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Abstract
Background  Consumer wearables and smartphone devices commonly offer an estimate of energy expenditure (EE) to assist 
in the objective monitoring of physical activity to the general population. Alongside consumers, healthcare professionals 
and researchers are seeking to utilise these devices for the monitoring of training and improving human health. However, 
the methods of validation and reporting of EE estimation in these devices lacks rigour, negatively impacting on the ability 
to make comparisons between devices and provide transparent accuracy.
Objectives  The Towards Intelligent Health and Well-Being Network of Physical Activity Assessment (INTERLIVE) is a 
joint European initiative of six universities and one industrial partner. The network was founded in 2019 and strives towards 
developing best-practice recommendations for evaluating the validity of consumer wearables and smartphones. This expert 
statement presents a best-practice validation protocol for consumer wearables and smartphones in the estimation of EE.
Methods  The recommendations were developed through (1) a systematic literature review; (2) an unstructured review of the 
wider literature discussing the potential factors that may introduce bias during validation studies; and (3) evidence-informed 
expert opinions from members of the INTERLIVE network.
Results  The systematic literature review process identified 1645 potential articles, of which 62 were deemed eligible for 
the final dataset. Based on these studies and the wider literature search, a validation framework is proposed encompassing 
six key domains for validation: the target population, criterion measure, index measure, testing conditions, data processing 
and the statistical analysis.
Conclusions  The INTERLIVE network recommends that the proposed protocol, and checklists provided, are used to stand-
ardise the testing and reporting of the validation of any consumer wearable or smartphone device to estimate EE. This in 
turn will maximise the potential utility of these technologies for clinicians, researchers, consumers, and manufacturers/
developers, while ensuring transparency, comparability, and replicability in validation.
Trial Registration  PROSPERO ID: CRD42021223508.
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1  Introduction

Worldwide, the number of consumer wearable devices sold 
in 2020 is estimated to have reached almost 400 million 
units [1]. The growing popularity of these devices, com-
bined with the number of smartphone users today surpassing 
3 billion [2], means that more people than ever are able to 

self-monitor their physical health and activity. Addition-
ally, consumer wearables are being increasingly utilised 
in healthcare and research settings [3]. These devices can 
assess a variety of metrics associated with physical activity 
including step count, heart rate, maximal oxygen consump-
tion (VO2max), and energy expenditure (EE).

Traditionally, the measurement of EE has been conducted 
via indirect calorimetry (where gaseous exchange is meas-
ured and converted to EE using standard formulae such as 
the Weir Equation [4]), direct calorimetry (the measurement 
of heat production by the body), or doubly labelled water 
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Key Points 

This systematic literature review of validation studies of 
consumer wearables and smartphone applications has 
highlighted a heterogeneity between validation method-
ologies in key domains, particularly in the target popula-
tions, data processing and statistical approaches, giving 
rise to validation bias.

The lack of free-living validation leads to limited abili-
ties of users to understand the accuracy of wearable 
devices and smartphones in estimating energy expendi-
ture (EE) in the intended use case.

In this article, the INTERLIVE network provides best-
practice recommendations to be used in future proto-
cols to move towards a more accurate, transparent and 
comparable validation of EE estimation derived from 
consumer wearables and smartphone applications.

difficult for consumers and clinicians to navigate the market 
and understand or compare the accuracy of such devices 
[13]. Whether a consumer monitor can be considered accu-
rate for estimating EE is determined by a combination of 
the target population, the intended output (daily TEE, daily 
AEE, training session EE, training session AEE, etc.) and 
the transferability of the validation protocol to the intended 
use. For example, a consumer monitor with reported high 
accuracy during an incremental walking or running protocol 
may not be the right choice for an individual who expends 
energy above rest, primarily during less formal activities. 
As consumer monitors will be used for a range of purposes, 
a comprehensive evaluation during discrete activities and 
free-living settings is needed to maximise applicability.

There have been calls for standardisation of the evalua-
tion of consumer wearable devices, with requests for mar-
keting claims from manufacturers to be evidence-based and 
independently verified in a transparent manner with appro-
priate analytical approaches [14, 15]. While frameworks 
have been proposed to evaluate wearables across the most 
commonly measured metrics, such as step count, heart rate, 
EE and VO2 max [13, 16], the majority of these relate to 
research-grade devices. To address the challenges discussed, 
the Towards Intelligent Health and Well-Being Network of 
Physical Activity Assessment (INTERLIVE) net was estab-
lished to integrate and build upon previous work to propose 
best-practice protocols for the validation of exercise/activ-
ity metric measurement capabilities in consumer wearables 
and smartphones. In this case, INTERLIVE is addressing 
the measurement of EE. The network first conducted a sys-
tematic literature review to identify the methods previously 
used in the validation of EE estimation in consumer weara-
bles and smartphones. Following this, other relevant litera-
ture discussing factors that may introduce bias in validation 
studies was then consulted, alongside evidence-informed 
network discussion to develop best-practice validation rec-
ommendations. This paper presents a comprehensive report 
on the variables to consider when designing and conduct-
ing validation protocols for the estimation of EE and makes 
recommendations for the best practice methodologies and 
reporting of such studies.

2 � Expert Statement Process

2.1 � The INTERLIVE Network

INTERLIVE is a joint initiative of the University of Lisbon 
(Portugal), German Sport University (Germany), Univer-
sity of Southern Denmark (Denmark), Norwegian School 
of Sport Sciences (Norway), University College Dublin (Ire-
land), University of Granada (Spain) and Huawei Technolo-
gies, Finland. The network was founded in 2019, comprising 

(DLW; where urine samples are analysed using isotope ratio 
mass spectrometry) [5, 6]. While DLW is considered the 
gold standard for measuring free-living EE [6, 7], it only 
provides a measure of total EE (TEE), and the active EE 
(AEE) is determined by subtracting an estimate of the rest-
ing EE. Additionally, DLW is an expensive and complex 
approach, requiring specialist skills and resources. There-
fore, indirect calorimetry has been the predominant criterion 
measure for AEE in recent years [6]. However, these indirect 
calorimetry methodologies are limited to more controlled 
protocols requiring the use of metabolic carts, which are 
expensive and require technical skills to administer.

The widespread availability, relatively low cost, and 
wearability of consumer activity monitors means that data 
that could only be captured in specialist settings are now 
available to the general population, and these devices are 
increasingly being used to provide measures of EE. Most 
users seek this information for either AEE in monitoring 
calorie consumption during a specific exercise activity, or 
to support them with their TEE across a day, possibly in 
the management of diet or weight loss. A variety of inputs, 
including user demographics such as age, sex, weight and 
height, and data from on-board sensors, including acceler-
ometers and/or photoplethysmography heart rate sensors, 
are used to make estimates of EE [8–10]. However, the 
validity and reliability of consumer wearables to estimate 
group- and individual-level EE is subject to debate, with 
numerous validation studies being conducted, offering vary-
ing methodologies and results [11, 12]. The inconsistency 
in validation protocols used in the literature, along with a 
lack of transparency in reporting standards means that it is 
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of the authors of this paper, plus additional experts within 
each institution, and strives towards developing best-practice 
protocols for evaluating the validity of consumer weara-
bles with regard to measurement of exercise/activity met-
rics. Moreover, we are aiming to increase awareness of the 
advantages and limitations of different validation methods 
and to introduce novel health-related metrics, fostering a 
widespread use of physical activity indicators. To date, best-
practice validation protocols for consumer wearable heart 
rate monitoring [17] and step-counting [18] have been pro-
posed by the network. In this paper, we detail INTERLIVE’s 
work in respect of the measurement of EE.

2.2 � Expert Validation Protocol Development

2.2.1 � Expert Validation Process

The network used the same process to develop the best-
practice validation protocols for the consumer wearable 
device-derived metrics as was used for the previous HR 
monitoring and step-counting parameters [17, 18]. The first 
step for developing the expert recommendations consisted 
of a systematic review of the validation protocols used in the 
scientific literature. This information was then used as the 
foundation for discussions and to provide recommendations 
on the optimal and most feasible protocol for assessing the 
validity of consumer wearables. Working group meetings 
were held to discuss the aspects of the validation protocols 
used in the studies identified in the systematic search. A 
set of key domains for best-practice recommendations were 
proposed based on the outcomes of the systematic literature 
review, the a priori knowledge relating to research grade 
device validation [13, 16, 19, 20], and the evidence-informed 
expert opinion of the INTERLIVE members. The synthe-
sised data were then reviewed with respect to these domains, 
and expert validation protocols for the consumer wearable-
derived EE metric was then developed by the working group.

2.2.2 � Systematic Review Process

The primary aim of the systematic literature review was to 
determine which methods and protocols are currently being 
used in the scientific literature to validate the consumer 
wearable or smartphone-derived metric of EE. It was beyond 
the scope of this review to explore the results of the included 
studies, although a recent systematic review and meta-anal-
ysis was published, with accuracy varying dependent on 
activity type [11]. The search was conducted with respect 
to the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) statement and registered 
with the international database of prospectively registered 
systematic reviews in health and social care (PROSPERO 
ID: CRD42021223508). To identify peer-reviewed journal 

articles, we searched the PubMed, Web of Science, and Sco-
pus electronic databases using specific search terms, which 
are listed in electronic supplementary Table 1.

To be included for review, the studies had to (1) be pub-
lished prior to 4 December 2020; (2) examine the validity of 
consumer-based wearable and smartphone applications for 
estimating EE compared with the gold-standard criterion 
measure of either direct or indirect calorimetry, metabolic 
chamber, or DLW; and (3) be written in English. Studies 
were excluded if the index measure was not derived from 
data acquired using a consumer wearable device or smart-
phone, did not contain a validation protocol, there was no 
gold-standard criterion measure, the outcome assessed by 
the device was not EE, or if the full text was not available. 
For our purposes, wearables were restricted to only those 
with a consumer purpose rather than a research or clinical 
purpose, meaning that the devices are primarily marketed 
to the consumer and are readily available for purchase and 
use by members of the public. No exclusion criteria were 
set for the study population (i.e., healthy, clinical patients, 
children). The systematic literature review process was con-
ducted by RA, MHR, JS, and JT. Title/abstract and full-text 
screening were completed by two independent reviewers and 
confirmed by a third independent reviewer using Covidence 
software (Veritas Health Innovation) [21].

A custom-designed spreadsheet was used for data extrac-
tion and included the following headings: sample size 
included/analysed, sex distribution, type of population, 
body mass index (BMI), height, weight, age, condition type 
(laboratory; semi-free-living; free-living), criterion measure 
(description, configuration and placement), index measure 
(description, configuration and placement), testing protocol, 
signal processing, data synchronisation, statistical analysis, 
results and conclusions. Validation protocols were divided 
into three categories based on the following definitions:

Laboratory: Well-controlled conditions, predominantly 
tasks such as walking or running on a treadmill/indoor/out-
door environment, or cycling on a stationary cycle ergometer 
at pre-defined or self-selected speeds.

Semi free-living: Semi-controlled conditions, including 
‘simulated’ activities of daily living for the purpose of repli-
cating ‘free-living’ conditions (e.g. sweeping, cooking, fold-
ing laundry, computer use, sport-specific activity).

Free-living: Uncontrolled methodologies that involve par-
ticipants wearing the index device during ‘normal’ daily life, 
outside of a controlled laboratory or simulated environment.

3 � Current State of Knowledge

The search strategy for this systematic review yielded 1645 
potential articles for inclusion. Following the removal of 371 
duplicates, 1275 titles and abstracts were screened, resulting 
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in 254 articles that met the criteria for full-text screening. 
Overall, 192 studies were excluded, resulting in a final total 
of 62 studies accepted for data extraction. Of the 192 exclu-
sions, 174 were excluded as they did not evaluate consumer 
wearables and instead assessed clinical and research-grade 
devices. The PRISMA flowchart of the stages of the sys-
tematic search and screening process, including reasons for 
exclusion, is illustrated in Fig. 1.

The full extraction data presenting the methodologies 
employed across the included studies can be found in elec-
tronic supplementary Table 2 (laboratory protocols), elec-
tronic supplementary Table 3 (semi-free-living protocols), 
and electronic supplementary Table 4 (free-living protocols). 
Eighty-five different models from 35 manufacturers were 
reported in articles included in this systematic review, the 
majority being wearable manufacturers (n = 30), with only 
five smartphone applications evaluated. The most studied 
manufacturer was Fitbit, with at least one model evaluated 
in 33 articles, followed by the Apple Watch (n = 14), Garmin 
(n = 12), Jawbone (n = 11) and Polar (n = 10). Similar to the 
previous statements of the INTERLIVE network, the data 
are presented in six key validation protocol and reporting 
domains comprising of the target population, criterion meas-
ure, index measure, testing conditions, data processing and 
statistical analysis (Fig. 2). Within each domain, aspects 
deemed critical to effective validation and reporting were 
identified and are outlined with respect to the information 
collated during the statement process.

3.1 � Target Population

In the measurement of TEE, a number of variables con-
tribute to individual variation in determining both resting 
metabolic rate (RMR) and AEE, including age, sex, body 
size and composition, ethnicity, genetics and fitness level 
[6, 13]. Consumer wearables are marketed to a broad global 
demographic, from adolescents to older adults as well as 
from athletes to those with sedentary lives. Thus, unless 
investigating a specific clinical application, validation stud-
ies of EE estimation should reflect the heterogenous nature 
of the target population in the sample, and not be confined 
to a niche sector. Twenty-seven (44%) of the studies identi-
fied in the systematic literature review recruited their sample 
from a university community. While this may be conveni-
ent, we recommend that if the aim of the study is valida-
tion of the wearable in the general population, then a more 
heterogenous sample is required with a wide variation in 
EE estimates. Notably, 13 of the 62 studies (21%) failed to 
provide any report of where the participants were sampled 
from, and 34 studies (55%) did not report how participants 
were recruited. This information should be a prerequisite in 
the reporting of any validation study.

RMR is well documented to decline with age [22–24], 
and while age is factored into many EE estimation equa-
tions [13], participants in validation studies should represent 
a spectrum of ages, with due consideration for stratifica-
tion according to age ranges. The current literature tends to 
validate wearables in the younger adult population, with 35 
studies reporting a sample with an average age in the 20 s. 

Fig. 1   PRISMA flowchart of 
the systematic review process. 
PRISMA Preferred Reporting 
Items for Systematic Reviews 
and Meta-Analyses
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Older adults (> 60 years) are particularly poorly represented. 
Alongside a representative age group, it is important that 
validation protocols include an equal sample across both 
sexes, given the variance in metabolic rate [6, 25], and report 
on body size and composition. Finally, skin tone has previ-
ously been noted as having an effect on the accuracy of heart 
rate measures [17]. Given that many consumer wearables 
use heart rate in their EE estimation algorithm, if the device 
includes photoplethysmography, skin tone should also be 
reported using the Fitzpatrick scale [26].

The average sample size across all the studies in the sys-
tematic review was 34 participants (range 12–100), with 
only nine articles (15%) conducting a sample size calcula-
tion and justification. Despite the lack of sample size calcu-
lations, many studies conducted equivalence or difference 
tests, which are dependent on sample size. Therefore, if the 
objective of the study was to determine a minimum accept-
able level of accuracy, a sample size calculation should be 
conducted based on pilot testing or previously published 
mean and standard deviation of the differences between the 
index and criterion measures [27]. If this is not the primary 
focus, for homogenous samples we recommend a minimum 
of 45 participants [28], although consideration should be 
given to the participant characteristics, and a larger sample 
size will likely be required for more heterogenous groups.

3.2 � Criterion Measure

It is widely regarded that the gold-standard approach 
to measuring TEE is by using DLW [6, 7, 29, 30]. This 
is assessed over a period of several days in a free-living 
context, and average daily TEE can be calculated over a 
specified time period via the collection of urine samples. 
In order to determine AEE, RMR is calculated via indirect 
calorimetry or prediction equations and then subtracted from 
the TEE measured with DLW [31]. However, it is not pos-
sible to measure activity type, intensity or duration within 
the TEE for each time period [32], and this information may 
be relevant for many users and clinicians. Equally, the use of 
DLW is expensive and requires in-depth specialist analytical 
facilities, which places a restriction on the feasibility of its 
deployment in many studies [30, 32]. Therefore, while the 
use of DLW is recommended in free-living protocols, other 
measures such as calorimetry are needed for the calculation 
of AEE in specific activities.

Calorimetry involves the measurement of either thermal 
change (direct calorimetry) or the measurement of gaseous 
exchange (indirect calorimetry), and can take the form of 
whole-room metabolic chambers, ventilated hoods, or a 
facemask/mouthpiece [33–35]. Indirect calorimetry is most 
commonly used to measure EE in the laboratory, as it is 
highly feasible to measure oxygen consumption and cal-
culate energy cost, yet this is not practical in a free-living 

Fig. 2   Six domains and corresponding variables of interest identified as being of importance in the validation of consumer wearable and smart-
phone estimation of EE. EE energy expenditure
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context [6]. The results of a recent systematic review and 
meta-analysis suggest that the accuracy of research-grade 
wearables for estimating EE is not at a satisfactory level 
for these devices to be used in the validation of commer-
cial wearables as a criterion measure [11]. Therefore, based 
on the current available evidence, we recommend that the 
criterion measure for the validation of specific activities 
or exercise protocols be indirect calorimetry, with DLW 
used for free-living studies. All five studies in the system-
atic literature review validating consumer wearables in a 
free-living context utilised the DLW method [10, 36–39], 
while 3 (10%) of the 28 semi-free-living protocols utilised 
a metabolic chamber [10, 37, 40]. The remaining studies 
with a semi-free-living protocol (25) and all 52 laboratory 
protocols selected indirect calorimetry in the form of a port-
able system or metabolic cart. The criterion device should be 
placed according to manufacturer’s instructions and reported 
in the study write-up, alongside laboratory-specific data on 
the quality of the criterion measure where possible (i.e. per-
centage coefficient of variation [reliability]), and any cali-
bration details. In the case of using DLW in free-living pro-
tocols and reporting on AEE, authors should provide a full 
account of assumptions and equations used [6], for example 
whether RMR is calculated via indirect calorimetry or by 
equation. We would recommend that the best-practice for 
measuring RMR in a free-living protocol is with indirect 
calorimetry, rather than estimated using equations; however, 
we recognise this may not always be feasible for researchers, 
and in those cases, the exact equation used should be stated.

3.3 � Index Measure

In order to ensure the ecological validity of a study protocol, 
the placement of the wearable device must be considered, 
especially in studies evaluating multiple devices at the same 
time. All commercial wearables should be evaluated with the 
device placed according to the manufacturer’s instructions. 
Activity monitors are commonly worn on the wrist, although 
in some cases may be attached to the waist of the user [41]. 
Less used placements include the torso [42] and the shoes 
[43]. Fifteen studies identified in the systematic review 
evaluated multiple wrist-worn devices on the same arm in 
the protocol, with up to three devices worn on one arm. It 
is unclear what effect this placement might have on the out-
puts of the device, and, arguably, while still placed on the 
lower forearm, at least one of the three devices is not being 
worn according to the manufacturer’s instructions. There is 
a negative impact to the feasibility of studies if researchers 
are required to only place one device on each wrist during a 
testing protocol, therefore we would recommend that where 
possible, researchers avoid placing multiple devices on the 
same wrist, with a maximum of two wrist-worn devices 
being tested on one arm simultaneously. In addition, when 

using two wrist-worn devices on the same arm, we recom-
mend that there should be a random counterbalanced place-
ment of the devices between participants; however, the order 
of device placement with respect to distance from the wrist 
joint should be clearly reported.

Equally, smartphone applications may not have an explicit 
manufacturer/developer-specified placement. Of the four 
studies in the systematic review that assessed smartphone 
measured EE, one placed the smartphone at the lower back 
[44], one on the belt next to a wearable at the mid-axillary 
line [45], one in a pocket (although the location of the pocket 
was not specified) [46], and the last study used two smart-
phones, one in the hand and one in the right pocket, with a 
comparison made between the two positions [47]. It has been 
reported that in day-to-day life, 60% of females place their 
phone in their bag, while 60% of males carry theirs in their 
pocket [48]. As such, we would consider clothing pockets, 
handbags or carrying in the hand as the most suitable posi-
tions to evaluate smartphone estimation of EE. The phone 
should not be mounted to the body in an unnatural way such 
as to the chest or low back.

As well as reporting the placement protocol in detail, 
the exact model and version of the index device should be 
clearly specified, for both the hardware and software, includ-
ing noting if any firmware updates took place during the 
data capture period. Most studies reported the brand and 
device name (e.g. Fitbit Charge HR); however, with regular 
updates to hardware and software, it is difficult to fully rep-
licate the study without specified version numbers. Further-
more, the device should be reset back to baseline between 
participants to ensure there is no influence on device EE 
algorithms potentially based on previous use. Finally, any 
demographic and anthropometric details inputted into the 
device, and the use of any specific exercise modes, should be 
reported. The use of exercise modes has been highlighted as 
an area for further examination, with researchers and users 
currently unaware of the impact of using different modes on 
the measurement of EE [49, 50].

3.4 � Testing Conditions

Consumer wearables are designed to provide a measure of 
EE in uncontrolled environments such as daily EE, with 
limited user interaction with the device, and during more 
controlled settings where EE is estimated during a specific 
exercise/activity. The results from the systematic review 
show that many researchers are favouring the use of labora-
tory or semi-free-living protocols. Of the 62 studies included 
in the systematic review, 51 (82%) included a laboratory 
protocol, 27 studies (44%) conducted some form of semi-
free-living investigation, and only five studies (8%) exam-
ined free-living conditions.
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Laboratory protocols seek to validate the wearable in 
measuring EE during tasks that are well controlled. The 
accuracy can be examined across varying intensities and 
include a combination of predefined walking, running, and 
cycling activities. The studies identified in the systematic lit-
erature search with laboratory protocols highlighted varying 
levels of accuracy of a wearable in measuring EE depend-
ent on the intensity of the activity. Additionally, in the case 
of walking and running, the accuracy of the index measure 
varied dependent on the level of incline of the activities in a 
number of studies [42, 51–53]. In contrast, semi-free-living 
evaluation incorporates simulated activities of daily living 
and activities emulating sports or exercises that are more 
specific than walking, running or cycling. Within these pro-
tocols, participants are encouraged to complete the tasks as 
they would do during normal daily life, at a self-selected 
pace. The purpose of these type of validation studies is to 
capture (1) specific sports or complex activities, and/or (2) 
a diverse range of activities emulating activities of daily liv-
ing, such as relaxation, housekeeping, or other physically 
active leisure pursuits. We argue that the accurate measure-
ment of TEE and AEE during specific sports or complex 
activities is important because it allows end users to deter-
mine the validity of their device during activities of particu-
lar relevance to them. However, because of the constraints 
of laboratory equipment and the laboratory setting, many 
activities/sports, and particularly activities of daily living, 
cannot be performed in a manner that is comparable to the 
way these activities or exercise modes are performed on a 
daily basis. If this is not possible, we argue that the infor-
mation acquired from the typical semi-free-living study has 
very little validity in determining the precision of EE from 
consumer devices during actual free-living behaviours of 
users. In contrast to our previous recommendations on the 
validation of consumer wearables to measure heart and step 
count [17, 18], we recommend that validation of TEE and 
AEE from wearables should be performed within two testing 
conditions: (1) during specific activities or exercises/sports, 
and (2) in a free-living context.

In order to accurately assess EE during a specific exercise 
or activity, a distinction between steady state and variable 
intensity activities must be made. During steady-state activi-
ties, steady state must be achieved where heart rate remains 
stable during a continuous task and cardiac output is at a 
sufficient level to support oxygen transport in order to meet 
energy cost [54–56], before measurements are included in 
the analysis. There is some debate in the literature about 
when steady state is achieved, but the general consensus 
is that there is a 2- to 5-min period where VO2 and VCO2 
varies by up to 15% from the EE of the performed work, 
depending on the activity and the change in intensity gradi-
ent [55–59]. Therefore, we recommend validation of steady-
state activities be performed across different intensities to 

determine validity at different absolute levels, with research-
ers providing justification of the achievement of steady state. 
As a general rule of thumb, but dependent on the intensity 
gradient and the absolute intensity performed, each of the 
activities/intensities within an exercise/activity-specific 
protocol is recommended to last at least 6 min to facilitate 
stable steady-state measurements. We recommend conduct-
ing evaluation with as wide a range of intensities as feasible 
and a consideration of the relevance of graded activities (e.g. 
an incline ≥ 5% during walking or running tasks). Equally, 
if conducting walking/running assessment on a treadmill, 
we would recommend all testing is conducted with a 1% 
incline to account for the reduced metabolic cost of treadmill 
propulsion [60]. Due consideration should be given to the 
potential need for a recovery period between activity bouts 
when higher-intensity exercises are examined to allow suf-
ficient recovery to approximately RMR. The choice of all 
intensities should take into consideration the characteris-
tics of the sample, with calculated intensities based on the 
participant’s maximal heart rate or VO2max being the most 
preferable over selecting absolute values, or lesser still, 
self-selected intensities. However, while these personalised 
intensities are recommended, there may be cases where it is 
not feasible to calculate personalised fitness levels, and, in 
these instances, conducting and reporting absolute exercise 
intensities such as speed or watts is recommended.

During these activities, consideration of available work-
out modes on devices are needed as the mode selected 
dictates what sensors are enabled on the device in order to 
preserve battery, for example indoor activities disable the 
GPS and cycling does not require step detection, and these 
modifications are likely to impact the validity of the meas-
urements. These user-defined activities for assessment of 
EE tend to relate to the most common workouts, including, 
but not limited to, running, walking, cycling and swimming. 
Attempting to validate devices in other tasks that are not 
defined by the manufacturer, such as reading, vacuuming or 
sweeping, is most appropriately assessed in the validity of 
TEE estimation in the free-living environment. Additionally, 
a further issue that must be addressed is the need to cor-
rect for inaccuracies in the measurement of EE at heavy to 
maximal intensity activity, where the anaerobic component 
will not be captured by indirect calorimetry. Researchers 
conducting high-intensity activities should recognise this, 
adjust for it using an appropriate method such as incorpo-
rating blood lactate measurements [61, 62] or interpolation 
based on exercise intensity [63], and report these methods 
appropriately.

To assess EE estimation of consumer wearables in the 
real-world, free-living protocols should capture a range 
of activities from participants in uncontrolled conditions. 
Given the recommendation for the use of DLW in free-living 
validation, the protocol period should last 7–14 days, and 
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participants should not be constrained in their activities in 
any way [30, 64]. The reporting of such protocols should 
include in detail the instructions given to participants, 
including whether they were asked to use or did use any 
specific exercise modes on the wearables during the period. 
Finally, it is preferable to record and report on the adherence 
of participants to wearing the device as instructed to high-
light any discrepancies between devices due to non-adher-
ence, and report on any missing data. In the case of specific 
activity EE estimation, it is recommended that data must 
be captured with the participant wearing the device for the 
entirety of the protocol, and if there is non-adherence to this 
or there are missing data, then that data capture be discarded. 
Furthermore, for free-living evaluations, any methods used 
to interpolate missing data, such as during charging over-
night, should be reported clearly.

3.5 � Processing

The data processing and reporting that is provided in vali-
dation studies is important but is often overlooked, with 
numerous articles in the systematic review leaving the reader 
left to make assumptions on the processing methods of the 
study. Authors must provide clear detail on how steady-state 
or anaerobic EE (if relevant) was managed in their proto-
col, and how the data collection, including synchronisation, 
was managed to capture the measures of the criterion and 
index device per activity. Given the 2- to 5-min period that is 
required to achieve steady state, we would recommend that 
the average of the last 3 min of the exercise protocols for 
steady-state exercises or activities be used to calculate EE.

There is variance in the reporting of the type of EE being 
measured, with lack of clarity in papers regarding whether 
the measure is TEE or AEE, and in the units used, with 
kilocalories per minute (kcals/min), kilocalories per activ-
ity (kcals/activity) and metabolic equivalents (METs) all 
being described in the literature. Recent literature reports 
MET minutes to be the unit of choice for EE validation [15], 
yet while the time-phased nature of these units are desirable 
for comparability, we do not feel that the consumer mar-
ket is currently able to understand MET minutes. Further-
more, most consumer devices report EE in kcals. As such 
we recommend that the preferred metric should be kcals per 
unit of time (minute/day). Furthermore, researchers should 
specify which equation is used to determine EE from gas-
eous consumption, report all related assumptions, and are 
clear in reporting whether the study assessed TEE or AEE. 
Equally with regard to the index measure, as much infor-
mation as possible should be provided on the inputs to the 
EE calculation of the device. Reporting that a proprietary 
algorithm was used should be deemed as the minimum cri-
teria, with attempts made to note any of the inputs to that 
specific EE algorithm, including heart rate, accelerometer 

data, user demographics and subjective reporting such as 
rate of perceived exertion. This is somewhat challenging in 
many cases, given the ‘black-box’ nature of these propri-
etary algorithms that manufacturers do not wish to divulge. 
Additionally, where possible, researchers are encouraged to 
follow open science principles in making raw data available 
using appropriate data repositories to facilitate combined 
analyses in the future.

Finally, the management of synchronisation between 
devices is another potential source of error. The approach 
to this will vary depending on the study design and devices 
used. As such, researchers must be cognisant of data syn-
chronisation when designing the study, and the synchro-
nisation process undertaken should be described in as 
much detail as possible in the report to allow for adequate 
replication.

3.6 � Statistical Analysis

When assessing the validity of an index device to a criterion 
measure, the levels of accuracy of the index device should 
be calculated with agreement between the two devices [65, 
66]. The Bland–Altman approach to limits of agreement has 
become widely used in the current medical literature [67], 
including 38 studies (61%) in the systematic review con-
ducting this approach in the analysis. However, there was 
large variance in the statistical approaches used, with many 
studies utilising measurements of correlation (e.g. Pear-
son, Spearman) [n = 38, 61%], comparison of means (e.g. 
t test) [n = 22, 36%], and measures of relative reliability 
(e.g. intraclass correlation coefficient) [n = 13, 21%]. These 
approaches have been highlighted as inappropriate when 
assessing agreement between a measurement tool and the 
reference standard in medical instrument validation studies 
[65].

To comprehensively assess the validity of the index 
device in estimating EE, we recommend the use of 
Bland–Altman limits of agreement analysis in combina-
tion with mean absolute percentage error (MAPE). The 
Bland–Altman method provides a measure of the agree-
ment between the criterion and index device; researchers 
should state if the assumptions for valid limits of agreement 
analysis were fulfilled [67], and, in addition, should incor-
porate least-products regression to assess for proportional 
or fixed bias, as described by Ludbrook [66]. The use of 
MAPE allows for comparison between devices and testing 
conditions and is the average of the absolute error of a tool. 
It is commonly used in describing the error of a predic-
tion [68], and 29 studies (47%) included in our systematic 
review used this approach in their analysis. The use of both 
methods and related visualisations provides a comprehen-
sive assessment of the group- and individual-level validity 
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of the consumer device in estimating EE and will illustrate 
any bias occurring.

To allow readers to assess the validity of a device in 
estimating EE, it is important for the contextual use of the 
device to be considered. For example, a much greater level 
of accuracy would be required when applying the measure 
in a clinical trial setting compared with EE monitoring in 
a general wellness application. Regardless of the context, 
the level of error, limits of agreement and 95% confidence 
intervals should be reported clearly according to the vali-
dation conditions, with an avoidance of binary hypothesis 
testing, particularly when a sample size calculation has not 
been conducted.

3.7 � Recommended Validation Protocol

Based on the current state of knowledge and the evidence 
described within this statement, INTERLIVE recommends 
that manufacturers of consumer wearables and smartphones 
that provide an estimate of EE utilise standardised validation 
methodologies and report this in a transparent and replica-
ble manner. Studies should be designed to validate devices 
across both specific sports/activities (focusing on the pre-
defined exercise modes offered by the device, if any) and 
in uncontrolled environments. This evaluation should be 
conducted using the appropriate criterion measure with a 
relevant sample, in conditions that best reflect the expected 
use of the device.

These recommendations aim to ensure that many of the 
sources of bias identified during the review of the literature 
are addressed. Table 1 presents a detailed best-practice vali-
dation protocol and reporting requirements, while Table 2 
presents a checklist of items to be considered during valida-
tion protocol planning.

4 � Discussion and Future Directions

This INTERLIVE network expert statement aims to provide 
clear and actionable recommendations and guidelines for the 
comprehensive and replicable evaluation of the validity of 
consumer wearables in estimating EE. In consultation with 
the evidence base, wider literature and expert knowledge, a 
detailed validation protocol is described covering domains 
of the target population, criterion measure, index measure, 
validation conditions (exercise/activity-specific or free-liv-
ing), processing and statistical analysis.

The lack of both a regulatory standard for the validation 
process of consumer wearables and an acceptable context-
specific level of accuracy facilitates the heterogeneity of 
methodologies used in the validation of EE estimation seen 
in this systematic literature review. This can lead to all 
stakeholders experiencing difficulties in comparing various 

devices and ultimately deciding which might be more suit-
able or appropriate for a specified purpose. A standardised 
approach to validation would benefit all stakeholders and 
ensure a transparent and objective method of validation, 
which will ultimately drive the sector towards more accurate, 
and therefore more useful, devices. This would benefit (1) 
consumers, facilitating them to be able to make an informed 
choice on the most suitable device or application; (2) health-
care providers, by being better placed to adopt such devices/
applications as part of their digital health strategy; and (3) 
manufacturers and developers, who can clearly illustrate the 
value of their products.

This transparency of reporting opens an interesting 
debate, as the ‘black-box’ nature of EE estimation algo-
rithms means that manufacturers do not wish to divulge the 
proprietary information that constitutes these models. How-
ever, in order to make sufficient comparisons and maximise 
the accuracy of the device, we mirror calls in the literature 
for companies to be more open about the algorithms that 
they employ [12]. While respecting the proprietary nature 
of these devices, we recommend that as a minimum, manu-
facturers and researchers should declare the key components 
that act as inputs for the EE estimation algorithm. For exam-
ple, despite a device being equipped with an accelerometer, 
GPS, and photoplethysmography sensor, this does not auto-
matically mean that all of these sensors are utilised as inputs 
into the EE model, and additional metrics such as demo-
graphics and anthropometrics that are also included should 
be stated. Depending on the inputs declared, we would draw 
readers’ attention and consideration to the previous INTER-
LIVE statements for the validation of heart rate [17] or step 
counting [18] in consumer wearables to determine whether 
these inputs into the EE algorithm are valid.

This systematic review highlighted a lack of studies 
validating EE from wearable devices during anaerobic 
conditions or during very high intensities (above lactate 
threshold). This leaves a gap in current validation studies as 
strength training, conditioning exercises and high-intensity 
interval training (HIIT) are growing in popularity [69]. Indi-
rect calorimetry has clear limitations when used to deter-
mine EE during resistance training [70], with anaerobic 
and recovering EE reported to be significantly larger than 
the aerobic component of EE during a single set of train-
ing to fatigue [61]. As such, this may require the use of 
additional criterion measures such as blood lactate measure-
ment, together with modification to the indirect calorimetry 
timing, to capture excess post-exercise oxygen consumption 
[61]. Further research to identify an acceptable standard of 
measurement of anaerobic EE and variable intensity, non-
steady-state activity is required in order to make suitable 
recommendations for optimal protocols for assessing the 
accuracy of wearables in estimating EE in those conditions 
[71].
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Determining Validity of Wearables for Estimation of Energy Expenditure

It is important not to understate the challenges in imple-
menting EE validation studies. The notable lack of free-
living validation, which is an important step for many con-
sumer users, is likely due to issues in feasibility, given the 
longitudinal nature of these protocols, the resources required 
for DLW, and the additional need to measure RMR. None-
theless, there is currently a lack of evidence regarding the 

validity of consumer wearables in the measurement of AEE 
in daily life. One research group that has conducted vali-
dation in the free-living context showed close correlation 
between consumer devices and DLW for TEE; however, 
when assessing the estimation of AEE across a 15-day 
period, a far greater number of devices demonstrated sig-
nificant differences to the criterion measure [10, 37]. This 

Table 2   Checklist of items to be considered during the validation protocol of wearable and smartphones to estimate energy expenditure

DLW doubly labelled water, HR heart rate, EE energy expenditure, AEE activity energy expenditure, RMR resting metabolic rate, VO2max maxi-
mal oxygen consumption, MAPE mean absolute percentage error

Target population assessment
Age
 Children (< 12 years)
 Adolescents (12–18 years)
 Adults (18–65 years)
 Older adults (> 65 years)
 Sex (equal sample of males and females)

Sample size
 Calculated based on previously published or pilot study data
 OR
 If previous data are not available, at least 45 participants
Criterion measure assessment
Exercise/activity specific testing
 Direct or indirect calorimetry
Free-living testing
 DLW
Placement of criterion according to the manufacturer’s instructions (applies only to indirect calorimetry)
Index device assessment
Placement:
Wearable activity monitors placed according to the manufacturer’s instructions
Smartphones either handheld or placed in places typically used in everyday living (i.e. pocket, handbags, belt phone holder)
Device setup:
All demographic details required by the device are inputted
Specific exercise mode chosen if applicable
Exercise/activity specific EE assessment
Walking, running, and/or cycling with three different intensities and one inclination > 5%
Intensity based on either participant maximal HR or VO2max, absolute value, or participant self-selected pace
At least 6-min duration for each activity bout with ample recovery time allotted in-between activity bouts performed at higher intensities
Free-living EE assessment
Participant wears index device for 7–14 days while simultaneously undergoing a DLW protocol
Processing
Criterion measure processing
 Exercise/activity EE: The average of the last 3 min of the exercise used to calculate steady-state EE
 Free-living EE: RMR determined using either indirect or direct calorimetry or validated prediction equations

Index measure processing
 Minute-by-minute data for calculating AEE from the device used if available
 If minute-by-minute data are not available, pre-EE (EE at the start of steady state for each activity) is subtracted from post-EE (EE post activ-

ity) and divided by the number of minutes between pre- to post-EE to get kilocalories per minute
Index and criterion synchronisation
Statistical analysis
Bland–Altman with limits of agreement per activity/category
Least products regression of the differences against the means
MAPE
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would suggest that the accuracy for consumer devices to 
measure TEE is driven by the standard RMR formulas 
incorporating user characteristics such as age, sex, height 
and weight, rather than the sensors on board the devices. 
Therefore, further validation of the measurement of AEE in 
free-living conditions is warranted to truly understand the 
value such devices can offer in EE estimation.

Additionally, these protocol recommendations do not 
include evaluation of reliability for activity-specific EE esti-
mation, yet reliability is a prerequisite for validity. There-
fore, researchers may want to consider the various aspects 
of reliability in their protocols depending on the intended 
use-case. This may include repeating a particular testing 
condition/intensity during the same session when the par-
ticipant has recovered to RMR, or to repeat the protocol on 
an alternate day. Equally, many index device manufacturers 
do not provide exercise/activity modes for sport-specific 
activity, including soccer and basketball. This is potentially 
due to poor performance of these devices in estimating EE 
during such activities, but presents an interesting opportu-
nity for manufacturers to develop exercise modes for popular 
recreational sports, which would make them more appealing 
to consumers. For these modes to be useful, their validation 
needs to mimic a range of actual sports-specific behaviours, 
and not only running with or kicking a ball.

5 � Conclusions

This INTERLIVE expert statement provides an evidence-
informed best-practice protocol for the validation of con-
sumer wearables in estimating EE. The systematic literature 
review conducted as part of the formation of this statement 
highlighted a heterogeneity between methodologies in key 
domains, particularly in the target populations, data pro-
cessing and statistical approaches, giving rise to validation 
bias. Additionally, the lack of free-living validation leads to 
limited abilities of users to understand the accuracy of the 
device in its intended use case. The INTERLIVE network 
recommends that the proposed validation protocol is used 
when considering the validation of any consumer wearable 
or smartphone measure of EE to provide a robust valida-
tion of the device. Adherence to this validation standard 
will help ensure methodological and reporting consistency, 
facilitating comparisons between consumer devices and 
the amalgamation of standardised open datasets. This will 
ensure that manufacturers, consumers, healthcare providers 
and researchers can use this technology safely and to its full 
potential.
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