θP :=
〈
n, N

〉
. Since Σ is ψ-minimal, δ′ � 0 and Σ ⊂ F , we get

ΔΣ,ψ πP = δ′(|x|)
|x|

〈
x, n

〉
� 0, on Σ \ {0}.

By continuity, it follows that ΔΣ,ψ πP � 0 on Σ. On the other hand, we have

∂πP

∂ν
=

〈
n, ν

〉
� 0

along ∂Σ. As π|Σ � 0 and Σ is ψ-parabolic, then πP is constant on Σ, i.e., Σ is contained in some hyperplane 
P (c) := {x ∈ Rn+1 ; 

〈
x, n

〉
= c}. Thus, the equality ΔΣ,ψ πP = 0 becomes

c
δ′(|x|)
|x| = 0, on Σ \ {0},

and we conclude that c = 0 or ψ is constant on Σ. This proves the claim. �
To finish this section we establish an enclosure property showing that a compact hypersurface must be 

included in any horizontal half-space that contains its boundary. For that, we will apply the maximum 
principle to a particular situation where ΔΣ,ψπ � 0 on Σ.

Proposition 3.12. Let Mn×R be a Riemannian cylinder with a product weight eψ(p,t) := eh(p) ev(t) such that 
v′ � λ � 0 on R. Consider a two-sided, compact and connected hypersurface Σ ⊂ M ×R such that |Hψ| � λ

or Σ is a horizontal multigraph with Hψ � λ. If ∂Σ ⊂ M × (−∞, a] for some a ∈ R, then Σ ⊂ M × (−∞, a]. 
Moreover, if Σ intersects Ma away from ∂Σ, or 

〈
ξ, ν

〉
� 0 along ∂Σ, then Σ ⊆ Ms for some s ∈ R with 

v′(s) = λ.

Proof. As in the proof of Theorem 3.2, our hypotheses entail that ΔΣ,ψπ � 0 on Σ. Thus, the maximum 
principle in Proposition 2.1 (i) implies that π|Σ achieves it maximum along ∂Σ. Since π � a along ∂Σ it 
follows that π � a on Σ, as desired. If (Σ \ ∂Σ) ∩Ma �= ∅ then π|Σ achieves its maximum at some interior 
point of Σ, so that π|Σ = a on Σ. Finally, if 

〈
ξ, ν

〉
� 0 along ∂Σ, then ∂π/∂ν � 0 along ∂Σ, and the 

ψ-parabolicity of Σ yields that π|Σ is constant. �
Example 3.13. The proposition applies when v(t) := λ t with λ � 0. This is the case of the translating 
solitons for the mean curvature flow in Rn+1. Observe that, if λ = 0 and Σ is ψ-minimal, then ΔΣ,ψπ = 0
on Σ; therefore, if ∂Σ is contained in a lower or upper horizontal half-space, then Σ is contained in the same 
half-space.

Recall that a compact minimal hypersurface Σ ⊂ Rn+1 with boundary ∂Σ on a hyperplane P coincides 
with the compact set enclosed by ∂Σ in P . This follows because Σ satisfies the convex hull property, i.e., 
Σ lies in the Euclidean convex hull of ∂Σ. In general this property fails for ψ-minimal hypersurfaces, as it 
is illustrated by a closed half-sphere of radius 

√
n about the origin in Rn+1 with Gaussian weight e−|x|2/2. 

From the arguments in the proof of Proposition 3.12 we can obtain a convex hull property for ψ-minimal 
hypersurfaces in M × Rk. We need some definitions. A horizontal half-space in M × Rk is a set of the 
form M × F , where F is a closed half-space in Rk. The horizontal convex hull of a non-empty compact set 
S ⊂ M ×Rk is the intersection of all the horizontal half-spaces containing S.

Corollary 3.14. Consider the Riemannian product Mn × Rk with horizontal weight eψ(p,t) := eh(p), where 
h ∈ C∞(M). If Σ is a two-sided, compact and connected ψ-minimal hypersurface, then Σ is contained in 
the horizontal convex hull of ∂Σ. Moreover, if ∂Σ ⊂ M ×P for some hyperplane P ⊂ Rk, then Σ ⊂ M ×P .
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Proof. Suppose that ∂Σ ⊂ M×F for some closed half-space F ⊂ Rk. Let us write F = {t ∈ Rk ; 
〈
t, n

〉
� α}, 

where n is a unit vector in Rk and α ∈ R. Define the height function πF : M×Rk → R by πF (p, t) :=
〈
t, n

〉
. 

By following the computations in the proof of Lemma 3.1 we get ΔΣ,ψ πF = 0 since Σ is ψ-minimal and the 
weight does not depend on t. The inequality πF � α on ∂Σ and the maximum principle in Proposition 2.1
(i) imply that πF � α on Σ. This shows that Σ ⊂ M × F , as we wished. Moreover, if ∂Σ ⊂ M × ∂F then 
we can apply the maximum principle to πF and −πF to deduce that Σ ⊂ M × ∂F as well. �
4. Analysis of the angle function

Let Mn×R be a Riemannian cylinder and Σ ⊂ M×R a two-sided hypersurface with Gauss map N . Recall 
that the angle function is defined by θ :=

〈
ξ, N

〉
. If θ � 0 then Σ is a horizontal multigraph. We say that Σ is 

a cylinder when θ = 0. This is equivalent to that ξ is tangent to Σ and so, Σ is foliated by vertical segments. 
In this section we employ the function θ to establish Bernstein-type results for hypersurfaces having free 
boundary in ∂M×R and constant ψ-mean curvature with respect to certain C2 weights. Previous analogous 
results for hypersurfaces with empty boundary are mentioned in the Introduction.

We first state a lemma with some identities involving θ, see [39, Lem. 3.1] for a proof in a more general 
setting, and [7, Lem. 3], [39, Re. 3.2] for related computations and references.

Lemma 4.1. Consider a Riemannian cylinder Mn ×R with a weight eψ. Let Σ be a two-sided hypersurface 
in M ×R with Gauss map N and inner conormal ν along ∂Σ. If Σ has constant ψ-mean curvature and free 
boundary in ∂M ×R, then:

(i) ΔΣ,ψ θ +
(
Ricψ(N,N) + |σ|2

)
θ = Ricψ(ξ, N) on Σ,

(ii) ∂θ/∂ν = −II(N, N) θ along ∂Σ,

where Ricψ is the Bakry-Émery-Ricci tensor in (2.1), σ is the second fundamental form of Σ, and II is the 
second fundamental form of ∂M ×R with respect to the inner unit normal.

Next, we seek conditions ensuring that the horizontal slices are the unique entire horizontal graphs in 
M × R of constant ψ-mean curvature and free boundary in ∂M × R. From Lemma 2.4 we can restrict 
ourselves to product weights. The following statement is independent of Corollary 3.7 and shows rigidity 
properties for horizontal multigraphs by assuming curvature bounds on the weight and local convexity of 
∂M .

Theorem 4.2. Let Mn be a Riemannian manifold with locally convex boundary. In the Riemannian cylinder 
M × R we consider a product weight eψ(p,t) := eh(p) ev(t), where h ∈ C∞(M) and v ∈ C∞(R). Suppose 
that Ricv � c � Rich for some constant c ∈ R. If Σ is a ψ-parabolic horizontal multigraph in M × R with 
constant ψ-mean curvature and free boundary in ∂M ×R, then the angle function is constant, and we have:

(i) Σ is a cylinder, or
(ii) Σ is contained in some horizontal slice Ms, or
(iii) Σ is a totally geodesic hypersurface satisfying Ricψ(N, N) = Ricψ(ξ, ξ) = c on Σ and II(N, N) = 0

along ∂Σ.

Proof. Let N be any Gauss map on Σ and θ :=
〈
ξ, N

〉
the associated angle function. Denote by Nh the 

horizontal component of the Gauss map, so that N = (Nh, θ). Our curvature bounds and equality (2.5) give 
us the estimates
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c |Nh|2 � Rich(Nh, Nh) = Ricψ
(
(Nh, 0), (Nh, 0)

)
,

Ricψ(ξ, ξ) = Ricv(1, 1) � c,
(4.1)

where, for any x = (p, t) ∈ Σ, the tensor Ricψ is evaluated at x, whereas Rich and Ricv are evaluated 
at p ∈ M and t ∈ R, respectively. Hence, by using that θ2 + |Nh|2 = 1 on Σ together with the identity 
Ricψ(w, ξ) = 0 for any horizontal vector w, we get

Ricψ(N,N) = Ricψ
(
(Nh, 0), (Nh, 0)

)
+ Ricψ(ξ, ξ) θ2

= Rich(Nh, Nh) − Ricv(1, 1) |Nh|2 + Ricv(1, 1)

�
(
c− Ricv(1, 1)

)
|Nh|2 + Ricv(1, 1)

� Ricv(1, 1) = Ricψ(ξ, ξ).

(4.2)

Now we choose a Gauss map N on Σ for which θ � 0. Clearly Ricψ(ξ, N) = Ricψ(ξ, ξ) θ on Σ. From 
Lemma 4.1 (i) and inequality (4.2) we deduce

Ricψ(ξ, ξ) θ = ΔΣ,ψ θ +
(
Ricψ(N,N) + |σ|2

)
θ � ΔΣ,ψ θ + Ricψ(ξ, ξ) θ + |σ|2 θ, (4.3)

and so

ΔΣ,ψ θ � ΔΣ,ψ θ + |σ|2 θ � 0 on Σ. (4.4)

By Lemma 4.1 (ii) we know that

∂θ

∂ν
= −II(N,N) θ � 0 on ∂Σ, (4.5)

since ∂M is locally convex. Hence, the ψ-parabolicity of Σ implies that the angle function is a constant 
θ ∈ [−1, 0]. If θ = 0 then Σ is a cylinder. If θ = −1 then N = −ξ on Σ. Thus, the height function 
π(p, t) := t satisfies ∇Σπ = ξ − θ N = 0; therefore π is constant on Σ, and Σ ⊆ Ms for some s ∈ R. 
Finally suppose that θ ∈ (−1, 0), so that the horizontal projection Nh does not vanish on Σ. From equation 
(4.4) we obtain |σ|2 = 0, i.e., Σ is totally geodesic. By having in mind (4.3), (4.2) and (4.1) it follows that 
Ricψ(N, N) = Ricψ(ξ, ξ) = c on Σ. Finally, from equality (4.5) we conclude that II(N, N) = 0 along ∂Σ. 
This completes the proof. �
Example 4.3. In general, under the conditions in Theorem 4.2, horizontal multigraphs different from hori-
zontal slices may appear. Let M := Rn−1×[0, +∞). Consider the Euclidean half-space M×R with Gaussian 
weight e−|x|2/2. Let Σ be the intersection with M × R of any hyperplane in Rn+1 orthogonal to ∂M × R. 
From (2.4) it is easy to check that Σ has constant ψ-mean curvature. Moreover, Σ is ψ-parabolic since it 
has finite weighted area. Clearly Ricψ = 1 in M × R and II = 0 on ∂M × R. Note also that the angle 
function θ can be any number in [−1, 0]. In this setting we can show a non-totally geodesic cylinder Σ in 
the conditions of the statement; indeed, it suffices to take Σ as the intersection with M ×R of the spherical 
cylinder Sn−1 ×R.

In the light of the previous example it is natural to ask if Theorem 4.2 may be improved to get only 
horizontal slices in the thesis. In the special case of entire horizontal graphs, additional hypotheses on the 
base manifold M or the weight ψ lead to the following consequence.

Corollary 4.4. Let Mn be a Riemannian manifold with locally convex boundary. In the Riemannian cylinder 
M ×R we consider a product weight eψ(p,t) := eh(p) ev(t), where h ∈ C∞(M) and v ∈ C∞(R). Suppose that 
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Ricv � c � Rich for some constant c ∈ R. Consider a ψ-parabolic entire horizontal graph Σ in M ×R with 
constant ψ-mean curvature and free boundary in ∂M ×R. If one of the following hypotheses holds:

(i) Rich(w, w) > c |w|2 for any non-zero tangent vector w of M ,
(ii) ∂M is locally strictly convex,
(iii) h is constant and c �= 0,

then Σ = Ms for some s ∈ R.

Proof. Denote by N the Gauss map on Σ for which θ < 0. From Theorem 4.2 we infer that θ is constant. 
Clearly Σ cannot be a cylinder. In case Σ ⊆ Ms for some s ∈ R then Σ = Ms since Σ is an entire graph. 
Suppose that Σ is a totally geodesic hypersurface in M × R with Ricψ(N, N) = Ricψ(ξ, ξ) = c on Σ and 
II(N, N) = 0 along ∂Σ.

Assume that (i) holds, and denote by Nh the horizontal component of N . If Nh �= 0 at some point of Σ, 
we would deduce from (4.1) and (4.2) that Ricψ(N, N) > Ricψ(ξ, ξ) at that point, a contradiction. So, we 
have N = θ ξ, which implies N = −ξ on Σ because N and ξ are unit vectors. By reasoning as in the end of 
the proof of Theorem 4.2 we conclude that Σ = Ms for some s ∈ R.

If hypothesis (ii) holds, then equality II(N, N) = 0 leads to N = ±ξ along ∂Σ. Since θ is a negative 
constant, then N = −ξ on Σ, and we conclude again that Σ = Ms for some s ∈ R.

Finally, suppose that h is constant and c �= 0. Thus eψ(p,t) = Q ev(t) for some Q > 0. From (2.4) and the 
fact that Σ is totally geodesic, the ψ-mean curvature of Σ satisfies

Hψ = −
〈
∇ψ,N

〉
= −(v′ ◦ π) θ,

where π(p, t) := t. Hence the function v′ ◦ π is constant on Σ, so that (v′′ ◦ π) ∇Σπ = 0 on Σ. On the other 
hand, for any x = (p, t) ∈ Σ, equation (2.5) gives us

−v′′(t) = (Ricv)t(1, 1) = (Ricψ)x(ξ, ξ) = c,

so that v′′ ◦π = −c on Σ. Since c �= 0 the equality (v′′ ◦π) ∇Σπ = 0 yields that π is constant on Σ. Therefore 
Σ = Ms for some s ∈ R. This finishes the proof. �
Remark 4.5. If we suppose that Σ is a horizontal multigraph instead of an entire horizontal graph then the 
statement is still valid with the conclusion that Σ ⊆ Ms or Σ is a cylinder. Moreover, Σ cannot be a cylinder 
under hypothesis (ii). On the other hand, by taking M ×R as an unweighted half-space of Rn+1, it is easy 
to see that the assumption c �= 0 in hypothesis (iii) is necessary to get only horizontal slices in the thesis.

For a compact base manifold M we can deduce a Bernstein-type result where no extra assumptions are 
needed to obtain only horizontal slices in the conclusion.

Corollary 4.6. Let Mn be a compact Riemannian manifold with locally convex boundary. In M × R we 
consider a product weight eψ(p,t) := eh(p) ev(t), where h ∈ C∞(M) and v ∈ C∞(R). Suppose that Ricv � c �
Rich for some constant c ∈ R. If Σ is an entire horizontal graph with constant ψ-mean curvature and free 
boundary in ∂M ×R, then Σ = Ms for some s ∈ R.

Proof. Let N be the Gauss map of Σ for which θ < 0. Note that Σ is compact since it is homeomorphic to 
M . Thus, Σ is ψ-parabolic and we can apply Theorem 4.2 to get that θ is constant. Choose a point x0 ∈ Σ
where the height function π(p, t) := t achieves its minimum on Σ. If x0 ∈ Σ \ ∂Σ then N(x0) = −ξ, so that 
θ = −1 on Σ. If x0 ∈ ∂Σ, then we can write ξ = a ν(x0) + b N(x0). Indeed we have ξ = b N(x0) because 
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ξ ∈ Tx0(∂M ×R) and ν(x0) ⊥ Tx0(∂M ×R) (by the free boundary condition). Since |ξ| = |N(x0)| = 1 and 
θ < 0, we obtain N(x0) = −ξ and θ = −1 on Σ. Anyway, we have proved that θ = −1, and so N = −ξ on 
Σ. By reasoning as in previous results we conclude that Σ = Ms for some s ∈ R. �
Remark 4.7. The free boundary condition along ∂Σ cannot be removed. For instance, in a convex cylinder 
M × R, where M ⊂ Rn is a convex body and the weight is constant, the intersection of any non-vertical 
hyperplane with M ×R provides an entire horizontal minimal graph.

We finish this section by describing some interesting situations where our results are applied.

Examples 4.8. (i). By Corollary 2.5, if M ×R is a c-gradient Ricci soliton with respect to a weight eψ then 
ψ(p, t) = h(p) + v(t), where Rich = Ricv = c. Hence our curvature bounds in Theorem 4.2 are satisfied. A 
special case occurs when M is an Einstein manifold of Ricci curvature c and the weight is the vertical one 
e−ct2/2. Moreover, if c �= 0, then Corollary 4.4 entails uniqueness of the horizontal slices for the associated 
Bernstein problem.

(ii). Our conclusions are also valid for certain perturbations of a c-gradient Ricci soliton. Indeed, start-
ing from a c-gradient Ricci soliton eh(p) ev(t) on M × R, the curvature bounds still hold for the weight 
eh(p)+μ(p) ev(t)+ρ(t), where μ ∈ C∞(M) is a concave function and ρ ∈ C∞(R) is convex. Observe that, if μ
is strictly concave, then Rich+μ(w, w) > c |w|2 for any tangent vector w �= 0 of M , which allows to deduce 
the uniqueness statement in Corollary 4.4.

(iii). The results in this section include the situation of a Riemannian cylinder M ×R with a horizontal 
weight eh such that Rich � c for some c � 0. This applies for instance when the base space is a c-gradient 
Ricci soliton with c � 0, or a log-concave perturbation of such a soliton.

(iv). Our Bernstein properties are satisfied in a Euclidean convex cylinder M × R ⊂ Rn+1 with some 
interesting product weights like eψ(x) := e−c|x|2/2 with c ∈ R, eψ(p,t) := e−c|p|2/2 with c � 0 and eψ(p,t) :=
e−c|p|2/2 et with c � 0. In particular, we deduce Bernstein-type theorems for self-shrinkers, self-expanders 
and translating solitons with boundary, see Example 2.3. Note also that the restrictions in Theorem 4.2 (iii) 
imply that Σ is always contained in a hyperplane orthogonal to ∂M × R. We finally remark that previous 
related results in Rn+1 were obtained for self-shrinkers with empty boundary by Wang [41, Thm. 1.1], see 
also Doan [19], and for entire horizontal minimal graphs for the mixed Gaussian-Euclidean weight e−|p|2/2

by Doan and Nam [20]. More recently, Hurtado, Palmer and Rosales [27, Ex. 4.27] have solved the Bernstein 
problem in Rn+1 for suitable perturbations of the Gaussian weight.

5. Analysis of distance functions

Let Mn be a Riemannian manifold, possibly with smooth boundary. In the Riemannian product M×Rk

with k � 2, we take the vertical parallel vector field ξi := (0, ei), where ei is the ith coordinate vector field 
in Rk for any i = 1, . . . , k. The vertical projection is the map V : M × Rk → Rk defined by V (p, t) := t. 
Sometimes we will identify this projection with the vector field V (p, t) := (0, t) on M ×Rk. The Euclidean 
components of V are the height functions π1, . . . , πk, where πi =

〈
V, ξi

〉
. The (squared) vertical distance 

function is given by d := |V |2 = π2
1 + . . . + π2

k.
In this section we will use the smooth function d and other combinations of the quadratic monomials 

π2
i to deduce uniqueness results and enclosure properties for hypersurfaces with non-empty boundary in 

Mn ×Rk endowed with certain weights. We will need the following lemma.

Lemma 5.1. Consider the Riemannian product Mn ×Rk with weight eψ. Let Σ be a two-sided hypersurface 
in M ×Rk with Gauss map N and inner conormal ν along ∂Σ. Denote by θi :=

〈
ξi, N

〉
the angle function 

with respect to ξi and by Hψ the ψ-mean curvature of Σ. Then, we have:
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(i) ΔΣ,ψπ
2
i = 2πi (Hψ θi +

〈
∇ψ, ξi

〉
) + 2 (1 − θ2

i ), for any i = 1, . . . , k,
(ii) ΔΣ,ψd = 2 

(
Hψ

〈
V, N

〉
+
〈
∇ψ, V

〉
+ k − 1 + |Nh|2

)
,

(iii) ∂d/∂ν = 2 
〈
V, ν

〉
along ∂Σ,

where Nh is the horizontal projection of N in M ×Rk.

Proof. As in the proof of Lemma 3.1 we get ∇πi = ξi on M × Rk, ∇Σπi = ξi − θi N on Σ and ΔΣ,ψπi =
Hψ θi+

〈
∇ψ, ξi

〉
on Σ. Hence, the identity in (i) follows from the elementary property ΔΣ,ψπ

2
i = 2πi ΔΣ,ψπi+

2 |∇Σπi|2 on Σ. From equality (i), the definition of d, and the fact that |Nh|2 +
∑k

i=1 θ
2
i = 1 on Σ we obtain 

(ii). Finally, note that

∂d

∂ν
=

〈
∇d, ν

〉
= 2

k∑
i=1

πi

〈
∇πi, ν

〉
= 2

k∑
i=1

πi

〈
ξi, ν

〉
= 2

〈
V, ν

〉
in ∂Σ.

This completes the proof. �
The weighted Laplacian ΔΣ,ψd can be written in terms of the weighted mean curvature of the level sets 

of the distance function d. For any r > 0, the Riemannian mean curvature of M × Sk−1(r) with respect 
to the unit normal −V (p, t)/r = (0, −t/r) equals k−1

(n+k−1)r . Hence, the ψ-mean curvature function Hψ,r of 
M × Sk−1(r) satisfies

Hψ,r = 1
r

(
k − 1 +

〈
∇ψ, V

〉)
. (5.1)

As a consequence 
√
dHψ,

√
d =

〈
∇ψ, V

〉
+ k − 1 on Σ \ (M × {0}). From Lemma 5.1 (ii) we deduce

ΔΣ,ψd = 2
(
Hψ

〈
V,N

〉
+
√
dHψ,

√
d + |Nh|2

)
on Σ \ (M × {0}). (5.2)

Now, we use the ψ-parabolicity condition of Σ applied to the function d to prove a uniqueness result. 
For this we find situations where ΔΣ,ψd � 0 on Σ and ∂d/∂ν � 0 along ∂Σ. Observe that d|Σ � r2 if and 
only if Σ ⊂ M × Bk(r), where Bk(r) ⊂ Rk is the closed round ball of radius r > 0 centered at 0. The fact 
that d|Σ is a constant r2 > 0 is equivalent to that Σ ⊆ M × Sk−1(r). Having all this in mind we deduce a 
cylindrical version of the half-space theorem.

Theorem 5.2. Consider a Riemannian product Mn ×Rk with weight eψ. Suppose that there exist λ � 0 and 
r0 > 0 such that Hψ,r � λ for any r ∈ (0, r0]. Let Σ be a two-sided, connected and ψ-parabolic hypersurface 
contained in M×Bk(r0). If the ψ-mean curvature of Σ satisfies |Hψ| � λ and Σ is tangent to M×Sk−1(r0)
along ∂Σ, then Σ ⊆ M × Sk−1(r0) and Hψ,r0 = λ.

Proof. We start from the expression of ΔΣ,ψd in (5.2). Our hypotheses together with the estimates 
|
〈
V, N

〉
| �

√
d and |Nh|2 � 0 on Σ lead to

ΔΣ,ψd = 2
(
Hψ

〈
V,N

〉
+

√
dHψ,

√
d + |Nh|2

)
� 2

√
d
(
Hψ,

√
d − |Hψ|

)
� 2

√
d
(
Hψ,

√
d − λ

)
� 0.

Since the previous inequality holds on Σ \ (M × {0}), which is a dense subset of Σ, then ΔΣ,ψd � 0. 
Moreover, the boundary hypothesis yields ∂d/∂ν = 2 

〈
V, ν

〉
= 0 along ∂Σ. Thus, the ψ-parabolicity of Σ

implies that d|Σ is constant, and so Σ ⊆ M×Sk−1(r0). Finally, the fact that Hψ,r0 = λ follows from equality 
ΔΣ,ψd = 0. �
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Remark 5.3. The statement is also valid when M = {0}, i.e., in Rk with a weight eψ. In this case V coincides 
with the position vector field in Rk, the horizontal projection Nh vanishes and Hψ,r is the ψ-mean curvature 
function of the round sphere Sk−1(r). Hence, the result provides a counterpart to the half-space theorem 
where we employ spheres as barriers instead of hyperplanes. Note that the tangency condition along ∂Σ
may be replaced with the hypothesis that Σ has free boundary in ∂C \ {0}, where C is a smooth solid cone 
in Rk with vertex at the origin. This ensures 

〈
V, ν

〉
= 0 because V is tangent over ∂C and ν provides along 

∂Σ a unit normal vector to ∂C.

Next, we show applications of Theorem 5.2 to some interesting product weights on M × Rk, i.e., those 
of the form eψ(p,t) := eh(p) ev(t) for any (p, t) ∈ M ×Rk.

Example 5.4. Suppose that the vertical component is defined by a radial function v(t) := δ(|t|) where δ is 
C1 with δ′(0) = 0. According to (5.1) we have

Hψ,r = k − 1
r

+ δ′(r),

so that any cylinder M × Sk−1(r) has constant ψ-mean curvature. Note that Hψ,r → +∞ when r → 0 and 
so, for given λ � 0, there is r0 > 0 such that Hψ,r � λ for any r ∈ (0, r0]. This allows to employ the theorem 
for hypersurfaces inside M ×Bk(r0). On the other hand, the existence of r > 0 for which Hψ,r = λ depends 
on the function δ. For instance, this is guaranteed for any λ � 0 if δ′(r) → q when r → +∞ with q < 0 or 
q = −∞. Let us discuss in detail the case δ(r) := ε rα/α when ε = ±1 and α � 2.

For ε = −1 the function Hψ,r is decreasing with respect to r, so that equation Hψ,r = λ has a unique 
solution rλ for given λ ∈ R. Thus, for any λ � 0, we can use Theorem 5.2 for hypersurfaces with |Hψ| � λ

inside M×Bk(rλ). In particular, if a ψ-parabolic minimal hypersurface Σ ⊂ M ×Bk(r0) with r0 := α
√
k − 1

is tangent to M × Sk−1(r0) along ∂Σ, then Σ ⊂ M × Sk−1(r0).
For ε = 1 the function Hψ,r is, as a function of r, strictly positive, convex, and attains its minimum for 

R :=
(
k−1
α−1

)1/α. So, we can use Theorem 5.2 in any cylinder M×Bk(r) for hypersurfaces with |Hψ| � Hψ,R. 
Since Hψ,r > 0 for any r > 0 we also infer a non-existence statement for ψ-parabolic minimal hypersurfaces 
with boundary inside solid cylinders M ×Bk(r).

The previous analysis covers the antiGaussian and Gaussian vertical weights (α = 2 and ε = ±1). By a 
result of Petersen and Wylie [37, Lem. 2.1] this includes those weights in M × Rk producing a c-gradient 
Ricci soliton with c = ±1. A special case is that of self-shrinkers and self-expanders in Rn+k. Self-shrinkers 
with empty boundary inside round balls or cylinders were studied by Vieira and Zhou [40, Thm. 1], Pigola 
and Rimoldi [38, Thm. 1], Cavalcante and Espinar [8, Thm. 1.2], and Impera, Pigola and Rimoldi [28, 
Thm. A]. We remark that Theorem 5.2 shows inexistence of compact self-expanders with boundary tangent 
to a cylinder Rn × Sk−1(r) or a sphere Sn+k−1(r). In a similar way, there are no compact self-expanders in 
Rn+k with free boundary in ∂C \ {0}, where C is a smooth solid cone with vertex at 0.

Example 5.5. If v(t) is constant then Hψ,r = (k − 1)/r, which is a positive and decreasing function with 
Hψ,r → +∞ when r → 0 and Hψ,r → 0 when r → +∞. Hence, for any λ > 0, there is a unique rλ > 0
satisfying Hψ,rλ = λ. As Hψ,r � λ for any r ∈ (0, rλ] we can apply Theorem 5.2 for hypersurfaces in 
M × Bk(rλ) with |Hψ| � λ. We also deduce inexistence of ψ-parabolic minimal hypersurfaces in M ×
Bk(r) with boundary tangent to M × Sk−1(r). Some particular situations are the Riemannian products 
M × Rk with constant weights and the mixed (anti)Gaussian-Euclidean weights in Rn+k. After a change 
of coordinates, the case of translating solitons in Example 2.3 is also included. In relation to this, Pérez-
García [36, Thm. 2.2] proved inexistence of non-compact embedded translating solitons without boundary 
contained in any cylinder. Other non-existence results for translating solitons with empty boundary are 
described in [31, Sect. 1].
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Example 5.6. Suppose that ev is a homogeneous weight of degree α ∈ R. Following [5, Sect. 3] this means 
that v is a C1 function on Rk \ {0} such that ev(st) = sα ev(t) for any s > 0 and t �= 0. Note that ev cannot 
be continuously extended to Rk as a smooth positive function. By having in mind the second equality in [5, 
Lem. 3.5] it follows that Hψ,r = (k+α− 1)/r, so that M ×Sk−1(r) has constant weighted mean curvature. 
Note that Hψ,r < 0 for any r > 0 whenever α < 1 −k. If α > 1 −k then Hψ,r is a positive decreasing function 
with Hψ,r → +∞ when r → 0 and Hψ,r → 0 when r → +∞. So, for hypersurfaces Σ with 0 /∈ Σ, we infer 
the same consequences as in Example 5.5. Finally, when α = 1 − k we get Hψ,r = 0 for any r > 0. Hence, 
Theorem 5.2 applies for ψ-parabolic minimal hypersurfaces Σ contained in some cylinder M ×Sk−1(r) and 
with 0 /∈ Σ. In particular, the only compact ψ-minimal hypersurfaces away from the origin that are tangent 
to M×Sk−1(r) along the boundary are compact regions of M×Sk−1(r). As indicated in Remark 5.3 we can 
also deduce a classification statement for hypersurfaces inside a round ball Bk(r) ⊂ Rk with a homogeneous 
weight. We remark that the result is still valid for compact hypersurfaces with free boundary in ∂C \ {0}, 
where C ⊂ Rk is a smooth solid cone with vertex at the origin.

Next, we employ the maximum principle to establish an enclosure property for compact hypersurfaces 
having non-empty boundary inside M × Bk(r0). Similar arguments lead to an enclosure property for hy-
persurfaces inside round balls about the origin in Rk. In Euclidean space with constant weight we recover 
well-known facts for compact minimal hypersurfaces. The proposition also applies for self-expanders and 
translating solitons of the mean curvature flow.

Proposition 5.7. Let Mn×Rk be a Riemannian product with weight eψ such that Hψ,r � λ � 0 for any r > 0. 
Take a two-sided, compact and connected hypersurface Σ ⊂ M ×Rk with |Hψ| � λ. If ∂Σ ⊂ M ×Bk(r0) for 
some r0 > 0, then Σ ⊆ M ×Bk(r0). Moreover, if Σ intersects M × Sk−1(r0) away from ∂Σ, or 

〈
V, ν

〉
� 0

along ∂Σ, then Σ ⊆ M × Sk−1(r) for some r > 0 where Hψ,r = λ.

Proof. We can reason as in the proof of Theorem 5.2 to obtain ΔΣ,ψd � 0. By Proposition 2.1 (i) the 
function d|Σ achieves its maximum along ∂Σ. Since d � r2

0 along ∂Σ then d � r2
0 on Σ, as we claimed. On 

the other hand, if (Σ \∂Σ) ∩(M×Sk−1(r0)) �= ∅ then the maximum of d|Σ is achieved at some interior point, 
so that d|Σ = r2

0. Finally, if 
〈
V, ν

〉
� 0 along ∂Σ, then ∂d/∂ν � 0 along ∂Σ by Lemma 5.1 (iii), and the 

ψ-parabolicity of Σ entails that d|Σ is a constant function r > 0. From the inequalities λ � Hψ,r = Hψ � λ

on Σ, we conclude that Hψ,r = λ. �
To finish this work we show how to extend to the weighted setting other enclosure properties for compact 

minimal hypersurfaces with boundary in Euclidean space. More precisely, we discuss below a weighted 
counterpart of the “hyperboloid theorem”, see Theorem 2 in [17, Sect. 6.1].

In Mn ×Rk with weight eψ we consider the function ρ :=
∑k−1

i=1 π2
i − π2

k. Note that ρ−1(r2) = M ×Hr, 
where Hr is a one-sheeted hyperboloid in Rk for r �= 0 or a cone if r = 0. Given a two-sided, compact and 
connected ψ-minimal hypersurface Σ ⊂ M ×Rk with unit normal N , the identity in Lemma 5.1 (i) and the 
fact that |Nh|2 +

∑k
i=1 θ

2
i = 1 lead to

ΔΣ,ψρ = 2
( k−1∑

i=1
πi

〈
∇ψ, ξi

〉
− πk

〈
∇ψ, ξk

〉)
+ 2 (k − 3 + |Nh|2 + 2θ2

k).

Denote the points in M × Rk by (p, t, s) with p ∈ M , t ∈ Rk−1 and s ∈ R. By taking a product weight 
eψ(p,t,s) := eh(p) ev(t), where v(t) = δ(|t|) for some C1 function δ with δ′(0) = 0, we infer

ΔΣ,ψρ = 2 δ′(|t|) |t| + 2 (k − 3 + |Nh|2 + 2θ2
k).
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Hence ρ|Σ is a ψ-subharmonic function when δ is non-decreasing and k � 3. By the maximum principle 
in Proposition 2.1 (i) we deduce that ρ|Σ attains its maximum along ∂Σ. Hence, if ∂Σ is inside a region 
{ρ � r2} for some r � 0, then the same holds for Σ. Moreover, in the case r = 0, the regularity and 
connectedness of Σ entail that ∂Σ cannot intersect both cones {ρ > 0} and {ρ < 0}. This generalizes the 
“cone theorem” for minimal surfaces in Euclidean space, see Theorem 3 in [17, Sect. 6.1]. Similar conclusions 
are achieved when ev is a homogeneous weight of non-negative degree in Rk−1. The analysis is also valid 
when M = {0}; in particular, it applies for compact translating solitons.

Remark 5.8. We can employ the same arguments with the function μ :=
∑k−1

i=1 π2
i − πk to deduce a 

“paraboloid theorem” for compact ψ-minimal hypersurfaces with boundary in M ×Rk.
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