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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A Quasi-Monte Carlo Integration Method Applied to
the Computation of the Pollaczek Integral

Xavier Legrand, Member, IEEE, Alain Xémard, Gérard Fleury, Philippe Auriol, and
Carlo Alberto Nucci, Fellow, IEEE

Abstract—This paper presents an effective numeric method
to compute Pollaczek integral. This integral is widely used in
transmission-line theory when computing the mutual impedance
between an overhead conductor and another overhead or un-
derground conductor and the earth-return impedance of an
underground cable. At first, we present mutual expressions pro-
posed by Pollaczek and underline the numerical complexities that
often lead to the adoption of alternative simplified methods. Then
a brief review of the so called “quasi-Monte Carlo” integration
method along with its advantages is given. Such an approach is
then applied to compute numerically Pollaczek expressions. Com-
parison between our numerical procedure and an algorithm that
has already been published proves both the procedure accuracy,
one of its main advantages along with its ease of implementation,
and its relatively low time consumption, independent of the input
parameters. Finally, as an application example, quasi-Monte
Carlo method is used to assess the adequacy, for several study
cases, of the simplified formula by Lucca, which is a widely used
approximate expression of interest.

Index Terms—Coupled transmission lines, mutual coupling,
power cables, power system transients.

I. INTRODUCTION

ACLASSICAL approach to simulate the electrical behavior
of underground and overhead lines is the so called “trans-

mission line theory” [1]. The first step when using this method is
to calculate all mutual and self impedances among conductors.
The particular problem of impedance calculation when under-
ground cables are dealt with was treated by Pollaczek in 1926
[2].

Considering the electric field created by infinite thin buried
conductors in which a longitudinal current is flowing, Pollaczek
presented a formulation for calculating:

• the mutual impedance between two underground conduc-
tors;

• the mutual impedance between an underground conductor
and an overhead conductor;

• the self ground return impedance of buried conductors.
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Pollaczek expressions are given in the form of highly oscil-
latory integrals hard to compute, so approximations are often
preferred in practice to evaluate these impedances [3]–[7].

Despite the existence of these formulae, one can be interested
in having an efficient algorithm to compute rigorously Pollaczek
expressions in order to:

• evaluate errors due to the use of approximations;
• use such an algorithm instead of direct formulae if it is

more suitable in terms of accuracy, computational time,
and code implementation complexity.

Few works concern the numerical computation of the rig-
orous Pollaczek formula. Rearranging it, Uribe obtains in [8]
and [9] normalized dimensionless expressions and presented an
algorithm to solve them numerically. Such a work is based on
a truncation of the infinite integrals, a study of irregularities of
the function, and a Simpson’s integration method.

In this paper we will follow a different approach. We shall
propose a new algorithm to solve numerically the original ex-
pressions of the Pollaczek integrals, based on a quasi-Monte
Carlo method [10]–[13].

First of all, we will present Pollaczek expressions for their
three different cases of application. Then we will give a brief
review of the so called “quasi-Monte Carlo” integration method
and its advantages before applying it to Pollaczek integrals. A
comparative study with results of Uribe’s algorithm [8] will
allow us to ensure the validity of our approach. Finally, we will
focus on Lucca’s formula, which is an approximate expression
of the mutual impedance between overhead and buried conduc-
tors, in order to assess its validity limits.

II. POLLACZEK EXPRESSIONS

A. Cases of Interest

Let us consider the three types of impedances that can be
computed with Pollaczek’s formula:

• is the ground return impedance of an underground
cable (Fig. 1, case 1);

• is the mutual impedance between two underground
cables (Fig. 1, case 2);

• is the mutual impedance between an underground
cable and an aerial line (Fig. 1, case 3).

B. Assumptions

Pollaczek expressions for and are based
on the following assumptions:

• the displacement current is neglected (quasi-static approx-
imation);

0885-8977/$25.00 © 2007 IEEE



1528 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 3, JULY 2008

Fig. 1. Cases of interest for the application of the Pollaczek expressions.

• the soil is considered as a semi-infinite homogeneous
medium;

• for mutual impedances expressions, conductors are parallel
and thin in comparison with their distance;

• all conductors are parallel, infinite and subject to thin wire
approximation.

C. Fundamental Expressions

Pollaczek gave in [2] the following expressions:

(1)

(2)

(3)

where so called “Pollaczek integrals” and
are given by

(4)

(5)

(6)

The definition of geometric and electrical variables is given
in Table I.

TABLE I
NOMENCLATURE

TABLE II
DIMENSIONLESS VARIABLES

D. Dimensionless Expressions

Pollaczek expressions can be rewritten in term of dimension-
less variables and [9] defined in Table II.

(7)

with dimensionless variables.
Equation (7) corresponds to Pollaczek’s integral. As well

known, its numerical integration is difficult because of highly
oscillatory terms. In the following sections, we will focus
on how to apply a quasi-Monte Carlo method to solve this
problem.

III. QUASI-MONTE CARLO METHODS TO

COMPUTE POLLACZEK INTEGRALS

A. Quasi-Monte Carlo Method

1) Monte Carlo Integration Method: General idea of Monte
Carlo integration method, presented by Metropolis and Ulman
in 1949, is to change an integration problem into an average
calculation [10].

The strong law of large numbers states that if
is an infinite sequence of random variables that are pairwise in-
dependent and identically distributed with common expected
value as , then, denoting P[X] the prob-
ability of an event X

(8)

i.e., the sample average converges surely to .
Let us consider a sequence of real-valued random vari-

ables uniformly distributed on interval [0,
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1]. Taking , with a real func-
tion defined on interval [0, 1], we obtain another sequence of
random real-valued independent variables on
which we apply the strong law of large numbers

(9)

(10)

The expectation of can be written

(11)

Considering , (10) and (11) lead to

(12)

Taking large enough, for a particular set
of random variables , the following equality is reasonably
verified:

(13)

Then the Monte Carlo method consists in approximating in-
tegral (11) by a sum, with expression (13). Finally, a confidence
interval for the error in the computation can be evaluated as a
function of variance of the random variables . How-
ever, this interval is probabilistic and gives no absolute upper
bound for the error.

2) Quasi-Monte Carlo Method: The main issues in Monte
Carlo method are

• the generation of independent uniform random variables.
Indeed a inappropriate random source leads to wrong re-
sults;

• the probabilistic nature of the error bounding: one cannot
be drastically sure of the precision of the results.

Quasi-Monte Carlo simulation uses only sequences of trials
having good properties of distribution on the

interval [0, 1] instead of random numbers as the traditional
Monte Carlo method does. Such sequences of numbers are
called quasi-random sequences instead of (pseudo) random
ones. The discrepancy of an terms sequence reflects
the propriety of uniform distribution of its subsequences

: the more these subsequences are
uniformly distributed and the less is the discrepancy. There-
fore, a quasi-random sequence is also called low-discrepancy
sequence.

3) Error Bounding: If function has, according to
Hardy and Krause, a bounded variation on [0, 1], then
for in [0, 1], the so called Koksma–Hlawka

inequality will provide an upper bound for the error in
quasi-Monte Carlo approximation [14]

(14)

with the discrepancy of the function and its
variation.

The total variation of function on [0, 1] is

(15)

4) Van Der Corput Sequence:
a) Definition: The definition of the Van Der Corput se-

quence was first published in 1935 [15]. It is a low-discrepancy
sequence over the unit interval whose terms are obtained as fol-
lows: to compute the th point of the Van Der Corput se-
quence of base b, the integer number is at first expanded on
base b. Then is obtained by reversing the digits after the “dec-
imal point”. For example, let us derive the 12th term
of the Van Der Corput sequence of base 2:

1) in base 2 is
2) after permutation, it becomes: 0011;
3) then in base 10:

.
Finally, the 12th term of the Van Der Corput sequence of base

2 is 0.1875.
b) Bounding of the Discrepancy: A useful formula that

provides an upper bound to discrepancy for a base 2
Van Der Corput sequence is [14]

(16)

So (14)–(16) give us an upper bound for the error when using
Monte Carlo approximation (13).

5) Advantages of the Quasi-Monte Carlo Method: The main
advantages of quasi-Monte Carlo method in the case of interest
are:

• the availability of a deterministic bound for error (with the
classic Monte Carlo approach, the bound is only proba-
bilistic);

• a faster convergence rate (the error bound decreases to 0
more quickly than instead of about for
classical Monte Carlo);

• the high flexibility (the algorithm does not depend on the
function to integrate).

B. Application of Quasi-Monte Carlo Method

1) The Problem: We present here the application of quasi-
Monte Carlo integration method to the integration of Pollaczek
expression (7). At first, let us factorize integral J into two terms

and

(17)
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with

(18)

and

(19)

We can choose a function as follows:

(20)

then

(21)

To change integration bounds of , we use the new variable
defined by

(22)

Finally, we obtain a second integral on [0, 1]

(23)

Integrals and can be calculated by quasi-Monte Carlo
method in their form (21) and (23).

2) Algorithm Proposed (QMC): It comes from Monte Carlo
approximation (13), for large enough

(24)

So the Pollaczek integral (7) will be calculated by computing
the simple expression

(25)

where the sequence is the base 2 Van Der
Corput sequence of size .

In practice, is computed in the same form as proposed
in [9]

(26)

with

Fig. 2. Quasi-Monte Carlo method applied to the Pollaczek integral calcula-
tion.

and

(27)

The terms , and do
not depend on geometrical and electrical properties but only on
Van Der Corput terms, so they can be computed offline, to re-
duce calculating time, as shown in Fig. 2.

Finally, (25) is easily computable: its coding is simple and
light.

IV. APPLICATIONS

A. Presentation

In this section, we will first validate the proposed algorithm
by comparing our results with those obtained with the numer-
ical integration method presented in [8] and [9]. Then we will
focus on the particular case of the mutual impedance between
overhead an underground conductors to present a comparative
study with Lucca formula.

We consider here the same minimum and maximum values
for electrical and geometrical variables as in [8]

It leads to bounds for and normalized dimensionless param-
eters

Computing times presented here are obtained on an Intel
Xéon 2 3.4 GHz with 4Go of RAM running Matlab® V6.5.

B. Comparison With Another Numeric Integration Algorithm

1) Presentation: In [8] and [9], an algorithm is presented to
solve dimensionless (7). It is based, as mentioned in the Intro-
duction, on the truncation of infinite Pollaczek’s integral and
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Fig. 3. ���� �� �� computed with the two numerical methods.

Fig. 4. ���� �� �� computed with the two numerical methods, real part.

the study of the integrated function irregularities to adjust a
Simpson’s method.

2) Comparison of Results: Fig. 3 shows different calculated
values of Pollaczek’s integral (7), using alternatively the quasi-
Monte Carlo method presented in this paper and the
method presented in [7], [8] . For this work, we have
fixed:

• , which corresponds to cases 1 and 2 of Fig. 1;
• 10 000 integration terms for ;
• 256 integration terms for .
Fig. 3 shows that the two methods give similar results for

. Before concluding, we can extend this study for other
values of variable . Further, Figs. 4 and 5 present
computed with the two methods for . Here, we define
absolute and relative differences between the results as follows:

(27)

% (28)

Fig. 5. ���� �� �� computed with the two numerical methods, imaginary part.

TABLE III
CASES OF DIFFERENCES BETWEEN THE TWO METHODS

These figures can be used to validate our integration algo-
rithm. To this end, it is important to consider the relative differ-
ence map % but also to take into account the absolute differ-
ence. Indeed for some input data , J tends toward zero
and a great value of % is observed although the difference is
insignificant in absolute value .

These plots have been completed by others to consider the
entire variation domain of dimensionless variables. This work
has brought us to the conclusion that both algorithms give results
in a good agreement for the great majority of cases. Only a little
difference appeared for , which remains
on, for each case, to Table III:

For case 1, leads to the impossible inequality
and considering the values of is in practice not
likely to be verified for cases 2 and 3; we can thus observe a
good agreement between the two algorithms results.

Finally, to illustrate the convergence rate of quasi-Monte
Carlo method, we have plotted on Fig. 6, for a practical case and
for several values of terms in (25), the upper bound
for the error computed with (14) and .

We consider m, kHz, S/m,
and m. It leads to m, , and

.
For this case, . If

is greater than the upper bound for the error
on abs , which means that is then more accurate
than . Note that this conclusion could be different for other
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Fig. 6. Particular case of study.

Fig. 7. Computation time for � ��� �� ��.

cases, because depends strongly on and as has been
seen in Figs. 4 and 5.

3) Comparison of Computation Time: Talking about com-
putation time, contrary to the other method, resources needed
by the quasi-Monte Carlo algorithm do not depend on the input
data. This shows the main advantage of quasi-Monte Carlo
method: time consumption does not depend on the behavior of
the function to integrate. In our study, to compute an integral
value, our algorithm took (with ), about 16 ms (this
time does not take into account the part “computed offline”
shown in Fig. 2).

Considering the algorithm based on a classical Simpson’s ap-
proach , we have plotted in Fig. 7 the computation time
for and different values of and (same computer and
256 integration steps). Although the minimum time is less than
the 16ms value obtained with quasi-Monte Carlo, the algorithm
needs more than 200 ms for some input data.

4) Comparison of Algorithms Complexity: Because of the
very simple shape of (25), quasi-Monte Carlo method leads to
an algorithm that is much simpler than the other one considered
in which the function to integrate is studied before being com-
puted.

Fig. 8. ���� �� ��� computed with the quasi-Monte Carlo method and Lucca’s
formula, real part.

C. Comparison With the Simplified Formula by Lucca

1) Presentation: Lucca presented in [3] a closed-form solu-
tion for calculating mutual impedances between overhead and
buried lines

(30)

where

The geometrical parameters and are defined in Fig. 1
(case 3).

2) Parametric Study: Figs. 8 and 9 show Pollaczek integral
values calculated with our algorithm and with Lucca’s
formula for . We present also the absolute
and the relative differences between them (respectively, and

%).
This study has been carried out for several values of . Max-

imum errors occur when

which can be expressed

Following this approach, one will be able to validate or not the
use of Lucca’s formula, depending on the accuracy required.
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Fig. 9. ���� �� ��� computed with the quasi-Monte Carlo method and Lucca’s
formula, imaginary part.

TABLE IV
CALCULATION METHODS COMPARISON

V. CONCLUSION

As Pollaczek expressions are given in the form of highly os-
cillatory integrals, hard to compute, approximations are often
preferred in practice.

Therefore the availability of an efficient algorithm based on
rigorous Pollaczek expressions to check the accuracy of such
simplified formulas for the various cases of interest—and to re-
place them if needed-is of importance.

This paper has proposed and tested a new algorithm in this
respect. This algorithm is based on quasi-Monte Carlo integra-
tion method with Van Der Corput series. The method that we
have proposed has several advantages: it presents a fast conver-
gence rate, an expression to bound the error has been provided,
and its computing time is independent on the complexity of the
function to integrate. To validate our algorithm, a comparative
study with another algorithm has been carried out. This second
algorithm, proposed by Uribe in [7], [8] is based on the trunca-
tion of the infinite integral, a study of function irregularities and
a Simpson’s integration method. In general, a good agreement
between the results has been obtained. Although the reference
algorithm can be faster for some input values, its time consump-
tion—opposite to our method—depends on input data. Further-
more, our algorithm is much simpler to implement.

As an application example, we have focused on the approxi-
mate expression of the mutual impedance between overhead and
buried conductors provided by Lucca in [3]. Comparing values

given by this formula and our approach on the whole electrical
and geometrical domain, has allowed us to point out the cases
that result in the largest error.

Table IV sum up advantages and drawbacks of the three
methods used to calculate the mutual impedance between
overhead and buried conductors.

As a last note, we feel worth mentioning that the quasi-Monte
Carlo method deserves more attention. For example, it can be
relevant to Sommerfeld’s integrals computation [12] as well.
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