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Abstract: The judgments of decision-makers are frequently the best way to process the information
on complex alternatives. However, the performances of the alternatives are often not observable in
their entirety, which prevents researchers from conducting controlled empirical studies. This paper
justifies a functional representation that, due to its good predictive results, has been widely used
ad hoc in studies in different branches of knowledge; it formalizes aspects of the human mental
structure that influence the ability of people to decide and the intentional bounded rationality, and
it subsequently analyzes how the reliability of decision-makers is affected by the difficulty of the
problem and the expertise and beliefs of the decision-maker. The main research objective of this
paper is to derive explicitly a general functional form that represents the behavior of a decision-maker
linked to their way of thinking. This functional form allows a laboratory to be created to study a priori
the performance of human decisions, i.e., the probability of choosing each of the alternatives, once the
returns of the alternatives, the level of expertise, and the initial beliefs of the decision-maker are known
exogenously. This laboratory will allow (1) the evaluation of decision support techniques; (2) the
creation of agent-based models that anticipate group performances due to individual interactions;
and (3) the development of other investigations based on statistical simulations.

Keywords: intended bounded rationality; beliefs; logic; maximum entropy

1. Introduction

People face high-uncertainty decisions, where relationships between variables are
blurred and cannot be formalized. Extraordinary complexity makes decisions unique,
and the only known performances are those in the course of action, which prevents the
evaluation of the decision-making process [1]. To address this issue in an epistemologi-
cal framework in which there is an optimal decision, this work proposes a probabilistic
modeling of the behavior of the decision-maker to allow evaluation of the way decisions
are made. A fully accepted hypothesis in decision theory is that individual behavior is
rationally intentional but bounded [2]. This means that cognitive boundaries of the brain
lead individuals to make mistakes in judgment [3]. Aware of these limitations, scientists
design systems that aim to minimize the consequences of mistakes for organizations [4].

Although psychology is deeply concerned with the mechanisms that govern human
cognition, there is a certain gap with respect to studies focused on decision-making [5–7].
It seems obvious that a theoretical analysis of decision-making should include a solid basis
that can link individual human behavior with the decision-making mechanisms. This basis
must meet three criteria: (1) it must include the way of thinking; (2) it must include the
possibility that individuals may be wrong, i.e., make errors; and (3) it must be efficient,
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i.e., specific aspects of human behavior that are not necessary to understand the decision-
making process should not be modeled. Many authors have shown that the traditional
rationality assumption does not produce satisfactory scientific predictability [8–11].

Different lines of research [12–16] have justified empirically the use of probabilistic
functional forms of ad hoc choice, similar to the one presented here. The difference in the
research reported here lies in how the “intentional bounded rationality” of individuals is
interpreted. In our approach, the errors depend on personal aspects and difficulties, i.e.,
they are not purely random [17]. This allows innovative theoretical relationships to be
established between the individual decision-maker’s characteristics and the performance
of the decision.

Before choosing between discrete alternatives, the decision-makers have a starting
point, prior knowledge/beliefs about the expected performance of alternatives, and the
possibility of processing signals (information) to improve their prediction [18]. However,
processing signals until certainty is achieved about the performance of each alternative is
costly, due to inherent human limitations, which means that in practice some uncertainty
persists about the alternatives’ performances when a decision-maker chooses between them.
This internal uncertainty implies that the alternative ultimately chosen by a decision-maker
may not be the one that gives the highest performance, referred to above as an error.

Individuals base their choices on logical deductions that process part of the available
information and/or on previous beliefs [19]. Since this process is internal and invisible, the
characterization of a decision-maker can be made using his level of error relativized with
respect to an exogenous level of difficulty [20]. The probability with which a decision-maker
chooses an alternative has been explored by modeling an internal process of maximization
of the expected performance with constraints regarding the cost of processing the informa-
tion. The result is that decision-makers improve their decision through knowledge when
they expect the performance of reducing their error to be greater than the cost involved.
The main difference of this approach from the classical rational choice model is that the
latter considers the level of information as an exogenous variable, leading to a unique
relationship between information and the response of the decision-maker: knowing the
level of information in the rational system, the response is unique, and any other result is
classified as non-rational. The research reported here aims to model the internal cognitive
process of the decision-maker; it shows that the representation can be obtained with a
logistic probability model, where the choice depends on the signals that the individual
decides to process at all times. Specifically, the main research contributions of this paper are:

1. A general functional form, which we call the function of intentional bounded ra-
tionality, is proposed and Bayesian-justified to link it with the procedures of the
human mind.

2. The decision depends exogenously on the difference in the performance of the alter-
natives, as a representation of the complexity of the decision.

3. The particular reliability of a decision-maker depends on two idiosyncratic parameters
that represent their beliefs and expertise.

4. We describe a framework where the information is complete, and the uncertainty
in the choice is the product of the limited capacity for individual judgment and the
consequence of the internal cost of processing the information.

In summary, the objective of this work is to establish a general functional form that
represents the intentional bounded rationality, where the behavior of a decision-maker
is characterized by the probability of success or failure in each decision, rather than to
predict the behavior of a specific decision-maker. Thus, a formal model to relate the
parameters of the intentional bounded rationality with the final result in the decisions is
hypothesized. Since the decision-making process is rarely observed directly by researchers,
we propose to study it theoretically. The correct modeling of the individual human decision,
based on the level of expertise and thinking focused on beliefs or logical deductions,
allows a laboratory to be built to: (1) evaluate the performance of different group decision
mechanisms: authority, majorities, consensus, hierarchy, polyarchy, disagreement, and
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others; (2) to evaluate decision support techniques; and (3) to evaluate interaction in agent-
based models. In short, this paper focuses on determining a general functional form that
represents well the cognitive aspects of human decisions.

2. Intentional Bounded Rationality

The basic elements of bounded rationality have been confirmed by empirical stud-
ies and laboratory cognitive experiments. Unlike the completely rational choice model,
Simon’s model is consistent with the reality of human cognitive abilities. The approach of
Newell, Shaw, and Simon [21] reflects the elements that affect human decisions psychologi-
cally. Their findings on how people reason is part of modern cognitive psychology. The
scientific principles of behaviorism are shown as a clearly inductive line, with strengths
in observation and quantification but weaknesses in theory. Bounded rationality presents
four basic principles [22]:

1. Principle of expected rationality. This principle refers to the processing of information
as an extensive system that includes human limitations in the ability to compute, and
other aspects such as attention, emotion, habit, and memory. Decision-makers are
oriented toward objectives, but often do not achieve them because their cognitive
architectures fail to unravel the complexity of the environments they face [2]: the
means are not appropriate to achieve the objectives and the result is that decision-
makers are wrong. In short, it takes a great deal of effort for decision-makers to
deal with complex problems, and sometimes their behavior is guided by emotional
shortcuts (beliefs) that avoid having to process all the information. Simon referred to
these elements as irrational and non-rational elements that limit the area of rationality.

2. Principle of adaptation. The processing of information (processed signals) allows
inferences to be formed from data and prevents simple heuristics and stereotypical
inferences (beliefs) from taking command of the decision. With enough time, human
thought adapts to problems, i.e., human thought is adaptative and basically rational.
In other words, there is a learning process that with time approaches the optimal
solution. From this principle arises the inference that, in general, the longer the time
available to make a decision, the more likely it is that the optimal decision will be
made and the human cognitive limitations fade [23].

3. Principle of uncertainty. Studies of human choice in the real world or in laboratory
situations repeatedly show that people have great difficulties in working with prob-
abilities, assessing risk, and making inferences when there is uncertainty [24]. If
understanding one of the causal factors involved in a problem is confusing or ambigu-
ous, then uncertainty impacts the entire thought process by reducing expectations
of improving processed signals and putting decision-makers, at least in part, in the
hands of their beliefs.

4. Principle of compensation. There is a trade-off between improving the decision, due
to processing a greater number of signals, and the cost involved. The first behavioral
tool to understand compensation was Simon’s notion of satisfaction. His idea is that a
decision-maker chooses alternatives that are “good enough” given cognitive limita-
tions. Lupia, McCubbins, and Popkin [25] claim that limited rationality is consistent
with maximization behavior since the term satisfy relates to maximization subject to
information costs. Intentional rationality itself entails a purported maximization in
a world of uncertainty resulting from human limitations. Satisfaction describes the
cognitive difficulties that decision-makers have with compensation, and therefore
describes an expectation of compensation. As a result, compensation targets are
very difficult. The answer, Simon argued, was for people to set aspiration levels for
the goals they wish to achieve. If a choice is good enough for all objectives, then it
is chosen.

From the above four principles, it can be said that decision-makers must decide how
much information they are willing to process (signals to be processed) to improve the
outcome of beliefs or intuitions, knowing that this action has an economic cost in terms of
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effort and time. In this process, both additional performances and additional costs present
internal uncertainty, which causes decision-makers to naturally assume a certain level
of error in their decisions. The cost of compensation (latent cost of processing a higher
level of signals) depends on the ability of the decision-maker, which in this study is called
expertise. Characterizing bounded rationality means that the relationship between the
amounts relating to success and error must be established, given the expertise level of
the decision-maker.

Another element to keep in mind is that problems are not equally complex. The
most difficult choices are those in which the performances to be compared have the least
difference [17,20,26] since their comparison requires greater precision and certainly more in-
formation. The more information that is required for a choice, the closer it is to hypothetical
behavioral rationality in the sense that there is a lower error ratio. The quality of decisions
is measured based on the likelihood of judging correctly or wrongly. This approach is in
line with the non-completeness of the decision process, i.e., a decision-maker does not
always choose one option against another [27], but he does it with a certain probability,
making mistakes of perception that can lead him to make further mistakes.

3. Modeling of Intentional Bounded Rationality

The behavior of the decision-maker where the performances of alternatives are la-
tent is modeled from a Bayesian probability perspective. Within this framework, when
quantifying an uncertain phenomenon, the decision-maker begins with a model that di-
rectly provides a calculus of the probability of the phenomenon, which a priori reflects
individual beliefs and synthesizes the emotional and intuitive part of the decision process.
Subsequently, the decision-maker decides whether to process more information through
repeated signals (logical part) and evaluates how the model behaves when compared to
the actual occurrences of the phenomenon. As the number of signals processed increases,
the measure of the suitability of the model improves. This approach is similar to the cross-
entropy procedure, which is one of the best numerical optimization methods for latent
variables. Goodfellow, Bengio, and Courville [28] argue that cross-entropy provides very
large gradient values, which are especially valuable for the gradient descent method, which
turns out to be precisely the most successful optimization method available currently. The
cross-entropy far exceeds other probabilistic forecasts simply because it places much more
emphasis on rare events.

From his beliefs, the decision-maker can improve his informational position by con-
sidering its cost. In order to increase performance, better anticipate the natural state, and
choose the alternative more likely to be the best, a higher level of signals processing is
required by the decision-maker, which in turn generates a cost. An observer does not
know what signals a decision-maker chooses to process, which justifies possible changes
in a decision-maker’s choice in his intentional but bounded rationality. The intentional
bounded rationality will be characterized by a trade-off between the cost of improving
information and the expectation of profit; thus, given the cost of not making mistakes, an
erroneous decision can be consciously assumed to be an acceptable decision. This approach
does not establish the system by which a decision-maker learns, but only characterizes the
level of information he decides to process and therefore his probability of success.

Let us assume that a decision-maker with intentional bounded rationality must choose
from a finite number of are mutually exclusive alternatives (n), which represent a compre-
hensive set (A) since it includes all possible alternatives at one time. Let x be a continuous
random variable, with probability distribution f (x), representing the set of all natural
states. The latent performance of each alternative regarding the natural state is denoted
a1(x), . . . , an(x). Thus, ai(X) is the latent performance of the alternative i given the state of
nature X. Therefore, if y and ŷ are two continuous random variables, where y is the result
of processing a set of partial signals of ŷ, and ŷ is the result of processing the signals that
predict each state of nature (x) accurately, its distributions of probability will be g(y) and
f (ŷ), respectively, where f (ŷ) = f (x).
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At the starting point of the decision process, the decision-maker has a set of a priori
information (beliefs), and therefore it is possible to define a set of signals obtained by the
decision-maker, y0, along with an “a priori” probability distribution of those signals, g(y0),
that gives each alternative Ai a probability of being chosen pi

0. In other words, it is possible
to discretize the probability distribution of the processed signals, g(y0), and the a priori
probability of choosing the alternative Ai will be pi

0.
For each set of signals processed, the decision-maker tries to maximize their perfor-

mance. Therefore, the processed signals are discretized and grouped into convex subsets,
with subset yi containing those signals whose consequence is that the decision-maker
chooses the alternative Ai [29,30]. Since y can give perfect information on x if information
ŷ is processed in its entirety, then the subset ŷi predicts all natural states xi for which ai

(
xi)

is maximum, i.e., ai
(

xi) = max
j

(
aj
(
xi)). It can be said that the subsets of signals perfectly

anticipate the subsets of the states of nature in which each alternative is a maximum. In
these cases, the conditional probability of the subsets is equal to one, p( xi

∣∣ŷi ) = 1, which
means that p(xi) = p(ŷi). If all alternatives are eligible, then there will be as many subsets
of signals as there are alternatives (n).

As mentioned above, the individual decides how much information to process, at-
tending to the cost (time, effort, money) of this action. When the decision-maker chooses
not to process all the information, he will have a set of partial signals (not fully processed),
and in this case y will not provide complete information about x. The subsets xi and yi

will not match, because the information is not perfect, and therefore p
(

xi
∣∣yi) 6= 1. Thus,

based on yi, mistakes in the prediction of the subset xi of the natural state can be made by
the decision-maker: Ai can be chosen when its performance is not maximum or another
alternative to the maximum performance alternative Ai can be chosen.

Shannon’s entropy is used as a measure of the reduction in uncertainty [31]. The alter-
native Ai whose latent performance is ai(x) has a probability of being chosen p(Ai) = p

(
yi)

(once the information y is processed, the probability of choosing the alternative Ai matches
the probability of the subset of signals yi), while the probability a priori is pi

0 and the initial

entropy is –E
[
log pj

0

]
= −∑n

j=1 pj
0lnpj

0 (note that the a priori probability entropy increases
as the number of alternatives grows).

The decision-maker may decide to process an amount of information yi, which results
in the entropy variation:

∆H
(

pi
0, p
(

yi
))

= −
n

∑
j=1

pj
0lnpj

0 +
∫ ( n

∑
j=1

p
(

yj
∣∣∣x)lnp

(
yj
∣∣∣x)) f (x)dx

where p
(
yi) = ∫ p

(
yi
∣∣x) f (x)dx.

The individual accepts a cost (effort) to improve the level of information (deliberate)
and modify the level of entropy. It is to be expected that the longer the deliberation, the
more likely it is that a better alternative will be chosen, due to the reduction of entropy.
The individual’s problem becomes that of deciding the amount of information p

(
yi
∣∣x) to

be processed to optimize his decision. Thus, the decision-maker chooses the probability
p
(
yi
∣∣x) that maximizes the performance considering the cost of the entropy variation

Maxp(yi |x)

n

∑
j=1

∫
aj(x)p

(
yj
∣∣∣x) f (x)dx− L

[
−

n

∑
j=1

pj
0lnpj

0 +
∫ ( n

∑
j=1

p
(

yj
∣∣∣x)lnp

(
yj
∣∣∣x)) f (x)dx

]
subject to the imposition to choose one of the alternatives

n

∑
j=1

p
(

yj
∣∣∣x) = 1.

The Lagrangian with respect to p
(
yi
∣∣x) is
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ϕ =
n

∑
j=1

∫
ai(x)p

(
yj
∣∣∣x) f (x)dx− L

− n

∑
j=1

pj
0lnpj

0 +
∫  n

∑
j=1

p
(

yj
∣∣∣x)lnp

(
yj
∣∣∣x)
 f (x)dx

− ∫ δ(x)

 n

∑
j=1

p
(

yj
∣∣∣x)− 1

 f (x)dx

where L is the unit variation entropy cost and δ(x) is the Lagrange multiplier. Thus,

i = 1, . . . , n :
∫

ai(x) f (x)dx−
∫

δ(x) f (x)dx + L
(

ln
(

pi
0

)
+ 1− lnp

(
yj
∣∣∣x)− 1

)
= 0

Denoting ai(x) =
∫

ai(x) f (x)dx and δ(x) =
∫

δ(x) f (x)dx, we obtain

p
(

yi
∣∣∣x) = pi

0e
ai(x)−δ(x)

L (1)

Since ∑n
j=1 p

(
yj
∣∣x) = 1, it is ∑n

j=1 pj
0e

aj(x)
L = e

δ(x)
L , which when plugged into (1) yields

p
(

yi
∣∣∣x) =

pi
0e

ai(x)
L

∑n
j=1 pj

0e
aj(x)

L

=
pi

0eβai(x)

∑n
j=1 pj

0eβaj(x)
(2)

The parameter L represents the cost of processing more information; thus, β = 1
L

represents the decision-maker’s ability to improve their chance of success logically, which
supports its being referred to herein as the expertise of the decision-maker. Hence, beliefs
(p0

i ) provide an improvement in performance in terms of cost and speed, at the expense
of accuracy. The obtained functional form (2) allows a laboratory to be built to obtain
the probability of choosing each alternative by knowing the latent performances of the
alternatives, the alternatives’ a priori probabilities, and the expertise of the decision-maker.

3.1. Functional Form Interpretation

Kahneman [32] postulates two main processes that characterize thought: the rapid
decision-making system that stems from intuition based on emotions, vivid images, as-
sociative memory, and consolidated knowledge as beliefs; and the slow logical system
that intervenes when beliefs are insufficient. Logical intervention occurs when an event
contradicting the world model based on beliefs is detected. While the rapid system employs
a selection of actions on a stimulus within one or two cognitive cycles, the slow system
requires more cognitive cycles in its deliberative decision-making [33,34].

In the above, this has been modeled as an individual internal process of maximum
entropy, i.e., a procedure that generates probability distributions in a systematic and
objective way. This procedure becomes completely natural when probability is considered
as an extension of logic that allows reasoning in incomplete information situations [35].
Functional form Equation (2), provided by this procedure, represents the probability of
choosing each alternative, and it clearly distinguishes the two thought processes indicated
by Kahneman: (i) the a priori probabilities (pi

0) indicate the attraction of the decision-
maker to each alternative based on his intuition and beliefs; and (ii) the exponential latent
performance of each alternative naturally attracts the decision-maker to the alternative with
greater value. However, this second part is also dependent on the cost (L) of increasing
certainty regarding the performance. Thus, functional form Equation (2) states that both
“beliefs” and “cost of improvement” are the specific characteristics of a decision-maker
that will determine their level of success/error. Moreover, it can be deduced that logical
information processing follows a logistical distribution, the average of which is the relative
performance of the alternative to be compared, and whose typical deviation is the inverse
of the decision-maker’s expertise (β).
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3.1.1. Role of Beliefs

Decision-makers’ beliefs are assumed to be true relationships. On the one hand, belief-
based mechanisms establish simple and fast decision rules that the human mind uses
to choose from the available alternatives at any given time [36]. On the other hand, the
quality of the decision (coincidence between belief and reality) determines the level of
success/error.

The lower the expertise of the decision-maker, the higher the cost of processing
information and the more functional form Equation (2) will depend on beliefs-based prior
probabilities. In the limit case, β→ 0 ( L→ ∞ ), it is eβai(x) → 1, which results in the limit
value of functional form Equation (2) shown below:

p
(

yi
∣∣∣x) =

pi
0

∑n
j=1 pj

0

= pi
0 (3)

Thus, if it is assumed that, at the starting point of the decision process, the decision-
maker does not have beliefs (that is, he knows nothing of the problem a priori, not even
the distribution of latent performances of alternatives), then it is possible to define a set of
signals obtained by the decision-maker (y0) along with an “a priori” probability distribution
of those signals (g(y0)) that gives all alternatives the same probability of being chosen
(pi

0 = 1/n for all i). However, the opposite assumption at the starting point of the decision
process means that the decision-maker’s beliefs allow him to be totally sure about which
alternative is the best, i.e., his beliefs-based prior probabilities will verify pi

0 = 1 (for one i)
while pj

0 = 0 (for j 6= i).

3.1.2. Role of Logic

Human cognition consists of a continuous and overlapping iteration of cognitive
cycles, each of which is a cognitive atom, from which higher-order processes are built [34].
The assumption that the decision-maker has no beliefs implies that the choice of each
alternative will depend exclusively on the logical part, since in this case pi

0 = 1/n for all i,
and the functional form Equation (2) becomes:

p
(

yi
∣∣∣x) =

1
n eβai(x)

1
n ∑n

j=1 eβaj(x)
=

eβai(x)

∑n
j=1 eβaj(x)

(4)

The two main elements in Equation (4) are: (i) the difficulty of the problem as repre-
sented by the latent performance of each alternative compared to the others; and (ii) the cost
of processing the information or expertise. The closer the performances of the alternatives
are, the more difficult is to choose correctly, and at the same time, this case also disincentives
deliberation. In any case, the above Equation (4) shows how the decision-maker is not
entirely in darkness: the decision-maker is attracted to the alternative with the best perfor-
mance, so that the probability of choosing the best alternative is always greater than that of
choosing the other alternatives. Thus, Equation (4) allows mechanisms of confrontation
to be established, e.g., the exchange of ideas in a group decision, that improve individual
performance in approaching the “best” option.

3.2. Some Empirical Evidence Regarding a Priori Beliefs and Deliberation

Tetlock [37] presents an interesting study on how establishing accountability mech-
anisms (pressures to justify a person’s own a priori beliefs compared to others’) leads
individuals to process more information, which in turn reduces the “undue” influence of
a priori beliefs. Another outstanding study on the balance between a priori beliefs and
deliberation is that of Tetlock and Gardner [38], based on an impressive corpus of empirical
evidence collected over years of research (more than 25,000 forecasters who made more
than one million predictions on diverse topics), where the authors showed that people
with better decision-making capacity are those whose “way of thinking” allows them to
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have an open mind (free from a priori beliefs), paying special attention to the evidence and
related information (deliberation). This work emphasizes that this way of facing decisions
provides better results than analysts with privileged information, with degrees of precision
60% higher than in the average population.

4. Ad Hoc Functional Form

Empirical data repeatedly suggest that decision-makers do not necessarily make the
same choice when a decision is repeated. Different disciplines have studied how the
decision-maker processes information, trying to anticipate their choice [14–16,27,39], and
different ad hoc algebraic forms have been sought to adapt to the behaviors recorded by
the data but leaving unresolved the relationship between the algebraic structure and the
management of stimuli that occur after the choice.

The main lines of research that have used a functional form similar to that obtained in
Equation (2) are summarized in Table 1, with further details as follows:

(1) Luce was a pioneer in considering human decisions from a probabilistic point of
view [27]. He proposed an ad hoc algebraic structure whose results were in close
agreement with experimental practice and with the way most people structure explicit
choice situations [13] such as when deciding on a mode of travel (for example, car,
bus, or plane), or a patient’s choice between alternative therapies (for example, doing
nothing, surgery, radiation, or chemotherapy).

(2) Luce’s probabilistic approach allowed the development of an extensive learning litera-
ture that focused on studying which elements increased the probability of choosing the
best option. Erev and Roth [40] used a probabilistic functional form of choice, which
was based on Luce’s proposal, to calibrate different learning algorithms with real
experiments. The argument for using this functional form is that it satisfies the effect
law and the power law of practice, which ensure that pure strategies that have been
played successfully tend to be played over time more frequently than those that have
had less success. Camerer and Hua Ho [12] calibrated the experience-weighted attrac-
tion learning model (EWA) using experimental data. They interpreted the functional
form of probability as a way of evaluating the attractiveness of each strategy.

(3) The psychological approach ([14–16] among others) was based on choosing an ad
hoc functional form that predicts human behavior well, focusing on the aspects
that characterize the choices in terms of psychophysical (decreased sensitivity to
probabilities and results), psychological (risk aversion and loss aversion), and simple
principles of information processing.

(4) Finally, the discrete choice models of McFadden [41] and Train [42] showed that any
random utility model can be approximated with any level of precision with a mixed
logit model. This functional form approach is the consequence of trying to obtain the
parameters associated with the causes that make individuals choose one alternative
over another. These models try to evaluate the utility that each individual gives to
each alternative based on his choices; in short, they try to obtain the performances
assigned subjectively to each alternative. These models do not recognize that there
are errors in the choice, but that there are simply different tastes. The errors that the
behaviors of the individuals provide are assigned to the fact that the observer is not
able to perceive all the elements that affect the choice of an alternative. However, these
models have provided a large number of empirical studies that show good empirical
results using this functional form.

Our research presented herein does not consider how the decision-maker treats the
signals to create an ordering of alternatives (as the theory of decision behavior does), but
rather it tries to determine the reliability of the decision-maker. In our approach, the
performances of the alternatives are latent, and the decision-maker tries to determine them
(intentionality) but due to their limitations (limited rationality), he cannot decipher them in
their entirety. For us, this process comes naturally to the decision-maker, who tries to choose
the best alternative to survive, focusing their limited attention on one signal or another. Our
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model simply establishes the probability distribution of the decision-maker when choosing
each alternative, based on their beliefs and expertise, evaluating the result (successful or
unsuccessful) and not the procedure followed to obtain it. For us, the logical processes
and beliefs are built by the decision-maker on values that are not well defined for most
objects, questions, etc., but on which a probabilistic regularity can be built. This conceptual
framework allows the evaluation of decision support techniques and agent-based systems,
evidencing the contribution of each element (communication structures, decision rules,
consistency requirements, etc.) to the quality of the final decision.

Table 1. Research lines that use the logistic functional form.

Sources Approach Description

Luce [13] Mathematical
Carries out an extensive study on the properties of
different functional forms chosen ad hoc, as well as
their predictive capacity in experimental practices.

Erev and Roth [40];
Camerer and
Hua Ho [12]

Learning
Different learning formulations are calibrated

through real experiments to see how a chosen ad
hoc probabilistic choice function evolves.

Sutton and Barto [16];
Scheibehenne and

Pachur [15]; Pachur,
Suter, and Hertwig [14]

Psychological

Prediction of human behavior through an ad hoc
functional form where psychophysical,

psychological, and information processing
restrictions are collected.

McFadden [41];
Train [42] Econometric

The parameters associated with the different
causes that provoke one or another choice are

estimated based on empirical evidence.

5. Function Characterization of Intentional Bounded Rationality

The expertise (β) is a measure of the decision-maker’s information processing skills.
Its value will depend on the overall ability to deal with a specific problem, whose difficulty
is determined by the difference between the alternatives’ latent performances. Without
loss of generality, it can be assumed that the latent performance values of the alternatives
are normalized υi = ai(x)/ ∑n

i=1 ai(x), i.e., we use a set of performance values verifying
∑n

i=1 vi = 1∧ vi ≥ 0 ∀i.
From a logical point of view, the probability of choosing any of the given alternatives

will depend on the set of performance values and the expertise of the decision-maker. Thus,
for a given expertise value β(≥ 0), the greater the performance of alternative Ai, the greater
the probability of its being chosen by the decision-maker p

(
yi
∣∣X) = pi. In other words,

there is an increasing function hβ : [0, ∞)→ [0, ∞) such that

pβi =
hβ(vi)

∑n
j=1 hβ

(
vj
) (5)

As per Yager [43], the expertise value β(≥ 0) can be considered as an indication
of the power or importance that the decision support techniques must give to the in-
dividual in the group decision: the higher the expertise value, the more important the
decision-maker. In a fuzzy context, the methodology for implementing importance val-
ues associated with decision-makers usually involves a t-norm operator, in particular
the product t-norm. In this approach, hβ is assumed to be of the form hβ(vi) = βh(vi).
The alternative power implementation of the importance values approach considers
hβ(vi) = h(vi)

β. In both cases, h : [0, ∞)→ [0, ∞) is an increasing function.
In our framework, the power implementation of importance values is superior to

the multiplication implementation, since in the latter case, the reliability value would not
play any role in determining the probabilities above. Indeed, the multiplication approach
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to implement importance values yields probabilities that do not depend on the expertise
value of the individual making the decision, which is not expected:

pβi =
hβ(vi)

∑n
j=1 hβ

(
vj
) =

βh(vi)

∑n
j=1 βh

(
vj
) =

h(vi)

∑n
j=1 h

(
vj
)

It is therefore assumed that there exists an increasing function h : [0, ∞)→ [0, ∞) such
that hβ(vi) = h(vi)

β.
Whether β ≥ 0 is considered as an importance value or as a measure of the decision

processing skills, it is expected that the probability of choosing an alternative will be greater
than the probability of choosing another alternative with a lower performance value. In
other words, the following rule is assumed:

vi > vj =⇒ pβi ≥ pβj (6)

First, we will show that the range of function h does not include [0, 1). If this were

the case, i.e., if h(vi) ∈ [0, 1), then h(vi)
β β→0→ 1 and h(vi)

β β→∞→ 0. In the first case, as the
reliability value decreases ( β→ 0) , the probabilities of alternatives that do not present
the highest performance value (h(vi) < 1) will increase, until they all become equal
in the case where β = 0. This limit case is expected (lack of decision processing skills
translates into treating all alternatives equally irrespective of their performance). However,
the second limit case is counterintuitive, since unlimited decision processing skills means
that the decision-maker would be able to differentiate between the alternatives no matter
how little their difference in performance, i.e., the decision-maker would be able to find
the best performance value for any given set of different performance values. Based on
this, it is therefore assumed that the increasing function h is a function with range [1, ∞),
i.e., hβ : [0, ∞)→ [1, ∞) . Secondly, without loss of generality, the following boundary

condition can be assumed: h(0) = 1. Indeed, for h(0) > 1, then function h(x)
h(0) will verify

the mentioned boundary condition and will lead to the same probability values as those
obtained with function h(x) via Equation (5).

Thus, there exists an increasing function h : [0, ∞)→ [1, ∞), verifying h(0) = 1, such
that hβ(vi) = h(vi)

β. An example of such a function is h(x) = ex or, in general, h(x) = eq(x),
where q : [0, ∞)→ [0, ∞) is an increasing function verifying q(0) = 0. The selection of a
function q that is different from the identity function does not change the ordering of the
probability values associated with a set of performance values verifying ∑n

i=1 vi = 1∧ vi ≥ 0 ∀i.
Indeed, since there is a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} such that vσ(i) ≥ vσ(j)
when i < j, it can be assumed that v1 ≥ v2 ≥ · · · ≥ vn. The monotonicity of q implies that
q(v1) ≥ q(v2) ≥ · · · ≥ q(vn), and therefore eβq(v1) ≥ eβq(v2) ≥ · · · ≥ eβq(vn). Therefore,
pβ1 ≥ pβ2 ≥ · · · ≥ pβn. Thus, without loss of generality, hβ(vi) = eβvi and

pβi =
eβvi

∑n
j=1 eβvj

=
1

∑n
j=1 eβ(vj−vi)

=
1

1 + ∑j 6=i eβ(vj−vi)
(7)

The judgment of the decision-maker is distributed as a logistic function, the mean of
which matches the true difference in performance

(
vi − vj

)
, where β is the inverse of the

standard deviation, which coincides with the expression in (4). The analysis below shows
the goodness of the derived expression (7).

Following the modeling of the probability representing a decision-maker without
beliefs, it is noticed that the minimum value of the reliability parameter β = 0 leads to
p0i =

1
n ∀i = 1, 2, . . . , n. In this case, the probability of choosing a particular alternative

does not depend on its performance; in other words, the decisions made are purely random
with no account taken of the alternatives’ performance. This is in agreement with the
interpretation of the expertise parameter as a measure of the decision processing skills, i.e.,
the specific knowledge that the decision-maker has about the alternatives compared. This
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extreme case of lack of knowledge about how to process a comparison of the alternatives’
performances means that for such a decision-maker, all alternatives are treated equally.

Suppose now that β > 0. First, the case where all performance values of alternatives
are positive and different

v1 > v2 > · · · > vn(> 0)

is analyzed. If i< k, since vi >vk, then

vj − vi < vj − vk ∀j ⇐⇒ β(vj − vi) < β
(
vj − vk

)
∀j ⇐⇒

n

∑
j=1

eβ(vj−vi) <
n

∑
j=1

eβ(vj−vk)

Thus, in this case, pβ1 > pβ2 > · · · > pβn. Secondly, it is supposed that in the above
case it is accepted that some of the performance values are the same. Let us assume that
only two consecutive performance values are equal in the above ordering, and denote these
as k, k + 1:

v1 > v2 > · · · > vk = vk+1 > vk+2 > · · · > vn (> 0).

Since vk = vk+1,

n

∑
j=1

eβ(vj−vk) =
n

∑
j=1

eβ(vj−vk+1) ⇐⇒ pβk = pβk+1

and
pβ1 > pβ2 > · · · > pβk = pβk+1 > pβk+2 > · · · > pβn

Thirdly, the case where performance values are allowed to be zero is discussed. It
is supposed that in the above case, some performance values are equal to zero, i.e., there
exists k > 1 such that vk = 0. Then for k1 > k, vk1 = 0 and

pβk1 =
eβvk1

∑n
j=1 eβvj

=
1

∑k−1
j=1 eβvj + (n− k + 1)

∀k1 ≥ k

which implies
pβ1 > pβ2 > · · · pβk = · · · = pβn

Summarizing:

v1 ≥ v2 ≥ · · · ≥ vn (≥ 0)⇐⇒ pβ1 ≥ pβ2 ≥ · · · ≥ pβn ,

with corresponding strict inequalities in both statements of the above equivalence.
Finally, the limit case β→ ∞ is analyzed. First, it is assumed that the maximum value

of the set of performance values is unique, i.e., v1 > v2. It has been proved above that for
any β > 0, pβ1 > pβ2 ≥ · · · ≥ pβn. Next, it is proved that pβ1 tends to 1 when β→ ∞ .
Since β

(
vj − v1

)
< 0 ∀j >1,

β→ ∞⇐⇒ β
(
vj − v1

)
→ −∞ ∀j > 1⇐⇒ eβ(vj−v1) → 0 ∀j > 1 ⇐⇒ ∑j>1 eβ(vj−v1) → 0

Therefore,

pβ1 =
1

1 + ∑j>1 eβ(vj−v1)

β→∞→ 1

Consequently, this case will choose alternative A1 with a total probability of 1, and
the rest will have an associated probability value of 0. If there is more than one maximum
performance value (v1 = v2 = · · · = vk > vk+1), the limit case β→ ∞ will assign equal
probability (1/k) to corresponding alternatives (A1, A2, · · · , Ak), and 0 to the rest of
the alternatives.
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6. Binary Decision Analysis

The maximum simplification of complex decision problems focuses on the choice
between two alternatives. In fact, the choice between multiple alternatives can be seen as a
problem of sequenced binary choices. In this sequential approach, the maximum simpli-
fication is represented by the problem of choosing between an alternative vs. the status
quo [44,45]. Another possible advantage of binary analysis is that it allows relative analyses
instead of absolute ones, making it possible to dispense with scale problems. The pairwise
comparison is a well-established method of assisting decision-makers [46,47]. In this case,
the decision-maker does not need to evaluate the specific values of the alternative perfor-
mances ai(X) ≥ 0 (i = 1, . . . , n); it is sufficient to estimate the comparison of each alterna-
tive with respect to another by means of a judgment relationship aij = ai(X)/aj(X) (i 6= j),
which as mentioned above avoids scale problems. Now, the decision-maker compares the
intensity of the performance of a pair of alternatives (aij) against its inverse (aji), to try to
determine which is greater.

To derive the probability of choosing alternative Ai over alternative Aj by a decision-
maker with expertise β, pβij, our previous intentional bounded rationality expression (7)
applied to the case of conducting a pairwise comparison of alternatives becomes

pβij =
e

β
ai(X)

aj(X)

e
β

ai(X)

aj(X) + e
β

aj(X)

ai(X)

=
1

e
β(

aj(X)

ai(X)
− ai(X)

aj(X)
)
+ 1

=
1

eβ(aji−aij) + 1
(8)

Using (8), it is possible to obtain the probability that the judgment of the decision-
maker shows that the intensity aij is greater than aji (pβij) and vice versa (1− pβij). A higher
relative performance of alternative Ai (ai(X)) increases the likelihood that this alternative
will be preferred in binary comparisons. The probability of expressing a preference for
the relative value aij over the relative value aji (pβij) depends on the relative difference in

their valuations
( aj(X)

ai(X)
− ai(X)

aj(X)

)
. A rational person without limits (β = ∞) would show a

preference with a probability of 1, when ai(X) > aj(X). Therefore, when (ai(X) > aj(X))
the probability of making the mistake of showing a preference for the relative value that
presents a lower relative performance is 1 − pβij = pβji. When the intensities of the
two alternatives are the same, then the probability of choosing each of them is 1/2, and
the decision-maker must opt for a relative value. The probability of making a mistake
decreases when the difference between ai(X) and aj(X) increases and is higher when the
performances of ai(X) and aj(X) are relatively close.

In paired judgments Equation (8) for intentional bounded rationality shows how the
decision-maker is not entirely in darkness, since he is attracted to the higher-performance
option, so that the probability of choosing the best option is always higher than 0.5 if
β > 0. This allows decision support techniques to be established that improve individual
performance by approaching the “best” option.

Notice that it is possible to directly apply Equation (5) to the case of considering a set of
two alternatives

(
Ai, Aj

)
with associated performance values

(
ai(X), aj(X)

)
. Implementing

this strategy would imply that the probability of choosing alternative Ai over alternative
Aj for a decision-maker with expertise β, pβij, would be

pβij =
pβi

pβi + pβj
=

fβ(vi)

fβ(vi) + fβ

(
vj
) =

eβvi

eβvi + eβvj
=

1

1 + eβ(vj−vi)
(9)

The above expression, although valid, is not restricted to the comparison of the in-
tensities of alternatives, because the performance values of the rest of the alternatives are
considered indirectly through the normalization of the performance values: vi =

ai(X)
∑n

k=1 ak(X)
.

Even if this is circumscribed to the set of alternatives of cardinality 2 in the pairwise
comparison at hand, i.e., by applying Equation (1) to the set

{
Ai, Aj

}
with associated per-
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formance values
{

ai(X), aj(X)
}

, we would have pβij =
eβvi

eβvi+eβvj
where vi =

ai(X)
ai(X)+aj(X)

and

vj =
aj(X)

ai(X)+aj(X)
. This approach continues to be a comparison of values, not of intensities,

and it could be criticized using the argument that when comparing one alternative with
each of the others in the set of alternatives, a different normalized performance value vi
would be needed.

There is an alternative method of deriving the targeted peer-to-peer probabilities of the
decision-maker with expertise β, which derives from the preference modeling framework
methodology developed in [48], based on performance values of alternatives captured
in a multiplicative preference relation with elements representing the preference values
of alternatives when compared pairwise. Given a set of alternatives A1, A2, . . . , An with
associated performance values ai(X) ≥ 0 (i = 1, . . . , n), according to [48] there is a multi-
plicative preference relation A =

(
aij
)
, where the intensity of alternative i over alternative

j, aij, is

aij =

(
ai(X)

aj(X)

)c

, c > 0

The probability of choosing alternative Ai over alternative Aj, pij, based on their
performance values can be defined in terms of intensity as follows:

pij =
aij

aij + aji

As discussed in Section 5, the implementation of the decision-maker’s level of exper-
tise, β(≥ 0), would lead to the following pairwise preference values

aij = fβ

[(
ai(X)

aj(X)

)c]
= e

β(
ai(X)

aj(X)
)

c

, c > 0

Therefore, the corresponding probability of choosing alternative i over alternative j by
the decision-maker with expertise β, pβij, would be:

pβij =
e

β(
ai(X)

aj(X)
)

c

e
β(

ai(X)

aj(X)
)

c

+ e
β(

ai(X)

aj(X)
)

c , c > 0

In particular, and for computational efficiency, we consider the value c = 1 :

pβij =
e

β
ai(X)

aj(X)

e
β

ai(X)

aj(X) + e
β

aj(X)

ai(X)

=
1

1 + e
β(

aj(X)

ai(X)
− ai(X)

aj(X)
)
=

1

1 + e
β
(aj(X)−ai(X))(aj(X)+ai(X))

ai(X)aj(X)

(10)

Expression (10) only requires the intensity values between alternatives, with no nor-
malization required. When the absolute value of the difference between the performance
values of the alternatives compared increases, the absolute value of the difference between
the probabilities of the compared alternatives also increases.

7. A Laboratory to Study a Priori Decisions

The established formalization of intentional bounded rationality is a key contribution
since it provides a contingent strategic framework where the probability of choosing each
alternative depends on internal elements (the decision-makers’ experience and beliefs) and
on external environmental elements (complexity). Encoding human decisions by assigning
values to these three elements through the associated parameters allows the creation of an
a priori testing laboratory to simulate the performance with respect to:
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(1) Different forms of employee participation in organizational decisions;
(2) How to combine the different levels of experience of the members of a group;
(3) Different processes for the dissemination of ideas and knowledge in organizations

and markets;
(4) Different levels of hierarchy and communication, with decision rules linking all these

simulations with the performance of each alternative in a probabilistic way.

The proposed function for individual behavior allows agent-based models to be built
to evaluate the diffusion and adoption of judgments, innovations, or projects. The progress
of an opinion or innovation in a network structure is based on establishing the rules by
which an agent can change his judgment. It is usual to allow judgment changes when there
is a random interaction between agents with different judgments that are interconnected.
The interactions allow the change of judgment but, because of learning, they also improve
the expertise of some of the agents. The dynamics of judgment changes or innovations
adoption in agents will be conditioned by the types of communication structures and by
previous beliefs. The fact that individual probability depends on latent returns makes
it possible to quantify group performance based on the characteristics of the agents that
make up the organization, such as the dispersion of expertise and/or beliefs. In addition, it
makes it possible to analyze the level of performance difference from which it is guaranteed
that innovation will be adopted by a high percentage of the organization, as well as to
study whether the learning processes of innovative technologies improve their diffusion,
which is an important element when heterogeneous networks are considered. Finally, it is
possible to evaluate the way in which social pressure, understood as the influence of the
environment on individual judgment, can block the process of change in any organizational
structure. These analyses can help in understanding how different factors influence the
spread of judgments or innovations in different communities and organizations, or how
they influence decisions of another nature.

Our formalization also quantifies the losses due to omission errors and commission
errors [44,45]. Omission error remains invisible in empirical studies because only the
success or failure of the decision made (commission error) can be observed. This character-
istic is especially important when studying the performance of an organization in group
decisions. The structure of individual decisions (beliefs, expertise, and difficulty) affects the
performance of the different group decision mechanisms (authority, majorities, consensus,
hierarchy, polyarchy, disagreement, etc.).

The contingent analysis implies that the individual aspects and the group decision
mechanisms must be adapted to the environments in which the organization is immersed.
The asymmetry in the error cost is an additional factor relevant to the group configuration.
There are many situations where choosing the right alternative is critical because error
may be too costly [49,50]. Some decision-makers must minimize the commission error:
justice must not convict innocents, nuclear power plants must not commit safety errors,
etc. In many strategic decisions, commission errors can have serious consequences for
the continuity of the organization. If an organization chooses a project that generates
significant losses, its reputation will be negatively affected, and it could even lead to its
closure. Sometimes it is possible to block a decision and not invest by committing an
omission error, i.e., an opportunity loss occurs in the organization but it is not observable by
third parties. These special situations can change the convenience of decision mechanisms
since they require ensuring high levels of quality. In addition, sunk agency costs occur when
adjustments are made for reduced performance (administrative costs, increased controls,
employee uncertainty, etc.). Myers [51] justifies the fact that that safer organizations
obtain cheaper resources, and therefore face lower costs, stating that investments tend to
underestimate the organizations’ intangibles that have led to losses at some point and,
in general, growth opportunities are reduced. There are other sectors such as mobile
telephony or the pharmaceutical industry where innovation is crucial and omission errors
can cause the loss of the market share of the organization. There are also other environments
where time has a very high discount rate due to the rapid deterioration of alternative
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actions. Examples of these environments are the military or disaster management, where
decision-makers must make decisions in a short time. In summary, the heterogeneity in the
cost of errors justifies an analysis in terms of fallibility, accommodating decision support
techniques or collective decision mechanisms that best suit each problem.

8. Conclusions

This study considered how the human way of thinking can be formalized mathemat-
ically. Before making a choice, individuals decide how much information to process to
improve their choice. This way of acting synthesizes the four basic principles of bounded
rationality: the principle of expected rationality, the principle of adaptation, the principle
of uncertainty, and the principle of compensation. A formalization was proposed whose
development focused on the human cognitive process from a Bayesian point of view, where
the decision maker tries to maximize the total performance of the decision, considering the
cost associated with increasing the amount of information to be processed.

Three aspects determine the performance of human decision-making: complexity
as a latent performance difference between alternatives; beliefs as an a priori attraction
system about the alternatives (p0

i ) (quick and intuitive thinking); and expertise as the ability
to process relevant information that allows the decision to be improved (β) (slow and
reflective thinking). Traditionally, the literature has considered that the decision-maker
makes the best decision given the level of available information (classical rationality). How-
ever, our approach started from the premise that perfect information is available, and the
decision-maker chooses how much information to process, assuming the possibility of
making an error. Our functional form showed a relationship between error and the id-
iosyncratic characteristics of the decision-maker (beliefs and expertise), as well as an inversely
proportional relationship with complexity (element exogenous to the decision-maker).

The functional representation of the human mental process of choosing an alterna-
tive obtained was a general “logit function”. Different particular cases of the proposed
functional form have been used in the empirical literature in an “ad hoc” way. The charac-
terization analyzed how the extreme values of beliefs and expertise condition the functional
form. When expertise is high, the decision-maker will have a low probability of being
wrong, even with small performance differences, due to the low cost of processing informa-
tion, while when expertise is low, beliefs become more relevant. The binary comparison is
especially important because: (i) it allows a scale-free comparison, and (ii) it has been used
in the main decision support techniques.

Social systems are chaotic systems since small variations of the parameters can lead
to important changes in the whole. Our formalization allows a social laboratory to be
established to evaluate a priori the contributions of decision support techniques, facilitates
a base of individual behavior in the models based on agents that study interactions, and
visualizes management based on the types of error (omission and commission). In this way,
the way that a collective decision mechanism affects the balance between omission errors
and commission errors can be analyzed, regarding the characteristics of the people who
compose it and the difficulty of the problems they study. This analysis will allow decision
systems to be adapted to the organization’s objectives (error cost).

The experience (β = 1/L) represented the effort (cost) of improving the error for each
relative unit of performance. The higher the experience β, the higher the probability of
choosing the correct option since the cost of processing information is low, and vice versa.
On the other hand, beliefs (pi

0) could change the probability with which each alternative
was chosen. It has been widely demonstrated that affective states strongly influence the
mechanisms of the human mind to establish the relationship between beliefs and the logical
part [52]. Decision-makers face cognitive dissonances (internal tensions between ideas,
beliefs, and evidence) that they must resolve to allow their beliefs to evolve, and therefore
affective states play an important role [53–55]. By considering the “a priori” elements of
psychological variables such as antecedents or consequences of affective states, personality
traits, and beliefs, the black box of decision making can be decoded.
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The intentional bounded rationality depicted here may have a promising future
application in agent-based models (ABM), decision support techniques (DST), and collective
decision mechanisms, by extending the model with the trade-offs that occur between
mindset, complexity, and decision structures.
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