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Abstract We develop a template method for the measure-
ment of the polarisation of t t̄ pairs produced in hadron colli-
sions. The method would allow to extract the individual frac-
tions of tL t̄L , tR t̄R , tL t̄R and tR t̄L pairs with a fit to data, where
L , R refer to the polarisation along any axis. These polari-
sation fractions have not been independently measured at
present. Secondarily, the method also provides the net polar-
isation of t and t̄ , as well as their spin correlation for arbitrary
axes.

1 Introduction

The measurement of the top quark properties started shortly
after its discovery at the Tevatron [1,2]. The high statis-
tics achieved at the Large Hadron Collider (LHC) has pro-
vided us with a huge dataset of single (anti-)top and t t̄ pairs,
which can be exploited for precision measurements in the
search for any departure from the predictions of the Standard
Model (SM). And this will be even more the case at the high-
luminosity upgrade (HL-LHC). With such large statistics, the
main source of uncertainties in the comparison between the-
ory and experiment are the experimental systematic uncer-
tainties, as well as theoretical uncertainties due to higher-
order corrections in perturbation theory [3]. The latter are
currently being reduced by two-loop calculations; the for-
mer may be reduced, not only with a better knowledge of the
detectors, but also with alternative methods to perform the
measurements.

The purpose of this paper is to demonstrate the feasibil-
ity of a template method to measure the polarisation of the
t t̄ pairs produced at the LHC, namely the relative fractions
aLL , aRR , aLR , aRL , corresponding to the production of tL t̄L ,
tR t̄R , tL t̄R , and tR t̄L , where the R, L subscripts refer to the

polarisation along a given axis (not necessarily the helicity).
For this feasibility study we use the dilepton decay channel
of the t t̄ pair, t t̄ → �+νb �−νb̄, where the background is
relatively small, especially if one restricts the selection to
events where the charged leptons have different flavor and
requires a b-tagged jet. Notice that, at present, only the t and
t̄ polarisations, as well as the t t̄ spin correlation, which are
linear combinations of the aXX ′ (with X, X ′ = L , R), have
been measured. The template method here proposed allows
for an independent determination of these quantities, which
could also allow to test for P- and CP-violating effects.

As it will be detailed in Sect. 2, the template method relies
on generating samples corresponding to the four above polar-
isation combinations and extracting the coefficients aXX ′
from a fit to the measured distribution. Once the effect of
hadronisation, detector resolution, kinematical reconstruc-
tion of the t and t̄ momenta, and phase space cuts are suitably
incorporated (details are discussed in Sect. 3), the parton-
level coefficients aXX ′ can be extracted by a fit of the mea-
sured sample to a combination of the simulated templates.
Detailed results are presented in Sects. 4 and 5, and Sect. 6
is devoted to a brief discussion of our results.

2 The template method

The template method is based on the expansion of the t t̄ cross
section, which can be written as

σ = σRR + σLL + σRL + σLR , (1)

where R, L refer to the polarisations of the top quark and
anti-quark along some direction, which does not need to be
the same for both particles. Although quantum interference
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effects do exist between polarisation states, this expansion
can be promoted to the differential level as long as one does
not consider distributions sensitive to that interference [4,5].
In particular, to disentangle the different polarisation contri-
butions one can consider, for each decaying quark, the angle
θ� between the charged lepton � = e, μ in the top rest frame
and the top spin direction, which follows the well-known
distribution

1

σ

dσ

d cos θ�

= 1

2
(1 + κ� cos θ�) , (2)

withκ�+ = −κ�− = 1 in the SM at leading order (LO). (Next-
to-leading order (NLO) corrections are at the permille level
[6].) Let us define the short-hand notation z1 ≡ cos θ�+ , z2 ≡
cos θ�− . Integrating out the rest of kinematical variables, and
defining for convenience

f (z1, z2) = 1

σ

dσ

dz1dz2
,

fX X ′(z1, z2) = 1

σXX ′
dσXX ′

dz1dz2
, (3)

the normalised doubly-differential distribution can be
expanded, at the parton level, as

f (z1, z2) =
∑

XX ′
aXX ′ fX X ′(z1, z2) , (4)

with aXX ′ = σXX ′/σ the coefficients we want to determine,
which obey the normalisation condition

∑

XX ′
aXX ′ = 1 (5)

from their definition. We remark that it is precisely the inte-
gration over lepton azimuthal angles φ�+ , φ�− in the top (anti-
)quark rest frame that cancels interference terms, ensuring
the validity of the expansion (4). Phase-space cuts differ-
ently affect the various polarisation contributions, and one
can write

dσ̄

dz1dz2
=

∑

X,X ′

dσ̄XX ′

dz1dz2
+ . . . , (6)

with the bar denoting the quantities after cuts and the dots
standing for interference terms, which do not identically can-
cel due to phase space cuts. Note however that with mild
cuts on transverse momenta and pseudo-rapidities, the inter-
ference effects are still unimportant. Defining the overall
efficiencies ε = σ̄ /σ , εXX ′ = σ̄XX ′/σXX ′ and f̄ (z1, z2),
f̄ X X ′(z1, z2) in analogy to (3), it follows that

ε f̄ (z1, z2) =
∑

XX ′
aXX ′εXX ′ f̄ X X ′(z1, z2)+	int(z1, z2) , (7)

with a (small) interference term 	int. Detector resolution and
reconstruction effects make this term relevant for an accu-
rate determination of aXX ′ . The reason is that, if the angles
θ�+ and θ�− are not well determined, the mismatch in the
reconstruction of these angles further prevents the cancella-
tion of the interference terms by integration over φ�+ and
φ�− . The effect can be taken into account by including a
residual interference term 	int in the expansion, which in
first approximation can be evaluated in the SM using Monte
Carlo simulation.1 Summarising, the effects of the detector
simulation and reconstruction are encoded in

(i) Different efficiencies for the different polarisation com-
ponents, as well as for the inclusive sample. In an actual
measurement, they must be calculated with Monte Carlo
simulation.

(ii) Different functions f̄ (z1, z2) and f̄ X X ′(z1, z2). The latter
are the templates generated with Monte Carlo simulation,
while the former is measured in data to extract the polar-
isation components aXX ′ .

(iii) A correction 	int that corrects the linear combination of
templates for residual interference effects, and is deter-
mined from Monte Carlo, in principle assuming the SM.

To conclude this section, let us mention that the determina-
tion of the aXX ′ with a fit to the binned f̄ (z1, z2) distribu-
tion is more precise if the event selection cuts on transverse
momenta (pT ) of the charged leptons and b quarks are not
very stringent – otherwise the differences between the tem-
plates are partly washed out. We have performed a simple
test by considering the templates for different helicity com-
binations without any hadronisation and detector simulation,
but with kinematical cuts on pT . The difference between two
functions f (z1, z2), g(z1, z2) can be measured by the quan-
tity

ρ( f, g) = || f − g||2
|| f || ||g|| , (8)

with the usual norm || f ||2 = ∫ | f (z1, z2)|2 dz1dz2.2 The
distances between templates, evaluated using a 20 × 20 grid
for the binning of the distributions, are collected in Table 1
for several choices of parton-level cuts. The effect of a lower
cut on the b quark pT is minimal, while the cut on lepton pT

1 Should data be incompatible with the SM, the term 	int could also be
calculated in an iterative process. However, as we will find in Sect. 5,
the SM evaluation of 	int works well even to extract the polarisation
parameters in a non-SM sample where we introduce a top chromomag-
netic dipole moment that yields t t̄ spin correlations incompatible with
current measurements.
2 Note that the templates defined as in (3) are normalised in the sense∫

f (z1, z2)dz1dz2 = 1.
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Table 1 Normalised distance between the templates for different helic-
ity combinations at the parton level, without kinematical cuts and with
cuts on the transverse momenta of the charged lepton and b quark (trans-
verse momenta are in GeV)

No cut p�
T ≥ 30 p�,b

T ≥ 30 p�(b)
T ≥ 50(30)

ρ( fLL , fRR) 1.5 1.29 1.29 1.15

ρ( fLL , fLR) 1 0.80 0.79 0.73

ρ( fLL , fRL ) 1 0.85 0.83 0.71

ρ( fRR, fLR) 1 0.80 0.79 0.73

ρ( fRR, fRL ) 1 0.85 0.83 0.71

ρ( fLR, fRL ) 1.5 1.34 1.31 1.23

erases some of the difference between polarisation combina-
tions.

3 t t̄ simulation and reconstruction

The event samples with definite polarisation are generated
using Protos [7], using the HELAS [8] implementation of
polarisation projectors discussed in Ref. [5]. As a basis for
the spins we use the one introduced in Ref. [9]. For the top
quark:

• K-axis (helicity): k̂t is a normalised (unit modulus) vector
in the direction of the top quark three-momentum in the
t t̄ rest frame.

• R-axis: r̂t is in the production plane and defined as r̂t =
sign(yp)( p̂p − ypk̂t )/rp, with p̂p = (0, 0, 1) the direc-
tion of one proton in the laboratory frame, yp = k̂t · p̂p,
rp = (1 − y2

p)
1/2. Note that the r̂t is the same if we use

for the definition the direction of the other proton − p̂p.
• N-axis: n̂t is orthogonal to the production plane and

defined as n̂t = sign(yp)( p̂p × k̂t )/rp, which again is
independent of the proton choice.

For the anti-quark the axes are k̂t̄ = −k̂t , r̂t̄ = −r̂t , n̂t̄ =
−n̂t .

For the sake of brevity, in this paper we restrict ourselves
to templates with the same spin axis for the top quark and
antiquark (that is, for both we consider either K, R or N). Spin
correlations with mixed directions can be studied and have
been experimentally measured [10–12]. For each set of axes
(KK, RR, NN) for the top quark and anti-quark, we generate
with Protos four event samples

tR t̄R , tL t̄L , tR t̄L , tL t̄R ,

where R and L refer to the spin along the chosen axis. Each
sample has 1.5×106 events, totalling 18 million events. The

LO NNPDF 2.1 [13] parton distribution functions (PFDs) are
used, with fixed factorisation scale Q = mt .

A SM t t̄ sample with 1.5×106 events, as well as a non-SM
sample of the same size but with a large top chromomagnetic
dipole moment (CMDM) dV = 0.036, are generated with
MadGraph at the LO. In this case we use NNPDF 2.3 [14]
PDFs and dynamic factorisation scale Q = (m2

t + p2
T )1/2/2.

The CMDM is introduced as an interaction

L = − gs
mt

t̄σμν(dV + idAγ5)
λa

2
tGμν

a , (9)

in standard notation with gs the strong coupling constant,
λa the Gell-Mann matrices and Gμν

a the gluon field strength
tensor. A possible chromoelectric dipole moment dA is set
to zero. The Lagrangian is implemented in Feynrules [15]
and interfaced to MadGraph5 using the universal Feynrules
output [16].

Hadronisation and parton showering is performed with
Pythia 8 [17] and detector simulation with Delphes 3.4
[18] using the configuration for the CMS detector. The recon-
struction of jets and the analysis of their substructure is done
using FastJet [19]. Jets are reconstructed using the anti-kT
algorithm [20] with a radius R = 0.4.

Events are required to have two isolated charged leptons
(electrons or muons) with pseudo-rapidity |η| ≤ 2.4, the
leading one with pT ≥ 25 GeV and the sub-leading one pT ≥
20 GeV. Jets are required to have |η|<2.4 and pT ≥30 GeV.
We apply two different reconstruction methods, which we
summarise in turn.

3.1 Reconstruction method I

In this method, a scan is performed over the four-momenta
of the undetected neutrinos, assuming that the missing trans-
verse energy �ET is originated by these undetected particles,
that is,

( �ET )x = (pν1)x + (pν2)x ,

( �ET )y = (pν1)y + (pν2)y . (10)

In total, there are four unknowns to scan over, for example,
(pν1)x , (pν1)y , (pν1)z and (pν2)z . The momenta of the top
quarks and W bosons are reconstructed as

pW+ = pl+ + pν1 ,

pW− = pl− + pν2 ,

pt = pl+ + pν1 + pb1 ,

pt̄ = pl− + pν2 + pb2 , (11)

with the different four-momenta correspond to the leptons,
neutrinos and b-quarks in the final state. The transverse
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momentum of the top quark (pTt ) is expected to compen-
sate the anti-top quark transverse momentum (pTt̄ ). A global
χ2 is defined for each event according to

χ2 = (mrec
t − mt )

2

�2
t

+ (mrec
t̄ − mt̄ )

2

�2
t̄

+ (mrec
W+ − mW )2

�2
W+

+ (mrec
W− − mW )2

�2
W−

+ (pTt − pTt̄ )2

(σ T
p )2 , (12)

where mW = 80.4 GeV, mt = 173 GeV, �t,t̄ = 11.5 GeV,
�W± = 7.5 GeV and σ T

p = 20 GeV, represent typical exper-
imental resolutions for the reconstructed width of the top
quarks and W bosons, and top quark transverse momentum,
respectively. Ultimately, these numbers can also be viewed
as weighting factors of the global χ2, giving different impor-
tance to its individual terms. In order to find the best solution
for each event i.e. the minimum value for the χ2, performing
a loop over all the available jets and leptons to find the best
combination among that minimises the global χ2, as is usu-
ally done at the LHC. The normalised distributions for the χ2,
the top quark mass and the W+ boson mass, are represented
in Fig. 1 after reconstruction and for the best solution found.
For the top anti-quark and the W− boson the distributions
are similar.

A loose selection is applied to events, requiring χ2 < 10
and the reconstructed top quark mass not to exceed 190 GeV.
In measurements in the dilepton decay mode, the ATLAS and
CMS Collaborations require the presence of at least one b-
tagged jet to reduce the backgrounds. In our work, requiring
one b tag would not affect the reconstruction procedure, nor
the kinematics, and would only decrease the sample by a
factor around 0.8. As our goal is the test of the template
method, we prefer to keep the full Monte Carlo statistics and
therefore do not require a b tag.

3.2 Reconstruction method II

This reconstruction method has been proposed and used by
the ATLAS collaboration [12] to measure top quark pair spin
correlations in the dilepton channel, and it is based in the
Neutrino Weighting method [21]. We use this reconstruction
as a cross-check with reconstruction method I.

The four-momenta of the top quark and antiquark in each
event can be reconstructed from the measured leptons, jets
and missing transverse momentum. Since the four-momenta
of the two neutrinos in the final state are not directly mea-
sured in the detector, the four-momenta of the top quark and
antiquark cannot be reconstructed analytically. However, we
can apply the invariant mass constraints

(p�+ + pν)
2 = m2

W ,

(p�− + pν̄ )
2 = m2

W ,

(p�+ + pν + pb)
2 = m2

t ,

(p�− + pν̄ + pb̄)
2 = m2

t . (13)

To the above four equations, we can add the following two
describing the neutrino pseudorapidities:

ην = arctanh

⎛

⎝ pzν√
(pxν )2 + (pyν )2 + (pzν)2

⎞

⎠ ,

ην̄ = arctanh

⎛

⎝ pzν̄√
(pxν̄ )2 + (pyν̄ )2 + (pzν̄ )

2

⎞

⎠ , (14)

and scan over the parameters ην and ην̄ to solve the system
of six equations for the neutrino four-momenta. The values
of the pseudorapidities are scanned in the range [−4.2, 4.2]
in steps of 0.2.

For each pair of pseudorapidities, the system of equations
cannot always be solved. This can be a consequence of mul-
tiple effects, such as an incorrect choice of values for ην and
ην̄ , a wrong choice of the b jets or detector distortions on
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Fig. 1 The χ2 (left), top quark mass (centre) and W boson mass (right) normalised distributions are represented, after reconstruction
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the four-momenta of the measured particles. Furthermore,
the top quarks are assumed to be produced with a mass
mt = 173 GeV, which is not always the case. In order to
mitigate these effects, the top quark mass mt is scanned in
the range [172, 174] GeV in steps of 1 GeV. Furthermore,
solutions are derived for the two possible assignments of the
b jets. For each assignment, a Gaussian smearing is applied
to the measured pT of each jet using a width of 13% of the
measured value.

For each of these combinations, the system of equations is
solved to obtain two possible solutions for the four-momenta
of the neutrinos. Solutions that have an imaginary component
or a negative value for the energies of any of the neutrinos
or top quarks are discarded. For the remaining solutions, the
optimal reconstruction is defined as the one that maximises
the weight:

w = exp

(
−	E2

x

2σ 2
x

− 	E2
y

2σ 2
y

)
, (15)

where 	Ex,y is the difference between the measured miss-
ing energy in the event and the reconstructed missing energy
using the four-momenta of the reconstructed neutrinos. The
parameter σx,y is a fixed scale associated to the energy reso-
lution in the measurement of the missing energy in the event
[22].

This reconstruction procedure is applied to events with
exactly two jets. In this case, the efficiency in the reconstruc-
tion of the t t̄ events is of 90%. A selection cut on the weight
can be applied to increase the quality of the reconstructed
events.

4 Fit and linearity tests

Both reconstruction methods give similar results, and from
now on we focus on method I. The efficiencies (defined
as the number of events that pass the selection and recon-
struction criteria, divided by the total number of events), are
shown in Table 2, for the samples used in this work. The
two-dimensional templates with definite t and t̄ polarisation,
after selection and reconstruction, are shown in Fig. 2. These
are used to obtain the optimal fit of the SM and CMDM sam-
ples, taking (7) as fitting function and applying the MIGRAD
optimisation algorithm of the MINUIT package [23], imple-
mented in ROOT.

Several tests are applied, described in what follows, to
understand the performance of the template fit procedure. All
tests use 2000 pseudo-experiments built from Poisson fluctu-
ations of the bin entries in the two-dimensional distributions,
allowing to build pull distributions for the correlation coeffi-
cients. For these pseudo-experiments a reference luminosity

Table 2 Efficiencies for the samples and templates considered in this
work. An uncertainty better than 0.001 is evaluated, for all efficiencies

Sample ε

SM 0.174

CMDM 0.174

Template ε

K-axis R-axis N-axis

LL 0.177 0.175 0.178

RR 0.178 0.176 0.178

LR 0.160 0.188 0.171

RL 0.182 0.161 0.171

of 36.1 fb−1 is used, to have an estimation of the statistical
uncertainties in possible measurements at the LHC.

In order to test the convergence of the fit we build, for the
K, R and N sets of axes, two-dimensional distributions using
mixtures of pure LL , RR, RL and LR templates (after event
selection and reconstruction), and study the output of the fit
for the correlation parameters aLL , aRR , aRL and aLR . In this
case there is no interference correction, by construction. For
simplicity, we choose aLL = aRR and aRL = aLR ranging
from 0 to 0.5, with a 0.1 step size. In Fig. 3 the linearity tests
are shown for the different correlations parameters and the
three sets of axes. Good correlations are observed between
input and fitted values.

5 Extracting t t̄ polarisations

Here we investigate the extraction of the polarisation param-
eters in the SM as well as in the CMDM samples. For illus-
tration, we show in Fig. 4 the normalised two-dimensional
distributions for the SM sample, using the three sets of axes.

As discussed in Sect. 2, a residual interference correction
	int may arise from imperfect reconstruction of the lepton
angles, which makes the interference between polarisation
states non-negligible. When comparing theory with data, it
has to be taken into account. By subtracting the SM true two-
dimensional distribution (after simulation and reconstruc-
tion) from the distribution obtained with a SM-like mixture
of LL , RR, LR and RL distributions, weighted with cor-
responding polarisation coefficients, we can determine the
corrections, which are shown in Fig. 5. For the computa-
tion of this correction one third of the SM sample is used,
corresponding to around 105 events. (These events are not
used in the subsequent fit.) The inclusion of this term allows
to perform the desired template fit, using (7) to extract the
polarisation coefficients aXX ′ , not only in the SM sample but
also in presence of a large CMDM.
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The values of the polarisation coefficients are obtained by
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the binned two-dimensional distributions are allowed to fluc-
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of 36.1 fb−1. In each pseudo-experiment Eq. (7) is used to
obtain the coefficients with a fit. Results are summarised in
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Table 3 Theory predictions and best-fit values for various polarisation coefficients in the SM and CMDM data samples. For the theory predictions,
the quoted uncertainty corresponds to the Monte Carlo statistical uncertainty

K SM CMDM

Prediction Fit Prediction Fit

aLL 0.335 ± 0.001 0.337 ± 0.006 0.349 ± 0.001 0.350 ± 0.006
aRR 0.336 ± 0.003 0.330 ± 0.005 0.349 ± 0.001 0.339 ± 0.005
aLR 0.165 ± 0.003 0.167 ± 0.007 0.151 ± 0.001 0.175 ± 0.007
aRL 0.165 ± 0.002 0.160 ± 0.004 0.151 ± 0.001 0.131 ± 0.004
Ckk 0.340 ± 0.002 0.340 ± 0.019 0.394 ± 0.004 0.383 ± 0.019
Pt 0.001 ± 0.002 −0.014 ± 0.008 0.000 ± 0.001 −0.058 ± 0.008
Pt̄ 0.001 ± 0.002 0.000 ± 0.008 0.001 ± 0.002 0.033 ± 0.008

R SM CMDM

Prediction Fit Prediction Fit

aLL 0.258 ± 0.001 0.254 ± 0.006 0.290 ± 0.002 0.291 ± 0.006
aRR 0.259 ± 0.002 0.264 ± 0.006 0.289 ± 0.002 0.290 ± 0.006
aLR 0.242 ± 0.001 0.236 ± 0.006 0.210 ± 0.001 0.210 ± 0.006
aRL 0.241 ± 0.002 0.241 ± 0.006 0.211 ± 0.001 0.201 ± 0.006
Crr 0.036 ± 0.002 0.041 ± 0.019 0.159 ± 0.002 0.170 ± 0.019
Pt 0.0004 ± 0.0005 0.015 ± 0.010 −0.001 ± 0.004 −0.011 ± 0.010
Pt̄ 0.002 ± 0.002 0.006 ± 0.010 −0.001 ± 0.003 0.008 ± 0.009

N SM CMDM

Prediction Fit Prediction Fit

aLL 0.333 ± 0.001 0.329 ± 0.004 0.358 ± 0.001 0.363 ± 0.004
aRR 0.334 ± 0.002 0.329 ± 0.004 0.358 ± 0.001 0.352 ± 0.004
aLR 0.166 ± 0.001 0.164 ± 0.004 0.142 ± 0.0003 0.138 ± 0.004
aRL 0.167 ± 0.002 0.169 ± 0.004 0.142 ± 0.001 0.136 ± 0.004
Cnn 0.336 ± 0.002 0.325 ± 0.010 0.433 ± 0.002 0.442 ± 0.010
Pt 0.002 ± 0.001 0.005 ± 0.009 −0.001 ± 0.002 −0.014 ± 0.009
Pt̄ 0.000 ± 0.002 −0.005 ± 0.008 0.000 ± 0.001 −0.009 ± 0.009

Table 3, together with the predictions directly calculated from
the SM and CMDM Monte Carlo samples, at parton level.
The spin correlation coefficients

C = aLL + aRR − aLR − aRL (16)

and t , t̄ polarisations

Pt = aRR + aRL − aLR − aLL ,

Pt̄ = aRR + aLR − aRL − aLL , (17)

are also included for completeness, for the three sets of axes.
The spin correlation coefficients and polarisations are calcu-
lated from the polarisation coefficients aXX ′ in each pseudo-
experiment.

The fit results presented in Table 3 correspond to the mean
and standard deviation of the distribution obtained with the
2000 pseudo-experiments. This ‘fit’ statistical uncertainty
represents the statistical uncertainty that would be expected
in a measurement with L = 36.1 fb−1. It is independent of

the Monte Carlo statistical uncertainty in the samples, which
have around 2 × 105 events.

Both in the SM and CMDM samples the quantities
extracted from the fit are close to the parton-level predictions,
extracted directly from the LO event sets. Remarkably, this
is also the case for the CMDM sample for which the 	int cor-
rection is evaluated within the SM. (We have also checked the
evaluation with the CMDM sample itself and the results are
compatible.) The small shifts observed inaLR andaRL for the
K axis seem to have a statistical origin. We remark that this
benchmark has large deviations in the spin correlation coef-
ficients, which make it experimentally excluded [24]. The
point of having this benchmark point is precisely to test the
robustness of the method for large deviations. Therefore, the
evaluation of 	int in the SM seems to have a quite wide range
of validity. Overall, the results in Table 3 show that already
with existing data the measurements of aXX ′ are promising.

6 Discussion

The template method for the measurement of the polarisa-
tion fractions aXX ′ offers an alternative to existing methods
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[11,12] which, in addition of the t and t̄ net polarisation and
spin correlation coefficients, allows for individual measure-
ments of the aXX ′ coefficients. Using a fast simulation we
have shown that the measurements are feasible, and the fit to
the templates accurately recovers the parton-level values for
aXX ′ . Our results demonstrate that the template method could
already be used by the ATLAS and CMS Collaborations with
existing data.

We have not addressed systematic uncertainties which
necessarily have to be studied within the context of an experi-
mental analysis. We have estimated the statistical uncertainty
in the measurements, using pseudo-experiments in which
the different distributions are subject to random fluctuations
using Poisson distributions. Systematic uncertainties can eas-
ily be incorporated into the pseudo-experiments, by changing
parameters such as energy scales.

The template method seems quite robust. The imperfect
reconstruction of t and t̄ momenta, which generates resid-
ual interference corrections, can easily be taken into account
by generating a SM sample and comparing with a SM-like
combination of templates without interference. (In the limit
of perfect reconstruction, this correction vanishes as shown in
Sect. 2.) This small correction 	int can be calculated within
the SM, and we have found that it can also be used to extract
the aXX ′ coefficients in a sample with a large top CMDM, in
which the deviations in the spin correlations are sizable, so
as to have this benchmark experimentally excluded.

The template method is based on the generation of t t̄
samples with definite polarisation. Higher-order corrections
affect very weakly the lepton angular distributions, which are
the ones that we use to extract the aXX ′ coefficients. They
also modify the t t̄ kinematics, and hence the acceptance.
Although a generation of templates at NLO is desirable, a
kinematical reweighting of LO samples may be sufficient.
We encourage the ATLAS and CMS Collaborations to fur-
ther investigate the feasibility of the measurements using the
template method.
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