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Abstract
The methodological contribution in this paper is motivated by biomechanical studies
where data characterizing human movement are waveform curves representing joint
measures such asflexion angles, velocity, acceleration, and soon. Inmanycases the aim
consists of detecting differences in gait patterns when several independent samples of
subjects walk or run under different conditions (repeatedmeasures). Classic kinematic
studies often analyse discrete summaries of the sample curves discarding important
information and providing biased results. As the sample data are obviously curves,
a Functional Data Analysis approach is proposed to solve the problem of testing the
equality of the mean curves of a functional variable observed on several independent
groups under different treatments or time periods. A novel approach for Functional
Analysis of Variance (FANOVA) for repeated measures that takes into account the
complete curves is introduced. By assuming a basis expansion for each sample curve,
two-way FANOVA problem is reduced to Multivariate ANOVA for the multivariate
response of basis coefficients. Then, two different approaches for MANOVA with
repeatedmeasures are considered. Besides, an extensive simulation study is developed
to check their performance. Finally, two applications with gait data are developed.
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1 Introduction

The well-known Analysis of Variance (ANOVA) methodology aims at comparing
more than two groups and/or treatments with respect to a scalar response variable.
This comparison is based on the total variability decomposition of an experiment in
independent components that are attributed to different reasons. In general terms, it
determines if the discrepancy between the averages of the treatments is greater than
what would be expected within the treatments. Thus, ANOVA can be seen as the
natural extension of two-sample classical statistical tests to the case of more than two
populations. From its formulation, ANOVA has been constantly object of study to
adapt it for different scenarios: single or multiple factors, parametric-non parametric
cases, repeated measures frameworks or longitudinal data, among others. The more
complex problem of testing the equality of a large number of populations has been
recently studied in Jiménez-Gamero et al. (2022). Motivated by biomechanical studies
where the aim is to test the differences between the means of the human movement
curves observed on independent samples of subjects under different treatments, the
current manuscript is focused on addressing this tool from a Functional Data Analysis
(FDA) perspective.

FDA is a branch of statistics devoted to analyzing the information of functions
(usually curves) that evolve over time, space or another continuous argument. FDA
is able to explore the curves in all the domain. This fact avoids the loss of important
information usually produced when functional data are analysed through multivariate
approaches from discrete measures. The great computational advances experimented
by technology in last years make possible to model the complete curve and retain its
main features. Key text books in FDA and related topics offer a broad vision of the
most general methodologies, applications and computational aspects of this field, see
e.g. Ramsay and Silverman (2002, 2005); Ramsay et al. (2009); Ferraty and Vieu
(2006); Horvath and Kokoszka (2012). The majority of the classical multivariate sta-
tistical techniques have been extended for functional data: principal and independent
component analysis (Aguilera and Aguilera-Morillo 2013; Jacques and Preda 2014b;
Acal et al. 2020; Vidal et al. 2021), canonical correlation (Krzysko and Waszak 2013;
Keser and Kocakoç 2015), clustering (Jacques and Preda 2014a; Fortuna et al. 2018;
Sharp and Browne 2021; Alvarez-Esteban and Garcia-Escudero 2021) and discrimi-
nant analysis (Araki et al. 2009; Aguilera-Morillo and Aguilera 2020), among other
recent papers. ANOVA problem for functional data (FANOVA) has also been con-
sidered in the literature. There are available different parametric (Cuevas et al. 2004;
Cuesta-Albertos and Febrero-Bande 2010) and non-parametric (Delicado 2007; Hall
and Van Keilegom 2007; Jiménez-Gamero and Franco-Pereira 2021) approaches to
tackle the traditionalm-sample problem. A deep review of the most important aspects
for FANOVA problem is developed in the book by Zhang (2014). An interesting com-
parison of multiple tests based on the idea of B-spline tests (Shen and Faraway 2004)
can be seen in Górecki and Smaga (2015). More recently, a novel approach based on
functional principal component analysis was introduced in Aguilera et al. (2021a).
The purpose is to reduce the dimension of the problem and conduct a multivariate
ANOVA on the vector of the most explicative principal component scores. Addition-
ally, several authors have also focused their efforts on providing some tools to deal
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Functional analysis of variance with repeated measures

with the multivariate ANOVA problem for functional data (Górecki and Smaga 2017;
Acal et al. 2021).

Despite its noticeable interest in applications with real data, the repeated mea-
sures setting for functional data (FANOVA-RM) is barely considered. This theoretical
framework deals with the situation where a functional response variable is observed
under different conditions (also called treatments) or time periods for each subject.
The most of the works available in the literature only concerns the paired sample
layout. The first statistic to solve this problem was introduced by Martínez-Camblor
and Corral (2011). This statistic is given by the integral of the difference between
the sample mean functions, whose null distribution was approximated by considering
multiple bootstrap and permutation methods. Additionally, Smaga (2019) developed
a new way to approximate the distribution of the same statistic by means of Box-type
approximation. The performance of these approximations was very similar in relation
to the sample size and power, but the Box-type approximation proved to be faster from
a computational viewpoint. However, this statistic only takes into account the between
group variability. In order to solve the lack of information about the within group vari-
ability, two new statistics adapted from the classical paired t-test were introduced in
Smaga (2020). These statisticswere extended by considering the basis expansion of the
sample curves with the aim of detecting changes in air pollution during the COVID-19
pandemic in Acal et al. (2021). In the more general context of testing homogeneity of
paired functional data, a Cramér-von-Mises type test statistic is introduced in Ditzhaus
and Gaigall (2021) with application to stock market returns.

The current work is focused on two-way FANOVA problem, in which the subjects
are classified in independent groups and the response variable is observed under differ-
ent conditions for each individual. Thus, one factor represents the repeated measures
effect (treatments) and the second one denotes the group contribution. This is the case
of one of the aplications developed in this paper (see Sect. 4.2) where the aim is to
detect if there are significant differences in the kinetic curves (angle of knee) recorded
under three different velocities (repeated measures) on two independent samples (age
groups). A simple FANOVA model can be expressed as follows in terms of the global
mean function, main-effect functions and i.i.d. errors:

xi jk(t) = μ(t) + αi (t) + β j (t) + εi jk(t) ∀t ∈ T ,

where xi jk(t) is the observed value of the response variable for the kth subject in the
j th age group, measured under the i th running velocity at moment t in a continuous
time interval T , (i = 1, 2, 3; j = 1, 2; k = 1, . . . , n j ) with n j being the sample size
for each age group.

The main idea is to assume the basis expansion of the sample curves in order to
turn the FANOVA-RM into a multivariate ANOVAwith repeated measures, where the
vector of basis coefficients of the sample curves would be the dependent multivariate
variable. As far as we know, this theoretical setting has not been ever addressed in the
literature, only in Martínez-Camblor and Corral (2011) it is briefly indicated how the
tests could be generalized for the case of more than two samples, but without further
details about the case of independent groups.
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In addition to this introduction, the manuscript has four additional sections. The
theoretical aspects related to the proposed methodology are in Sect. 2. An exten-
sive Monte Carlo simulation study to show the good performance of two considered
FANOVA-RM approaches is developed in Sect. 3. The applications with biomechan-
ics data that motivate this study are presented in Sect. 4. Finally, the most important
conclusions from this research are summarized in Sect. 5.

2 Model set up

As natural extension of the multivariate case, the aim of Functional Analysis of Vari-
ance is to estimate the effect of one or more factors on a functional response variable.
In this paper, two factors are considered (two-way FANOVA model) which usually
represent groups and treatment conditions. Two different basis expansion approaches
are developed in what follows.

2.1 Two-way FANOVAmodel

Let {xi jk(t) : i = 1, 2, . . . ,m; j = 1, 2, . . . , g; k = 1, 2, . . . , ni j ; t ∈ T } denote
g × m independent samples of curves defined on a continuous interval T . That is,
xi jk(t) represents the response variable of the kth subject in the j th group under the
i th treatment at instant t .Note that each sample contains ni j observations and the total
sample size is n = ∑m

i=1
∑g

j=1 ni j .
Sample curves can be seen as observations of i.i.d. stochastic processes (functional

variables) {Xi jk(t) : i = 1, 2, . . . ,m; j = 1, 2, . . . , g; k = 1, 2, . . . , ni j ; t ∈ T }
with distribution SP(μi j (t), γ (t, s)),withμi j (t) being the mean function and γ (t, s)
being the common covariance function associated with each of the g × m stochastic
processes. It is supposed that these stochastic processes are second order, continuous
in quadratic mean and with sample functions in the Hilbert space L2[T ] of squared
integrable functions with the usual inner product

< f |g >=
∫

T
f (t)g(t)dt, ∀ f , g ∈ L2[T ].

In Two-way FANOVA model, functional data verify the functional linear model
given by

xi jk(t) = μ(t) + αi (t) + β j (t) + εi jk(t) ∀t ∈ T , (1)

whereμ(t) is the overall mean function; αi (t) and β j (t) are the i th and j th main-effect
functions of treatments and groups, respectively; and εi jk(t) are i.i.d. errors with dis-
tribution SP(0, γ (s, t)) ∀i = 1, 2, . . . ,m; j = 1, 2, . . . , g; k = 1, 2, . . . , ni j . This
model is the generalization of the model proposed by Zhang (2014) when ni j = 1.

In model (1), possible interactions between groups and treatments are assumed to
be ignorable. This means that the effect of a certain factor’s level is the same for each
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level of any other factor. In our case the effect of the treatments on the functional
response would be the same for all groups. The interaction functional parameter can
be added in model (1) as follows

xi jk(t) = μ(t) + αi (t) + β j (t) + θi j (t) + εi jk(t), ∀t ∈ T . (2)

It is well known that FANOVA model is not identifiable (the functional parameters
are not uniquely defined). This problem is overcome by applying certain constraints.
By extending the usual constraints in the balanced multivariate case (the cell sizes
ni j are equal), the main effects and interaction effects functions sum to zero. An
appropriate sequence of positive weights must be considered to define the constraints
in the unbalanced design (Zhang 2014). From now on, we will assume the constraints

m∑

i=1

αi (t) =
g∑

j=1

β j (t) =
m∑

i=1

θi j (t) =
g∑

j=1

θi j (t)

=
m∑

i=1

g∑

j=1

θi j (t) = 0. (3)

Under these constraints, we have that

αi (t) = μi .(t) − μ(t)

β j (t) = μ. j (t) − μ(t)

θi j (t) = μi j (t) − μi .(t) − μ. j (t) + μ(t), (4)

where μi .(t) and μ. j (t) are the marginal mean functions of the functional response
for each treatment and each group, respectively.

The most interesting hypothesis tests associated with two-way FANOVAmodel are
given by the following null hypotheses against the alternative, in each case, that its
negation holds:

• Testing if the main-effects of treatments are statistically significant (equality of
the unknown treatments mean functions)

H0 : α1(t) = α2(t) = · · · = αm(t) = 0, ∀t ∈ T , (5)

• Testing if the main-effects of groups are statistically significant (equality of the
unknown groups mean functions)

H0 : β1(t) = β2(t) = · · · = βg(t) = 0, ∀t ∈ T , (6)

• Testing if the main-effects of the groups and treatments are simultaneously null

H0 : αi (t) = β j (t) = 0, ∀i, j; ∀t ∈ T , (7)
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• Testing if there is a significant interaction-effect between groups and treatments

H0 : θi j (t) = 0, ∀i, j; ∀t ∈ T . (8)

Different test statistics have been proposed in literature for FANOVA testing prob-
lems. A detailed study of point-wise F-test, L2-norm-based test and functional F-type
test under Gaussian assumption, together with χ2 and bootstrap approaches for non
Gaussian samples can be seen in Zhang (2014). Exhaustive simulation studies to com-
pare multiple existing tests for one-way FANOVA testing are presented in Górecki
and Smaga (2015). Different basis expansion and functional principal component
approaches are proposed in Aguilera et al. (2021a) and Aguilera et al. (2021b) with
applications in electronic and Google Trends, respectively.

Under the constraints defined in (3), the usual least squares estimators of the func-
tional parameters in model (2) are obtained by minimizing

∫

T

m∑

i=1

g∑

j=1

n j∑

k=1

[
xi jk(t) − (μ(t) + αi (t) + β j (t) + θi j (t))

]2
.

2.2 Estimation and computation from basis expansions

In practice, functional data are not continuously observed over time but only discrete
observations are available for each sample curve. What is more, the number of obser-
vations and the location of observed time points could be different for each curve.
Because of this issue, the first step in FDA is to reconstruct the original functional
form of the data by using some functional projection approach.

Let us suppose that {φh(t)}h=1,...,∞ is a basis of the functional space L2[T ] the
curves belong to. Then, each curve admits an expansion into this basis as follows

xi jk(t) =
∞∑

h=1

yi jkhφh(t), (9)

where the basis coefficients yi jkh are generated by random variables with finite vari-
ance. An approximated representation is usually obtained by truncating this basis
expansion in terms of a number p of basis functions sufficiently large to assure an
accurate representation of each curve.

From now on, it will be assumed that sample curves belong to the space generated
by the basis

{
φ1(t), . . . , φp(t)

}
. In vectorial form

xi jk(t) = y′
i jk�(t),

with yi jk = (yi jk1, . . . , yi jkp)′ and �(t) = (φ1(t), . . . , φp(t))′. This way, the initial
curves xi jk are replaced with their vectors of basis coefficients yi jk . The main advan-
tage of this approach is that the dimension of the data depends only on the number
of curves and on the order p of the expansion. Due to the fact that the curves are
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observed with error, some smoothing approach (e.g. least squares approximation) is
usually performed to estimate the basis coefficients. In relation to the choice of a suit-
able basis, there are multiple options depending on the characteristics of the sample
curves but the most common are Fourier, B-Splines or wavelets bases. Another key
point is to select the dimension of the basis, which can be worked out, for instance,
by generalized cross validation (Craven and Wahba 1978).

Hence, by assuming the basis expansion in (9), the estimators of the functional
parameters can be expressed in terms of basis functions as follows

μ̂(t) = x ···(t) = y′
...�(t)

α̂i (t) = xi ··(t) − x ···(t) = (y′
i .. − y′

...)�(t)

β̂ j (t) = x · j ·(t) − x ···(t) = (y′
. j . − y′

...)�(t)

θ̂i j (t) = xi j ·(t) − xi ··(t) − x · j ·(t) + x ···(t)
= (y′

i j . − y′
i .. − y′

. j . + y′
...)�(t)

ε̂i jk(t) = xi jk(t) − xi j ·(t) = (y′
i jk − y′

i j .)�(t) (10)

where,

x ···(t) = 1

m

m∑

i=1

1

g

g∑

j=1

1

n j

n j∑

k=1

xi jk(t)

xi j ·(t) = 1

n j

n j∑

k=1

xi jk(t), i = 1, . . . ,m; j = 1, . . . , g

xi ··(t) = 1

g

g∑

j=1

1

n j

n j∑

k=1

xi jk(t), i = 1, . . . ,m

x · j ·(t) = 1

m

m∑

i=1

1

n j

n j∑

k=1

xi jk(t), j = 1, . . . , g (11)

with y..., yi .., y. j . and yi j . being the grand mean vector, the treatment mean vector, the
group mean vector and the interaction mean vector, respectively, associated with the
vector of sample curves basis coefficients yi jk .

The results above proves that Two-Way FANOVAmodel turns into Two-Way mul-
tivariate ANOVAmodel for the p-dimensional response variable (Y1,Y2, . . . ,Yp) that
generates the basis coefficients of the functional variable X .

2.3 Repeatedmeasures approaches

Two-Way FANOVA model presented above corresponds with independent samples.
Nevertheless, in many fields such as medicine, social sciences, education or psychol-
ogy, among others, it is very common to deal with a repeatedmeasures design in which
measurements on one or more response variables are conducted at several occasions
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(longitudinal data) or under different treatment conditions on the same subject.When a
single response variable is observed, the design is called univariate repeated measures
design. In this document, this approach is extended to test the effect of two factors
(treatment and group) on a functional random variable. This new approach is known
as Two-Way FANOVA-RM. Obviously, the simplest approach would be the model
where the treatment factor is only considered. This model can be derived through the
model with two factors.

Let us now suppose that we have a repeated measures design with g independent
samples of curves (one per group) so that the response functional variable X is repeat-
edly measured on each subject at m different time periods (longitudinal functional
data) or under m different treatment conditions.

Let {xi jk(t) : i = 1, 2, . . . ,m; j = 1, 2, . . . , g; k = 1, 2, . . . , n j ; t ∈ T } denote g
independent samples of curves defined on a continuous interval T . That is, xi jk(t) is
the response of the kth subject in the j th group under the i th treatment. Note that the
response of each subject is observed m times so that we have n = ∑g

j=1 n j subjects
and n × m sample curves. It is assumed that each treatment is applied to all subjects
(balanced design). This fact will be an essential aspect later.

The main objective of this manuscript is to adapt Two-Way FANOVA model to
the case of repeated measures by taking the intra-subject variability into account. We
propose to perform a multivariate analysis of variance with repeated measures on
the multivariate response defined by the random basis coefficients of the functional
variable.

As far as the authors know, there are two differentmodels to include the intra-subject
effect in the analysis: Doubly Multivariate Model (DMM) and Mixed Multivariate
Model (MMM). Both assume the multivariate normality hypothesis and homogeneity
of covariance matrices. The difference between them arises in the assumptions on
the covariance matrix. DMM only assumes that the covariance matrix is positive
definite, whereasMMM requires the multivariate sphericity condition. This restrictive
condition is not verified in many real situations, so that DMM is more frequently used.
However, if the sphericity condition is satisfied, MMM should be employed because it
is more powerful (Bock 1975). Several reviews, new results and comparisons of both
models by standing out their principal characteristics and behaviour on applications
were developed in Timm (1980) and Boik (1988, 1991). An application with data
from an educational survey can be seen in Filiz (2003). Three different methods to
solve the lack of variance homogeneity are studied in Lix and Lloyd (2007). Finally,
a new statistic based on DMM is developed in Hirunkasi and Chongcharoen (2011)
for the tricky scenario where the dimension of the response variable is greater than
the number of observations.

2.3.1 Doubly multivariate model

In our functional data context, FANOVA-RMmodel can bewritten as aMANOVA-RM
model for the basis coefficients of the sample curves as

Y = XB + E, (12)
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where the responseY is thematrix n×(p×m)whose rows contains the p-dimensional
basis coefficients of the functional response variable X for the n subjects (distributed
amongst g independent samples) examined under each of the m treatments (p ×
m dimensional response ordered within each row according to treatment an within
treatment according to the basis coefficients). Let us observe that in thismodel we have
p×m response variables that represent the p-dimensional vector of basis coefficients
for each treatment. In addition, X is the between group design matrix n × g and B is
the unknown parameter matrix g× (p×m), withE being the error matrix n× (p×m)

whose rows Ei are i.i.d. Npm(0,�), so that

vec(E ′) ∼ Nnpm(0, In ⊗ �), (13)

where In is the identity matrix and � is a (p×m) × (p×m) positive definite matrix.
The hypotheses tests of interest related with the statistical significance of treatment,

group and interaction effects, i.e. (5), (6) and (8), respectively, canbe expressed in terms
of basis functions and formulated through the following general linear hypothesis

H0 : G′B(T ⊗ Ip) = 0, (14)

where 0 is a matrix of zeros with appropriate order,G is a matrix g× s (rank s) which
contains the coefficients for between group tests and T is a matrix m × q (rank q)
which contains the coefficients for within treatments tests. The columns of the matrix
G are composed by the coefficients of s estimable between group functions and the
columns of the matrix T are the coefficients of q linear functions of the m treatments.
Without loss of generality, it is assumed that T is chosen to be orthonormal T′T = I.
Depending on the type of contrast and the objective of the study, matrices G and T
will have different expressions. Deep studies related with these topics were developed
in Timm (1980), Thomas (1983), Hand and Taylor (1987) and Timm (2002).

A DMM testing problem is worked out by means of the usual MANOVA statistics,
e.g., Wilks’s lambda (W), Lawley-Hotelling’s trace (LH), Pillai’s trace (P) or Roy’s
maximumroot (R), associatedwith the following reducedqp-dimensionalmultivariate
linear model

Y(T ⊗ Ip) = XB(T ⊗ Ip) + E(T ⊗ Ip). (15)

These MANOVA statistics are based on the relation between the sum of squares
and cross product matrices corresponding to error and hypothesis obtained by

Se = (T′ ⊗ Ip)Y′[In − X(X′X)−X′]Y(T ⊗ Ip)

Sh = (T′ ⊗ Ip)B̂′G[G′(X′X)−G]−1G′B̂(T ⊗ Ip),

where B̂ is the maximum likelihood estimator of B given by B̂ = (X ′X )−X ′Y,

with (X ′X )− being any generalized inverse of X ′X . In practice, W, LH, P and R are
usually approximated by F-tests statistics through Rao’s approximation (Rencher and
Christensen 2012). Finally, it is important to keep in mind that DMM can only be used
when n > p × m, since otherwise the matrix Se would be singular.
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2.3.2 Mixedmultivariate model

A functional mixed-effect model can be considered in order to model the intra-subject
variability. The expression of Two-Waymixed-effect FANOVAmodel is similar to (2),
except for the inclusion of a new random subject-effect functional parameter, πk(t),
in the model, ∀t ∈ T , as

xi jk(t) = μ(t) + αi (t) + β j (t) + θi j (t) + πk(t) + εi jk(t),

where πk(t) are i.i.d. subject-effects with distribution SP(0, γπ (s, t)), and εi jk(t) are
i.i.d. errors with distribution SP(0, γε(s, t)) ∀i = 1, 2, . . . ,m; j = 1, 2, . . . , g; k =
1, 2, . . . , n j . Besides, πk(t) and εi jk(t) are mutually independent so that γ (t, s) =
γπ(s, t) + γε(s, t).

The multivariate mixed-effect model is a generalization of Scheffé’s Univariate
Mixed Model (Scheffé 1956). In our FANOVA-RM approach, the model for the p-
dimensional response of basis coefficients can be expressed as

yi jk = μ + αi + β j + θ i j + πk + εi jk,

where πk are i.i.d. subject effects with distribution N (0,�π ) and εi jk are i.i.d. errors
with distribution N (0,�ε). In addition, the covariance matrix of the p-dimensional
response is given by� = �π +�ε becauseπk(t) and εi jk(t) aremutually independent.
MMMcan be expressed in terms of the linearmodel formultivariate repeatedmeasures
defined in (12) by rearranging the data matrix Y as follows.

Let us denote by yi the ith row of the responsematrixY inmodel (12) that represents
the pm-dimensional vector of responses values for the i th sample subject. Then, the
vector yi is rearranged to obtain a m × p matrix Y∗

i such that vec((Y∗
i )

′) = yi. The
vec()-operator stacks the columns of a matrix. Thus, the rows and columns of Y∗

i
correspond with the treatments and the dependent variables, respectively. Considering
this transformation, the rearranged response matrix for MMM analysis is

Y∗ =
⎛

⎝
Y∗
1

. . .

Y∗
n

⎞

⎠ .

If B and E are rearranged in the same way, a (g × m) × p matrix of unknown
parameters and a (n×m)× p matrix of random errors are obtained. These rearranged
matrices verify that vec(Y∗′

) = vec(Y′), vec(B∗′
) = vec(B′), vec(E∗′

) = vec(E′).
After this transformation, (12) and (15) can be written as

Y∗ = (X ⊗ Im)B∗ + E∗

(In ⊗ T′)Y∗ = (X ⊗ T′)B∗ + (In ⊗ T′)E∗. (16)

Let us observe that the rows of the error matrix E∗ are normally distributed but
not independent because the rows corresponding to the observation of the response

123



Functional analysis of variance with repeated measures

variable on the same individual under the different treatments conditions could be
correlated. Therefore, (16) is a mixed model that keep the influence of the individuals
on the response variable in mind (individual random effects).

Now, the general null hypothesis of interest is given by

H0 : (G′ ⊗ T′)B∗ = 0, (17)

that is the same than (14). Then, the matrices corresponding to error and hypothesis
for testing (17) are

S∗
e = Y∗′ [(In − X (X ′X )−X ′) ⊗ TT′]Y∗

S∗
h = Y∗′

ϒY∗,

with ϒ = (X (X ′X )−G′[G(X ′X )−G′]−1G(X ′X )−X ′) ⊗ TT′.
For a MMM to be valid it must be verified that the Se and Sh matrices have to be

independently distributed as Wishart matrices. Independence is derived from multi-
variate normality and homogeneity of the errors given in (13) but a new assumption
on the covariance structure, called multivariate sphericity, is a necessary and suffcient
condition for these matrices to be Wishart. Note that sphericity is a situation more
general of the composed symmetry. A likelihood ratio test for checking the multi-
variate sphericity is derived in Thomas (1983) but the asymptotic distribution may
be a poor approximation when the sample size is moderate. An approximation that
solves the lack of power for moderate sample sizes is developed in Boik (1988) by
applying Box’s expansion of the characteristic function (Box 1949). For the univariate
case, Box (1954) proposed a factor of correction with the goal of giving a solution
when the sphericity is not verified. This method consisted of disrupting the degrees
of freedom of F-statistic. In this line, Boik (1988) formulated an analogous approach
for the multivariate case.

From a theoretical viewpoint, by considering the restricted data matrix Y(T ⊗ Ip)
that examines q functions of the treatments, multivariate sphericity is a condition for
the structure of the covariance matrix 
 ofY(T⊗ Ip). Thus, 
 = Cov(Y(T⊗ Ip)) =
(T′ ⊗ Ip)�(T ⊗ Ip). In particular, this condition assumes that 
 = Iq ⊗ 0 with 0
being a p× p positive definite matrix of covariances among the p response variables.
The variation of the combinations of treatment levels is captured in the (q × p) × p
diagonal blocks of 
. In this sense, multivariate sphericity gives raise that all these
blocks are identical and that the q subvectors of each row of restricted data matrix
are independent. Thus, multivariate sphericity can be seen as a condition about the
variation of the dissimilarities between treatment modalities.

Finally, let us observe that MMM only can be used when n×m > p, although this
assumption is almost always fulfilled in practice.
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3 Simulation study

In this section, an extensive Monte Carlo simulation study is carried out in order
to test the performance of Two-Way FANOVA-RM methods proposed in previous
section. Specifically, four different simulation studies are developed with the purpose
of evaluating the behaviour of the tests by considering different type of errors, sample
sizes and shapes of the functions that provide the curves. Sample curves are generated
artificially according to the following functional mixed ANOVA model

xi jk(t) = αi (t) + β j (t) + θi j (t) + γksin(π t) + εi jk(t),

i = 1, 2, 3; j = 1, 2; k = 1, ..., n j ,

where αi (t) and β j (t) are the i th and j th main-effect functions of treatments and
groups, respectively; θi j (t) is the (i, j)th interaction-effect between treatments and
groups; γksin(π t) represents the subject-effect and εi jk(t) is the error function.

In the four studies, functional data have been generated in discretized versions
xi jk(tr ) for r = 1, ..., 101 with t1, ..., t101 being chosen equidistant in the interval
[0,1]. Least squares approximation in terms of a basis of cubic B-splines with 14
functions was employed in all cases in order to reconstruct the functional form of
sample curves. Therefore, the sample of each of the three treatments (m = 3) is
represented by a vector of 14 dependent variables (p = 14). Besides, it is considered
n1 = n2 = n with n = 50, 100 to check the power of the tests when n > (≈) p × m
and n 
 p × m. Inspired by Durban et al. (2005), the random subject-effect in all
models is given by γk ∼ N (μk, σk = 0.2) with μk ∼ U (0, 0.05).

The tests were replicated 500 times for each of the scenarios to be specified below.
Significance level was established as α = 0.05. Finally, Wilks’ Lambda statistics
was conducted both DMM and MMM for testing if the profiles for each variable are
parallel and whether there are differences in treatments and in groups. For G and T
from (14), the following matrices were employed

G = (
1 −1

)
, T =

⎛

⎜
⎝

1√
2

−1√
6

0 2√
6−1√

2
−1√
6

⎞

⎟
⎠ for interaction test;

G = (
1 −1

)
, T = I3 for group test;

G = I2, T =
⎛

⎜
⎝

1√
2

−1√
6

0 2√
6−1√

2
−1√
6

⎞

⎟
⎠ for treatment test.

3.1 First scenario (M1)

Three different forms are assumed for the main-effect functions of treatments and
groups, and two for the interaction-effect functions. Thus, 18 different models are
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Fig. 1 Main-effect (treatments and groups) and interaction-effect functions (first and second scenarios)

obtained by making all possible combinations among them. The selection of these
functionswas inspired byCuevas et al. (2004), Górecki and Smaga (2015) andGórecki
and Smaga (2017) and they are given by

M1.A1: αi (t) = t(1 − t), i = 1, 2, 3;
M1.A2: αi (t) = t i/5(1 − t)6−i/5, i = 1, 2, 3;
M1.A3: αi (t) = t i (1 − t)6−i , i = 1, 2, 3;
M1.B1: β j (t) = 0.1 × |sin(4π t)|, j = 1, 2;
M1.B2: β j (t) = (0.05 × j) × |sin(4π t)|, j = 1, 2;
M1.B3: β j (t) = (0.025 × j) × |sin(4π t)|, j = 1, 2;
M1.I1: θi j (t) = [sin(2π t2)]5, i = 1, 2, 3, j = 1, 2;
M1.I2: θi j (t) = [sin(2π t2)]5+2i j , i = 1, 2, 3, j = 1, 2.

The null hypothesis of interest holds for models with M1.A1, M1.B1 and M1.I1,
whereas the opposite happens for the remainder. In order to evaluate the results, it
is important to keep in mind that the interaction function M1.I2 changes for each
level of treatment and group. The main differences between M1.A2 and M1.A3 (the
same for M1.B2 and M1.B3) are that the main effects in M1.A2 and M1.B2 are
quite separated so that the testing problem should be less hard. Finally, εi jk(tr ) are
i.i.d. random variables N (0, σε) with σε = 0.10, 0.20, 0.40. The latter value, i.e.
σε = 0.40, is introduced for checking the performance of the tests under extreme
situations. Figure 1 displays the differences among main effects functions when the
treatment, group and interaction functions are considered to be different. Table 1 shows
the acceptance proportions for each scenario. The obtained outcomes can be summed
up in the following commentaries:

1. For the cases where the three null hypothesis are true, the tests reach good results
(the error rates are lower than 7% in all cases). Furthermore, for the rest of cases,
the decision of the test when σε = 0.10 is really satisfactory even in the more
extreme situations.

2. MMM gets better results than DMM, being the differences in some occasions
almost of 20%. In this context, as long as the MMM’s conditions are satisfied is
better to use this approach.

3. The sample size and the dispersion parameter play an important role in the analysis.
As the value of σε increases the error rate turn into larger, especially when the
sample size is similar to the dimension of response variables.
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4. Regarding the check of differences among treatments, the tests provide adequate
outcomes. It is only found out an error rate a little higher when jointly n = 50
and σε = 0.40 for M1.A3 (the acceptance proportions vary between 0.340–0.392
and 0.244–0.260 in DMM and MMM, respectively). Remind that in M1.A3 the
differences between the treatments functions are smaller. Secondly, in relation to
the differences among groups, the performance of the tests is suitable except for
σε = 0.40. In this case good results are appreciated only when n = 100 and the
similarities between the groups are quite separated (M1.B2). It is also discovered
a great error rate when n = 50, σε = 0.20 and M1.B3 were considered together.
Finally, the power of the tests for the difference of the interactions between groups
and treatment is too small when, on the one hand, σε = 0.40, and on the other
hand, σε = 0.20 and n = 50 are considered at the same time. It is worrisome the
frequency of a correct decision in these situations.

3.2 Second scenario (M2)

This second study (M2) is motivated to analyse the quality of the proposed meth-
ods when others settings for error functions are used. In particular, it is assumed that
εi jk(t) = 20−1B(t), where B(t) is a standard brownian processwith dispersion param-
eter σε . M2 has been inspired by Martínez-Camblor and Corral (2011). The form for
the functions of treatments, groups and interactions are the same than in M1. In Table
2 appears the achieved results. The conclusions done above about the treatments are
maintained. However, the outcomes for the difference among groups and about the
interactions are much better than in M1 when the corresponding H0 is false. The error
rate for σε = 0.20 does not exceed the 8% in any case. For its part, when jointly
σε = 0.40 and n = 50 (because if n = 100 the behaviour of the tests is really good)
the acceptance proportion varies between 0.184–0.254 and 0.292–0.358 in MMM and
DMM, respectively, for the case of parallelism. Likewise, for the effect of the groups,
the proportion changes between 0.244–0.280 and 0.440–0.494 in MMM and DMM,
respectively, when M2.B3 was applied. Therefore, the type of error is another key
point in this kind of analysis.

3.3 Third scenario (M3)

M3 is carried out under the same conditions than in M1 except the form of the inter-
action functions which were modified. The reason of contemplating this scenario is
due to the fact that the obtained results for testing the hypothesis of parallelism were
unsatisfactory in M1. Hence, with this scenario it is intended to study the impact
of changing the form of the functions in the power of the tests. Consequently, the
particular forms for interaction functions are the following

M3.I1: θi j (t) = sin(π t)13, i = 1, 2, 3; j = 1, 2;
M3.I2: θi j (t) = sin(π t)21−2i j , i = 1, 2, 3; j = 1, 2.

Table 3 contains the outcomes of this study. The conclusions about the hypothesis of
the treatment and group effects are similar to that given in the first study. Nevertheless,
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Functional analysis of variance with repeated measures

we notice an important improvement in relation to the hypothesis of parallelism. In
particular, when null hypothesis is false and σε = 0.40, the error rate is lower than
9.2% for n = 50 and being 0% for n = 100. Thus, this study lay bare another
interesting factor that influences in the performance of the tests, i.e., the quality of the
test relies on the shapes considered for the curves.

3.4 Fourth scenario (M4)

This study is worked out to corroborate the last affirmation made in previous section.
For that purpose, M4 presents the same characteristics than M1 but interchanging the
functions of the groups and interactions, that is, now we have

M4.B1: β j (t) = [sin(2π t2)]5, j = 1, 2;
M4.B2: β j (t) = [sin(2π t2)]3+2 j , j = 1, 2;
M4.B3: β j (t) = [sin(2π t2)]5+2 j , j = 1, 2;
M4.I1: θi j (t) = 0.05 × |sin(4π t)|, i = 1, 2, 3; j = 1, 2;
M4.I2: θi j (t) = (0.025 × i j) × |sin(4π t)|, i = 1, 2, 3; j = 1, 2.

Theobtained results inM4 (seeTable 4) confirm the suspicions about the importance
of the curves form in the performance of the tests. The investigation brings excellent
outcomes until σε = 0.20. It is only appreciated an error rate slightly high for testing
the parallelism of the profiles in DMM when n = 50 and M4.I2 are considered at the
same time (as maximum, the acceptance proportions reaches 10.8%). On the other
hand, when σε = 0.40 two different behaviours are detected:

1. For all cases where M4.I1 is considered, the behaviour of the tests is really accept-
able for the group effect (there are only little deviations when DMM is employed
for n = 50 and M4.B3). Regarding the treatments, the remarks are similar to the
rest of the previously applied models. Not a single problem was discovered for
testing the hypothesis about interactions. As it has already been commented, the
power of the tests is actually satisfactory when H0 is true for any effect.

2. For all cases where M4.I2 is considered, the results are deficient for checking the
parallelism. Besides, there are some problems for testing differences among groups
when n = 50 and M4.B1 are assumed, being the first time that it happens during
the simulation. This should not occur because, althoughM4.B1 represents the case
of no difference among groups, it is considered that the interaction depends on each
level of the treatments and groups.

To sum up, this exhaustive simulation study displays sufficient evidences for con-
cluding that this new methodologies, based on basis expansion of sample curves, is a
suitable candidate to deal with FANOVA-RMproblem.We are only slightly concerned
about the variability of the power of the tests when the dispersion parameter is great.
However, it is important to keep in mind that the subject effect also plays a fundamen-
tal role in the analysis and here it is assumed a high value for σk . This fact produces
important noise in the curves and the tests could convert into less conservative. Hence,
this is another reason that endorses the goodness of the approaches presented in this
paper, since even when the variability among subjects is large, the tests works very
well in general terms.
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Finally, although the assumptions are satisfied by the own construction of the mod-
els, the normality, variance homogeneity and the sphericity (for MMM) are checked
with a ratio of rejection lower than 5% of the cases. The developed simulation and the
results shown in this section have been computationally implemented in R-cran.

4 Applications in biomechanics

In this section, two different applications with real data associated with human body
movement are developed.

4.1 Human activity data

The data of this application correspond with a research carried out by Anguita et al.
(2013) where the human activity recognition over 30 subjects was analysed. In the
current manuscript, the study is focused on the variable called linear acceleration
(metre per second squared) which is measured on the axis X. The information about
this variable is recorded under three different treatments (walking, walking upstairs
andwalking downstairs) in 128 equidistant knots at the interval [0,2.56]. A subject was
removed for being considered as outlier. This datasetwas also used inAguilera-Morillo
andAguilera (2020) for a functional linear discriminant analysis approach to classify a
set of kinematic data. In the line of thiswork, sample curveswere reconstructed through
a cubic B-spline basis of dimension 27 with 25 equally spaced knots in the interval
[0,2.56]. The smoothed curves for each treatment are displayed in Fig. 2 together with
the sample mean function of each group (bottom-right). Based off this graph, it seems
reasonable to think that there are significant differences among the three stimulus, i.e.,
the linear acceleration on the axis X is affected by the type of movement. This fact
is numerically corroborated by means of the FANOVA-RM approaches considered in
this paper.

FANOVA-RM analysis conducted in this manuscript is summarised as follows. On
the one hand, there is a single available group (g = 1). Then, it is only possible to check
whether there are differences between the treatments. On the other hand, DMM can
not be considered because the sample space is smaller than the space of the variables
(n < pm, being n = 29, p = 27 and m = 3). Therefore, MMM is employed in
order to test the differences aforementioned. Finally, the p-value is calculated under
the following conditions:

1. MMM is applied by assuming that the normality and the sphericity are satisfied.
2. Due to the fact that the multivariate sphericity assumption is rejected (the likeli-

hood ratio test provided a p-value lower than α = 0.05), an adjusted MMM by
correcting the degrees of freedom of F-statistic is performed.

3. Given that the normality assumption is also in question, the permutation testing
procedure proposed by Górecki and Smaga (2015) is adapted for the repeated
measures scenario. The steps of this procedure are described below:

(A) Calculate the value of the test statistic S0 for the original sample data.
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Fig. 2 Sample group mean functions (bottom-right) and all the B-spline smoothed registered curves for
each stimulus

(B) For each subject, it is necessary to permute randomly without replacement its
observed values on the treatments. If there were more than one group, once
permuted the values of all subjects, the following stepwould be to join all subjects
in ’a single group’. Later, choose randomly without replacement n1 observations
for the first newgroup, then from the remainder of the observations draw randomly
without replacement n2 observations for the second new group, and repeat this
process up to complete the g groups.

(C) Compute the value of the test statistic for the new sample generated in previous
step.

(D) Repeat steps (B)-(C) F times, being F a large number. Each achieved value in
(C) will be denoted by S f with f = 1, . . . , F .

(E) Obtain the p-value according next rule:
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Table 5 P-values after applying MMM approach for FANOVA-RM with different scenarios

Stat. MMM Adjusted MMM Permutation MMM

P 0.0020 0.0010 0.0019

W < 0.0001 0.0001 0.0001

LH < 0.0001 0.0001 0.0009

R < 0.0001 < 0.0001 0.0001

p − value =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

F

F∑

f =1

I (S f ≤ S0) for S = W

1

F

F∑

f =1

I (S f ≥ S0) for S = LH , P, R

The p-values obtained after applying the different methods described above figure
in Table 5. As a result, we can conclude that there are significant differences among
the three types of stimulus on the linear acceleration on the axis X.

4.2 Dataset of running biomechanics

The public dataset available in Fukuchi et al. (2017) contains the biomechanical infor-
mation of 28 regular runners. Concretely, lower-extremity kinematics and kinetics
were registered meanwhile the subjects ran at different velocities (2.5 m/s, 3.5 m/s
and 4.5 m/s) on an instrumental treadmill. Other relevant data such as demographics
information, running-training characteristics or previous injuries were also collected.
The current application is focused on analysing the angle (in degrees) of right knee
on the axis X, which has been recorded over 101 time points. In particular, the aim
is to detect if there are significant differences in this functional variable among the
different velocities (repeated measures) according to the age. The variable age has
been discretized in two independent groups. The first group is formed by 14 runners
with less than 35 years old and the second one by the rest (≥ 35 years). The functional
reconstruction of the curves by means of a cubic B-spline basis of dimension 18 can
be seen in Fig. 3. The mean curves of each age group under the different conditions are
displayed in Fig. 4. We observe certain differences in the angle regarding the velocity,
being greater for the velocity equals to 2m/s. Nevertheless, it is less clear whether
the angle depends on the age group; the angle of the runners older than 35 year old is
higher in all the domain, especially at the end of the cycle, but the discrepancies are not
very noticeable. In order to validate statistically these assertions, the newmethodology
is applied.

In particular, this FANOVA-RM analysis contains the following characteristics:
there are two independent groups of runners classified by the age, that is, g = 2. The
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Fig. 3 B-spline smoothed registered curves for each velocity according to the age group

number of treatments is m = 3, whereas p = 18 because of the dimension of the
functional reconstruction. In these conditions, only MMM can be considered. As the
model assumptions are not verified, the permutation testing procedure aforementioned
will be applied making use of the Pillai’s trace statistic which is more robust than the
other statistics in relation to the violation of model assumptions (Olson 1974). The
results of this analysis can be seen in Table 6.

The results show that the effect of the treatments does not depends on the levels of
the age (there is not interaction). Additionally, it is corroborated that the differences
between the age group are not significant, while the running speed plays an important
role in the angle of the right knee on the axis X.

5 Conclusions

Functional analysis of variance with repeated measures aims at checking if the mean
functions of a functional response variable observed in different time periods or treat-
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Fig. 4 Sample mean functions according to the age group and velocity

Table 6 P-values after applying the MMM approach for FANOVA-RM by means of permutation testing
procedure

Parallelism Differences-groups Differences-treatments

0.3852 0.7685 0.0020

ments are equal or not. In spite of its great interest in practice, only a few works
related to this topic are available in the literature. The current manuscript is focused
on addressing Two-Way FAVOVA-RM problem. The first factor represents the multi-
ple levels in which the functional variable is observed (repeated measures), while the
second one constitutes the independent groups in which the subjects of the sample are
distributed (independent measures). Under this scenario, it is necessary to study both
the between-group and intra-subject variability. As far as we know, this theoretical
setting has not been ever dealt yet from a functional data analysis viewpoint. Hence, a
new approach based on basis expansion of sample curves is introduced in order to solve
this problem. In particular, we prove that Two-Way FANOVA-RM model turns into
Two-Way multivariate ANOVA-RM model for the multivariate response defined by
the basis coefficients of the functional variable. In this point, mixedmultivariate model
or doubly multivariate model can be conducted to take the intra-subject variability into
account in the analysis. An extensive simulation study has shown that the multivariate
mixed model approach has a better performance than the doubly multivariate model,
although both approaches provide good results in general terms. Only in extreme sit-
uations (small differences among functions, small sample size or great dispersion) the
tests become conservative. The new methodology has also been applied to two real
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biomechanical datasets. In the first application, the objective is to evaluate how three
type of stimulus affect on the linear acceleration of human movement, whereas the
second study is focused on analysing the influence of age and speed in the knee flexion
angle while running.
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