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There are many chemometric applications, such as spectroscopy, where the objective is to explain a scalar
response from a functional variable (the spectrum) whose observations are functions of wavelengths rather
than vectors. In this paper, PLS regression is considered for estimating the linear model when the predictor is a
functional random variable. Due to the infinite dimension of the space to which the predictor observations
belong, they are usually approximated by curves/functions within a finite dimensional space spanned by a
basis of functions. We show that PLS regression with a functional predictor is equivalent to finite multivariate
PLS regression using expansion basis coefficients as the predictor, in the sense that, at each step of the PLS
iteration, the same prediction is obtained. In addition, from the linear model estimated using the basis
coefficients, we derive the expression of the PLS estimate of the regression coefficient function from the model
with a functional predictor. The results provided by this functional PLS approach are compared with those
given by functional PCR and discrete PLS and PCR using different sets of simulated and spectrometric data.
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1. Introduction

Prediction models (regression and classification) are among the
most widely used methodologies for scientific data analysis, and play an
important role in chemometric applications, especially in chemistry,
food industry and environmental studies. The main objective of these
statistical techniques is to model and predict one or more response
variables in terms of a set of related predictor variables. In many
situations, the number of predictor variables or the dimension of the
space spanned by them is much larger than the number of observations.
This is generally the case of functional predictors for which the
observations are curves or functions (functional data).

The main feature of a functional random variable is the infinite
dimension of the space to which the observations belong. Accordingly,
the estimation of functional regression models (in which some of the
response and/or predictor variables are functional), and in particular the
linear one, is, in general, an ill-posed problem. One standard method to
estimate functional regression models is to use a roughness penalty
approach that works well with noisy or unequally spaced observations of
the curves [7,21]. Another common solution is to represent the functional
data in terms of basis functions (B-splines, wavelets, trigonometrics) and
to approximate the basis coefficients using a large number of discrete
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observations, which may be irregular and sparse [5,6,10]. Thus, the
functional model is converted into a multiple one in terms of sample
curve basis coefficients. The potential of functional data representation
with B-splines has been discussed in the field of chemometrics using
two practical data sets: near infra red (NIR) spectra from hog manure
samples and NIR transmission spectra of Diesel data [32].

Reviews of common functional data analysis (FDA) methodologies
and interesting real data applications in other fields (growth curves in
medicine, financial series derived from stock-market movements, and
rainfall and temperature curves in the environmental field, among
others) are compiled in the well-known books by Ramsay and
Silverman [29,30]. Nonparametric methods for analyzing functional
data have also been discussed by Ferraty and View [15].

Popular estimation methods in chemometrics, such as Partial Least
Squares (PLS) regression [16,35,39,40] and Principal Component
Regression (PCR) [22,38], have been adopted in recent years to solve
the problems of high dimensionality and multicollinearity encountered
in functional regression models. With both these dimension reduction
approaches, the problem is reduced to that of regression of the response
variable on an optimum set of orthogonal (principal or partial least
squares) components obtained as generalized linear combinations of
the functional predictor that solve well known optimization criteria.

Functional Principal Component Analysis (FPCA) [25,34] of the
predictor curves has been used previously to estimate the slope
parameters of different types of functional regression models. First,
principal component prediction (PCP) models were developed to
forecast a stochastic process in the future (functional response) from
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its evolution in the past (functional predictor) [1]. Subsequently, a
weighted estimation of the PCP model was introduced to forecast a
continuous time series [2]. These models have been extended to the case
of a functional linear model in which both the response and the predictor
are functional variables. An estimation approach for sparse data based on
anonparametric estimation of functional PCA of both functional variables
has been proposed in [41]. A two-step functional regression approach has
been applied to forecast curves of pollen concentration from curves of
temperature [36]. The case of an scalar response variable and a functional
predictor has been also studied in [3,18]. Functional generalized linear
models (FGLM) were introduced in [17]. An estimation procedure of
these models based on approximating the predictor variable by a
truncated Karhunen-Loéve expansion has been proposed in [24].
Furthermore, two different FPCA approaches have been developed for
estimating the functional logistic regression model [10].

However, principal components do not take into account the
relationship between response and predictor variables and thus, their
choice for regression is not without drawbacks. To solve this problem,
PLS regression has recently been generalized to the case of a
functional predictor [27]. In order to obtain functional PLS compo-
nents, Tucker's criterion is extended to functional data. Then, it is
shown that the weight functions of PLS components are iteratively
obtained by estimating the eigenvalues and eigenfunctions of a
functional operator computed from the cross-covariance operators
associated with the predictor and response variables. A combination
of PLS and PCR with B-spline expansions and a roughness penalty
have also been developed to estimate the functional linear regression
model [19,31]. For the functional logit model with binary response, a
PLS estimation approach was recently introduced and compared with
functional principal component logistic regression [12].

In this paper, we consider the functional linear model with a
functional predictor variable and a scalar response variable. We
propose a new estimation procedure for functional PLS regression [27]
based on using a basis expansion approximation of sample curves.
Then, we prove that functional PLS regression is equivalent to PLS
regression using as predictors the sample curve basis coefficients with
a metric associated with the basis functions. This equivalence is
expressed in terms of prediction via the PLS components. The
expression of the coefficient regression function is also derived from
the PLS estimate of the model with basis coefficients.

The paper is organized as follows. In Section 2 we introduce some
basic theory on the linear model for functional data and the approxima-
tion within a finite dimensional function space. The functional PLS model
and the particular case when the predictor is a functional variable with
observations within a finite dimensional function space are presented in
Section 3. Criteria are then proposed for the model selection procedure. In
Section 4 simulation studies are performed to evaluate the capacity of
standard methods for selecting PLS components (leave-one-out cross-
validation) in order to accurately estimate the functional parameter. The
results obtained are then compared with those provided by FPCR and
classic PLS and PCR on the discrete observations of sample curves. To
assess the performance of the proposed functional PLS regression with B-
spline basis expansions, in Section 5 we discuss two applications using
chemometric data. The aim of the first of these is to classify biscuits as
good or bad on the basis of the resistance curves of dough during the
kneading process (functional data classification). In the second applica-
tion, the task is to accurately predict the amount of fat on meat pieces
based on their spectrometry curves.

The proposed functional PLS approach with basis expansions is
implemented using the fda R-package [23], which is available at
http://cran.r-project.org.

2. Basic theory on the functional linear model

Let Y be a scalar random variable and X = {X(t)};< 0,1 be a second
order stochastic process (functional predictor) whose sample paths

belong to the space L,(]0,T]) of square integrable functions. Without
loss of generality, we assume that E(Y) =0 and E(X(f)) =0,
Vte[0,T).

By analogy with the multiple linear model, the functional linear
model is formulated as

Y = [IX(OB(t)dt + &, (1)

where the slope parameter 3 is a square integrable function rather
than a vector.

It is well known that the use of least squares criteria to estimate
this model yields an ill posed problem because of the Wiener-Hopf
equation

which, in general, does not possess a unique solution (see [33] for a
detailed study).

In practice, besides the impossibility of the direct estimation of the
functional parameter, a new problem appears. Normally, we only have
discrete observations x;, of each sample path x;(t) at a finite set of
knots {t;y:k=0,...,m;}. Because of this, the first step in FDA is often
the reconstruction of the functional form of data from discrete
observations. The most common solution to this problem is to
consider that sample paths belong to a finite dimension space
spanned by a basis of functions (see, for example, [30]). An alternative
way of solving this problem is based on the nonparametric smoothing
of functions [15].

Let us consider a basis {¢¢(t),...,dk(t)} and assume that the
functional predictor admits the basis expansion

K
X(t) = j; by (£)- @)

Let us also assume that the functional parameter admits a basis
representation like the sample paths (t) = >_ K— 1 Bidi(t). Then, the
functional model (1) becomes a multiple linear model for the
response variable in terms of a transformation of the functional
predictor basis coefficients. Thus,

Y = (b)) + ¢ (3)

where a= (ay,...,ax)" and B=(B,...,Bk)’ are the vectors of the basis
coefficients of X and B, respectively, and & is the matrix of inner
products between the basis functions, @y x = (Pjx) = quiy(t)d)k(t)dt.
Then, the estimation procedure of the functional model based on
the basis expansion of functional data has the following two steps:

1. Sample path basis coefficients are estimated from discrete-time
observations by using an appropriate numerical method.
If the sample curves are observed without error

Xie = X;(ty)

an interpolation procedure can be used. For example, Escabias et
al. (2005) proposed quasi-natural cubic spline interpolation for
reconstructing annual temperature curves from monthly values.
On the other hand, if the functional predictor is observed with
errors

Xie = Xi(ty) + & k=0,....m;
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then least squares smoothing is used. In this case, the basis
coefficients of each sample path x;(t) are approximated by

& = (0,6)'0x;,

with 8;= (0y) = (¢;(tw)) and x;= (Xio, ..., Xim,)"-

An appropriate basis must be selected according to the main
features of the sample curves. The most common examples are
trigonometric functions for the case of periodic curves, B-splines
for smooth curves and wavelets for curves with a strong local
behavior (see [30] for a detailed study). Least squares smoothing
on cubic B-splines is used in the application developed in this
paper to approximate dough resistance curves during the knead-
ing process and spectrometry curves of fine chopped meat pieces.
In this case, the dimension of the basis depends on the number of
definition knots. In many applications a number of equally spaced
knots is selected by cross-validation. Alternatives procedures for
solving the problem of knots selection have been addressed as for
example [43].

2. Least squares estimation of the linear model (3) provides an
estimation of the basis coefficients of the functional parameter.
However, this estimation may be inaccurate, due to a strong
correlation between the dependent variables (components of the
random vector ®q). In addition, the number of basis functions
used in the approximation of the sample curves could be higher
than the number of observations.

As in the multivariate case, these problems (multicollinearity and
high dimension) that impede estimation of the functional linear
model can be solved by using as predictors an uncorrelated set of
variables (principal components or partial least squares compo-
nents). An alternative solution to avoid excessive local fluctuation in
the parameter function estimation is that of a roughness penalty
approach based on maximizing a penalized likelihood function.
Different spline estimators of the parameter function have been
proposed in [5,6,8].

Solutions based on FPCA of X have been proposed by [9] and [4],
extending principal component regression (PCR) to the functional
case, and by [1] and [41] for the case where both the response and the
predictors are functional variables. However, deciding upon the
principal components (PCs) is not an easy task since these are
computed without taking into account the relation between the
response and the predictor variables. Therefore, one has to choose
between robustness of the model (the most explanatory PCs) and its
performance (the PCs most strongly correlated with the response).

As an alternative to functional PCR, [27] extended Partial Least
Squares (PLS) regression to the case of a functional predictor. In practice,
the main problem is the estimation of the functional PLS components
from discrete-time observations of sample curves. In this paper, we
propose a basis expansion approach that reduces functional PLS to
ordinary PLS via a transformation of sample path basis coefficients.

3. PLS for functional linear regression

The PLS approach consists in penalizing the least squares criterion by
maximizing the covariance (Tucker's criterion) instead of the correla-
tion coefficient. The PLS approach is based on two simple ideas. The
first one is to find in L(X) - the linear space spanned by {X(t)};=[0,1] -
latent variables similar to principal components but taking into
account the response Y. The second idea, if Y is a multivariate or a
functional response, is to use the correlation structure of Y, which is not
the case for the least squares criterion. These ideas have been efficiently
used in the finite dimensional case in the work of [39].

3.1. Functional PLS algorithm

The PLS components associated with the functional regression
of a real random response Y in terms of a functional predictor X=
{X(£)}t=0,1, are obtained as solutions of the Tucker's criterion
extended to functional data as

cov* (] CX(Ow(t)dt, ).

max
welL, ([O‘TD’”W”LZ(\O m=1

Let us denote by WX and WY, respectively, the Escoufier's operators
associated with {X(t)} ¢ (0,1}, with respect to Y, defined by
w¥z = jg E(X(H)Z)X(t)dt, W'Z = YE(YZ), VZELy(Q).

The spectral analysis of this operator leads to the principal
component analysis of the associated variable (see [13] for details).

Then, as shown in [27], the first PLS component of the regression of

Y on X, t;, is given by the eigenvector associated with the largest
eigenvalue of the operator WXWY

WAW 't = Nty

Let Xo(t) =X(t), Vt€[0,T] and Yo =Y. Then, the first PLS-step is
completed by ordinary linear regression of Xo(t) and Y, on ¢;. Let us
denote by Xi(t) (t€[0,T]) and Y; the residuals of these linear
regression models

Xi(6) = Xo(t)—p1 ()Y
Y =Yy—t.

t=[0,T],

The weight function w; (t) associated with the first PLS component
t; is given by

so that
f = [yw (OX(0)de. 4

The PLS regression is an iterative method. At step h, h>1, of the
PLS regression of Y on {X(t)}< (0,7}, we define the h™ PLS component,
tp, by the eigenvector associated with the largest eigenvalue of the
operator W¥_ W} _,

X Y
Wi iWh oty = Naxtps

where WX_, and W{_; are the Escoufier's operators associated
respectively with {Xj, — 1(t)}¢<0,7j and Y, — 1. The PLS component tj, is
also given by

t = [y wh(OX, 1 (0)dt, @)

E(Yp—1Xp—1 (1))

—— == t€[0,T].
f ZE(Yh_lxh_l (t))dt

Finally, the PLS step is completed by the ordinary linear regression
of X, —1(t) and Y, _ on t;. We denote by X,(t) (t€[0,T]) and Y}, the
random variables which represent the error of these regressions

Xn(t) = Xp—1 (6)=Pp(O)t,
Yh - Yh*l_chth‘

t=[0,T],
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The properties of the PLS components are summarized by the
following proposition:

Proposition 1. For any h>1

a) {tn}n>1 forms an orthogonal system in L(X),

b) Y= Cit1+ ooty + ... +Chth+yh,

) X(t)=p1(O)ts + p2()t2 + ... + pu(6)tn + Xn(t), t=[0,T],
d) E(Ypt) =0, Vj=1,.h,

e) E(Xy()) =0, Vte[0,T], Vj=1,.,h.

Thus, there is a simple way of computing PLS, involving only
simple linear regression models.
The PLS linear approximation at iteration h is then given by

P =cit; + ooty + .o+ Gyt

Notice that the expression of the PLS component defined by Eq. (4)
can be rewritten as an element of the linear space spanned by {X(t):
t<[0,T]}

th= [y va(X(0)de,

with v;, being functions of L,[0,T]. More precisely, simple calculus
shows that v, €span{ws,...,wp}. Thus, the PLS linear approximation at
iteration h becomes

" = ¢, [ (OX(Odt + ... + ¢, [ va(OX(t)de = [; B"(OX(b)dt,

where " is the approximation provided after h iterations by the PLS
approach for the slope parameter 3 in the functional linear model.

Finally, when h — o, the convergence in quadratic mean of the PLS
approximation to the least squares approximation, as well as the
efficiency of the PLS approach with respect to PCR regression, is
shown in [27].

Remark 1. Notice also that when Y is a binary response, because of
the equivalence between linear discriminant analysis and linear
regression, the functional PLS approach has been used by the authors
in [28] for classification purposes. The discriminant function is the
coefficient function of the linear regression of Y on {X(t):tE T} with Y
recoded as

Y:{—\/Po/Pl %f Y=1
VPi/po if Y=0

with pp=P[|Y=0] and p; = P[Y=1]. The results of this functional PLS
discrimination approach based on the approximation of kneading
data by using cubic B-splines basis is presented in the application
section.

3.2. PLS regression for basis expansion of functional data

Notice that, in practice, given a random sample {x;(t):i=1,...,n}
from the functional predictor X, the Escoufier's operator WX s
estimated by the nx n matrix W* with entries

(%) = [ox(Ox(0dt, ije(1, ..},

Because of this, the main problem related to the sample estimation
of PLS components is that of approximating the inner products between
sample curves from discrete-time observations. In this section, we
propose to solve this problem by approximating the functional form of
data in terms of basis expansions.

Let us consider that the functional predictor X is such that
K
=

where o= (e, ...,a)" is a random column vector and {¢;};—
linear independent set of functions in L,([0,T]).

The following result proves the relation between the PLS of Y on
the functional predictor X and the PLS of Y on the vector « of basis
coefficients.

Kisa

Proposition 2. Let & be the K x K matrix with entries given by the two-
by-two inner products of the basis functions {¢;};—1,. k Then, the
functional PLS regression of Y on X ={X(t)}¢< (0,1 is equivalent to the PLS
regression of Y on the finite random vector A= ®'2w,. In this sense, at
each step h of the PLS algorithm, 1<h<K, we have the same PLS
component, and so, the same PLS approximation.

Proof. We prove this result by induction.
Let @ = (¢ j)1 <i,j<k be the symmetric matrix with entries
bij = (b, b, 0m)

and let us denote by ®'/? the square root of matrix & such that

b =] P12, Let us also denote by A the column random vector

A=d"2q and by ¢ the column vector of functions ¢ = (1, ..., dx)"
For h=1 observe that for any random variable Z, we have

X T K K . A
Wz = | -21 odi(D)E _Z] Zoydy(t) |dt = NE(AZ) = W'Z
i= j=

and thus the statement is true. Moreover, if after the first step, the
residuals for the predictors (using t;) are given by

Xi =X=t;pq, p1EL ([0, T))
Ay = A=tipy, pr =R,
then

A =Dy,

where «; is the random vector of the basis coefficients of X;(t).
Indeed,

K
X(0)= 2 odi(0) = o d(t), VEE[0, T].

But from the PLS regression step we have

B(¢'aty )
X, =da—t;—— 2
I )
E(d'2at
N :(I)]/za—tli( 5 1)
B(tf)
E(at)

and hence o; = a—t .
1 1E(8)

Thus, at the second step of the PLS regression, WX =WwW",
Assume that for each s<h WX=W" and that WX+ =W+,
Then, at step (h+ 1) we have

Pi€L([0,T))

Xpp1 =X=tp1—tLDy—... —tyDp,
ﬁiERK:

Ay = A=t —tPy—... — Py,

As for h=1 and using the orthogonality of t;, i=1...,h, it is shown
that Ay 41 =P"2 4 1, which concludes the proof.
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Fig. 1. Case L. (a) Sample of n=100 simulated curves. (b) Box and Whisker plot of correlation between columns of Ad> matrix.

Observe that the PLS approximation {3"(t)(t€[0,T]) for the slope
function parameter {3"(t) (t=[0,T]) obtained after h iterations can be
easily expressed in the basis ¢. Let 9" = (9", ..., ﬁ,’é)t be the regression
coefficients provided by the PLS regression of Y on A =®'2c. Then,

>

h_ (cbl/za)t'?/h = o' (@22 = /24

= [oX(op"(®d,

with
Bl = % (0729 g, =0T
i=1 @

This result shows that using the particular metric & in the space of
expansion coefficients ¢, the infinite dimension estimation problem is
reduced to a simple finite PLS regression.

(@)

3.3. Sample functional PLS estimation

In applications with real data we have a random sample of pairs
{(xi(t),y:):i=1,...,n} that can be seen as realizations of the functional
predictor X(t) and the response variable, Y, respectively.

The functional linear model is then expressed as

Vi = Bo + <X Bpon = Bo + [y x(OBE)E + (5)

where {¢;:i=1,...,n} are independent and centered random errors.

The estimation procedure of the parameter function (3(t) using the
basis expansion approach for functional PLS considered in this paper,
has two main steps:

1. After choosing a suitable basis and assuming that each sample
curve is represented as x;(t) = Y_ K_; a;di(t)(i=1,...,n), the basis
coefficients are approximated by interpolation or smoothing as
indicated in the previous section.

2. The functional PLS regression of Y on X is reduced to the PLS
regression of Y= (y1,...,y,)’ on matrix Ab2, with A being the

[te) o
) ] 3
— A
)
o 1 ,
1 < | \ \ 1
- ! - PR Pl y)
©4 Ty, = d <= =
| \ /
0 | .
o [}
o [}
LT
o
= 1
I
o |
0 o4,
7 T
! [
[}
o |
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2. Case I. (a) Simulated parameter function. (b) Simulated parameter function (solid line) and its estimation in terms of B-splines using least squares criterion.
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Fig. 3. Case I. Simulated functional parameter (solid line) and its estimations with different numbers of PLS components in the model (dashed).

matrix of sample curve basis coefficients A= (¢)i=1,...n:j=1,...k
The PLS regression algorithm has the following steps:
» Computation of a set of h PLS components

T = (ACL’]/Z)”X,(VKM-

The columns of matrix T (PLS components) are computed by
means of an iterative procedure for multivariate PLS similar
to the one described in this paper for the functional case.
The Escoufier's operators WA""” and W are replaced by their

sample estimations, given by the nxn matrices WA —
(AD'/2)(AD' /%) and WY = YY!, respectively.
* Linear regression of Y on the h PLS components

7' =1p0 + "
« PLS regression in terms of the design matrix Ad!/?
7' = 1B + AD' 24,

with 91 = v§h.
* PLS regression in terms of the functional predictor

- Ah —1/24
9= Bo + (@724 6,1, 01,

so that the functional parameter is estimated from the PLS
regression coefficients of Y in terms of the matrix A of sample
path basis coefficients 3(t)" = (d=1/2VaM)d(t).

3.4. Model selection

In order to select the optimum number ¢ of PLS components we

considered three criteria.

— IMSE : minimizes the integrated mean squared error of the

parameter function

mase) = (1, (B(t)—B“(t))zdt)”z,

which can be computed only for simulations where 3(t) is known.

Table 1
Case I. Goodness of fit measures for a simulated sample of size n=100.
NC Exp.var. IMSE(h) CVMSE(h) MSE(h) CVMSE(h)
MSE(h—1)
1 87.29 0.6289 15.05 14.71307
2 90.16 0.2504 14.41 13.55816 0.9796
3 93.17 0.2197 14.35 13.31779 1.0584
4 96.15 0.3377 14.32 13.16442 1.0753
5 97.38 0.6871 14.38 12.98355 1.0923
6 98.46 1.0142 14.36 12.87107 1.1060
7 98.96 1.5011 14.30 12.73760 1.1110
8 99.34 1.7216 14.27 12.69248 1.1203
9 99.75 1.8236 14.26 12.67645 1.1235
10 99.94 1.8825 14.23 12.66895 1.1225
11 100.00 1.9036 14.23 12.66734 1.1232
12 100.00 15.4125 14.31 12.56009 1.1297
13 100.00 15.9216 14.41 12.55843 1.1473
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Fig. 4. Case [ (NC). Box plots for the distribution of the number of components (NC) for the functional and discrete PLS and PCR models selected with the three criteria considered

(IMSE, CVMSE1 and CVMSE2).

— CVMSE1 : minimizes the leave-one-out cross-validation mean
square error

12 N 2 1/2
cmsemy = (3 (n-3)")

with y(h,,.) being the prediction for the i-th observation provided
by the model with h PLS components, estimated from a sample of

size n-1 obtained by eliminating the i-th observation.
As the components are obtained iteratively, a classical rule to stop
the process is the first time a minimum in CVMSE is found.

— CVMSE?2 : leave-one-out cross-validation with threshold « (see
[35]). The h'" PLS component is retained in the model if

CVMSE(h)<aMSE(h—1), 0<o<l1,

. n ~h\?2 1/2
with MSE(h) = (g '2] (y,-— yi) ) .
=

(a) Functional approach

The classical way to select the number of PLS components is leave-
one-out cross validation. See [42] for its natural extension, known as
multifold cross validation, which allows the deletion of more than one
observation. In this paper, we have added the IMSE criterion because
our aim is not only to forecast the response but also to obtain a good
estimation of the parameter function. Therefore, we examine whether
the CVMSE1 and CVMSE2 criteria also provide good estimations of
the parameter function.

3.5. Functional parameter interpretation

In practice, it is very important to obtain an accurate estimation of
the parameters of a functional linear regression model, because then
the relationship between the response and the predictor variable can
be interpreted in terms of the estimated parameter function. In fact,
the value of the functional parameter at each time gives the weight
of the functional predictor X(t) in the value of the response Y. This
means that high absolute values of the parameter function represent

(b) Discrete approach
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Fig. 6. Case I (CVMSE). Box plots for the distribution of the cross-validation mean squared error (CVMSE) for the functional and discrete PLS and PCR models selected with the three

criteria considered (IMSE, CVMSE1 and CVMSE2).

periods with a large influence on the response whereas small values
correspond to periods with little influence. Therefore, high levels of the
predictor variable in periods where the functional parameter is
positive are associated with high levels of the response. See [17] for
a detailed study of different real-data applications and functional
regression models.

Following the ideas introduced in [11] for interpreting the
functional logit model in the case of an environmental data application,
zones can be found in the functional observation domain in which a
constant increase in a functional observation causes a specific change in
the response. More specifically, the integral of the parameter function
under a specific interval, multiplied by a constant K, can be interpreted
as the additive change in the response when the functional observation
associated with it in that interval is constantly increased by K units. If
this integral is positive there will be an increase in the response while
if it is negative there will be a decrease.

In the particular case of the functional PLS model proposed in this
paper, a K-units increase in the jth PLS component (A tj=K) will cause
the functional predictor X(t) to increase by K times the associated
functional loading pj(t) above the population average. Then, the average
increase in the response variable Y is given by K times the estimated
regression coefficient &; associated with the jth PLS component in the
linear regression of Y on the first h PLS components.

4. Experiments and discussion

The ability of the proposed functional PLS approach to estimate the
parameter function and to predict the response is tested on simulated
data, and the results obtained are compared with multivariate PLS and
PCR on the discrete observations of sample curves, and also with the
functional PCR, which is equivalent to the PCR of the response Y on
matrix Ad'/2, The proof of the theoretical relation between functional
and multivariate PCA in the case of basis expansion of sample curves
can be seen in [26].

4.1. Case I: simulation with B-spline functions

The considered functional variable has as curves the linear spans of
the cubic B-spline functions {¢;:j=1,...,13} defined by the knots

{0,1,2,3,4,5,6,7.8,9,10}.

In order to obtain a sample of curves, we simulated n = 100 vectors
of a 13-dimensional centered multivariate normal distribution with
covariance matrix >_ =I;3. Then, the matrix of the basis coefficients
was obtained as a linear transform of these vectors, given by a 13x 13
matrix of uniformly distributed values in the interval [0,4]. From these
basis coefficients, we obtained the curves shown in Fig. 1(a).

As parameter function, we considered B(t) = 3_13_ | By (t), by
simulating the basis coefficients 3= (f,...,813) with a uniform
distribution in the interval [0,1]. This functional parameter can be
seen in Fig. 2(a).

Finally, the non-functional response variable is simulated by using
the functional model (5) with T=10, which is converted into the
multiple linear model

Y = 1B, + ADB + ¢, (6)

Table 2

Case I. Mean and standard deviation of the number of components (NC), IMSE and
CVMSE, for the functional and discrete PLS and PCR models selected with the three
criteria considered (IMSE, CVMSE1 and CVMSE2).

Functional PLS Functional PCR

Measure Criterion Mean StDev Mean StDev
NC IMSE 2.594 0.850 5.528 1.762
CVMSE1 2.358 1.026 2.116 1.153
CVMSE2 1.194 0.396 1.098 0.298
IMSE IMSE 0.456 0.090 0.458 0.091
CVMSE1 0.549 0.171 0.580 0.072
CVMSE2 0.598 0.074 0.626 0.040
CVMSE IMSE 14.784 1.082 14.822 1.082
CVMSE1 14.595 1.067 14.841 1.136
CVMSE2 15.018 1.130 15.221 1.144
Discrete PLS Discrete PCR
Measure Criterion Mean StDev Mean StDev
NC IMSE 4,980 1.979 7.924 1.791
CVMSE1 2.418 0.989 2.146 1.221
CVMSE 1.198 0.399 1.094 0.292
IMSE IMSE 0.661 0.032 0.659 0.029
CVMSE1 0.697 0.035 0.729 0.026
CVMSE2 0.736 0.026 0.746 0.014
CVMSE IMSE 14.872 1.099 14.852 1.113
CVMSE1 15.051 1.132 15.269 1.156
CVMSE2 13.465 0.992 13.518 0.993
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Fig. 7. Case 1. Simulated parameter function and the mean of its optimum estimations with the three criteria considered (IMSE, CVMSE1 and CVMSE2) on N =500 repetitions.

where A is the matrix of basis coefficients of sample paths and & is
the matrix of inner products between the B-spline basis functions.
After computing the & matrix by an exact quadrature formula, the
response values are generated from the previous equation with
Bo=1.4 and ¢&; simulated random values of a normal distribution
with zero mean and variance o®=200. The signal to noise ratio
Var(E[Y/X])/Var(e) for this value of o® is 5.55 and so the corre-
lation coefficient R? associated with this linear model is R* = 0.85.
The simulation study was also repeated with higher values of R?,
and in all cases similar results were obtained.

The multiple linear model (6) is affected by multicollinearity (high
correlations between the columns of matrix A®d). The distribution of
these correlations is shown in Fig. 1(b), where it can be seen that
almost all of them are greater than 0.9. This fact means that the least
squares estimation of the parameter function of this model is highly
inaccurate (Fig. 2(b)). In order to solve the multicollinearity problem,
we performed PLS regression of Y on Ad®'2 and fitted the linear model
with different numbers of PLS components as predictors. Then, the
vector of the basis coefficients 3 was reconstructed, using the
appropriate matrix of loadings. The functional parameter estimated
by the models with different numbers of components can be seen in
Fig. 3.

The goodness of fit measures used for selecting the optimum
number of PLS components are shown in Table 1. Note that the best
models are the one with 3 PLS components for the first model
selection criterion (minimizing IMSE), the one with four components

for the second (first minimum of CVMSE) and the one with one
component for the third (CV with threshold 0.95). All these models
fitted well with high R? values.

In order to validate the simulation and compare the results with
those obtained by using functional PCR, discrete PCR and discrete PLS,
we repeated the previously described process N =500 times setting the
knots and the functional parameter, and simulating each time the basis
coefficients of the sample curves and the response. The discrete PCR
and PLS models were estimated by regressing the response variable Y
on the components (principal or PLS) associated with the values of
the sample curves on a set of 50 unequally spaced knots uniformly
distributed in the interval [0,10]. The functional parameter was then
reconstructed by least squares approximation on the parameters
estimated by the discrete models on the 50 unequally spaced knots
established in the simulation.

For each repetition and for each of the four different approaches
considered, we obtained the corresponding PLS or principal compo-
nents. The linear model was then fitted in terms of the different
numbers of components of each type. Finally, in each repetition we
selected the optimum PLSR and PCR models according to the three
criteria previously considered (IMSE, CVMSE1, CVMSE2). Figs. 4-6
show box plots for the distributions of number of components, and
properly errors IMSE and CVMSE after 500 repetitions. Table 2 also
shows the mean and standard deviations of these measures. The
means of the optimum estimations of the functional parameters for
PLS and PCR regression can be seen in Fig. 7.
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4.2. Case II: simulation with polynomial sample curves

The functional variable considered in this simulated example has
as curves polynomials of the form

X(t) = ap + a;t + a,t* + a5, t€[=2,2).

The functional parameter is also a polynomial defined as 3(t) =1 +
0.76t—1.6t2+t3,t=[— 2,2] (see Fig. 8(b)). Following the same process
that in previous examples, 500 simulations were performed. In each
repetition a sample of size n = 100 has been considered with coefficients
a; independently simulated by using a centered normal distribution
with variance equal to 0.1. Fig. 8(a) shows the curves of one of the 500
simulations. In each case the response variable was simulated by using
the functional model (6) with error variance 0> = 66.94. The multiple
correlation coefficient associated to this linear model is approximately
R*=038.

For each repetition discrete evaluation of the curves on 22
unequally spaced points on the interval [—2,2] was performed.
After discrete data simulation, the functional form of curves was
reconstructed by least squares approximation on the basis of the cubic
B-splines defined by the knots {—2.00, —1.72, —0.90, 0.51, 1.04, 1.84,
2.00} (see Fig. 8(c) and (d)). Different linear regression models are

fitted in terms of different number of functional and multivariate PLS
and PCR components. Finally, in each one of the 500 repetitions and
each one of the four considered approaches (FPLS, FPCR, discrete PLS
and discrete PCR) one optimum model is selected with the three
different criteria (IMSE, CVMSE1 and CVMSE2). Figs. 9-11 show box
plots for the distributions of NC, IMSE and CVMSE, respectively, on the
500 repetitions. The means of the optimum estimations of the
functional parameter for the functional and discrete PLS and PCR
regression models can be seen in Fig. 12.

4.3. Discussion of simulation results

From these results, we conclude that with both the PLS and the PCR
approaches, we obtain an evident dimension reduction, as is necessary
for an accurate estimation of the functional parameter. In practice the
reduction in the dimension and the prediction errors are similar with
the four functional and discrete PLS and PCR approaches. Unlike other
approaches that have been considered, in the case of the FPLS
regression model, the number of components that minimizes the
IMSE is similar to the number of components selected by leave-one-out
cross validation. Therefore, FPLS regression and the CVMSE1 criterion
provide the most accurate estimation of the parameter function. This
issue is important when the aim is an accurate estimation of the
functional parameter, because it provides a measure to identify the
optimum number of components when there are non-simulated
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Fig. 9. Case II (NC). Box plots for the distribution of the number of components (NC) for the functional and discrete PLS and PCR models selected with the three considered criteria
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examples, in which the real functional parameter is unknown. If the
goal is only to predict the response, criterion CVMSE2 is preferable to
CVMSE1 because it produces similar prediction errors with fewer
components.

With respect to the discrete PLS and PCR approaches, the
prediction errors are similar to those of the functional versions but
the errors in the estimation of the functional parameter are much
larger. Observe from Figs. 7 and 12 that the difference between the
parameter functions estimated by functional and discrete approaches
is in amplitude but not in shape. This difference in amplitude may be
due to the fact that the scaling in the predictor variables in functional
and discrete models may not be equivalent. This scaling does not
affect the prediction errors, but provides a less accurate estimate of
the functional parameter.

In order to determine whether this difference is really so, we
considered a new selection model criterion based on the corrected
IMSE defined as

CIMSE(h, k) = (% I (B(t)—lcﬁh(t))zdt>]/2.

For each number of principal components h the value of k that
minimizes CIMSE(h, k) is given by

_ BB mde
IB() ' (t)de

_ Then, we select as optimum the model that minimizes CIMSE(h,
k(h)).

In order to study the accuracy of the estimations of the parameter
function given by the CIMSE criterion, it was used to select the
optimum models in each of the simulations developed in this section.
The means of the optimum estimations of the functional parameter
for the functional and discrete PLS regression models are shown in
Fig. 13. Observe that in the functional PLS models the estimation
provided by the CIMSE criterion is almost the same as that provided
by the IMSE criterion. On the other hand, an appropriate scaling of the
estimation of the functional parameter given by the discrete PLS
model provides an estimation of the functional parameter similar to
that given by the functional PLS model. In practice, this is a problem
because the functional parameter is unknown and the CIMSE criterion
cannot be used to find the proper scaling when discrete PLS is used.
Therefore, we conclude that in real-data applications, the functional
model provides a more accurate estimation of the functional
parameter. This is very important when the aim is to assess the
relationship between the predictor and the response, because the
parameter function at each moment of time gives the weight of the
predictor in the value of the response.

5. Real data applications

Finally, we test the performance of the proposed functional PLS
approach, using two chemometric data sets. In the first application,
functional PLS are used to predict the quality of biscuits (binary
classification) from the resistance curves of dough during the
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kneading process. In the second application, functional PLS is applied
to predict the quantity of fat contained in meat pieces from their
spectrometric curves.

5.1. Biscuit quality and kneading functional data

The quality of a biscuit depends essentially on the quality of the
flour used to make it. There are several kinds of flours, which are
distinguished by their composition. The manufacturer, Danone, aims
to use only flours that guarantee good product quality. Of course, one
could test each and every flour, but this would be a lengthy process.
Our idea in this analysis is to make use of a parameter observed during
the kneading process in order to predict the final quality of the biscuit
produced. For this purpose, we use the resistance (density) of the
dough, observed in a certain interval of time. In our application, for a
given flour, the resistance of dough is recorded during the first 480 s of
the kneading process. Thus, we obtain a set of curves observed at 240
equally spaced time points in the interval [0,480]. Thus, a kneading
curve is represented by the set of 241 points {(t;X(t;)),i=0,...,240}.
After kneading, the dough is processed to obtain biscuits. For each
flour, we have the quality (Y) of the biscuits, a quality that may be
Good or Bad. We now use the proposed functional PLS regression
approach to classify the biscuits as good or bad on the basis of the
dough resistance curves defined above.

For 90 different flours, we have 90 curves, which can be considered
as sample paths of an L,-continuous stochastic process, X = {X(t) :
t€[0,480]}. This sample contains 50 observations for Y= Good, and
40 for Y=Bad (left hand side in Fig. 14). Taking into account that
the resistance of dough is a smooth curve measured with error,
least squares approximation on a basis of cubic B-spline functions is
used to reconstruct the true functional form of each sample curve.
In order to compare the results with those presented in [20] the
following 16 knots {10,42,84,88,108,134,148, 200,216,284,286,
328,334,380,388,478} has been considered to define the cubic B-
spline basis. Thus, each curve x;={x;(t):t<][0,480]} is represented
by a set of 18 coefficients o ={¢; 1,..., 4 18} Which best approximates
the real curve under the least squares criterion (right hand side in
Fig. 14).

Taking into account the relation between linear discriminant
analysis and linear regression, functional PLS regression can be used
to estimate the discriminant function. To do so, the response

Y&{Good,Bad} is recoded by YE{—\/;E \/%} and functional PLS

regression of Y on a cubic B-spline approximation of the kneading
curves is performed (see [28] for a detailed explanation). The sample
of 90 flours is randomly divided into a learning sample of size 60 and a
test sample of size 30. In the test sample, the two classes have the
same number of observations. The PLS approach on cubic B-spline
expansions of sample curves was then used to regress Y on the
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Fig. 14. Kneading data: 90 flours observed for 480 s. Left: observed data. Right: smoothed data using cubic B-splines.

kneading curves. For comparison purposes, the functional PCR on the
cubic B-spline expansions was also considered.

The results were validated by randomly simulating 100 training
and test samples and by fitting the functional linear model using
the FPLS and FPCR approaches each time. For both approaches, the
number of components retained for regression was obtained by
leave-one-out cross validation with and without a threshold
(CVMSE1 and CVMSE2 with a=0.95). Table 3 shows the results for
the training samples. The average and standard deviations over 100
test samples of the mean squared errors given by the optimum
models, with both criteria, are shown in Table 4. The average of the
optimum functional parameters over the 100 training samples can be
seen in Fig. 15. 1t can again be seen that the FPLS and FPCR approaches
have a similar prediction ability. Although there are few differences,
in the case of the FPLS criterion, CVMSE1 is preferable to CVMSE2
because the dimension reduction is similar and the prediction errors
are lower.

Table 3

Kneading data. Mean and standard deviation of the number of components (NC),
CVMSE and MSE of 100 training samples for the FPLS and FPCR models selected with the
two considered criteria (CVMSE1 and CVMSE2).

FPLS FPCR
Measure Criterion Mean StDev Mean StDev
NC CVMSE1 2.32 0.469 3.03 0.502
CVMSE2 1.7 0.461 1.39 0.490
CVMSE CVMSE1 0.547 0.033 0.547 0.034
CVMSE2 0.560 0.043 0.585 0.044
MSE CVMSE1 0.512 0.033 0.519 0.033
CVMSE2 0.534 0.046 0.567 0.045

Finally, in order to compare the proposed functional PLS approach
with the functional linear discriminant PLS approach (FLD-PLS)
developed in [28] to predict biscuit quality, we estimated the error
rates by using both selection model criteria. The results in Table 5
show that the estimation of FPLS and FPCR in terms of the B-spline
basis provides a considerable reduction in the classification error.

5.2. Spectrometric data

The spectrometric data analyzed in this paper consist of curves of
spectrometry (absorbance measured in terms of wavelength) of fine
chopped meat pieces. These data were recently used by [14], who
proposed a nonparametric functional data analysis approach to
predict the percentage of fat contained in these pieces of meat. The
data can be downloaded from http://lib.stat.cmu.edu/datasets/tecator
and consist of 215 pieces of finely chopped meat in which the
spectrometric curve (absorbance measured at 100 wavelengths) was
measured {x;= (x;(A1),...,Xi(A100)):i=1,...,215}. The fat content y;
was obtained by analytical chemical processing. Our aim in this

Table 4

Kneading data. Mean and standard deviation of the MSE of 100 test samples for the PLS
and PCR models with the optimum number of components selected with the two
considered criteria (CVMSE1 and CVMSE2).

FPLS FPCR
Criterion Mean StDev Mean StDev
CVMSE1 0.516 0.082 0.510 0.086
CVMSE2 0.536 0.081 0.559 0.076
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Fig. 15. Kneading data. Average of the optimum functional parameters (solid line) together with 4 2 times the standard deviation (broken line) estimated by using the CVMSE1 and

CVMSE2 criteria with the FPLS and FPCR approaches.

example is to predict the fat content from the spectrometry curves by
using PLS functional linear regression onto a basis expansion of the
spectrometric curves.

The spectrometric curves have been smoothed by using basis
expansion methods on cubic B-spline functions (see Fig. 16 (a)). To do
so, the wavelengths {850.00, 854.04, 858.08, 862.12, 864.14, 8382.32,
888.38, 890.40, 902.53,908.59,910.61, 918.69, 924.75, 926.77,942.93,
944.95, 948.99, 991.41, 1001.52, 1017.68, 1035.86, 1050.00 } are
considered to define the cubic B-splines. In the first attempt at fitting
the functional linear model by means of the multiple model (6), we
found high multicollinearity (see correlations between columns of AP
matrix in Fig. 16(b)). This problem was resolved by using functional
PLS regression onto a basis expansion and comparing the results with
those obtained by functional PCR on the same basis expansion.

As in the kneading data example, we considered training and test
samples of sizes 160 and 55 respectively, and this time repeated the
random selection of these samples 150 times. As in the previous
example, the functional PLSR and PCR approaches to cubic B-spline
expansions of sample curves were used to regress Y on the training
curves. On the one hand, it can be appreciated that the dimension
reduction with CVMSE2 is much greater than with CVMSE1. On the
other hand, the number of components used in PLSR is much larger
than in PCR, but the leave-one-out mean squared errors and the
classical mean squared errors of prediction are significantly higher
when PCR rather than PLSR is used. Therefore, it is better to achieve

lower mean squared errors in the prediction even though more
components are used in the model (PLSR and CVMSET1). Table 6 shows
these results. The average and standard deviation over 150 test
samples of the mean squared errors given by the optimum models
with both criteria are shown in Table 7.

Finally, in order to compare the proposed methods with those of
[14], we applied the model to classify spectrometric curves in two
groups. One was composed of the observations with less than 20% fat
and the other of observations with at least 20% fat. The percentage of
misclassifications on the test samples was computed for the FPLS
regression models selected with both criteria, CVMSE1 and CVMSE2,
and is shown in Table 8. The distribution of the error rate averaged
over 150 test samples is similar to that produced by the nonpara-
metric approach proposed in [14]. However, the error rate arising
from the FPCR approach is much higher with both criteria, and
especially with the second (CVMSE2) (Fig. 17).

Table 5
Kneading data. Misclassification rate averaged over 100 test samples.
FPLS FPCR
CVMSE1 0.071 0.078
CVMSE2 0.071 0.065
FLD-PLS (Preda et al., 2007) 0.112 0.142
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Fig. 16. Spectrometric data. (a) Sample of N=215 pieces of fine chopped meat. (b) Box and Whisker plot of correlation between columns of A®> matrix in spectrometric data.

Table 6

Spectrometric data. Mean and standard deviation of the number of components (NC),
CVMSE and MSE of 150 training samples for the FPLS and FPCR models selected with the
two considered criteria (CVMSE1 and CVMSE2).

FPLS FPCR
Measure Criterion Mean StDev Mean StDev
NC CVMSE1 12.207 3.536 5.507 2.830
CVMSE2 5 0 1 0
CVMSE CVMSE1 2.560 0.295 5.243 3.744
CVMSE2 3.198 0.098 11.511 0.287
MSE CVMSE1 2.230 0.340 5.060 3.779
CVMSE2 3.011 0.093 11.386 0.284
Table 7

Spectrometric data. Mean and standard deviation of the MSE of the 150 test samples for
the PLS and PCR models with the optimum number of components selected with the
two considered criteria (CVMSET and CVMSE2).

FPLS FPCR
Criterion Mean StDev Mean StDev
CVMSE1 2.673 0.467 5.248 3.6779
CVMSE2 3.167 0.380 11.412 0.989

6. Conclusions

There are many chemical applications such as spectroscopy where
the objective is to account for a scalar response from a functional
variable (the spectrum) whose observations are functions of
wavelengths. In the majority of applications, this problem is solved
by considering the spectrum as a vector whose values are the
observations of the curve at a set of points. Multivariate data analysis
techniques such as PCR and PLS are then used to solve the regression
problem.

Taking into account the functional form of data, in this paper we
have proposed a new estimation procedure for functional PLS
regression based on a basis expansion of the sample curves. This

Table 8
Spectrometric data. Error rate averaged over 150 test samples.
FPLS FPCR
Mean Sdev Mean Sdev
CVMSE1 0.0268 0.02111 0.1000 0.1378
CVMSE2 0.0225 0.0189 0.3108 0.0577

approach reduces the functional PLS to the multivariate PLS of the
response on a transformation of the matrix of sample path basis
coefficients. Various leave-one-out cross-validation procedures have
been considered in selecting the number of PLS components. The
capability of these procedures to provide an accurate estimation of
the parameter function and to forecast the response were tested in
different simulation studies. Two applications using real chemometric
data sets were also performed, demonstrating the good performance
of the proposed methodology. With both simulated and real data, the
results were compared with functional PCR on a basis expansion of
sample curves and classical PLS and PCR on the discrete values of
sample paths.

From these case studies, we can conclude that FPLS provides better
estimations of the parameter function than do FPCR and similar
predictions. As regards the comparison with the PLS and PCR discrete
models, it has been shown that the predictive ability of discrete and
functional models is almost the same. However, the ability of discrete
approaches to provide an accurate estimation of the functional
parameter is much lower in practice than that of functional
approaches. In addition, the best model selection method is cross-
validation without threshold because this provides an accurate
estimation of the parameter function, very similar to that obtained
by minimizing the IMSE. However, if the aim is only to predict the
response, cross-validation with threshold is also a good choice
because it provides a greater degree of dimension reduction, and
the increase in errors is not excessive compared to the others.

These results corroborate other comparisons between PLS and PCR
that have been carried out using chemometric data ([37]). Most such
studies have concluded that PLS almost always requires fewer latent
variables than PCR, and that there are no significant differences in the
prediction errors reported by PLS and PCR. However, the present
paper shows that in the functional case the parameter function
estimated with PLS is much more accurate than with PCR. It also
highlights the necessity for functional data analysis to accurately
estimate the parameter function.
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