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Abstract
Standard Offset surfaces are defined as locus of the points which are at constant dis-
tance along the unit normal direction from the generator surfaces. Offset are widely 
used in various practical applications, such as tolerance analysis, geometric optics 
and robot path-planning. In some of the engineering applications, we need to extend 
the concept of standard offset to the generalized offset where distance offset is not 
necessarily constant and offset direction are not necessarily along the normal direc-
tion. Normally, a generalized offset is functionally more complex than its progenitor 
because of the square root appears in the expression of the unit normal vector. For 
this, an approximation method of its construction is necessary. In many situation it 
is necessary to fill or reconstruct certain function defined in a domain in which there 
is a lack of information inside one or several sub-domains (holes). In some practi-
cal cases, we may have some specific geometrical constrains, of industrial or design 
type, for example, the case of a specified volume inside each one of these holes. The 
problem of filling holes or completing a 3D surface arises in all sorts of computa-
tional graphics areas, like CAGD, CAD-CAM, Earth Sciences, computer vision in 
robotics, image reconstruction from satellite and radar information, etc. In this work 
we present an approximation method of filling holes of the generalized offset of a 
surface when there is a lack information in a sub-domain of the function that define 
it. We prove the existence and uniqueness of solution of this problem, we show how 
to compute it and we establish a convergence result of this approximation method. 
Finally, we give some graphical and numerical examples.
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1 Introduction

In the field of computer aided geometric design (CAGD), offset curves and surfaces 
have got considerable attention since they are widely used in various practical appli-
cations such as tolerance analysis, geometric optics and robot path-planning.

This work can be considered as a continuation or a note of our recently published 
work [2]. Then, for some applications of this kind of problem in the domain of 
chemical sciences, one can consult such applications in [2], for example the authors 
in [1] investigate the electrocoagulation/flotation (ECF) treatment efficiency for the 
removal of copper, turbidity and organic substances from the waste offset print-
ing developer (WOPD). Meanwhile, the authors in [17] show the ability to recover 
the subsurface of surface-enhanced Raman scattering (SERS) signal. In [19], the 
authors reviews the interplay of weak non-covalent interactions involved in the for-
mation of self-assembled mono-layers of organic molecules and the strong chemical 
binding in directed-assembly of organic molecules on solid surfaces.

The authors in [4] have elucidated the relationship between the coverage of cad-
mium carboxylate on CdSe surfaces and the trapping dynamics. Reducing the metal 
enrichment increases the rate of hole trapping and reduces the PLQY. In [16] the 
authors have employed transient absorption spectroscopy and transient photocurrent 
measurements to characterize the dynamics of photogenerated holes in CoPi-mod-
ified BiVO4 photoanodes. The competition between water oxidation and electron/
hole recombination was quantified using a simple kinetic model. In [6] transient 
absorption spectroscopy was used to analyse the trapping of electrons and holes 
generated by band gap excitation of NiO nanoparticle films. The analysis revealed 
that after a fs pulse the hole is trapped on a sub-picosecond time scale in a “Ni4+ ” 
state. Meanwhile in [13] the authors have presented direct time-resolved spectro-
scopic evidence for quasi-type-II band alignment in graded alloy CdSxSe1−x NCs 
through analysis of the ultrafast charge carrier dynamics as a function of chemical 
composition. The fast ∼ 3 ps hole-trapping process disappears as sulfur composition 
increases to form a graded CdS-rich shell with VB offset such that excited holes 
are confined to the CdSe-rich core. The authors in [12] demonstrate that measuring 
the sub-30-pm displacements of atoms from high-symmetry positions in the atomi-
cally resolved scanning tunnelling microscopy allows the physical order parameter 
fields to be visualized in real space on the single-atom level. This local crystallo-
graphic analysis is applied to the in-situ-grown manganite surfaces. In particular, 
using direct bond-angle mapping the authors report direct observation of structural 
domains on manganite surfaces, and trace their origin to surface-chemistry-induced 
stabilization of ordered Jahn-Teller displacements. In recent decades, the alkali 
metals have been measured by X-ray photoelectron spectroscopy (XPS), which is 
a powerful technique to detect elemental compositions of the surface of the mate-
rial and determine the related chemical states. In [21] the XPS profiles of the alkali 
metals are analyzed via the ZPS analysis method, the BOLS notation, tight-binding 
(TB) theory, and density functional theory (DFT) method, which not only facilitates 
the reproduction of thermal and size trend of energy changes, but also clarifies the 
physical origin of their core-electron BE shifts in alkali metals.
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Offset curves and surfaces are defined as locus of the points which distance along 
the normal direction from the original ones.

The parametric representation of the offset of a given parametric surface s(u, v) is 
another parametric surface given by

where d is the signed offset distance and n(u, v) is the unit normal vector at the point 
s(u, v).

Except a very surfaces as planes, spheres, cones, torus or cylinders, offset sur-
faces cannot be expressed in the same forms as their original ones. Therefore, 
approximation methods are needed.

In some of the engendering applications, we need to extend the concept of the 
standard offset surface, such as geodesic offset, where the constant distance is 
replaced by geodesic distance, or generalized offset, where the offset distance is not 
necessarily along the normal direction.

Generalized offset curves and surfaces were first introduced by Bréchner[3] and 
have been extended further, from the differential geometric as well as algebraic point 
of view by Pottman[18].

For a regular parametric surface r(u, v) = (x(u, v), y(u, v), z(u, v)) , its two unit tan-
gent vectors in the directions of u and v and its normal vector are given by

respectively, where ⟨ ⋅⟩3 is the usual Euclidean norm in ℝ3.
In this situation, the generalized surface r0(u, v) with the variable offset dis-

tance and direction determined by the vectors d1(u, v)e1(u, v) , d2(u, v)e2(u, v) and 
d3(u, v)n(u, v) is defined by

Hole-filling techniques appear in many different real applications, like surface 
reconstruction in engineering [20], 3D human body scanning, dental reconstruction, 
reverse engineering, etc. In 3D scanning applications for example, data can be miss-
ing due to accessibility limitations, occlusion, reflecting spaces or surfaces perpen-
dicular to camera/scanner.

In [11] the procedure considered presents a surface reconstruction and hole-fill-
ing scheme, based on a network of parallel and/or orthogonal curves, called also 
wireframes, where previously some specific one-dimensional curve reconstructions 
have been accomplished inside the hole that they want to fill. Under this perspec-
tive, the authors face the problem of filling surface by mixing the models presented 
in some of their references in an efficient way. Instead of addressing the problem as 
a whole, which yields a very complicated computational frame, the authors gener-
ate the reconstructed filling surface through one-dimensional filling curves subse-
quently used to generate the global filling smooth surface. The method proposed is 
developed just for explicit surface.

(1)sd(u, v) = s(u, v) + d n(u, v),

(2)e1 =
ru(u, v)

⟨ru(u, v)⟩3 , e2 =
rv(u, v)

⟨rv(u, v)⟩3 , n(u, v) =
ru(u, v) × rv(u, v)

⟨ru(u, v) × rv(u, v)⟩3 ,

(3)r0(u, v) = r(u, v) + d1(u, v)e1(u, v) + d2(u, v)e2(u, v) + d3(u, v)n(u, v).
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In [10] the methods and the procedures studied manage to find a smooth bivari-
ate spline function that minimizes certain functional, and that properly takes into 
account all the features that the authors want this approximate spline to fulfill, this 
means technique of minimizing functionals in order to obtain splines verifying cer-
tain required conditions has been used in the literature in the last years. Among 
these possible conditions, there are the volume restrictions, that can be included as 
an interpolation condition inside the corresponding finite element space constructed, 
or a just as another approximation term to be included in the associated quadratic 
functional. Also, the authors has included some other approximation or interpolation 
conditions at some specific points outside the holes.

In [9] the authors propose to generalize the filling method previously developed 
in other works in order to fill holes with some shape conditions, i.e. in such a way 
that the filling path “inherits” as much as possible the shape of the original surface 
where it is known. In other words, in real single-variable calculus, there are defi-
nitions for increasing, decreasing, concave and convex functions. These definitions 
involve derivatives and make reference to shape characteristics of the functions. Fol-
lowing this idea, given a data function f with a hole, the method proposed in their 
paper consists of estimating the shape of f inside the hole by constructing functions 
that estimate the unknown derivatives of f whose derivatives inside the hole be as 
close as possible to the estimates ones of f, pretending in this way that the shapes of 
the function f and its filing path be close.

In [8] the authors treat the problem of adequately filling the holes of 3D-surfaces, 
not necessarily explicit, and even closed in parametric form, as spheroid type ones: 
that is, such obtained by a radial function of the spherical coordinates.

In [7] the authors develop two different approaches of a method to fill polygo-
nal holes in a given surfaces by using smoothing variational splines: discontinuous 
filling and regular filling. In the discontinuous case, they fill the holes with spline 
functions in a finite element space that minimizes an energy functional. Such filling 
are chosen to be smooth and as close as possible to the original surface in the neigh-
borhoods of the hole. In this approach the global reconstructed surface will not be 
continuous. On the contrary, in the regular case, they do not only fill the holes, but 
also they replace the known surface with another very similar in such a way that the 
global reconstructed surface will have the desired regularity.

In some practical cases we also know some specific geometrical constrains, of 
industrial and design type, as the special case of a specified volume inside each on 
of this sub-domains. The studied method in this work manages to find a function of 
a biquadratic spline space that minimizes certain quadratic functional that includes 
the usual semi-norm of order two in a Sobolev space. This minimizing functional 
technique has proven to be effective on some approximation methods in different 
functional spaces (see [14, 15] and the references therein).

We study here the problem in which we have surface points (e.g. from a given 
function, or from some data acquisition procedure) where there is a lack of informa-
tion inside some sub-domains. As we said this work is a continuation of [2] let’s 
give a very clear observation between the two works, in fact first this work it is about 
filling holes and second the approximation is made with the biquadratic splines 
functions that are of class 1, while in [2] it is done with the bi-cubic splines that are 
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of class 2. This clearly shows that the degree of approximation in this work has been 
significantly reduced.

The remainder of the manuscript is organized as follows. In sect. 2 we give some 
necessary formulations and preliminaries. In sect.  3 we present an approximation 
method of the generalized offset surface with the hole, in the first step we formulate 
the problem, in the second step we show how to compute such surface and in the last 
step we prove a convergence result. Section 4 is devoted to study an approximation 
method of the filling hole, in the first step we formulate the problem, in the second 
step we show a computation result. In sect. 5 we define the smoothing parametric 
biquadratic spline filling the hole. Finally, we present some numeric and graphical 
examples in order to prove the effectiveness and the useful of our method.

2  Notations and preliminaries

We denote by ⟨ ⋅ ⟩k and ⟨ , ⟩k respectively, the Euclidean norm and the inner product 
in ℝr.

For any interval (a,  b) ((c,  d)) with a < b ( c < d ) we consider the rectangle 
R = (a, b) × (c, d).

For any set 𝜔 ⊂ ℝ
2 let H3(�;ℝ3) be the usual Sobolev space of (classes of) 

functions u belong to L2(�;ℝ3) , together with their partial derivatives D�u , with 
� = (�1, �2) , in the distribution sense, of order |�| = �1 + �2 ≤ 3 . This space is 
equipped with the inner products

the semi-norms |u|
�,� = (u, u)

1

2

�
 , for 0 ≤ � ≤ 3 , and the norm ‖u‖� =

�
3�

�=0

�u�2
�,�

� 1

2

.

Let Tn = {a = x0 < x1 < ⋯ < xn = b} and Tm = {c = y0 < y1 < ⋯ < ym = d} be 
two partitions of [a, b] and [c, d] respectively, and S2(Tn) , S2(Tm) the spaces of quad-
ratic spline functions of class C1 constructed from Tn and Tm respectively. It is veri-
fied that dim(Tn) = n + 2 and dim(Tm) = m + 2

Let {�1(x),… ,�n+2(x)} and {�1(y),… ,�m+2(y)} be respectively the quadratic 
B-spline bases functions of S2(Tn) and S2(Tm) , we consider the space of biquadratic 
functions

Let M = dim S2(Tn, Tm) = (n + 2)(m + 2).
For i = 1,… , n + 2 , j = 1,… ,m + 2 and for any (x, y) ∈ R , we define 

B(m+2)(i−1)+j(x, y) = �i(x)�j(y) . Then {B1,… ,BM} is the biquadratic B-spline basis 
functions of S2(Tn, Tm).

(u, v)
�.� =

�
���=� ��

⟨D�u(p)D�v(p)⟩3dp, 0 ≤ � ≤ 3,

S2(Tn, Tm) = span{𝜙1(x),… ,𝜙n+2(x)}⊗ span{𝜓1(y),… ,𝜓m+2(y)}.
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Being h = max{
b − a

n
,
d − c

m
} , let Vh = (S2(Tn, Tm))

3 be the parametric space of 
biquadratic splines functions. It is verified that Vh ⊂ H2(R;ℝ3) ∩ C1(R̄;ℝ3).

Let ℝk,3 be the space of real matrices of k rows and 3 columns equipped with 

the inner product ⟨A,B⟩k,3 =
k�

i=1

3�
j=1

aijbij , with A = (aij) 1 ≤ i ≤ k

1 ≤ j ≤ 3

 , 

B = (bij) 1 ≤ i ≤ k

1 ≤ j ≤ 3

 and the corresponding norm ⟨A⟩k,3 = ⟨A,A⟩
1

2

k,3
.

Let Th be the set of partition rectangles Tn × Tm of R, we consider a closed set 
H ⊂ R (the hole) and let Hh =

⋃
K ∈ Th

K ∩ H ≠ �

K.

Now, given a surface S parameterized by the function f ∶ R → ℝ
3 and its gen-

eralized offset surface O parameterized by the function

for all (x, y) ∈ R. Suppose we can know the points of S by the parametrization f  
only over R − H.

We wish to approximate the surface O parameterized by sf  from a finite set of 
points of f (R − H) and filling the holes by a constructed function of type

such that �h ∈ Vh.

3  Approximating sf |R−Hh

3.1  Formulating of the problem

For each N ∈ ℕ
⋆ , let AN = {a1,… , ak} be a finite set of k = k(N) points of R − H 

such that

Hence, we can obtain, for N sufficiently large, that k(N) > N.
Now, let d1(u, v)e1(u, v) , d2(u, v)e2(u, v) and d3(u, v)n(u, v) be some given offset 

variables distances and directions.
Let � ∶ H2(R;ℝ3) → ℝ

k,3 be the Lagrangian operator defined by 
�v = (v(ai))1≤i≤k and suppose that

sf (x, y) = f (x, y) + d1(u, v)e1(u, v) + d2(u, v)e2(u, v) + d3(u, v)n(u, v),

�h(x, y) =

{
�h
1
(x, y), (x, y) ∈ R − Hh,

�h
2
(x, y), (x, y) ∈ Hh,

(4)sup
p∈R−H

min
a∈AN

⟨ p − a⟩2 = O
�
1

N

�
, N → +∞.

(5)ker � ∩ ℙ2(R;ℝ
3) = �,
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where ℙ2(R;ℝ
3) is the linear space of the restrictions to R of the bivariate polynomi-

als of degree less than or equal to 2 with vectorial coefficients in ℝ3.
For any real number 𝜀 > 0 , let J1 ∶ H2(R;ℝ3) → ℝ be the functional given by

Problem 1 We consider the following minimization problem: Find �h
1
∈ Vh such that

Proposition 1 Problem (6) has a unique solution, called the generalized offset 
biquadratic spline in Vh relative to N, AN , �(sf ) , d1 , d2, d3 and � , that is characterized 
as the unique solution of the following variational problem: Find �h

1
∈ Vh such that

Proof Let define the following application

Using (4) we obtain that the application [[ ⋅ ]] defines a norm in Vh which is equiva-
lent to the usual norm ‖ ⋅ ‖R . Meanwhile, it is easily to prove that the symmetric 
bilinear form ã ∶ Vh × Vh → ℝ defined by

is continuous and Vh-elliptic.
Then, the result is obtained applying Lax-Milgram Lemma (see [5]) taking into 

account that the linear application Φ ∶ H2(R;ℝ3) → ℝ defined by

is continuous.   ◻

3.2  Computing the solution �h

1

Now, we are going to see how to compute in practice the generalized offset biquad-
ratic spline �h

1
∈ Vh relative to N, AN , �(sf ) , d1 , d2 , d3 and � . Let {�1,… ,�M} be the 

biquadratic B-spline basis functions of S2(Tn, Tm) and {j1, j2, j3} the canonical one of 
ℝ

3 . We define

Then {v1,… , v3M} is a basis of Vh.

Thus �h
1
=

3M∑
i=1

�ivi , with �1,… .�3M ∈ ℝ are the solution of the linear system

Jh
1
(v) = ⟨�(v) − �(sf )⟩k,3 + ��v�2

2,R
.

(6)∀v ∈ Vh, Jh
1
(�h

1
) ≤ Jh

1
(v).

(7)∀v ∈ Vh, ⟨�(v), �(�h
1
)⟩k,3 + �(v,�h

1
)2,R = ⟨�(v), �(sf )⟩k,3.

v ⟼ [[ v ]] =
�
⟨�v⟩2

k,3
+ ��v�2

2,R

� 1

2

.

ã(u, v) = ⟨𝜌(u), 𝜌(v)⟩k,3 + 𝜀(u, v)2,R

Φ(v) = ⟨�(v), �(sf )⟩k,3

∀ i = 1,… ,M, ∀� = 1, 2, 3, j = 3(i − 1) + �, vj = �ij� .
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where

Remark 1 We can observe that for computing the solution of the linear system (8) 
only certain values of sf  on R − H are necessary.

3.3  Convergence result

The objective of this subsection is to prove, under adequate conditions, that the gen-
eralized offset biquadratic spline in Vh relative to N, AN , �(sf ) , d1 , d2 , d3 and � con-
verges to sf  locally in R − H as N tends to +∞ and h tends to 0.

For this, we can reason as [2, sect. 5] by using the unique parametric biquadratic 
spline function SM ∈ Vh which solves the interpolation problem

and considering its restriction SM||R−H.
The interpolation function SM verifies that there exist a positive real constant C 

such that

Hence, reasoning as in [2, Theorem 7] we can prove the following result.

Theorem 1 Suppose the hypotheses (4) and the following ones

and

(8)
(
AA

T + �R
)
� = b,

A =
�
vi(aj)

�
1 ≤ i ≤ 3M,

1 ≤ j ≤ k

,

R =
�
(vi, vj)2,R

�
1≤i,j≤3M ,

� = (�1,… , �3M)
T ,

b =
�⟨�(sf ), �(vi)⟩k,3

�
1≤i≤3M .

SM(xi, yj) = sf (xi, yj), i = 0,… , n, j = 0,… ,m.

�SM

�x
(x0, yj) =

�sf

�x
(x0, yj), j = 0,… ,m,

SM

�y
(xi, y0) =

�sf

�y
(xi, y0), i = 0,… , n,

�2SM

�x�y
(x0, y0) =

�2sf

�x�y
(x0, y0),

|SM − sf |�,R−H ≤ Ch3−� , � = 0, 1, 2.

(9)� = O(N2), N → +∞,

(10)hN2

�
= O(1), N → +∞
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hold. Then, for any x ∈ R − H there exists an open subset 𝜔x ⊂ R − H such that 
x ∈ �x and

Proof From (9), (10) one has that h → 0 as N → +∞ . Then, given x ∈ R − H , there 
exists h1 > 0 such that, for h ≤ h1 , x ∈ R − Hh and thus there exists an open subset 
𝜔x ⊂ R − H such that x ∈ �x and 𝜔x ⊂ R − Hh , for all h ≤ h1.

From here, and reasoning as in [2, Theorem 7] we can obtained the result.  ◻

4  Filling holes

4.1  Formulating the problem

We denote by Bh = AN ∩ Hh = {b1,… , bM1
} , CN

h
= {c1,… , cM2

} the set of 
all the knots of Tn × Tm that they are on some side of the boundary of Hh and 
DN

h
= {d1,… , dM3

} the set of all knots of CN
h

 that are not vertices.
For i = 1, 2, 3 we consider the operators �h

i
∶ H2(R;ℝ3) → ℝ given by

where �v
�n

 indicates the normal derivative of the restriction of v to Hh.
Let V∗

h
 be the restriction set of the functions of Vh to Hh and let consider the 

subsets

Now, let Jh
2
∶ Xh → ℝ be the functional given by

Problem 2 We consider the following minimization problem: Find �h
2
∈ Xh such that

Proposition 2 Problem (11) has a unique solution that is characterized as the 
unique solution of the following variational problem: Find �h

2
∈ Xh such that

lim
N→+∞

‖�h
1
− sf‖2,�x

= 0.

�h
1
(v) =

(
v(bi)

)
1≤i≤M1

,

�h
2
(v) =

(
v(ci)

)
1≤i≤M2

,

�h
3
(v) =

(
�v

�n
(di)

)
1≤i≤M3

,

Xh = {v ∈ V∗
h
| �h

i
(v) = �h

i
(�h

1
), i = 2, 3},

X0
h
= {v ∈ V∗

h
| �h

i
(v) = 0, i = 2, 3}.

Jh
2
(v) =

⟨
�h
1
(v) − �h

1

(
�h
1

)⟩1

M1,3
+ �|v|2

2,Hh

(11)∀ v ∈ Xh, J
h
2
(�h

2
) ≤ Jh

2
(v).

(12)∀ v ∈ X0
h
, ⟨�h

1
(v), �h

1
(�h

2
)⟩M1,3

+ �(v,�h
2
)2,Hh

= ⟨�h
1
(v), �h

1
(�h

1
)⟩M1,3

.
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Proof We consider the application ã ∶ Xh × Xh → ℝ given by

Obviously this is a bilinear and symmetric form in Xh . It is easily to prove that ã is 
continuous and Xh-coercive taking into account that the application

defines a norm in Xh which is equivalent to the usual norm ‖ ⋅ ‖Hh
.

Let �(v) = 2
�⟨�h

1
(v), �h

1
(�h

1
)⟩M1,3

�
 , which is clearly a continuous and linear 

application.
So, by applying Stampacchia Theorem (see [5]), we conclude that there exists a 

unique �h
2
∈ Xh such that ã(�h

2
,� − �h

2
) ≥ 𝜑(� − �h

2
) , for all � ∈ Xh , which implies 

that ã(�h
2
, v) ≥ 𝜑(v) , for all v ∈ X0

h
,

Taking into account that X0
h
 is a linear subspace, if v ∈ Xh

0
 then −v ∈ Xh

0
 and thus 

ã(�h
2
,−v) ≥ 𝜑(−v) . From this we obtain that ã(�h

2
, v) = 𝜑(v) , for any v ∈ X0

h
.

Furthermore, �h
2
 is the minimum in Xh of the functional Φ(v) =

1

2
ã(v, v) − 𝜑(v) , 

which is the minimum of J2 in Xh since Φ(v) = J2(v) − ⟨�h
1
(�h

1
)⟩M1,3

.
Hence, we conclude the result.   ◻

Proposition 3 There exists (�h
2
,�1,�2) ∈ Xh ×ℝ

M2,3 ×ℝ
M3,3 such that

Proof Let us denote by {�h
1
,… ,�h

M2
} the basis functions of Xh associate to the 

degrees of freedom {v(ci) | i = 1,… ,M2} and by {�h
M2+1

,… ,�h
M2+M3

} the basis 
functions of Xh associate to the degrees of freedom { �v

�n
(dj) | j = 1,… ,M3}.

For each v ∈ Xh , let � = v −

M2∑
j=1

v(cj)�
h
j
−

M3∑
j=1

�v

�n
(dj)�

h
M2+j

 . Then � ∈ Xh . More-

over, for any k = 1,… ,M2,

and, for k = 1,…M3 , one has

So �h
2
(�) = �h

3
(�) = 0 and consequently � ∈ X0

h
.

Let �h
2
 the solution of (12). Then we have �h

2
∈ Xh and

ã(u, v) = 2
�⟨𝜌h

1
(u), 𝜌h

1
(v)⟩M1,3

+ 𝜀(u, v)2,Hh

�
.

v → [[v]] =
�
⟨�h

1
(v)⟩2

M1,3
+ ��v�2

2,Hh
⟩)
� 1

2

(13)
⟨�h

1
(�h

2
), �h

1
(v)⟩M1,3

+ �(�h
2
, v)2,Xh

+ ⟨�h
2
(v),�1⟩M2,3

+

⟨�h
3
(v),�2⟩M3,3

= ⟨�h
1
(�h

1
), �h

1
(v)⟩M1,3

�(ck) = v(ck) −

M2∑
j=1

v(cj)�
h
j
(ck) −

M3∑
j=1

�v

�n
(dj)�

h
M2+j

(ck) = 0,

��

�n
(dk) =

�v

�n
(dk) −

M2∑
j=1

v(cj)
��h

j

�n
(dk) −

M3∑
j=1

�v

�n
(dj)

��h
M2+j

�n
(dk) = 0.
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By linearity we obtain

If we denote by

then we conclude that (12) holds.
The uniqueness of �1 and �2 is immediate.   ◻

4.2  Computing the solution �h

2

From the basis {�1,… ,�M} of S2(Tn, Tm) , let {�h
1
,… ,�h

�
} be the set of the functions 

of this basis such that

and we define

Then {vh
1
,… , vh

�
} is a basis of V∗

h
.

Thus �h
2
=

�∑
i=1

�iv
h
i
 , where �1,… , �� ∈ ℝ are de coefficients of �h

2
.

Applying Proposition 3, by linearity, this coefficients can be obtained from the 
unique solution of the linear system

where

⟨�h
1
(�h

2
), �h

1
(�)⟩M1,3

+ �(�h
2
,�)2,Hh

= ⟨�h
1
(�), �h

1
(�h

1
)⟩M1,3

.

⟨�h
1
(�h

2
), �h

1
(v)⟩M1,3

+

M2�
j=1

�⟨�h
1
(�h

1
) − �h

1
(�h

2
), �h

1
(�j⟩M1,3

+

+�(�h
2
,�h

j
)2,Hh

�
v(cj) +

M3�
j=1

�⟨�h
1
(�h

1
) − �h

1
(�h

2
), �h

1
(�M2+j

⟩M1,3
+

+�(�h
2
,�h

M2+j
)2,Hh

�
�v

�n
(dj) = ⟨�h

1
(�h

1
), �h

1
(v)⟩M1,3

.

�1 =
�
⟨�h

1
(�h

1
) − �h

1
(�h

2
)⟩M1,3

+ �(�h
2
,�h

j
)2,Hh

�
1≤j≤M2

,

�2 =
�
⟨�h

1
(�h

1
) − �h

1
(�h

2
)⟩M1,3

+ �(�h
2
,�h

j
)2,Hh

�
M2≤j≤M2+M3

,

sup(�h
i
) ∩ Hh ≠ �, i = 1,… ,�,

∀ i = 1,… ,�, ∀� = 1, 2, 3, j = 3(i − 1) + �, vh
j
= �h

i
j
�
.

(14)
⎛⎜⎜⎝

AhA
T
h
+ �R; Bh; Dh

B
T
h
; �; �

D
T
h
; �; �

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�

�1
�2

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

d1
d2
d3

⎞
⎟⎟⎠
,
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Remark 2 Observe that for computing the solution of (14) only the values of �h
1
 on 

Hh and its normal derivative on the boundary of Hh are neccesary.

5  The solution of the problem

Definition 1 We define the smoothing parametric biquadratic spline function filling 
holes of f |R−Hh

 in Vh associated with AN and � as the function

By construction it is verified that � ∈ Vh.

6  Numerical and graphical examples

To test the effectiveness of our method we suppose that the initial surface parameter-
ized by the function f ∶ R = (0, 1) × (0, 1) → ℝ

3 is given by

We consider a hole H that is the close of the interior of the ellipses 
25(x − 0.35)2 + 150(y − 0.75)2 = 1 and 150(x − 0.75)2 + 35(y − 0.3)2 = 1 and the 
surface with these holes parameterized by f |R−H (see Fig. 1 left side).

Given the variable distances defined by d1(x, y) = 0.2 sin(0.5(x − y)2+0.3) , 
d2(x, y) = 0.2(sin(0.5(x − y)2 + 0.3) and d3(x, y) = −0.2 cos(0.2 cos(0.5(x − y)2 + 0.3) , 

Ah =
�
vh
i
(bj)

�
1 ≤ i ≤ �

1 ≤ j ≤ M1

,

R =
�
(vh

i
, vh

j
)2,Hh

�
1≤i,j≤�,

Bh =
�
vh
i
(cj)

�
1 ≤ i ≤ �

1 ≤ j ≤ M2

,

Dh =

�
�vh

i

�n
(dj)

�

1 ≤ i ≤ �

1 ≤ j ≤ M3

,

� = (�1,… , ��)
T ,

d1 =
�⟨�h

1
(vh

i
), �h

1
(�h

1
)⟩M1,3

�
1≤i≤�,

d2 =
�
�h
1
(ci)

�
1≤i≤M2

,

d3 =

�
��h

1

�n
(di)

�

1≤i≤M3

.

�h(x) =

{
�h
1
(x), x ∈ R − Hh,

�h
2
(x), x ∈ Hh.

f (x, y) =
(
y cos

(
1

2
(2�x − 3�)

)
, y sin

(
1

2
(2�x − 3�)

)
, x
)
.
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we consider the corresponding generalized offset surface with holes sf |R−H (see Fig. 1 
right side).

First, we start with a graphical example. For this, from a partition Th of 8 × 8 equal 
squares, i.e. 9 × 9 knots, we construct the approximated hole Hh (see Fig.  2 left side) 
and we take a set AN of k(N) = 500 random points in the closed set of R − H (see Fig.  
2 right side).

Second, we compute the smoothing parametric biquadratic spline in Vh associated 
with AN , �(sf ) and � = 10−9 , called �h

1
 , and an estimation of the relative L2-error given 

by the number

where {�1,… , �5000} is a set of 5000 random points of the closed set of R − Hh.
Fig.  3 shows the original surfaces parameterized by the functions f |R−Hh

 
and sf |R−Hh

 , on the left side, and the approximated generalized offset surfaces 

Error1 =

���������

5000∑
i=1

�
�h
1

�
�i − sf (�i)

��2

5000∑
i=1

�
sf
�
�i
��2

,

Fig. 1  Graph of the initial surface parameterized by f  and the generalized offset surface parameterized 
by s

f
 , on the left side, and both with holes, on the right side)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2  Hole H and the approximated hole H
h
 (thick black) from a partition of the domain in 8 × 8 equal 

squares, on the left, and N = 500 random approximation points in ̄R − H , on the right
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parameterized by �h
1
 , on the right side, from bottom to top in both cases. The 

obtained estimated relative error is Error1 = 2.7695 × 10−4.
Third, we compute the smoothing parametric biquadratic spline function in 

Vh|H associated with Hh , �i�h
1
 , for i = 1, 2, 3 , and � = 10−9 , denoted by �h

2
.

Fourth, we compute the smoothing parametric biquadratic spline function fill-
ing holes of f  in Vh associated with AN and � = 10−9 , denoted by �h and an esti-
mation of the relative L2-error given by the number

where {�1,… , �5000} is a set of 5000 random points of R.
Fig. 4 shows the original surface with the approximated hole parameterized by 

f |R−H and its approximated generalized offset surface filling hole, parameterized 
by the smoothing parametric biquadratic spline filling hole function �h , from bot-
tom to top. The obtained estimated relative error is Error = 2.7216 × 10−4.

Error =

���������

5000∑
i=1

�
�h
�
�i
�
− sf

�
�i
��2

5000∑
i=1

�
sf
�
�i
��2

,

Fig. 3  Original surface with the approximated hole ( f |
R−H

h
 ) and its generalized offset surface ( s

f
|
R−H

h
 ), 

left side, and its approximated generalized offset surfaces parameterized by ( �h

1
 ) for � = 10

−9 , right side, 
from bottom to top in both cases. Error

1
= 2.7695 × 10

−4

Fig. 4  Original surface 
with the approximated hole, 
parameterized by f |

R−H and 
its approximated generalized 
offset filling hole, parameterized 
by the smoothing parametric 
biquadratic spline filling hole 
function �h , from bottom to top. 
Error = 2.7216 × 10

−4
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Finally, Table 1 shows the estimated relative errors Error1 and Error from the 
different values of the parameters of the problem n = m , k(N) and �.

Reflection and conclusion.
In the introduction we have cited and talked a bit about various references in 

the literature that have dealt with the problem of holes with various methods and 
extended techniques to fill these holes, our idea here was to present a comparison 
with these works, but due to the originality of our work we believe that such a 
comparison cannot be made. In fact, no paper presents the offset problem, even 
our extended method for filling holes is different. The complexity of our work 
translates into mixing two approximation methods, the first is offset and the sec-
ond is filling holes. Studying these criteria together is not so easy.

It should be noted that approach approximation method of this paper is made 
with the biquadratic splines functions that are of class 1, while for example in [2] 
it is done with the bi-cubic splines that are of class 2. This clearly shows that the 
degree of approximation in this work has been significantly reduced. Moreover, 
from Table 1, one can observe that as the data points increases the estimation of 
the error decreases, and also when the value of the parameter � decreases the esti-
mation of the error decreases, hence we can conclude the compatibility between 
the theory of the convergence result and the numerical ones. In short, we can con-
clude form the study of the table, where several data of the problem appear, and 
figures the effectiveness of our algorithm as an approximation method.

Table 1  Function f(x, y). The 
estimated relative errors Error

1
 

and Error from different values 
of the parameters of the problem 
n = m , k(N) and �

n = m k(N) � Error1 Error

9 500 10
−7

4.0366 × 10
−4

3.9358 × 10
−4

10
−9

2.7695 × 10
−4

2.7216 × 10
−4

10
−12

2.7390 × 10
−4

2.7214 × 10
−4

1000 10
−7

2.4970 × 10
−4

2.5427 × 10
−4

10
−9

2.3114 × 10
−4

2.3578 × 10
−4

10
−12

2.3145 × 10
−4

2.3657 × 10
−4

1500 10
−7

2.2815 × 10
−4

2.4014 × 10
−4

10
−9

2.2372 × 10
−4

2.3115 × 10
−4

10
−12

2.2267 × 10
−4

2.2696 × 10
−4

15 1000 10
−9

6.5865 × 10
−5 2.3812 × 10

−4

10
−12

5.1746 × 10
−5

9.4828 × 10
−5

10
−14

4.9510 × 10
−5

8.5806 × 10
−5

1500 10
−9

5.1979 × 10
−5

8.5815 × 10
−5

10
−12

4.5946 × 10
−5

9.0570 × 10
−5

10
−14

4.7551 × 10
−5

9.6152 × 10
−5

2500 10
−9

4.3985 × 10
−5

6.9301 × 10
−5

10
−12

4.3574 × 10
−5

6.0592 × 10
−5

10
−14

4.3527 × 10
−5

8.3303 × 10
−5
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As an open research for the future is the possibility of extending the manu-
script to find some numerical application directly or indirectly with chemistry.
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