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Abstract The intensity of a doubly stochastic Poisson process (DSPP) is also a
stochastic process whose integral is the mean process of the DSPP. From a set
of sample paths of the Cox process we propose a numerical method, preserving
the monotone character of the mean, to estimate the intensity on the basis of the
functional PCA. A validation of the estimation method is presented by means of a
simulation as well as a comparison with an alternative estimation method.
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1 Introduction

The Cox process (CP) or doubly stochastic Poisson process is a generalization of
the Poisson process whose intensity instead of being constant (homogeneous Poisson
process) or a function of time (non-homogeneous Poisson process) is also a stochastic
process influenced by another external one. Due to the stochastic nature of its
intensity, the CP is more flexible and realistic in order to model real phenomena.
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CP was first defined by Cox (1955) and it has been deeply studied for example by
Snyder and Miller (1991) or Grigoriu (1995). From a martingale point of view, CP
is studied by Daley and Vere-Jones (1988), Brèmaud (1981), Andersen et al. (1993),
Last and Brandt (1995), among others. From all of this references we can observe
that this counting process has been used in several fields like risk and insurance,
medicine, signal processing, and many others.

CP is characterized by its intensity or its parametric function. The only restriction
of the intensity process is that it is non negative. The parametric function of the CP
is its mean and in case that it is absolutely continuous, the mean is the integral of
the intensity process so that the mean is also stochastic. The mean process has non
negative and nondecreasing sample paths.

Estimating the intensity process is a problem treated by many authors. For
instance, Boel and Beneš (1980), Snyder and Miller (1991), Manton et al. (1999),
Varini (2008), among many others, formulate several approaches using filtering
methodology but it is always necessary to impose several assumptions on the intensity
process. It is usual to assume that the first and second moments of the intensity are
known or that it follows an explicit model. It is also more usual to approach the
calculus of a linear estimation rather than non-linear even that for many applications
the linearly constrained estimators are not accurate enough. In many cases, these
assumptions are justified by real-world data but in many others, to establish this
restrictions is just a practical way to deal with the complicated calculus of an
analytic solution and computational requirements. For this reason, the development
of suboptimal estimators has widely emerged.

Our work tries to deepen on how to estimate a CP without statistical assumptions
on its intensity or mean processes. An attempt of relaxing the statistical assumptions
was done in Bouzas et al. (2002) where it was proposed a methodology to forecast the
sample paths of the CP by multivariate principal component regression in a future
instant of time just from observed values.

Functional Data Analysis (FDA) models stochastic processes observed in discrete
time points (as real processes can nearly always be observed) by reconstructing
the functional form of their sample paths. See Ramsay and Silverman (1997) or
Valderrama et al. (2000) for a deeper study. The main interest of FDA is that it is not
necessary to impose a distribution to the process neither to have known moments.
Bouzas et al. (2006a), proposed an estimation of the intensity process of a CP from
the FDA point of view, just from observed sample paths of the CP. They were divided
into subtrajectories and the intensity process was estimated in a finite set of points
using a point estimator. Then, the stochastic structure of the intensity process was
estimated by means of functional principal component analysis (FPCA) applied to
the estimated values. In a posterior work (Bouzas et al. 2006b), it was proposed to
apply FDA not to the process intensity but to the mean process of the CP and with
the novelty of preserving the monotonicity property of its sample paths.

The present paper gives a new methodology of estimating the intensity process
from observed trajectories of the CP, just making use of the nondecreasing
monotonicity of the mean. The sketch of the present work is the following. In
Section 2, once the sample paths of the CP have been observed, we obtain point
estimators of the mean process at the knots of a partition of the time interval and
then the functional forms of the mean sample paths are reconstructed by means of
a monotone piece wise cubic interpolation (Fritsch and Carlson 1980) because of
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these sample paths must be monotone increasing (Bouzas et al. 2006b). In Section
3, differentiating and expressing them in an adequate way, the functional form
of sample paths of the intensity process are obtained and finally, in Section 4 its
stochastic structure is estimated by FPCA.

Finally, Section 5 shows an application of the method proposed to a simulation
of CP in order to validate it, as well as a comparison with the intensity modelling
proposed in Bouzas et al. (2006a).

2 Reconstruction of the Mean Sample Paths

A CP {N(t) : t ≥ t0} with intensity stochastic process {λ(t, x(t)) : t ≥ t0} is defined as
a conditioned PP with intensity the process {λ(t, x(t)) : t ≥ t0} given the information
process {x(t) : t ≥ t0}.

Therefore, the probability density function (pdf), using the conditioning method
from Snyder and Miller (1991), is given by

P[N(t) = n] = E{P[N(t) = n/x(σ ) : t0 ≤ σ < t]}

= E
{

1
n!

(∫ t

t0
λ(σ, x(σ )) dσ

)n

exp
(

−
∫ t

t0
λ(σ, x(σ )) dσ

)}

for n = 0, 1, 2, . . . Let �(t, x(t)) = ∫ t
t0

λ(σ, x(σ )) dσ be the parametric function of the
CP and its mean as it is well known. Then, it is clearly a process itself influenced by
the information process.

Not only the pdf depends on the intensity process (or on the mean process) but all
the characteristics of the CP. That is the reason why it is so important to estimate the
intensity of a CP. Our purpose is to estimate λ(t, x(t)), having no previous knowledge
about its structure, from several trajectories of N(t) observed on the interval [t0, t0 +
rT). From now on, the mean and the intensity processes will be denoted by �(t) and
λ(t) respectively, in order not to complicate the notation.

Let us now start from the initial situation of having observed k independent
trajectories of the CP {N(t); t ≥ t0} with intensity process {λ(t); t ≥ t0} in the interval
[t0, t0 + rT) denoted by

{Nω(t) : ω = 1, . . . , k}
From each one of the observed trajectories of N(t), Bouzas et al. (2006b) shows how
to estimate values of the mean sample path , �ω(t), in a finite set of time points of the
shorter interval [t0, tp = t0 + T). It is based on splitting up each initial trajectory in r
independent shorter ones all of them in [t0, tp = t0 + T). Therefore, we work with r
subtrajectories of the Poisson process in order to estimate one of the mean process.
Let us denote the estimated values by �̂ω(t j), ( j = 0, . . . , p; ω = 1, . . . , k).

In order to use FPCA later on for the stochastic estimation of the intensity process,
first it is necessary to reconstruct the functional form of the mean process sample
paths by approximating them in a finite space generated by a basis of functions.
In literature about FDA, different methods have been considered for obtaining
the basis coefficients of sample paths, as for example, least squares approximation
on a space generated by trigonometric functions (Aguilera et al. 1995), wavelets
(Ocaña et al. 1998) or cubic B-splines (Escabias et al. 2004a) and cubic spline
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interpolation (Aguilera et al. 1996; Escabias et al. 2004b). For a general review
of how to reconstruct the true functional form of functional data, the interested
reader can be referred to Ramsay and Silverman (1997). In order to reconstruct the
functional form of each mean trajectory and knowing that they are nondecreasing
monotone, Bouzas et al. (2006b) also proposed to interpolate each sample path by
monotone piecewise cubic interpolation to preserve the monotonicity (Fritsch and
Carlson 1980).

Let us take a fixed ω, the C1 and following Bouzas et al. (2006b), the
monotone piecewise cubic interpolating function for the set of monotone data
{(t0, �̂ω(t0)), . . . , (tp, �̂ω(tp))} is the following

pω j(t) = �̂ω(t j)H1(t) + �̂ω(t j+1)H2(t) + dω jH3(t)

+ dω j+1 H4(t),
t ∈ [t j, t j+1)

j = 0, . . . , p − 1 (1)

where dω j = dpω j(t)
dt

∣∣∣
t=t j

, dω j+1 = dpω j(t)
dt

∣∣∣
t=t j+1

and Hs(t) are the usual Hermite basis

functions for the interval [t j, t j+1] given by

H1(t) = φ

(
t j+1 − t

h j

)
, H2(t) = φ

(
t − t j

h j

)

H3(t) = −h jψ

(
t j+1 − t

h j

)
, H4(t) = h jψ

(
t − t j

h j

)
(2)

with h j = t j+1 − t j, φ(x) = 3x2 − 2x3 and ψ(x) = x3 − x2. For every subinterval
[t j, t j+1], the derivatives d j and d j+1 are previously calculated by an algorithm
initiated with the values given by the standard three-point difference formula to be
satisfactory for preserving the monotonicity (Fritsch and Carlson 1980). Then, we
have obtained the functional reconstruction of each mean sample paths; let us denote
them as �̂ω(t), t ∈ [t0, tp = t0 + T), ω = 1, . . . , k.

3 Functional Reconstruction of the Intensity Sample Paths

This section shows how to obtain a functional expression of the intensity sample
paths of the CP corresponding to the mean sample paths �̂ω(t).

As �(t) = ∫ t
t0

λ(σ)dσ, we will obtain a C0 functional estimation of the intensity
sample paths by differentiating in Eq. 1. Choosing a fixed ω, the piecewise interpo-
lated function is

p′
ω j(t) = �̂ω(t j)H′

1(t) + �̂ω(t j+1)H′
2(t) + dω jH′

3(t)

+ dω j+1 H′
4(t),

t ∈ [t j, t j+1)

j = 0, . . . , p − 1 (3)

This polynomial has the inconvenient that it is not expressed in terms of a basis and
not in the whole interval [t0, tp), nevertheless we need it for its further use in FPCA.

The piecewise polynomial defined in each subinterval by Eq. 3 is quadratic and
must be C0 because it is the differentiation of a cubic C1 interpolation polynomial. It
is known that the C0 quadratic Lagrange basis in the interval [t j, t j+1] is 〈F1, F2, F3〉
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where

F1 = (t − t j+1)(2t − t j − t j+1)

h2
j

, F2 = −4(t − t j)(t − t j+1)

h2
j

and F3 = (t − t j)(2t − t j − t j+1)

h2
j

therefore, it is necessary to express each H′
1(t), H′

2(t), H′
3(t) and H′

4(t) as a linear
combination of the basis functions, it is

aF1 + b F2 + cF3

=
(

−4b + 2a + 2c

h2
j

)
t2

+
(

−2at j+1 + a
(−t j − t j+1

) + 4bt j + 4bt j+1 + c
(−t j − t j+1

) − 2ct j

h2
j

)
t

+ −at j+1
(−t j − t j+1

) + ct j
(
t j + t j+1

) − 4bt jt j+1

h2
j

(4)

Let us start deriving the linear combination H′
1(t) = aF1 + b F2 + cF3. As men-

tioned above, H′
1(t) = φ′

(
t j+1−t

h j

)
so that

H′
1(t) = 6

t2

h j
3 +

(
6

h j
2 − 12

t j+1

h j
3

)
t − 6

t j+1

h j
2 + 6

t j+1

h j
3 (5)

Making Eq. 5 equal to Eq. 4, we have the three following equations

−4b + 2a + 2c = 6
h j

−2at j+1 + a
(−t j − t j+1

) + 4bt j + 4bt j+1 − 2ct j + c
(−t j − t j+1

) = 6 − 12
t j+1

h j

−at j+1
(−t j − t j+1

) − ct j
(−t j − t j+1

) − 4bt jt j+1 = −6t j+1 + 6
t2

j+1

h j

so we have that H′
1(t) = aF1 + b F2 + cF3 where

a = −6
t j − t j+1 + h j

h j
(−t j + t j+1

) = 0

b = −3
2

t j − t j+1 + 2h j

h j
(−t j + t j+1

) = −3
2

h j

h j
(−t j + t j+1

) = −3
2h j

c = 0
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Let us now find the linear combination H′
2(t) = aF1 + b F2 + cF3. Because of H′

2(t) =
φ′

(
t−t j

h j

)
we have

H′
2(t) = −6

t2

h3
j

+
(

6
h2

j

+ 12
t j

h3
j

)
t − 6

t j

h2
j

− 6
t j

h3
j

(6)

Making Eq. 6 equal to Eq. 4, we have that

1
h2

j

(−4b + 2a + 2c) t2 = −6
t2

h3
j

1
h2

j

(−2 at j+1 + a
(−t j − t j+1

) + 4 bt j + 4 bt j+1 − 2 ct j + c
(−t j − t j+1

))
t

=
(

6
h2

j

+ 12
t j

h3
j

)
t

1
h2

j

(−at j+1
(−t j − t j+1

) − ct j
(−t j − t j+1

) − 4 bt j t j+1
) = −

(
6

t j

h2
j

+ 6
t2

j

h3
j

)

then, a = 0, b = 3
2h j

, c = 0.

Analogously, for H′
3(t) = −h jψ

′
(

t j+1−t
h j

)
we find out that a = 1, b = − 1

4 and c = 0.

And for H′
4(t) = h jψ

′
(

t−t j

h j

)
the solution is a = 0, b = − 1

4 and c = 1.
In conclusion, we obtain that

H′
1(t) = − 3

2h j
F2(t), H′

2(t) = 3
2h j

F2(t)

H′
3(t) = F1(t) − 1

4
F2(t), H′

4(t) = F3(t) − 1
4

F2(t)

Therefore, for every j = 0, . . . , p − 1, the piecewise functional estimation of the
intensity sample path becomes

p′
ω j(t) = �̂ω(t j)

−3
2h j

F2(t) + �̂ω(t j+1)
3

2h j
F2(t) + dω j

(
F1(t) − 1

4
F2(t)

)

+ dω j+1

(
F3(t) − 1

4
F2(t)

)
, t ∈ [t j, t j+1)

Considering

F1 j =
{

F1, t ∈ [t j, t j+1)

0, otherwise
, F2 j =

{
F2, t ∈ [t j, t j+1)

0, otherwise

and F3 j =
{

F3, t ∈ [t j, t j+1)

0, otherwise
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instead of F1, F2 and F3, we could rewrite p′
ω j(t) with these functions and then derive

a functional expression for the intensity sample path in the whole interval [t0, tp] as

p′
ω(t) =

p∑
j=0

p′
ω j(t), t ∈ [t0, tp)

and after some manipulations we can write it the following way

p′
ω(t) =

p−1∑
j=0

F2 j(t)
[

3
2h j

(
�̂ω(t j+1) − �̂ω(t j)

)
− dω j + dω j+1

4

]

+
p−2∑
j=0

(
F3 j(t) + F1 j+1(t)

)
dω j+1 + F10(t)dω0 + F3p−1(t)dωp (7)

As mentioned above, pω(t) was a piecewise cubic spline interpolation in C1 so p′
ω(t)

is a quadratic polynomial in C0. Therefore, its dimension must be 2p + 1. Clearly,
the functions F2 j(t), j = 0, . . . , p − 1;

(
F3 j(t) + F1 j+1(t)

)
, j = 0, . . . , p − 2; F10(t) and

F3p−1(t) are 2p + 1 independent quadratic functions in C0 so p′
ω(t), ω = 0, . . . , k are

now expressed in terms of a basis on the whole interval [t0, tp).
From now on, we will denote this basis by {Bl(t)}l=1,...,2p+1 and its coefficients in

Eq. 7 by aωl, l = 1, . . . , 2p + 1 and ω = 0, . . . , k in order to unify the notation. The
expression of Eq. 7 for all the sample paths can be rewritten in a matrix form like this

p′(t) = A B(t), t ∈ [t0, tp)

where

p′(t) = (
p′

1(t), . . . , p′
k(t)

)T

A = (aωl)ω=1,...,k; l=1,...,2p+1

B(t) = (
B1, . . . , B2p+1

)T

4 Stochastic Estimation of the Intensity Process

This section estimates the continuous stochastic structure of the intensity process.
Having reconstructed its functional sample paths in Section 2, now FPCA will be
applied to reduce dimension and derive an orthogonal expansion for the intensity in
terms of uncorrelated random variables.

By analogy with the multivariate case, the functional principal components of
a second order and quadratic mean stochastic process with sample paths in the
space L2[t0, tp] of square integrable functions are defined as uncorrelated generalized
linear combinations of the process variables whose weight functions (principal
factors) are obtained as the eigenfunctions of the sample covariance kernel (Ramsay
and Silverman 1997). In order to obtain the principal components (p.c.’s) of a
stochastic process with sample paths in a finite dimension space generated by a set of
linearly independent functions, Ocaña et al. (1999) proved the equivalence between
FPCA with respect to the usual inner product in L2[t0, tp] and standard multivariate
PCA in R2p+1. In this paper, we have adapted this result to the case of functional
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sample paths expressed in terms of the basis {Bl(t)}l=1,...,2p+1 found in the last section
obtaining the following equivalence between multivariate and functional PCA’s.

Let us consider the centered estimated intensity process

p′(t) = p′(t) − μp′(t) = (
A − Ā

)
B(t)

where Ā = (aωl) with elements aωl = 1
k

∑k
ω=1 aωl (l = 1, . . . , 2p + 1, ω = 1, . . . , k)

and μp′(t) = Ā B(t).
Let

(
A − Ā

)
be the matrix whose rows are the coefficients of each trajectory

of the centered process with respect to the basis 〈Bl(t)〉l=1,...,2p+1 and P the matrix
whose components are the usual inner products between basis functions given by〈
Bi, B j

〉
u = ∫ tp

t0
Bi(t)B j(t) dt. Then, FPCA of p′

ω(t) in the space generated by the
basis {Bl(t)}l=1,...,2p+1 with respect to the usual metric in L2[t0, tp] is equivalent to
multivariate PCA of the data matrix

(
A − Ā

)
P1/2 with respect to the usual inner

product in R2p+1. Let us observe that in the case of an orthonormal basis (P = I)
FPCA is equivalent to multivariate PCA of the basis coefficients centered data
matrix.

Once the eigenvectors g j of the covariance matrix of
(

A − Ā
)

P1/2 have been
computed, the sample paths of the interpolated process p′(t) can be represented as
follows in term of its p.c.’s

p′
ω(t) =

2p+1∑
j=1

ζω j f j(t), ω = 1, . . . , k

where f j(t) are eigenfunctions of the sample covariance matrix of the centered
process given by

f j(t) =
2p+1∑
l=1

flj Bl(t)

with the vector of coefficients being f j = P−1/2 g j and

ζω j =
∫ tp

t0
p′

ω(t) f j(t) dt = (
Aω − Āω

)
P1/2 g j

where
(

Aω − Āω

)
is the ωth row of

(
A − Ā

)
.

Then, the intensity process λ(t) can be approximated by the following truncated
orthogonal p.c.’s decomposition of its estimation denoted by λq(t)

λq(t) = p′q(t) = μp′(t) +
q∑

j=1

ζ j f j(t) (8)

This way, the dimension 2p + 1 is reduced to q so that we get to explain a high
proportion of the total variance of the mean process (as next to 1 as possible) given

by

∑q
j=1 λ j∑2p+1

j=1 λ j

where λ j is the variance of the jth p.c. ζ j given by the jth eigenvalue of

the covariance matrix of
(

A − Ā
)

P1/2 associated to the jth eigenvector g j.
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5 Simulation

This section presents how to apply the methodology of estimation of the intensity
process presented in the previous sections to a simulation of a CP. Firstly, we have
simulated 150 sample paths (N1(t), . . . , N150(t)) of a Poisson process, N(t), whose
random intensity is a random variable with uniform distribution in [0, 1] each instant
of time of the time interval [0, 300]. The simulation method of a CP is an adaptation
of a former one published in Grigoriu (1995).

The sample paths of �(t) have been estimated as explained in Bouzas et al.
(2006b). Each long trajectory of N(t) in [0, 300] has been split up into 30 shorter ones
of equal amplitude 10. Therefore, from each original sample path Nω(t) we obtain
30 subtrajectories Nωi(t), t ∈ [0, 10) with i = 1, . . . , 30 and ω = 1, . . . , 150. Clearly,
we have fixed k = 150, t0 = 0, r = 30, t0 + rT = 300 and so t0 + T = 10 (see Section
2). For each ω, we have estimated the mean process in t j = j × 1

2 ( j = 0, . . . , 20) by
means of a point estimator. That is, for each ω, we have estimated a sample path of
the mean in 21 equally spaced time points in the interval [0, 10). Then, the functional
form of the 150 sample paths of the mean are reconstructed by monotone piece wise
cubic interpolation as explained in the mentioned article.

Afterwards, we have differentiated the interpolated mean trajectories to derive an
estimation of the functional intensity trajectories as mentioned in Section 3. Finally,
we have applied FPCA to the estimated intensity trajectories (see Section 4). As
the p.c.’s ζ j, the eigenfunctions f j(t) and the eigenvalues λ j have been computed,
we have found out that the first q = 15 p.c.’s accumulate 85.76% of the total
variance. Then, the intensity process has been modelled in terms of the first 15
p.c.’s by means of the orthogonal expansion given by Eq. 8 with q = 15. Several
simulated subtrajectories, the functional reconstruction of the intensity sample paths
and stochastically estimated sample paths are represented in Figs. 1 and 2.

In order to validate the method, we try to evaluate its accuracy. The usual way of
doing it is to compare the estimated parameter with the real one used to obtain the
simulation. In our case, as we explained in Section 2, we have estimated a sample
path from r simulated ones so we compare it with all of them. Therefore, the mean
square error of estimation of λ(t) is defined by

ε2 = 1
k

∑k

ω=1
ε2
ω where ε2

ω = 1
p

∑p

j=0
[λq

ω(t j) − λω(t j)]2; ω = 1, . . . , k

The error ε2 has become 0.1014 which is quite small and the error variability between
sample paths has become 0.0148, so this suggest that the method is good and stable.

Other simulations have been developed to compare the results. It can be observed
that besides that the behavior of the errors is similar for all the simulations, this
methodology has also the property of producing small errors even with few subtra-
jectories which would be important in case that a CP can not be observed in a very
long time interval so it were not possible to split it in a lot of subtrajectories. Table 1
shows the estimation errors and their standard deviation when applying the method-
ology to several examples of simulations with different number of trajectories and
subtrajectories. Then, we can conclude the goodness and stability of the estimation.
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Fig. 1 Functional reconstruction and estimated sample path for the intensity process, ω = 26

5.1 Comparison with a Former Methodology

An estimation of the intensity process of a CP without previous statistic information
about the process has already been approached in Bouzas et al. (2006a). From
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Fig. 2 Functional reconstruction and estimated sample path for the intensity process, ω = 99
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Table 1 Estimation error and
standard deviation with
different number of
trajectories and subtrajectories

k r ε2 σ
(
ε2
ω

)
150 30 0.1014 0.0148

10 0.1023 0.0265
5 0.0974 0.0238

40 30 0.1014 0.025
10 0.1 0.0259

5 0.0953 0.0235
25 30 0.1025 0.0255

10 0.1031 0.0267
5 0.0986 0.0217

observed sample paths of the CP, the intensity process was estimated in a finite
set of time points by means of a point estimator which was proved to be unbiased
and consistent. The functional form of the intensity sample paths were reconstructed
by an usual cubic spline interpolation. Then, FPCA applied to them derived the
stochastic estimation of the intensity process.

As explained in the text, in the present paper we develop a new functional
reconstruction of the intensity sample paths by means of a previous reconstruction
of the mean sample paths preserving their analytical property of monotonicity. After
differentiation of the mean sample paths, the adapted FPCA to the new framework
using the proposed basis function becomes an “ad hoc” estimation method for the
intensity process of a CP. Therefore, we are comparing two methods of modelling
the intensity process of a CP by means of FDA. The difference between them is that
the former one is easier to compute but does not take into account any theoretical
property of the mean or intensity and the present one has more steps but preserves
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Fig. 3 FPCA errors in both methods
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the monotonicity of the mean sample paths so it is more accurate from the theoretical
point of view. Besides, even the method we propose in this paper is more complex,
the errors made are smaller. In fact, Fig. 3 shows the FPCA errors computed applying
the former method and the smaller present ones based in a simulation treated with
both methods. The simulation of the CP is the one used as example in Section 5
(k = 150, r = 30, t0 = 0 and t0 + T = 10). Then, even though the former method of
estimation provided good estimations, the new method proposed in this paper gives
better results.

6 Conclusions

The intensity process of a CP characterize it so it is very important to develop an
accurate estimation of it. Due to the fact that in many real point phenomena, it is not
known the theoretical structure of its intensity or any of its moments, we work in the
framework of FDA. The intensity has been former estimated applying usual methods
in this field deriving good results. Even though, we deepen in this estimation trying
to give a finest one.

This paper proposes a FPCA method adapted to preserve the monotonicity of the
mean process of a CP. This method is based on the point estimation of the mean
thanks to the independence of increments of the CP, a functional estimation of its
sample paths using a basis of functions that preserve their known monotonicity, the
relation between mean and intensity processes to obtain the estimated sample paths
of the intensity and a further application of FPCA with the mentioned basis.

This new method is more theoretically complicated than the former one also in
the field of FDA but more accurate as it is thought specially for the characteristics
of a CP. A common problem in observing this kind of processes is that long
sample paths are not always available so it is important that this method also gives
good estimations when using few subtrajectories. The complicated calculations for
estimating the functional mean sample paths and finally the stochastic intensity
model as well as the simulation technique have been implemented in MatLab so as
an interest in the short term it is to organize all the programs involved in a MatLab
package. Also, the proposed estimation of the intensity can be used in generalizations
a CP such as marked or filtered CP and it can be a good basis in order to forecast a
CP in a future instant of time.
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