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Abstract

Background Consumer wearables and smartphone devices commonly offer an estimate of energy expenditure (EE) to assist
in the objective monitoring of physical activity to the general population. Alongside consumers, healthcare professionals
and researchers are seeking to utilise these devices for the monitoring of training and improving human health. However,
the methods of validation and reporting of EE estimation in these devices lacks rigour, negatively impacting on the ability
to make comparisons between devices and provide transparent accuracy.

Objectives The Towards Intelligent Health and Well-Being Network of Physical Activity Assessment (INTERLIVE) is a
joint European initiative of six universities and one industrial partner. The network was founded in 2019 and strives towards
developing best-practice recommendations for evaluating the validity of consumer wearables and smartphones. This expert
statement presents a best-practice validation protocol for consumer wearables and smartphones in the estimation of EE.
Methods The recommendations were developed through (1) a systematic literature review; (2) an unstructured review of the
wider literature discussing the potential factors that may introduce bias during validation studies; and (3) evidence-informed
expert opinions from members of the INTERLIVE network.

Results The systematic literature review process identified 1645 potential articles, of which 62 were deemed eligible for
the final dataset. Based on these studies and the wider literature search, a validation framework is proposed encompassing
six key domains for validation: the target population, criterion measure, index measure, testing conditions, data processing
and the statistical analysis.

Conclusions The INTERLIVE network recommends that the proposed protocol, and checklists provided, are used to stand-
ardise the testing and reporting of the validation of any consumer wearable or smartphone device to estimate EE. This in
turn will maximise the potential utility of these technologies for clinicians, researchers, consumers, and manufacturers/
developers, while ensuring transparency, comparability, and replicability in validation.

Trial Registration PROSPERO ID: CRD42021223508.

1 Introduction

Worldwide, the number of consumer wearable devices sold
in 2020 is estimated to have reached almost 400 million
units [1]. The growing popularity of these devices, com-
bined with the number of smartphone users today surpassing
3 billion [2], means that more people than ever are able to
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self-monitor their physical health and activity. Addition-
ally, consumer wearables are being increasingly utilised
in healthcare and research settings [3]. These devices can
assess a variety of metrics associated with physical activity
including step count, heart rate, maximal oxygen consump-
tion (VO,,,.x)> and energy expenditure (EE).

Traditionally, the measurement of EE has been conducted
via indirect calorimetry (where gaseous exchange is meas-
ured and converted to EE using standard formulae such as
the Weir Equation [4]), direct calorimetry (the measurement
of heat production by the body), or doubly labelled water
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This systematic literature review of validation studies of
consumer wearables and smartphone applications has
highlighted a heterogeneity between validation method-
ologies in key domains, particularly in the target popula-
tions, data processing and statistical approaches, giving
rise to validation bias.

The lack of free-living validation leads to limited abili-
ties of users to understand the accuracy of wearable
devices and smartphones in estimating energy expendi-
ture (EE) in the intended use case.

In this article, the INTERLIVE network provides best-
practice recommendations to be used in future proto-
cols to move towards a more accurate, transparent and
comparable validation of EE estimation derived from
consumer wearables and smartphone applications.

(DLW; where urine samples are analysed using isotope ratio
mass spectrometry) [5, 6]. While DLW is considered the
gold standard for measuring free-living EE [6, 7], it only
provides a measure of total EE (TEE), and the active EE
(AEE) is determined by subtracting an estimate of the rest-
ing EE. Additionally, DLW is an expensive and complex
approach, requiring specialist skills and resources. There-
fore, indirect calorimetry has been the predominant criterion
measure for AEE in recent years [6]. However, these indirect
calorimetry methodologies are limited to more controlled
protocols requiring the use of metabolic carts, which are
expensive and require technical skills to administer.

The widespread availability, relatively low cost, and
wearability of consumer activity monitors means that data
that could only be captured in specialist settings are now
available to the general population, and these devices are
increasingly being used to provide measures of EE. Most
users seek this information for either AEE in monitoring
calorie consumption during a specific exercise activity, or
to support them with their TEE across a day, possibly in
the management of diet or weight loss. A variety of inputs,
including user demographics such as age, sex, weight and
height, and data from on-board sensors, including acceler-
ometers and/or photoplethysmography heart rate sensors,
are used to make estimates of EE [8—10]. However, the
validity and reliability of consumer wearables to estimate
group- and individual-level EE is subject to debate, with
numerous validation studies being conducted, offering vary-
ing methodologies and results [11, 12]. The inconsistency
in validation protocols used in the literature, along with a
lack of transparency in reporting standards means that it is

difficult for consumers and clinicians to navigate the market
and understand or compare the accuracy of such devices
[13]. Whether a consumer monitor can be considered accu-
rate for estimating EE is determined by a combination of
the target population, the intended output (daily TEE, daily
AEE, training session EE, training session AEE, etc.) and
the transferability of the validation protocol to the intended
use. For example, a consumer monitor with reported high
accuracy during an incremental walking or running protocol
may not be the right choice for an individual who expends
energy above rest, primarily during less formal activities.
As consumer monitors will be used for a range of purposes,
a comprehensive evaluation during discrete activities and
free-living settings is needed to maximise applicability.

There have been calls for standardisation of the evalua-
tion of consumer wearable devices, with requests for mar-
keting claims from manufacturers to be evidence-based and
independently verified in a transparent manner with appro-
priate analytical approaches [14, 15]. While frameworks
have been proposed to evaluate wearables across the most
commonly measured metrics, such as step count, heart rate,
EE and VO, max [13, 16], the majority of these relate to
research-grade devices. To address the challenges discussed,
the Towards Intelligent Health and Well-Being Network of
Physical Activity Assessment (INTERLIVE) net was estab-
lished to integrate and build upon previous work to propose
best-practice protocols for the validation of exercise/activ-
ity metric measurement capabilities in consumer wearables
and smartphones. In this case, INTERLIVE is addressing
the measurement of EE. The network first conducted a sys-
tematic literature review to identify the methods previously
used in the validation of EE estimation in consumer weara-
bles and smartphones. Following this, other relevant litera-
ture discussing factors that may introduce bias in validation
studies was then consulted, alongside evidence-informed
network discussion to develop best-practice validation rec-
ommendations. This paper presents a comprehensive report
on the variables to consider when designing and conduct-
ing validation protocols for the estimation of EE and makes
recommendations for the best practice methodologies and
reporting of such studies.

2 Expert Statement Process
2.1 The INTERLIVE Network

INTERLIVE is a joint initiative of the University of Lisbon
(Portugal), German Sport University (Germany), Univer-
sity of Southern Denmark (Denmark), Norwegian School
of Sport Sciences (Norway), University College Dublin (Ire-
land), University of Granada (Spain) and Huawei Technolo-
gies, Finland. The network was founded in 2019, comprising



Determining Validity of Wearables for Estimation of Energy Expenditure

of the authors of this paper, plus additional experts within
each institution, and strives towards developing best-practice
protocols for evaluating the validity of consumer weara-
bles with regard to measurement of exercise/activity met-
rics. Moreover, we are aiming to increase awareness of the
advantages and limitations of different validation methods
and to introduce novel health-related metrics, fostering a
widespread use of physical activity indicators. To date, best-
practice validation protocols for consumer wearable heart
rate monitoring [17] and step-counting [18] have been pro-
posed by the network. In this paper, we detail INTERLIVE’s
work in respect of the measurement of EE.

2.2 Expert Validation Protocol Development
2.2.1 Expert Validation Process

The network used the same process to develop the best-
practice validation protocols for the consumer wearable
device-derived metrics as was used for the previous HR
monitoring and step-counting parameters [17, 18]. The first
step for developing the expert recommendations consisted
of a systematic review of the validation protocols used in the
scientific literature. This information was then used as the
foundation for discussions and to provide recommendations
on the optimal and most feasible protocol for assessing the
validity of consumer wearables. Working group meetings
were held to discuss the aspects of the validation protocols
used in the studies identified in the systematic search. A
set of key domains for best-practice recommendations were
proposed based on the outcomes of the systematic literature
review, the a priori knowledge relating to research grade
device validation [13, 16, 19, 20], and the evidence-informed
expert opinion of the INTERLIVE members. The synthe-
sised data were then reviewed with respect to these domains,
and expert validation protocols for the consumer wearable-
derived EE metric was then developed by the working group.

2.2.2 Systematic Review Process

The primary aim of the systematic literature review was to
determine which methods and protocols are currently being
used in the scientific literature to validate the consumer
wearable or smartphone-derived metric of EE. It was beyond
the scope of this review to explore the results of the included
studies, although a recent systematic review and meta-anal-
ysis was published, with accuracy varying dependent on
activity type [11]. The search was conducted with respect
to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement and registered
with the international database of prospectively registered
systematic reviews in health and social care (PROSPERO
ID: CRD42021223508). To identify peer-reviewed journal

articles, we searched the PubMed, Web of Science, and Sco-
pus electronic databases using specific search terms, which
are listed in electronic supplementary Table 1.

To be included for review, the studies had to (1) be pub-
lished prior to 4 December 2020; (2) examine the validity of
consumer-based wearable and smartphone applications for
estimating EE compared with the gold-standard criterion
measure of either direct or indirect calorimetry, metabolic
chamber, or DLW; and (3) be written in English. Studies
were excluded if the index measure was not derived from
data acquired using a consumer wearable device or smart-
phone, did not contain a validation protocol, there was no
gold-standard criterion measure, the outcome assessed by
the device was not EE, or if the full text was not available.
For our purposes, wearables were restricted to only those
with a consumer purpose rather than a research or clinical
purpose, meaning that the devices are primarily marketed
to the consumer and are readily available for purchase and
use by members of the public. No exclusion criteria were
set for the study population (i.e., healthy, clinical patients,
children). The systematic literature review process was con-
ducted by RA, MHR, JS, and JT. Title/abstract and full-text
screening were completed by two independent reviewers and
confirmed by a third independent reviewer using Covidence
software (Veritas Health Innovation) [21].

A custom-designed spreadsheet was used for data extrac-
tion and included the following headings: sample size
included/analysed, sex distribution, type of population,
body mass index (BMI), height, weight, age, condition type
(laboratory; semi-free-living; free-living), criterion measure
(description, configuration and placement), index measure
(description, configuration and placement), testing protocol,
signal processing, data synchronisation, statistical analysis,
results and conclusions. Validation protocols were divided
into three categories based on the following definitions:

Laboratory: Well-controlled conditions, predominantly
tasks such as walking or running on a treadmill/indoor/out-
door environment, or cycling on a stationary cycle ergometer
at pre-defined or self-selected speeds.

Semi free-living: Semi-controlled conditions, including
‘simulated’ activities of daily living for the purpose of repli-
cating ‘free-living’ conditions (e.g. sweeping, cooking, fold-
ing laundry, computer use, sport-specific activity).

Free-living: Uncontrolled methodologies that involve par-
ticipants wearing the index device during ‘normal’ daily life,
outside of a controlled laboratory or simulated environment.

3 Current State of Knowledge

The search strategy for this systematic review yielded 1645
potential articles for inclusion. Following the removal of 371
duplicates, 1275 titles and abstracts were screened, resulting
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in 254 articles that met the criteria for full-text screening.
Overall, 192 studies were excluded, resulting in a final total
of 62 studies accepted for data extraction. Of the 192 exclu-
sions, 174 were excluded as they did not evaluate consumer
wearables and instead assessed clinical and research-grade
devices. The PRISMA flowchart of the stages of the sys-
tematic search and screening process, including reasons for
exclusion, is illustrated in Fig. 1.

The full extraction data presenting the methodologies
employed across the included studies can be found in elec-
tronic supplementary Table 2 (laboratory protocols), elec-
tronic supplementary Table 3 (semi-free-living protocols),
and electronic supplementary Table 4 (free-living protocols).
Eighty-five different models from 35 manufacturers were
reported in articles included in this systematic review, the
majority being wearable manufacturers (n =30), with only
five smartphone applications evaluated. The most studied
manufacturer was Fitbit, with at least one model evaluated
in 33 articles, followed by the Apple Watch (n=14), Garmin
(n=12), Jawbone (n=11) and Polar (n=10). Similar to the
previous statements of the INTERLIVE network, the data
are presented in six key validation protocol and reporting
domains comprising of the target population, criterion meas-
ure, index measure, testing conditions, data processing and
statistical analysis (Fig. 2). Within each domain, aspects
deemed critical to effective validation and reporting were
identified and are outlined with respect to the information
collated during the statement process.

3.1 Target Population

In the measurement of TEE, a number of variables con-
tribute to individual variation in determining both resting
metabolic rate (RMR) and AEE, including age, sex, body
size and composition, ethnicity, genetics and fitness level
[6, 13]. Consumer wearables are marketed to a broad global
demographic, from adolescents to older adults as well as
from athletes to those with sedentary lives. Thus, unless
investigating a specific clinical application, validation stud-
ies of EE estimation should reflect the heterogenous nature
of the target population in the sample, and not be confined
to a niche sector. Twenty-seven (44 %) of the studies identi-
fied in the systematic literature review recruited their sample
from a university community. While this may be conveni-
ent, we recommend that if the aim of the study is valida-
tion of the wearable in the general population, then a more
heterogenous sample is required with a wide variation in
EE estimates. Notably, 13 of the 62 studies (21%) failed to
provide any report of where the participants were sampled
from, and 34 studies (55%) did not report how participants
were recruited. This information should be a prerequisite in
the reporting of any validation study.

RMR is well documented to decline with age [22-24],
and while age is factored into many EE estimation equa-
tions [13], participants in validation studies should represent
a spectrum of ages, with due consideration for stratifica-
tion according to age ranges. The current literature tends to
validate wearables in the younger adult population, with 35
studies reporting a sample with an average age in the 20 s.
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Older adults (> 60 years) are particularly poorly represented.
Alongside a representative age group, it is important that
validation protocols include an equal sample across both
sexes, given the variance in metabolic rate [6, 25], and report
on body size and composition. Finally, skin tone has previ-
ously been noted as having an effect on the accuracy of heart
rate measures [17]. Given that many consumer wearables
use heart rate in their EE estimation algorithm, if the device
includes photoplethysmography, skin tone should also be
reported using the Fitzpatrick scale [26].

The average sample size across all the studies in the sys-
tematic review was 34 participants (range 12—-100), with
only nine articles (15%) conducting a sample size calcula-
tion and justification. Despite the lack of sample size calcu-
lations, many studies conducted equivalence or difference
tests, which are dependent on sample size. Therefore, if the
objective of the study was to determine a minimum accept-
able level of accuracy, a sample size calculation should be
conducted based on pilot testing or previously published
mean and standard deviation of the differences between the
index and criterion measures [27]. If this is not the primary
focus, for homogenous samples we recommend a minimum
of 45 participants [28], although consideration should be
given to the participant characteristics, and a larger sample
size will likely be required for more heterogenous groups.

3.2 Criterion Measure

It is widely regarded that the gold-standard approach
to measuring TEE is by using DLW [6, 7, 29, 30]. This
is assessed over a period of several days in a free-living
context, and average daily TEE can be calculated over a
specified time period via the collection of urine samples.
In order to determine AEE, RMR is calculated via indirect
calorimetry or prediction equations and then subtracted from
the TEE measured with DLW [31]. However, it is not pos-
sible to measure activity type, intensity or duration within
the TEE for each time period [32], and this information may
be relevant for many users and clinicians. Equally, the use of
DLW is expensive and requires in-depth specialist analytical
facilities, which places a restriction on the feasibility of its
deployment in many studies [30, 32]. Therefore, while the
use of DLW is recommended in free-living protocols, other
measures such as calorimetry are needed for the calculation
of AEE in specific activities.

Calorimetry involves the measurement of either thermal
change (direct calorimetry) or the measurement of gaseous
exchange (indirect calorimetry), and can take the form of
whole-room metabolic chambers, ventilated hoods, or a
facemask/mouthpiece [33—35]. Indirect calorimetry is most
commonly used to measure EE in the laboratory, as it is
highly feasible to measure oxygen consumption and cal-
culate energy cost, yet this is not practical in a free-living
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context [6]. The results of a recent systematic review and
meta-analysis suggest that the accuracy of research-grade
wearables for estimating EE is not at a satisfactory level
for these devices to be used in the validation of commer-
cial wearables as a criterion measure [11]. Therefore, based
on the current available evidence, we recommend that the
criterion measure for the validation of specific activities
or exercise protocols be indirect calorimetry, with DLW
used for free-living studies. All five studies in the system-
atic literature review validating consumer wearables in a
free-living context utilised the DLW method [10, 36-39],
while 3 (10%) of the 28 semi-free-living protocols utilised
a metabolic chamber [10, 37, 40]. The remaining studies
with a semi-free-living protocol (25) and all 52 laboratory
protocols selected indirect calorimetry in the form of a port-
able system or metabolic cart. The criterion device should be
placed according to manufacturer’s instructions and reported
in the study write-up, alongside laboratory-specific data on
the quality of the criterion measure where possible (i.e. per-
centage coefficient of variation [reliability]), and any cali-
bration details. In the case of using DLW in free-living pro-
tocols and reporting on AEE, authors should provide a full
account of assumptions and equations used [6], for example
whether RMR is calculated via indirect calorimetry or by
equation. We would recommend that the best-practice for
measuring RMR in a free-living protocol is with indirect
calorimetry, rather than estimated using equations; however,
we recognise this may not always be feasible for researchers,
and in those cases, the exact equation used should be stated.

3.3 Index Measure

In order to ensure the ecological validity of a study protocol,
the placement of the wearable device must be considered,
especially in studies evaluating multiple devices at the same
time. All commercial wearables should be evaluated with the
device placed according to the manufacturer’s instructions.
Activity monitors are commonly worn on the wrist, although
in some cases may be attached to the waist of the user [41].
Less used placements include the torso [42] and the shoes
[43]. Fifteen studies identified in the systematic review
evaluated multiple wrist-worn devices on the same arm in
the protocol, with up to three devices worn on one arm. It
is unclear what effect this placement might have on the out-
puts of the device, and, arguably, while still placed on the
lower forearm, at least one of the three devices is not being
worn according to the manufacturer’s instructions. There is
a negative impact to the feasibility of studies if researchers
are required to only place one device on each wrist during a
testing protocol, therefore we would recommend that where
possible, researchers avoid placing multiple devices on the
same wrist, with a maximum of two wrist-worn devices
being tested on one arm simultaneously. In addition, when

using two wrist-worn devices on the same arm, we recom-
mend that there should be a random counterbalanced place-
ment of the devices between participants; however, the order
of device placement with respect to distance from the wrist
joint should be clearly reported.

Equally, smartphone applications may not have an explicit
manufacturer/developer-specified placement. Of the four
studies in the systematic review that assessed smartphone
measured EE, one placed the smartphone at the lower back
[44], one on the belt next to a wearable at the mid-axillary
line [45], one in a pocket (although the location of the pocket
was not specified) [46], and the last study used two smart-
phones, one in the hand and one in the right pocket, with a
comparison made between the two positions [47]. It has been
reported that in day-to-day life, 60% of females place their
phone in their bag, while 60% of males carry theirs in their
pocket [48]. As such, we would consider clothing pockets,
handbags or carrying in the hand as the most suitable posi-
tions to evaluate smartphone estimation of EE. The phone
should not be mounted to the body in an unnatural way such
as to the chest or low back.

As well as reporting the placement protocol in detail,
the exact model and version of the index device should be
clearly specified, for both the hardware and software, includ-
ing noting if any firmware updates took place during the
data capture period. Most studies reported the brand and
device name (e.g. Fitbit Charge HR); however, with regular
updates to hardware and software, it is difficult to fully rep-
licate the study without specified version numbers. Further-
more, the device should be reset back to baseline between
participants to ensure there is no influence on device EE
algorithms potentially based on previous use. Finally, any
demographic and anthropometric details inputted into the
device, and the use of any specific exercise modes, should be
reported. The use of exercise modes has been highlighted as
an area for further examination, with researchers and users
currently unaware of the impact of using different modes on
the measurement of EE [49, 50].

3.4 Testing Conditions

Consumer wearables are designed to provide a measure of
EE in uncontrolled environments such as daily EE, with
limited user interaction with the device, and during more
controlled settings where EE is estimated during a specific
exercise/activity. The results from the systematic review
show that many researchers are favouring the use of labora-
tory or semi-free-living protocols. Of the 62 studies included
in the systematic review, 51 (82%) included a laboratory
protocol, 27 studies (44%) conducted some form of semi-
free-living investigation, and only five studies (8%) exam-
ined free-living conditions.
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Laboratory protocols seek to validate the wearable in
measuring EE during tasks that are well controlled. The
accuracy can be examined across varying intensities and
include a combination of predefined walking, running, and
cycling activities. The studies identified in the systematic lit-
erature search with laboratory protocols highlighted varying
levels of accuracy of a wearable in measuring EE depend-
ent on the intensity of the activity. Additionally, in the case
of walking and running, the accuracy of the index measure
varied dependent on the level of incline of the activities in a
number of studies [42, 51-53]. In contrast, semi-free-living
evaluation incorporates simulated activities of daily living
and activities emulating sports or exercises that are more
specific than walking, running or cycling. Within these pro-
tocols, participants are encouraged to complete the tasks as
they would do during normal daily life, at a self-selected
pace. The purpose of these type of validation studies is to
capture (1) specific sports or complex activities, and/or (2)
a diverse range of activities emulating activities of daily liv-
ing, such as relaxation, housekeeping, or other physically
active leisure pursuits. We argue that the accurate measure-
ment of TEE and AEE during specific sports or complex
activities is important because it allows end users to deter-
mine the validity of their device during activities of particu-
lar relevance to them. However, because of the constraints
of laboratory equipment and the laboratory setting, many
activities/sports, and particularly activities of daily living,
cannot be performed in a manner that is comparable to the
way these activities or exercise modes are performed on a
daily basis. If this is not possible, we argue that the infor-
mation acquired from the typical semi-free-living study has
very little validity in determining the precision of EE from
consumer devices during actual free-living behaviours of
users. In contrast to our previous recommendations on the
validation of consumer wearables to measure heart and step
count [17, 18], we recommend that validation of TEE and
AEE from wearables should be performed within two testing
conditions: (1) during specific activities or exercises/sports,
and (2) in a free-living context.

In order to accurately assess EE during a specific exercise
or activity, a distinction between steady state and variable
intensity activities must be made. During steady-state activi-
ties, steady state must be achieved where heart rate remains
stable during a continuous task and cardiac output is at a
sufficient level to support oxygen transport in order to meet
energy cost [54-56], before measurements are included in
the analysis. There is some debate in the literature about
when steady state is achieved, but the general consensus
is that there is a 2- to 5-min period where VO, and VCO,
varies by up to 15% from the EE of the performed work,
depending on the activity and the change in intensity gradi-
ent [55-59]. Therefore, we recommend validation of steady-
state activities be performed across different intensities to

determine validity at different absolute levels, with research-
ers providing justification of the achievement of steady state.
As a general rule of thumb, but dependent on the intensity
gradient and the absolute intensity performed, each of the
activities/intensities within an exercise/activity-specific
protocol is recommended to last at least 6 min to facilitate
stable steady-state measurements. We recommend conduct-
ing evaluation with as wide a range of intensities as feasible
and a consideration of the relevance of graded activities (e.g.
an incline > 5% during walking or running tasks). Equally,
if conducting walking/running assessment on a treadmill,
we would recommend all testing is conducted with a 1%
incline to account for the reduced metabolic cost of treadmill
propulsion [60]. Due consideration should be given to the
potential need for a recovery period between activity bouts
when higher-intensity exercises are examined to allow suf-
ficient recovery to approximately RMR. The choice of all
intensities should take into consideration the characteris-
tics of the sample, with calculated intensities based on the
participant’s maximal heart rate or VO,,,,, being the most
preferable over selecting absolute values, or lesser still,
self-selected intensities. However, while these personalised
intensities are recommended, there may be cases where it is
not feasible to calculate personalised fitness levels, and, in
these instances, conducting and reporting absolute exercise
intensities such as speed or watts is recommended.

During these activities, consideration of available work-
out modes on devices are needed as the mode selected
dictates what sensors are enabled on the device in order to
preserve battery, for example indoor activities disable the
GPS and cycling does not require step detection, and these
modifications are likely to impact the validity of the meas-
urements. These user-defined activities for assessment of
EE tend to relate to the most common workouts, including,
but not limited to, running, walking, cycling and swimming.
Attempting to validate devices in other tasks that are not
defined by the manufacturer, such as reading, vacuuming or
sweeping, is most appropriately assessed in the validity of
TEE estimation in the free-living environment. Additionally,
a further issue that must be addressed is the need to cor-
rect for inaccuracies in the measurement of EE at heavy to
maximal intensity activity, where the anaerobic component
will not be captured by indirect calorimetry. Researchers
conducting high-intensity activities should recognise this,
adjust for it using an appropriate method such as incorpo-
rating blood lactate measurements [61, 62] or interpolation
based on exercise intensity [63], and report these methods
appropriately.

To assess EE estimation of consumer wearables in the
real-world, free-living protocols should capture a range
of activities from participants in uncontrolled conditions.
Given the recommendation for the use of DLW in free-living
validation, the protocol period should last 7-14 days, and



R. Argent et al.

participants should not be constrained in their activities in
any way [30, 64]. The reporting of such protocols should
include in detail the instructions given to participants,
including whether they were asked to use or did use any
specific exercise modes on the wearables during the period.
Finally, it is preferable to record and report on the adherence
of participants to wearing the device as instructed to high-
light any discrepancies between devices due to non-adher-
ence, and report on any missing data. In the case of specific
activity EE estimation, it is recommended that data must
be captured with the participant wearing the device for the
entirety of the protocol, and if there is non-adherence to this
or there are missing data, then that data capture be discarded.
Furthermore, for free-living evaluations, any methods used
to interpolate missing data, such as during charging over-
night, should be reported clearly.

3.5 Processing

The data processing and reporting that is provided in vali-
dation studies is important but is often overlooked, with
numerous articles in the systematic review leaving the reader
left to make assumptions on the processing methods of the
study. Authors must provide clear detail on how steady-state
or anaerobic EE (if relevant) was managed in their proto-
col, and how the data collection, including synchronisation,
was managed to capture the measures of the criterion and
index device per activity. Given the 2- to 5-min period that is
required to achieve steady state, we would recommend that
the average of the last 3 min of the exercise protocols for
steady-state exercises or activities be used to calculate EE.
There is variance in the reporting of the type of EE being
measured, with lack of clarity in papers regarding whether
the measure is TEE or AEE, and in the units used, with
kilocalories per minute (kcals/min), kilocalories per activ-
ity (kcals/activity) and metabolic equivalents (METs) all
being described in the literature. Recent literature reports
MET minutes to be the unit of choice for EE validation [15],
yet while the time-phased nature of these units are desirable
for comparability, we do not feel that the consumer mar-
ket is currently able to understand MET minutes. Further-
more, most consumer devices report EE in kcals. As such
we recommend that the preferred metric should be kcals per
unit of time (minute/day). Furthermore, researchers should
specify which equation is used to determine EE from gas-
eous consumption, report all related assumptions, and are
clear in reporting whether the study assessed TEE or AEE.
Equally with regard to the index measure, as much infor-
mation as possible should be provided on the inputs to the
EE calculation of the device. Reporting that a proprietary
algorithm was used should be deemed as the minimum cri-
teria, with attempts made to note any of the inputs to that
specific EE algorithm, including heart rate, accelerometer

data, user demographics and subjective reporting such as
rate of perceived exertion. This is somewhat challenging in
many cases, given the ‘black-box’ nature of these propri-
etary algorithms that manufacturers do not wish to divulge.
Additionally, where possible, researchers are encouraged to
follow open science principles in making raw data available
using appropriate data repositories to facilitate combined
analyses in the future.

Finally, the management of synchronisation between
devices is another potential source of error. The approach
to this will vary depending on the study design and devices
used. As such, researchers must be cognisant of data syn-
chronisation when designing the study, and the synchro-
nisation process undertaken should be described in as
much detail as possible in the report to allow for adequate
replication.

3.6 Statistical Analysis

When assessing the validity of an index device to a criterion
measure, the levels of accuracy of the index device should
be calculated with agreement between the two devices [65,
66]. The Bland—Altman approach to limits of agreement has
become widely used in the current medical literature [67],
including 38 studies (61%) in the systematic review con-
ducting this approach in the analysis. However, there was
large variance in the statistical approaches used, with many
studies utilising measurements of correlation (e.g. Pear-
son, Spearman) [n=38, 61%], comparison of means (e.g.
t test) [n=22, 36%], and measures of relative reliability
(e.g. intraclass correlation coefficient) [n=13, 21%]. These
approaches have been highlighted as inappropriate when
assessing agreement between a measurement tool and the
reference standard in medical instrument validation studies
[65].

To comprehensively assess the validity of the index
device in estimating EE, we recommend the use of
Bland—Altman limits of agreement analysis in combina-
tion with mean absolute percentage error (MAPE). The
Bland—Altman method provides a measure of the agree-
ment between the criterion and index device; researchers
should state if the assumptions for valid limits of agreement
analysis were fulfilled [67], and, in addition, should incor-
porate least-products regression to assess for proportional
or fixed bias, as described by Ludbrook [66]. The use of
MAPE allows for comparison between devices and testing
conditions and is the average of the absolute error of a tool.
It is commonly used in describing the error of a predic-
tion [68], and 29 studies (47%) included in our systematic
review used this approach in their analysis. The use of both
methods and related visualisations provides a comprehen-
sive assessment of the group- and individual-level validity
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of the consumer device in estimating EE and will illustrate
any bias occurring.

To allow readers to assess the validity of a device in
estimating EE, it is important for the contextual use of the
device to be considered. For example, a much greater level
of accuracy would be required when applying the measure
in a clinical trial setting compared with EE monitoring in
a general wellness application. Regardless of the context,
the level of error, limits of agreement and 95% confidence
intervals should be reported clearly according to the vali-
dation conditions, with an avoidance of binary hypothesis
testing, particularly when a sample size calculation has not
been conducted.

3.7 Recommended Validation Protocol

Based on the current state of knowledge and the evidence
described within this statement, INTERLIVE recommends
that manufacturers of consumer wearables and smartphones
that provide an estimate of EE utilise standardised validation
methodologies and report this in a transparent and replica-
ble manner. Studies should be designed to validate devices
across both specific sports/activities (focusing on the pre-
defined exercise modes offered by the device, if any) and
in uncontrolled environments. This evaluation should be
conducted using the appropriate criterion measure with a
relevant sample, in conditions that best reflect the expected
use of the device.

These recommendations aim to ensure that many of the
sources of bias identified during the review of the literature
are addressed. Table 1 presents a detailed best-practice vali-
dation protocol and reporting requirements, while Table 2
presents a checklist of items to be considered during valida-
tion protocol planning.

4 Discussion and Future Directions

This INTERLIVE network expert statement aims to provide
clear and actionable recommendations and guidelines for the
comprehensive and replicable evaluation of the validity of
consumer wearables in estimating EE. In consultation with
the evidence base, wider literature and expert knowledge, a
detailed validation protocol is described covering domains
of the target population, criterion measure, index measure,
validation conditions (exercise/activity-specific or free-liv-
ing), processing and statistical analysis.

The lack of both a regulatory standard for the validation
process of consumer wearables and an acceptable context-
specific level of accuracy facilitates the heterogeneity of
methodologies used in the validation of EE estimation seen
in this systematic literature review. This can lead to all
stakeholders experiencing difficulties in comparing various

devices and ultimately deciding which might be more suit-
able or appropriate for a specified purpose. A standardised
approach to validation would benefit all stakeholders and
ensure a transparent and objective method of validation,
which will ultimately drive the sector towards more accurate,
and therefore more useful, devices. This would benefit (1)
consumers, facilitating them to be able to make an informed
choice on the most suitable device or application; (2) health-
care providers, by being better placed to adopt such devices/
applications as part of their digital health strategy; and (3)
manufacturers and developers, who can clearly illustrate the
value of their products.

This transparency of reporting opens an interesting
debate, as the ‘black-box’ nature of EE estimation algo-
rithms means that manufacturers do not wish to divulge the
proprietary information that constitutes these models. How-
ever, in order to make sufficient comparisons and maximise
the accuracy of the device, we mirror calls in the literature
for companies to be more open about the algorithms that
they employ [12]. While respecting the proprietary nature
of these devices, we recommend that as a minimum, manu-
facturers and researchers should declare the key components
that act as inputs for the EE estimation algorithm. For exam-
ple, despite a device being equipped with an accelerometer,
GPS, and photoplethysmography sensor, this does not auto-
matically mean that all of these sensors are utilised as inputs
into the EE model, and additional metrics such as demo-
graphics and anthropometrics that are also included should
be stated. Depending on the inputs declared, we would draw
readers’ attention and consideration to the previous INTER-
LIVE statements for the validation of heart rate [17] or step
counting [18] in consumer wearables to determine whether
these inputs into the EE algorithm are valid.

This systematic review highlighted a lack of studies
validating EE from wearable devices during anaerobic
conditions or during very high intensities (above lactate
threshold). This leaves a gap in current validation studies as
strength training, conditioning exercises and high-intensity
interval training (HIIT) are growing in popularity [69]. Indi-
rect calorimetry has clear limitations when used to deter-
mine EE during resistance training [70], with anaerobic
and recovering EE reported to be significantly larger than
the aerobic component of EE during a single set of train-
ing to fatigue [61]. As such, this may require the use of
additional criterion measures such as blood lactate measure-
ment, together with modification to the indirect calorimetry
timing, to capture excess post-exercise oxygen consumption
[61]. Further research to identify an acceptable standard of
measurement of anaerobic EE and variable intensity, non-
steady-state activity is required in order to make suitable
recommendations for optimal protocols for assessing the
accuracy of wearables in estimating EE in those conditions
[71].
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Table 2 Checklist of items to be considered during the validation protocol of wearable and smartphones to estimate energy expenditure

Target population assessment
Age
Children (< 12 years)
Adolescents (12—18 years)
Adults (18-65 years)
Older adults (> 65 years)
Sex (equal sample of males and females)

Sample size

Calculated based on previously published or pilot study data
OR

If previous data are not available, at least 45 participants
Criterion measure assessment

Exercise/activity specific testing

Direct or indirect calorimetry

Free-living testing

DLW

Placement of criterion according to the manufacturer’s instructions (applies only to indirect calorimetry)

Index device assessment

Placement:

Wearable activity monitors placed according to the manufacturer’s instructions
Smartphones either handheld or placed in places typically used in everyday living (i.e. pocket, handbags, belt phone holder)

Device setup:
All demographic details required by the device are inputted
Specific exercise mode chosen if applicable

Exercise/activity specific EE assessment

Walking, running, and/or cycling with three different intensities and one inclination> 5%

Intensity based on either participant maximal HR or VO,,,., absolute value, or participant self-selected pace

At least 6-min duration for each activity bout with ample recovery time allotted in-between activity bouts performed at higher intensities

Free-living EE assessment

Participant wears index device for 7-14 days while simultaneously undergoing a DLW protocol

Processing
Criterion measure processing

Exercise/activity EE: The average of the last 3 min of the exercise used to calculate steady-state EE

Free-living EE: RMR determined using either indirect or direct calorimetry or validated prediction equations

Index measure processing

Minute-by-minute data for calculating AEE from the device used if available
If minute-by-minute data are not available, pre-EE (EE at the start of steady state for each activity) is subtracted from post-EE (EE post activ-
ity) and divided by the number of minutes between pre- to post-EE to get kilocalories per minute

Index and criterion synchronisation

Statistical analysis

Bland—Altman with limits of agreement per activity/category
Least products regression of the differences against the means
MAPE

DLW doubly labelled water, HR heart rate, EE energy expenditure, AEE activity energy expenditure, RMR resting metabolic rate, VO,,,,, maxi-

mal oxygen consumption, MAPE mean absolute percentage error

It is important not to understate the challenges in imple-
menting EE validation studies. The notable lack of free-
living validation, which is an important step for many con-
sumer users, is likely due to issues in feasibility, given the
longitudinal nature of these protocols, the resources required
for DLW, and the additional need to measure RMR. None-
theless, there is currently a lack of evidence regarding the

validity of consumer wearables in the measurement of AEE
in daily life. One research group that has conducted vali-
dation in the free-living context showed close correlation
between consumer devices and DLW for TEE; however,
when assessing the estimation of AEE across a 15-day
period, a far greater number of devices demonstrated sig-
nificant differences to the criterion measure [10, 37]. This
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would suggest that the accuracy for consumer devices to
measure TEE is driven by the standard RMR formulas
incorporating user characteristics such as age, sex, height
and weight, rather than the sensors on board the devices.
Therefore, further validation of the measurement of AEE in
free-living conditions is warranted to truly understand the
value such devices can offer in EE estimation.

Additionally, these protocol recommendations do not
include evaluation of reliability for activity-specific EE esti-
mation, yet reliability is a prerequisite for validity. There-
fore, researchers may want to consider the various aspects
of reliability in their protocols depending on the intended
use-case. This may include repeating a particular testing
condition/intensity during the same session when the par-
ticipant has recovered to RMR, or to repeat the protocol on
an alternate day. Equally, many index device manufacturers
do not provide exercise/activity modes for sport-specific
activity, including soccer and basketball. This is potentially
due to poor performance of these devices in estimating EE
during such activities, but presents an interesting opportu-
nity for manufacturers to develop exercise modes for popular
recreational sports, which would make them more appealing
to consumers. For these modes to be useful, their validation
needs to mimic a range of actual sports-specific behaviours,
and not only running with or kicking a ball.

5 Conclusions

This INTERLIVE expert statement provides an evidence-
informed best-practice protocol for the validation of con-
sumer wearables in estimating EE. The systematic literature
review conducted as part of the formation of this statement
highlighted a heterogeneity between methodologies in key
domains, particularly in the target populations, data pro-
cessing and statistical approaches, giving rise to validation
bias. Additionally, the lack of free-living validation leads to
limited abilities of users to understand the accuracy of the
device in its intended use case. The INTERLIVE network
recommends that the proposed validation protocol is used
when considering the validation of any consumer wearable
or smartphone measure of EE to provide a robust valida-
tion of the device. Adherence to this validation standard
will help ensure methodological and reporting consistency,
facilitating comparisons between consumer devices and
the amalgamation of standardised open datasets. This will
ensure that manufacturers, consumers, healthcare providers
and researchers can use this technology safely and to its full
potential.
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