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Abstract

The logistic regression model is used to predict a binary response variable in terms of a set of
explicative ones. The estimation of the model parameters is not too accurate and their interpretation
in terms of odds ratios may be erroneous, when there is multicollinearity (high dependence) among
the predictors. Other important problem is the great number of explicative variables usually needed
to explain the response. In order to improve the estimation of the logistic model parameters under
multicollinearity and to reduce the dimension of the problem with continuous covariates, it is proposed
to use as covariates of the logistic model a reduced set of optimum principal components of the original
predictors. Finally, the performance of the proposed principal component logistic regression model
is analyzed by developing a simulation study where different methods for selecting the optimum
principal components are compared.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There are many fields of study such as medicine and epidemiology, where it is very
important to predict a binary response variable, or equivalently the probability of occurrence
of an event (success), in terms of the values of a set of explicative variables related to it. That
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is the case of predicting, for example, the probability of suffering a heart attack in terms
of the levels of a set of risk factors such as cholesterol and blood pressure. The logistic
regression model serves admirably this purpose and is the most used for these cases as we
can see, for example, in Prentice and Pyke (1979).

As many authors have stated (Hosmer and Lemeshow (1989) and Ryan (1997), among
others), the logistic model becomes unstable when there exists strong dependence among
predictors so that it seems that no one variable is important when all the others are in
the model (multicollinearity). In this case the estimation of the model parameters given
by most statistical packages becomes too inaccurate because of the need to invert near-
singular and ill-conditioned information matrices. As a consequence, the interpretation of
the relationship between the response and each explicative variable in terms of odds ratios
may be erroneous. In spite of this the usual goodness-of-fit measures show that in these
cases the estimated probabilities of success are good enough. In the general context of
generalized linear models, Marx and Smith (1990) and Marx (1992) solve this problem by
introducing a class of estimators based on the spectral decomposition of the information
matrix defined by a scaling parameter.

As in many other regression methods, in logistic regression it is usual to have a very high
number of predictor variables so that a reduction dimension method is needed. Principal
component analysis (PCA) is a multivariate technique introduced by Hötelling that explains
the variability of a set of variables in terms of a reduced set of uncorrelated linear spans of
such variables with maximum variance, known as principal components (pc’s). The purpose
of this paper is to reduce the dimension of a logistic regression model with continuous
covariates and to provide an accurate estimation of the parameters of the model avoiding
multicollinearity. In order to solve these problems we propose to use as covariates of the
logistic model a reduced number of pc’s of the predictor variables.

The paper is divided into four sections. Section 1 is an introduction. Section 2 gives
an overview of logistic regression. Section 3 introduces the principal component logistic
regression (PCLR) model as an extension of the principal component regression (PCR)
model introduced by Massy (1965) in the linear case. It also proposes two different methods
to solve the problem of choosing the optimum pc’s to be included in the logit model. One
is based on including pc’s in the natural order given by their explained variances, and in the
other pc’s are entered in the model by a stepwise method based on conditional likelihood-
ratio-tests that take into account their ability to explain the response variable. The optimum
number of pc’s needed in each method (stopping rule) is also boarded in Section 3 where
we propose and discuss several criteria based on minimizing the error with respect to the
estimated parameters. Finally, accuracy of estimations provided by the proposed PCLR
models and performance of different methods for choosing the optimum models will be
tested on a simulation study in Section 4. The results will also be compared with those
provided by the partial least-squares logit regression (PLS-LR) algorithm proposed by
Bastien et al. (2005) for estimating the logistic regression model.

2. Basic theory on logistic regression

In order to establish the theoretical framework about logistic regression we will begin by
formulating the model, estimating its parameters and testing its goodness of fit.
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Let X1,X2, . . . ,Xp be a set of continuous variables observed without error and let us
consider n observations of such variables that will be resumed in the matrix X= (

xij

)
n×p

.

Let Y = (y1, . . . , yn)
′ be a random sample of a binary response variable Y associated with

the observations in X, that is, yi ∈ {0, 1}, i =1, . . . , n. Then, the logistic regression model
is given by

yi = �i + �i , i = 1, . . . , n, (1)

where �i is the expectation of Y given
(
X1 = xi1,X2 = xi2, . . . ,Xp = xip

)
that is

modelized as

�i = P
{
Y = 1

∣∣X1 = xi1, . . . ,Xp = xip

} =
exp

{
�0 + ∑p

j=1xij�j

}
1 + exp

{
�0 + ∑p

j=1xij�j

} , (2)

where �0, �1, . . . , �p are the parameters of the model and �i are zero mean independent
errors whose variances are given by Var [�i] = �i (1 − �i ) , i = 1, . . . , n.

Let us define the logit transformations li = ln
(
�i

/
(1 − �i )

)
, i = 1, . . . , n, where

�i

/
(1 − �i ) represents the odds of responseY=1 for the observed value xi=

(
xi1, . . . , xip

)
.

Then, the logistic regression model can be seen as a generalized linear model with the logit
transformation as link function (McCullagh and Nelder, 1983), so that it can be equivalently
expressed in matrix form as L = X�, where L = (l1, . . . , ln)

′ is the vector of logit transfor-
mations previously defined, �= (

�0, �1, . . . , �p

)′ the vector of parameters and X= (1 | X)

the design matrix, with 1 = (1, . . . , 1)′ being the n-dimensional vector of ones.
Before estimating the logistic model, let us remember that the relationship between the

response variable and each predictor can be interpreted in terms of odds ratios from the
parameters of the model. From expression (2) we have that the exponential of the j th
parameter (j = 1, . . . , p) is the odds ratio of success (Y = 1) when the j th predictor
variable is increased by one unit and the other predictors are controlled (fixed as constant).
That is,

�
(
�Xj = 1 |Xk = xk, ∀k �= j) =

�
(
x1, . . . , xj + 1, . . . , xp

)
1 − �

(
x1, . . . , xj + 1, . . . , xp

)
�

(
x1, . . . , xj , . . . , xp

)
1 − �

(
x1, . . . , xj , . . . , xp

) = exp
{
�j

}

with x1, x2, . . . , xp being a single observation of the explicative variables. Then, the ex-
ponential of the j th parameter of the logistic regression model gives the multiplicative
change in the odds of success so that when its associated predictor increases, the proba-
bility of success increases if the parameter is positive and decreases in the opposite case.
This odds ratio can help us to measure, for example, the relative change in the probability
of recovery in a patient when we increase the dose of certain medicine. This parameter
interpretation states the need for an accurate estimation of the parameters of the logistic
model.

The most used method for estimating the logistic model is maximum likelihood as can
be seen, for example, in Hosmer and Lemeshow (1989) and Ryan (1997). Let L(Y ; �) be
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the likelihood given by

L(Y ; �) =
n∏

i=1

�yi

i (1 − �i )
1−yi . (3)

Then, the likelihood equations are given in matrix form by X′(Y − �) = 0, with � =
(�1, . . . , �n)

′. These equations are not linear in the parameters so that they must be solved
by using an approximating procedure as the Newton–Raphson method.

As it has been stated by several authors, and will be corroborated in the simulation study
developed at the end of this paper, the maximum-likelihood estimation is not too accurate in
the case of multicollinearity. As indicated in Ryan (1997), we must first select an indicator
of multicollinearity in logistic regression. If the regressors are all continuous, then pairwise
correlations and variance inflation factors might be used. The problem increases when some
of the predictors are not continuous. One possible check of multicollinearity for qualitative
variables would be to use kappa measure of agreement. The detection and diagnosis of
collinearity in logistic regression in a similar way to linear regression are also discussed in
Hosmer and Lemeshow (1989). They indicate that large standard errors could be a collinear-
ity warning. However, in Ryan (1997), an example can be seen where harmful collinearity
can exist without large standard errors. The impact and diagnosis of multicollinearity and
ill-conditioned information in generalized linear models are also analyzed in Marx (1992),
where the effects of severe ill-conditioning information on the maximum-likelihood esti-
mation of a Poisson response model with the natural log link function are analyzed on real
data.

Once the model has been estimated, its goodness of fit must be tested. The most usual
method to solve the test

H0 : li = �0 +
p∑

j=1

xij�j (i = 1, . . . , n)

and

H1 : li �= �0 +
p∑

j=1

xij�j (some i)

is based on the Wilks statistic (deviance) defined as −2 ln �, with � been the usual
likelihood-ratio statistic. In the case of the logit model (1), the deviance is given by

G2(M) = 2
n∑

i=1

[
yi ln

(
yi

�̂i

)
+ (1 − yi) ln

(
1 − yi

1 − �̂i

)]
H0�

n→∞ �2
n−p−1 (4)

and can be equivalently expressed as G2(M) = 2 (LS − LM) where LS and LM are the
maximized log-likelihood values for the saturated model (the most complex model which
has a separate parameter for each logit) and the model of interest M with all predictor
variables, respectively (see, for example, Hosmer and Lemeshow (1989) for a detailed
study).
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Other measure of the validity of the model, potentially more informative and meaningful
than the p-value of a goodness-of-fit statistic, is the correct classification rate (CCR) defined
as the percentage of subjects in the data set that are correctly classified. In order to classify
an observation according to the estimated model it is usual to fix a cutpoint between 0 and
1, and to assign value 0 to a predicted probability lesser than this cutpoint and value 1 in
an other case. Then a subject is correctly classified when the observed and predicted values
agree (both zero or one). The most used cutpoint is 0.5 but, as we can see in Ryan (1997),
we could use another cutpoint as, for example, the percentage of responses Y = 1 in the
data set.

Another important task in logistic regression is the selection of the best covariates to
explain the response. Several model selection procedures exist, no one of which is “the best”.
Usual cautions applied in ordinary regression hold for logistic regression. For example, a
model with several predictors has the potential for multicollinearity so that a variable may
seem to have little effect simply because it overlaps considerably with other regressors in
the model. The most usual model selection methods are based on stepwise selection of
regressors (forward or backward). Various statistics have been suggested in literature for
assessing in each step the validity of one or several predictor variables. Among the best
known, Wald test, scores test and conditional likelihood-ratio test, we present hereafter the
last one that will be used for selecting the best principal component logistic regression
model in the next section.

Let us denote by MP the particular logit model obtained by setting equal zero certain
number l of parameters, �(1), . . . , �(l), selected among the p + 1 ones of model M. The
likelihood statistic to compare model MP to model M tests the hypothesis that all parameters
in model M but not in model MP equal zero. Then the conditional likelihood-ratio statistics
for testing model MP , given that M holds, is given by the difference in the G2 goodness-of-fit
statistics (4) for the two compared models

G2 (
MP

/
M) = 2

(
LM − LMP

) = G2 (MP ) − G2(M),

withLMP
being the maximized log-likelihood for the simpler model MP that deletes those l

parameters. It is a large-sample chi-squared statistic, with df equal to the difference between
the residual df values for the two compared models (number l of parameters equal to zero
in the fitted model M).

3. Solving the multicollinearity problem

In order to reduce the dimension of a linear model and to improve the estimation of
its parameters in the case of multicollinearity, different techniques have been developed,
as PCR and partial least-squares linear regression. In this paper, we propose to generalize
PCR by using a reduced set of pc’s of the predictor variables as covariates of the logistic
regression model. The performance of the proposed PCLR models will be checked on a
simulation study developed in the next section, where the estimated parameters provided
by PCLR will be compared with those given by PLS-LR. Because of this, at the end of this
section, we also present a brief summary on PLS-LR introduced by Bastien et al. (2005) in
the general context of generalized linear regression.
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3.1. PCLR model

First, let us briefly present sample PCA of a set of variables and its main properties (more
details in Basilevsky (1994) or Jackson (1991)). Second, we will formulate the PCLR model
taking as covariates a set of pc’s of the predictors. Finally, different methods to select the
significant pc’s explanatory variables in the PCLR model will be considered and discussed
in this paper.

3.1.1. Principal component analysis
Multivariate PCA, introduced by Karl Pearson at the beginning of the 20th century and

developed by Harold Hötteling in 1933, is a multivariate technique based on explaining a set
of correlated variables by a reduced number of uncorrelated ones with maximum variance,
called pc’s.

We are going to define PCA from the sample point of view, that is, PCA of a sample of
observations of a set of variables. Then, let us consider a set of p continuous variables and n
observations of such variables that we will resume in the matrix X= (

xij

)
n×p

. The column
vectors of such a matrix will be denoted by X1,X2, . . . ,Xp.

Let us denoted by S = (
sjk

)
p×p

the sample covariance matrix whose elements are

defined by sjk = 1
n−1

∑n
i=1

(
xij − xj

)
(xik − xk), where the sample means are given by

xj = 1
n

∑n
i=1xij (j = 1, . . . , p). In order to simplify we will consider, without loss of

generality, that the observations are centered, so that x1 = · · · = xp = 0, and the sample
covariance matrix is S = 1

n−1X
′X.

The sample pc’s are defined as orthogonal linear spans with maximum variance of the
columns of the matrixX, denoted byZj =XVj (j=1, . . . , p).Then, the coefficient vectors
that define the pc’s, V1, . . . ,Vp, are the eigenvectors of the sample covariance matrix S
associated to their corresponding eigenvalues �1� · · · ��p�0 that are the variances of
the corresponding pc’s. If we denote by Z the matrix whose columns are the sample pc’s
previously defined, it can be expressed as Z = XV, with V = (

vjk

)
p×p

being the matrix
that has as columns the eigenvectors of the sample covariance matrix.

Let us remember that the sample covariance matrix is decomposed as S = V	V′, with
V being orthogonal and 	 = diag

(
�1, . . . , �p

)
, so that the matrix of observations is given

by X = ZV′.
This pc decomposition led us to obtain an approximated reconstruction of each original

observation in terms of a reduced number of pc’s

Xj =
s∑

k=1

Zkvjk, j = 1, . . . , p,

that accounts a high percentage of the total variability given by[∑s
j=1�j∑p
j=1�j

× 100

]
, s�p.
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3.1.2. Model formulation
As a previous step to define the PCLR model we are going to formulate the logit model in

terms of all the pc’s associated to the matrix X of observations of the continuous predictor
variables. We will assume without loss of generality that the regressors are centered. The
probabilities of success of the logit model given by (2) can be equivalently expressed in
terms of all pc’s as

�i =
exp

{
�0 + ∑p

j=1

∑p
k=1zikvjk�j

}
1 + exp

{
�0 + ∑p

j=1

∑p
k=1zikvjk�j

} = exp
{
�0 + ∑p

k=1zik
k

}
1 + exp

{
�0 + ∑p

k=1zik
k

}
with zik, (i = 1, . . . , n; k = 1, . . . , p) being the elements of the pc’s matrix Z = XV and

k =∑p

j=1vjk�j , k=1, . . . , p. The logistic model can be equivalently expressed in matrix
form in terms of the logit transformations and the pc’s as

L = X� = ZV ′� = Z
, (5)

where

Z = (1 |Z), 0 = (0, . . . , 0)′, 1 = (1, . . . , 1)′.

Therefore, the parameters of the logit model can be obtained as follows in terms of those
of the model that has as covariates all the pc’s: � = V 
. As a consequence of the invariance
property of maximum-likelihood estimates we have �̂ = V 
̂, and the prediction equation
Ŷ = �̂.

In order to improve the estimation of the original parameters in the case of collinearity,
we will next introduce the PCLR model that is obtained by taking as covariates of the logit
model a reduced set of pc’s of the original predictors.

Let us split matrices Z and V in boxes as

Z =
⎛⎜⎝

1 z11 · · · z1s

1 z21 · · · z2s

· · · · · · · · · · · ·
1 zn1 · · · zns

∣∣∣∣∣∣∣
z1s+1 · · · z1p

z2s+1 · · · z2p

· · · · · · · · ·
zns+1 · · · znp

⎞⎟⎠ = (
Z(s)

∣∣Z(r)

)
, (r = p − s)

and

V =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 v11 · · · v1s

0 v21 · · · v2s

· · · · · · · · · · · ·
0 vp1 · · · vps

∣∣∣∣∣∣∣∣∣
0 · · · 0

v1s+1 · · · v1p

v2s+1 · · · v2p

· · · · · · · · ·
vps+1 · · · vpp

⎞⎟⎟⎟⎠ = (
V(s)

∣∣V(r)

)
.

Then, Z(s) = XV (s) and Z(r) = XV (r), so that the original parameters can be expressed as

� = V 
 = V(s)
(s) + V(r)
(r),

where 
 =
(

0 
1 · · · 
s

∣∣ 
s+1 · · · 
p

)′ =
(

′
(s)

∣∣∣ 
′
(r)

)′
.
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Taking into account that the logit model in terms of all the pc’s given by Eq. (5), can be
decomposed as L=Z
=Z(s)
(s) +Z(r)
(r), the PCLR model in terms of s pc’s (PCLR(s))
is obtained by removing in the last equation the r last pc’s, so that we have

yi = �i(s) + �i(s),

where

�i(s) =
exp

{

0 + ∑s

j=1zij 
j

}
1 + exp

{

0 + ∑s

j=1zij 
j

} , i = 1, . . . , n.

This model can be equivalently formulated in matrix form in terms of the vector of logit
transformations L(s) = (

l1(s), . . . , ln(s)

)
with components li(s) = ln

(
�i(s)

/(
1 − �i(s)

))
as

follows:

L(s) = Z(s)
(s) = XV (s)
(s) = X�(s).

Therefore, we have obtained a reconstruction of the original parameters given by �(s) =
V(s)
(s), in terms of the parameters of the PCLR model that has as covariates the first s pc’s.
The maximum-likelihood estimation of this PCLR model will provide an estimation of the
original parameters � given by

�̂(s) = V(s)̂
(s), (6)

that will improve the estimation �̂ obtained with the original variables in the case of multi-
collinearity.

The main difference between PCR and PCLR is that in the last one the estimator 
̂(s)

in terms of the first s pc’s is not the vector of the first s components of the estimator 
̂
in terms of all the pc’s. That is, 
̂(s) = (̂


0(s), 
̂1(s), . . . , 
̂s(s)

)′ �= (̂

0, 
̂1, . . . , 
̂s

)′
. As a

consequence the probabilities �̂i(s) estimated by the PCLR(s) model are different to the
ones obtained by truncating the maximum-likelihood estimated probabilities of the model
that has as regressors all the pc’s. That is,

�̂i(s) =
exp

{̂

0(s) + ∑s

j=1zij 
̂j (s)

}
1 + exp

{̂

0(s) + ∑s

j=1zij 
̂j (s)

} �=
exp

{̂

0 + ∑s

j=1zij 
̂j

}
1 + exp

{̂

0 + ∑s

j=1zij 
̂j

} .

This means a considerable increment in computational effort because PCLR model has to
be readjusted each time we enter or remove a new principal component in the model.

3.1.3. Model selection
Let us observe that we have used the first s pc’s (the most explicative ones) to formulate

the PCLR model. However, in PCR it is known that pc’s with the largest variances are
not necessarily the best predictors because minor pc’s with small variances could be highly
correlated with the response variable so that they must be considered as explicative variables
in the optimum model. This means that pc’s might be included in the model according to
their predictive ability. Different methods for including pc’s in the linear regression model
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have been developed for example, in Hocking (1976), Mansfield et al. (1977) and Gunst
and Mason (1977).

In order to obtain an optimum reconstruction of the original parameters with a small
number of pc’s, we have considered in this paper two different methods for including pc’s
in the PCLR model. The first (Method I) does not take into account the response variable
and consists of including pc’s in the natural order given by explained variability. In the
second (Method II) pc’s are selected based on their relationship to the response by using a
forward stepwise method based on the conditional likelihood-ratio tests seen in Section 2.

Many authors have criticized PCR because pc’s are obtained without taking into account
the dependence between response and predictor variables. Let us observe that the optimum
PCLR model provided by Method II solves this problem by including pc’s in the model
according to their ability to explain the response. In this sense PCLR with Method II can
be seen as an alternative to PLS-LR (see next subsection), where linear combinations of
the original variables, that are obtained by taking into account the relationship between
covariates and response, are used as regressors in the model.

In order to select a PCLR model by using Method II, we use a forward stepwise procedure,
starting with the simplest model without pc’s and successively adding pc’s sequentially to
the model until further additions do not improve the fit. At each step, we enter the pc giving
the greatest improvement. If we use conditional likelihood-ratio tests to select one between
two nested models, the pc added at each step has the minimum significant p-value, when
we test that its associated parameter equals zero in the model that results by entering this pc
in the one selected in previous step. In our case, the first step of this procedure consists of
carrying out p conditional likelihood-ratio tests, each one of which tests the simple model
without variables given that the model obtained by introducing each of the pc’s holds. Then,
the pc with the minimum p-value lesser than the fixed significance level is entered in the
model. In the j th step we carry out (p − (j −1)) likelihood-ratio tests for testing the model
with the (j − 1) pc’s selected until the previous step given each of the models obtained by
entering in that model each of the remaining pc’s. The procedure finishes when all tests of
a step provide p-values larger than the fixed significance level and the model selected in
the previous step fits well. Let us observe that pc’s are added to the models one by one so
that at each step the deviance statistic (4) will only have one degree of freedom.

Another important question to solve is how to select the optimum number of pc’s that we
have to retain in the model. We can find in literature different criteria as, for example, the
one considered in Aucott et al. (1984) for the linear case that is based on the variability of
the estimators. In order to obtain the best possible estimation of the parameters of a logit
model, we will propose different criteria for selecting the optimum PCLR model based on
different accuracy measures of the estimated parameters.

First, we define the mean squared error of the beta parameter vector (MSEB)

MSEB(s) = 1

p + 1

p∑
j=0

(̂
�j (s) − �j

)2
, s = 1, . . . , p.

Second, we define the maximum of the absolute differences of the beta parameters as

Max(s) = Maxj

{∣∣�j (s) − �j

∣∣} , s = 1, . . . , p.
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On the other hand, we can expect that the best estimation of the original parameters provides
the best estimation of the probabilities of the model. Therefore, we have also defined the
mean-squared error of probabilities as

MSEP(s) = 1

n

n∑
i=1

(̂
�i(s) − �i

)2
, s = 1, . . . , p.

Let us observe that small values of MSEB, Max, and MSEP will indicate better estimation
of the parameters. In the simulation study developed at the end of the paper we will select
as optimum model for each method of entering pc’s the one with the smallest MSEB.

The comparison between estimated and real parameters is not possible when we are
analyzing real data, so that MSEB, Max, and MSEP cannot be computed and we need to
define another measure of the accuracy of the estimations that does not take into account
the unknown real parameters. Several authors, as Aucott et al. (1984), among others, have
noted that in the linear case the variance of estimated parameters is very sensitive to a
bad estimation. Therefore, we have considered the estimated variance of the estimated
parameters of the logistic model defined by

Var(s) = V̂ar
[̂
�(s)

]
= V ′

(s)

(
Z′

(s)Ŵ(s)Z(s)

)−1
V(s),

where Ŵ(s)=diag
(̂
�i(s)

(
1 − �̂i(s)

))
. In the simulated examples developed at the end of this

paper we will observe that generally the best estimations of the parameter vector (smallest
MSEB) are followed by a great increase on its estimated variance. Then, in practice with
real data, we propose to select as optimum model the PCLR model previous to a significant
increment in the estimated variance of the beta parameters.

3.2. PLS-LR model

PLS regression is a technique much used by chemometricians which solves the problem
of ill-conditioned design matrices in regression methods. This problem appears when the
number of explanatory variables is bigger than the number of sample observations or there
is a high-dependence framework among predictors. PLS regression was introduced by Wold
(1973) and later developed by many authors in recent years (see, for example, Dayal and
MacGregor, 1997). In order to overcome these problems, PLS regression defines latent
incorrelated variables (PLS components) given by linear spans of the original predictors,
and uses them as covariates of the regression model. These linear spans take into account
the relationship between the original explanatory variables and the response, and are usually
obtained by NIPALS algorithm (Wold, 1984).

The algorithm for computing a PLS linear regression model consists of the following
steps:

(1) Computation of a set of PLS components.
(2) Linear regression of the response variable on the retained PLS components.
(3) Formulation of the PLS regression model in terms of the original predictor variables.

In order to describe in detail the first step (NIPALS algorithm), let us consider
without loss of generality a centered response variable Y, and p centered predictor
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variables, X1,X2, . . . ,Xp. Then, the algorithm for computing a set of PLS components
follows the next steps:

(1) Computation of the first PLS component: In order to obtain the first PLS component
T1, we will fit the p linear models linfit

(
Y

/
Xj

)
(j = 1, . . . , p), formulated with Y as

response variable and each Xj as predictor. Then, the slope estimated parameters of these
linear models, �1j (j=1, . . . , p), are normalized in the usual way, providing the coefficients

a1j

(∑p
j=1a

2
1j = 1

)
of the linear span of the original variables that defines the first PLS

component, T1 = ∑p
j=1a1jXj .

(2) Computation of the kth PLS component: In order to obtain the kth PLS component
Tk, given a set of k − 1 PLS components, T1, . . . , Tk−1, yielded in previous steps, we will
fit the p linear models linfit

(
Y

/(
Xj , T1, . . . , Tk−1

))
(j = 1, . . . , p), formulated with Y as

response variable and Xj , T1, . . . , Tk−1 as predictor variables. Then, the normalized slope
estimated parameters corresponding to each Xj , �kj (j = 1, . . . , p), are considered as the
coefficients of the linear span that defines the kth PLS component. The variables of this linear
span will be the residuals of the linear models linfit

(
Xj

/
(T1, . . . , Tk−1 )

)
(j = 1, . . . , p),

formulated with Xj as response variable and T1, . . . , Tk−1 as explanatory variables.
Let us observe that the computation of each PLS component Tk is simplified by setting

to zero in its linear span those coefficients akj that are not significant. This means that only
significant variables will contribute to the computation of PLS components. The algorithm
stops when computing a PLS component none of its coefficients is significantly different
from zero. The statistical significance of the parameters �kj associated to the variable Xj in
each linear fit linfit

(
Y

/(
Xj , T1, . . . , Tk−1

))
will be tested by using the classical statistical

tests associated with linear regression.
The philosophy of PLS is based on two important questions. First, the estimated param-

eters of the linear fits represent the correlation between the response and the corresponding
covariate. Second, the residuals of the models linfit

(
Xj

/
(T1, . . . , Tk−1 )

)
are orthogonal

to each original variable Xj , so that the latent variable defined by them is orthogonal to the
PLS components previously computed.

PLS regression has been recently adapted to generalized linear models (PLS-GLR) and
the particular case of logistic regression (Bastien et al., 2005). This is an ad hoc adapta-
tion where each one of the linear models linfit

(
Y

/(
Xj , T1, . . . , Tk−1

))
is changed by the

corresponding logit model meanwhile the linear fits linfit
(
Xj

/
(T1, . . . , Tk−1 )

)
are kept.

Although the parameters of a logit model are not a measure of correlation between the
response and each of the predictors, in PLS-LR it is assumed that they represent in some
sense the dependence framework between each predictor and the response variable. The
Wald statistic (see, for example, Hosmer and Lemeshow, 1989) is generally used to test the
statistical significance of the parameters �kj associated to the variable Xj in each logit fit
of Y on the explanatory variables Xj , T1, . . . , Tk−1.

4. Simulation study

In order to illustrate the performance of the proposed PCLR model, we developed a
simulation study to show how the estimation of the parameters of a logit model with collinear
regressors can be improved by using pc’s.
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In the simulation study we carried out a sensitivity analysis in terms of different distribu-
tions for simulating the regressors, different number of predictors and different number of
sample sizes. In each simulation the binary response was simulated by following the scheme
of the simulation studies developed in Hosmer et al. (1997) and Pulkstenis and Robinson
(2002).

4.1. Simulation scheme

The first step in the simulation process was to obtain a sample of observations of p
explicative variables with a known dependence framework. In order to have high correlation
among the explicative variables, we considered as design matrix of the simulated logistic
model X= (1 |NA), where A is a fixed p×p matrix and N is a n×p matrix of n simulated
values of p independent variables.

The second step was to fix a vector of real parameters � = (
�0, �1, . . . , �p

)′ and to
compute the real probabilities by the model

�i = exp
{
x′
i�

}
1 + exp

{
x′
i�

} , i = 1, . . . , n,

with x′
i being the ith row of the design matrix. Finally, each sample value of the binary

response was simulated from a Bernouilli distribution with parameter �i , yi → B (�i ) (i=
1, . . . , n).

After each data simulation, we fitted the logistic model. As we will see the estimated

parameters �̂ =
(̂
�0, �̂1, . . . , �̂p

)′
were always very different to the real ones due to multi-

collinearity. Despite this the logit model fitted well providing a high CCR and a goodness-
of-fit statistic G2 with high p-value.As we stated in previous sections, PCA of the regressors
helps to improve this inaccurate estimation of the parameters. Once the pc’s of the simu-
lated covariates were computed, we fitted the PCLR(s) models with different sets of s pc’s
included by using Method I and II. Then, we computed for all the fitted PCLR(s) models
the estimated parameters �̂(s) in terms of the original variables, and the accuracy measures
defined in previous sections for testing the improvement in the parameter estimation.

In order to compare PCLR and other techniques with similar objectives such as PLS-LR,
we also obtained the PLS components associated to the simulated data, fitted the PLS-LR
model and estimated the � parameters according to the computational algorithm presented
in Section 3.2. Finally, we computed the same accuracy measures that in the case of PCLR(s)
models.

This simulation and analysis procedure was carried out for three different number of
regressors (p = 6, 10 and 15), three different sample sizes (n = 100, 200 and 300) and two
different distributions of the collinear regressors (Cases I and II).

In order to validate the results obtained from each simulation we used sample replication,
so that for each different case and fixed values of p and n, we repeated each simulation
a great number of times by using the same beta parameters, the same A matrix, and by
simulating new N and Y matrices in each replication. Then, we selected as the optimum
PCLR(s) model in each simulation the one with the smallest MSEB(s). Finally, in order
to summarize we computed the mean and the standard deviation of the different accuracy



A.M. Aguilera et al. / Computational Statistics & Data Analysis 50 (2006) 1905– 1924 1917

Table 1
Simulated and estimated parameters for a specific simulation with Case I, n = 100 and p = 10

Parameters Real All pc’s PCLR(7) PCLR(3) PLS-LR

�0 −0.67 −0.81 −0.40 −0.69 −0.31
�1 −0.95 −14.84 −0.40 −0.96 −1.86
�2 −0.95 4.96 −0.31 −1.24 −0.59
�3 −0.97 4.35 0.49 −1.96 −1.02
�4 1.40 −0.89 0.33 1.94 0.11
�5 1.12 8.66 0.62 1.80 1.41
�6 0.61 −2.70 0.41 0.98 0.15
�7 −0.24 0.79 0.05 −0.60 0.12
�8 −0.71 7.61 −0.83 0.85 −1.18
�9 1.21 4.66 0.09 1.13 3.53
�10 0.93 −5.48 0.34 0.29 0.15
MSEB 40.70 0.52 0.49 0.84

From left to right: simulated parameters (real), estimation without using pc’s (all pc’s), estimation with the optimum
PCLR model provided by Method I (model PCLR(7) with the first seven pc’s as covariates), estimation with the
optimum PCLR model provided by Method II (model PCLR(3) with the first, second and ninth pc’s as covariates),
and estimation given by PLS-LR. The last row shows the MSEB associated to each one of the estimated models.

measures associated to the optimum PCLR(s) models and the PLS-LR models. The results
are shown by using error bar plots which consist of displaying by a vertical bar centered
on its mean, the variability of each specific measure (� ± 1.96). All calculations were
performed by using the SPLUS-2000 package.

4.2. Simulation results

In the first case (Case I), we simulated a sample of n values for each one of p independent
variables (N matrix) with standard normal distribution. The fixed matrix A had as elements
p×p values simulated from an uniform distribution in the interval [0, 1].Then, we computed
the correlation matrix of the simulated explicative variables (columns of matrix NA). All
the correlations were always very high, so that there was high degree of multicollinearity
among regressors. Then, a vector � of parameters of the model was fixed for each p.

In the second case (Case II) we considered a different distribution for simulating the
predictors. We simulated n values of p independent variables with chi-square distribution
with one degree of freedom (N matrix). The matrix A was then an upper triangular matrix
with ones as upper triangular entries. A vector of fixed beta parameters was considered
again for each different number of predictors p.

In order to better understand the performance of PCLR model we show the results for a
specific situation of Case I with n = 100 and p = 10. In this situation correlations among
predictors were all bigger than 0.5 and most of them bigger than 0.8, so that there was a
high degree of correlation among regressors. The parameters considered for simulating the
response appear in Table 1 next to those estimated after fitting the corresponding logit model.
We can observe that the estimated parameters �̂ were mostly very different to the real ones.
As we have previously stated, such erroneous estimation must be caused by multicollinearity.
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Table 2
Goodness of fit and accuracy measures of PCLR(s) models for a particular simulation with Case I, n=100, p=10,

and Method I of inclusion of pc’s

s PCLR(s)

MSEP(s) CCR(s) MSEB(s) Max(s) Var(s) G2
(s)

p-value

1 0.076 66 0.776 1.34 0.060 112.35 0.153
2 0.025 78 0.628 1.37 0.149 84.77 0.808
3 0.017 79 0.594 1.41 0.214 82.05 0.844
4 0.012 80 0.567 1.42 0.339 79.84 0.868
5 0.013 78 0.567 1.28 0.490 79.42 0.859
6 0.012 78 0.563 1.26 0.687 79.40 0.842
7 0.010 80 0.519 1.47 1.003 78.51 0.841
8 0.010 82 0.541 1.32 2.098 74.28 0.899
9 0.010 86 0.603 1.56 4.672 61.43 0.991

10 0.015 87 40.70 13.89 158.949 58.44 0.995

Table 3
Goodness of fit and accuracy measures of PCLR(s) models and PLS-LR for a particular simulation with Case I,
n = 100, p = 10, and Method II of inclusion of pc’s

s pc PCLR(s)

MSEP(s) CCR(s) MSEB(s) Max(s) Var(s) G2
(s)

p-value

1 2 0.076 72 0.658 1.45 0.09 111.45 0.17
2 1 0.025 78 0.628 1.37 0.15 84.77 0.81
3 9 0.025 85 0.487 1.56 1.75 72.74 0.96
4 3 0.016 87 0.659 1.48 2.16 68.19 0.98

PLS-LR

0.163 67 0.842 2.32 105.76 69.75 0.98

This poor estimation leads to an erroneous interpretation of the parameters in terms of odds
ratios. In spite of this these logit models fitted well, providing high CCR and p-values of
the associated goodness-of-fit statistic (see last row of Table 2).

In order to improve these estimations, we computed the pc’s of the simulated covariates.
The first three pc’s explained more than 90% of the total variability (93.7%) and the first
six explained almost a 99% (98.81%). Then, we fitted the PCLR(s) models with different
number of pc’s included by Methods I and II, and computed the reconstructed parameters
�̂(s) from Eq. (6).

It is difficult to find the best estimation looking at the single components of the vectors,
then we calculated the different accuracy measures previously defined. Tables 2 and 3
provide by rows the measures obtained for each PCLR(s) model by including pc’s by
Method I and II, respectively. Looking at the goodness of fit of the adjusted PCLR(s)
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Table 4
Estimated gamma parameters in terms of pc’s for the logit model with all pc’s and the optimum models provided
by Methods I and II, in a particular simulation with Case I, n = 100 and p = 10

Parameters All pc’s PCLR(7) PCLR(3)


̂0 −1.43 −0.92 −0.98

̂1 0.45 0.32 0.34

̂2 1.70 1.09 0.21

̂3 −0.65 −0.38 —

̂4 0.57 0.45 —

̂5 0.20 0.24 —

̂6 −0.05 −0.11 —

̂7 −0.65 −0.51 —

̂8 −1.66 — —

̂9 4.69 — 3.89

̂10 20.69 — —

models, we can see that all of them fitted well with both methods (in most cases, p-value
of G2 statistic rounded 0.9, CCR was around 80% and MSEP was very small). As was
expected the G2 statistic increased in all cases when we included more pc’s in the model.

Searching the best possible estimation of the original parameters, we can observe that
with both methods MSEB decreased until that a specific number s of pc’s was included in the
model, and after that, it began to increase. Let us observe from Table 2 that MSEB reached its
minimum value of 0.519 for the model PCLR(7) with the first seven pc’s as covariates, when
we used Method I (pc’s entered in the model by variability order). By using Method II (Table
3), (pc’s entered in the model by using stepwise forward selection), the minimum MSEB
was 0.487 and corresponded to the model PCLR(3) that had as covariates the second, first
and ninth pc’s. Let us observe that the stepwise procedure based on conditional likelihood
tests entered in first place the second pc, in second place the first one, in third place the
ninth one and in fourth place the third one.

So, by selecting as optimum the model that minimized MSEB, we conclude that the
best possible estimation was provided by the model that had as covariates the first seven
pc’s selected with Method I, and the one that had as covariates the first, second and ninth
pc’s included by using Method II. The estimated beta parameters provided by these two
optimum PCLR models appear in the fourth and fifth columns of Table 1 for Methods I and
II, respectively. Let us observe that the optimum PCLR model selected by Method II is better
than the one selected by Method I because it provided a larger dimension reduction (only
three pc’s instead of seven) and its associated MSEB was also smaller. On the other hand,
looking at the minimum Max(s) we obtained similar conclusions with a little difference of
one pc in or out in the resulting PCLR models.

In order to make the differences between PCR and PCLR clear, in Table 4 we can see, as
an example, the estimated gamma parameters of the model with all the pc’s as covariates and
the optimum PCLR models previously selected by Methods I and II. As was stated when the
PCLR model was formulated, the estimated gamma parameters of each particular model are
different from the same parameters of the model with all pc’s opposite to the case of PCR.
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After the PCLR model was tested, we fitted the PLS-LR model. Four PLS components
were retained and their estimated � parameters also appear in Table 1 next to those estimated
by using the optimum PCLR models. From the last row of Table 3, we can observe that
the accuracy measures with respect to the original � parameters, provided by PLS-LR were
bigger than the ones associated to the optimum PCLR models (MSEB=0.842, Max=2.317).
Moreover, the CCR of this model was smaller than those provided by the optimum PCLR
models.All these measures lead us to conclude that in this particular case PLS-LR performed
worse than PCLR.

In relation to the estimated variance of the estimated parameters
(
Var(s)

)
, we observed

that it increased as we included pc’s in the PCLR model with Methods I and II. We can see
from Table 2 (Method I) that the variance increased smoothly until the ninth pc was included
in the model and it had a great increase when we included the tenth pc in the model (went
from 4.672 to 158.949). From Table 3 (Method II) it can be observed that there was no large
increase in the estimated variances of the estimated parameters and the one associated to
PLS-LR model was extremely big (V ar = 105.76).

In a study with real data it is not known the real value of the parameters so that MSEB
cannot be computed. In these cases we propose to choose as the optimum PCLR model the
one with a number of pc’s previous to a significant increase in the estimated variance of the
estimated parameters because it usually increases when parameters are badly estimated. In
this particular simulation, the selected optimum model would be the one with the first nine
pc’s as covariates by using Method I, and the one with four pc’s (the second, first, ninth and
third ones) by using Method II, that provide in both cases values of MSEB, MSEP and Max
very similar to the optimum models selected by the criterion of minimizing the MSEB.

In order to validate these results we repeated the data simulation and the fits 500 times for
Cases I and II with each different p (6, 10 and 15) and each different n (100, 200 and 300).
That is, we carried out a replication of size 500 of each one of the 18 different combinations
of p, n and Case. Then, the means and standard deviations of the accuracy measures of
the optimum PCLR and PLS-LR models selected in each replication were computed and
plotted by error bar plots. In most cases these means were quite representative with small
variability. The error bar plots are shown in Fig. 1 for Case I (normal distribution) and in Fig.
2 for Case II (chi-square distribution). In these figures we have to note that some bars are
out of the plot limits because their standard deviations were too big. The first of these bars
(0.684 ± 1.96 × 0.922) appears in Fig. 1 for the MSEP of PCLR model with Method I and
(n, p)=(100, 10).The second bar (0.905±1.96×1.454) also appears in Fig. 1 for the MSEP
of PCLR model with Method II and (n, p)= (100, 10). The third bar (4.76±1.96×36.09)

appears in Fig. 2 for the MSEB of PLS-LR model and (n, p) = (300, 15).

The results of the sensitivity analysis from the two cases (normal and chi-square distribu-
tions), the three number of regressors p (6, 10 and 15) and the three sample sizes n (100, 200
and 300) (see Figs. 1 and 2) showed that we could not find significant differences between
the distribution selected to simulate the regressors (normal and chi-square). The sample
size only had some influence in the MSEB and MSEP making that these measures globally
decreased and became stabilized around small values as the sample size n increased. The
number of regressors only had influence on the number of components of the optimum
models so that, as it was expected, the mean number of pc’s in the PCLR models increased
as the number of original covariates p increased. That was not the case in PLS-LR mod-
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Fig. 1. Error bar plots of the goodness-of-fit measures of the optimum PCLR models provided by Methods I and
II and PLS-LR, for 500 replications of the simulation with Case I (normal distribution) and different values of n
and p represented in the plot by (n, p).

els. In fact we found several replications without PLS components. This may be caused
because the model with all the original variables fitted well but it is possible that each
specific variable did not have any influence in the response.
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Fig. 2. Error bar plots of the goodness-of-fit measures of the optimum PCLR models provided by Methods I and
II and PLS-LR, for 500 replications of the simulation with Case II (chi-square distribution) and different values
of n and p represented in the plot by (n, p).

As concluded from the results of the specific situation (normal distribution, n = 100 and
p = 10), this sensibility analysis corroborates that, in PCLR, Method II of inclusion of pc’s
provides a bigger dimension reduction than Method I with similar accuracy in the estimation
of the � parameters.
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Finally, with respect to the comparison between PCLR and PLS-LR, it can be observed
from Figs. 1 and 2 that the mean number of PLS components is similar to the mean number
of optimum pc’s introduced in PCLR by using Method II. However, the mean MSEBs are
smaller for PCLR and Method II with similar mean CCRs and MSEPs.

5. Conclusions

This paper is focused on solving the problem of high-dimensional multicollinear data
in the logit model which explains a binary response variable from a set of continuous
predictor variables. In order to solve this problem and to obtain an accurate estimation of
the parameters in this case, a pc-based solution has been proposed.

In base to the simulation study developed in this work, where different sample sizes,
number of predictors and distribution schemes have been considered, it can be concluded
that the proposed PCLR models provide an accurate estimation of the parameters of a logit
model in the case of multicollinearity, by using as covariates a reduced set of the pc’s of the
original variables.

In order to select the optimum PCLR model two different methods for including pc’s in
the model have been considered and compared. On the one hand, Method I includes pc’s in
the model according to their explained variances. On the other hand, Method II considers a
stepwise procedure for selecting pc’s based on conditional likelihood-ratio tests. Different
accuracy measures with respect to the estimated parameters have been also introduced for
selecting the optimum number of pc’s. Finally, Method II, which takes into account the
relationship among response and predictor pc’s, has been chosen as the best because it
provides better parameters estimation with smaller number of pc’s (bigger reduction of
dimension).

Finally, with respect to the comparison with PLS-LR, the PCLR model provides better
estimation of the logit model parameters (less MSEB) with similar goodness-of-fit mea-
sures (MSEP and CCR) and needs less components so that the interpretation of the model
parameters is more accurate.
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