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Abstract 
 This paper presents a functional and dysfunctional behavioral study 

of a telecommunication system, with the aim to evaluate the performance of 

its constituent units. It is question of taking advantage offered by artificial 

intelligence in order to evaluate by modeling and simulation in system 

reliability. The methodological approach consists in combining ANFIS 

neuro-fuzzy networks with hybrid stochastic automata. The Neuro-Fuzzy 

ANFIS networks provide a prediction for the passage from nominal mode to 

degraded mode, by controlling the occurrence of malfunctions at transient 

levels. This allows to anticipate the occurrence of events degrading system 

performance, such as failures and disturbances. The objective is to maintain 

the system in nominal operating mode and prevent its tipping in degraded 

mode. The results are implanted around a demonstrator based on Scilab, and 

implemented on Matlab / Simulink.  

 

Keywords: Performance Evaluation, Modeling, Reliability, 
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Introduction 

 Performance evaluation is a difficult problem because it requires 

taking into account the different constituent parts of a system (human, 

organizational, technical), participating in a way differentiated in its global 
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performance (Kombe, 2009). 

 With the increasing complexity the systems of communication and 

the  importance which we attached to their capacity to work correctly and in 

a continuous way, the need to model accurately their functional and 

dysfunctional behavior and then to estimate their global performance is 

more and more pressing. Various performance indicators and modeling 

tools are already commonly used in the field of operating safety of the 

telecommunication systems. We can quote the reliability (Villemeur, 1988), 

an important parameter of operating safety because the network is regularly 

submitted to interferences, responsible for instability and fluctuations in the 

covered zone (Ruckus, 2009). Other parameters of the operating safety are: 

Maintainability, Availability and Safety. There is also the problem of access 

control operated by the operator, and the protection of the exchanges of data 

between knots (state) (Ben, 2007) and (Lupan, 2006).  

          The mathematical complexity of the evaluation of the operating safety 

of the dynamic systems leads us to resort to simulation. The structure of the 

dynamic system chosen is the Hybrid Stochastic Automaton. It is hybrid 

because it has two states namely: continuous state (which is the flow of 

message) and discrete state (which are operating states of various knots), 

that are defined by systems.  The use of a Neuro-fuzzy network in the 

module monitoring/control offers the possibility to model prior to 

knowledge and linguistic rules of decisions obtained by experts in the field. 

It takes advantage of the capacities of the fuzzy inference modelled by a 

parallel architecture (Benaicha, 2013) and (Houacine, 2016). Hence the 

interest of combining Hybrid Stochastic Automata with Neuro-Fuzzy 

Networks. 

 

Detection and diagnosis in telecommunication system 

 To detect failures in a telecommunication system, one must be able to 

classify observable situations as being normal (functioning) or abnormal 

(degraded) (Lefevre, 2000). This classification is not trivial, given the lack of 

information that generally characterizes abnormal situations. A commonly 

adopted simplification consists in considering as abnormal any situation 

which is not normal. 
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 Given a set of observed demonstrations (symptoms, observation, etc.) 

(Fig. 1), it is question of explaining their presence, going back to the causes, 

using knowledge about the telecommunication system. Furthermore, this 

concept also applies to the decomposition of the diagnosis into two functions 

: localization, which makes it possible to determine the failing functional 

subset and the identification, which must determine the causes that led to an 

abnormal situation. Finally, in this definition, the diagnosis is made from 

observations, what means well considering the detection as not taking part in 

the phase of diagnosis.  

  Two types of knowledge data are considered necessary for the 

diagnosis operation :  

 the global knowledge which we can qualify knowledge as prior on 

the system. It is based on the past of the telecommunication system; 

 the immediate knowledge, which corresponds to all the set of 

elements which are available at a given time to make a decision and operate. 

This knowledge is based on observations that can be digital or symbolic. 

 

Functional and dysfunctional modeling by graphs of 

states 

 At the level of the various techniques, a first informal approach, 

based on intuition and experience, is necessary. However, it is not based on 

a methodology and quantified and validated data. Undetected side effects 

may occur.  

 A more systematic and formal study of the performances is therefore 

essential, by modelling then by observation of the behavior. If we only use 

observation, we may have to radically change a system that has already 

Fig. 1: Components of telecommunication system monitoring 

Monitoring of 

telecommunication system 

Detection of faults 

(Symptoms, alarms) 

Failure location Identification of the 

cause of failure 

Diagnosis 
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generated a lot of costs, because this technique is being used when the 

system has already been built. 

 

Knowledge model  

 For telecommunication systems, the knowledge or functioning model 

is a formalization of its structure, in a natural or graphic language. The 

knowledge model, based on artificial intelligence, will contain all the 

knowledge acquired during the observation phases. This knowledge will be 

used to control or monitor the system, in order to anticipate the probability of 

a failure, and above all to avoid waiting times. For this, it is important to 

consider the action model 

 

Modeling Formalisms 

 The formal modeling techniques that have been developed are based 

on the same principle in defining: 

 the states of the telecommunication systems;  

 transitions between states; 

 transition delays. 

 The states are represented graphically by knots, and transitions, by 

labeled arrows connecting the knots between them (Tadepalli, 2008). The 

transitions are labeled by events whose occurrence causes a change in the 

state of the system. The resulting graph is known as a transitions diagram 

representing the behavior of the system.  

 The telecommunication system has a finite number of states. The 

change of state of the system is generated by the execution of an action that 

triggers a transition. But it is difficult to carry out a manual modeling of all 

the possible transitions between the different states of a large and complex 

telecommunication system. Often, the underlying transition diagram of a 

real system is of the order of a few thousand, even hundreds of thousands of 

states. Several high level formalisms ( Hillston, 1996) have been proposed 

to allow the modeling of a complex system through compact algebraic 

formulas and the automatic derivation at the lowest level of the transition 

diagram and the underlying Markov chain (Stewart, 2016). Each formalism 

has its own syntax. The derivation of the Markov chain is no more than an 

application of its semantics, generally defined in terms of transitions 

between states. A software is then used to generate the state space and the 

matrix « infinitesimal generator » of the Markov chain. It also makes it 

possible to calculate the stationary and transient solutions. Regardless of the 

formalism used, the goal is to calculate the performance parameters of the 

system.  

 Some methods of resolution are however specific to formalism, but 

technics can be adapted from one formalism to another.  
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 The Stochastic Automata Networks (Plateau, 1984) and (Fourneau, 

1997), are a formalism of high level which allows the modeling of very 

large Markov chains and very complex, in a compact and structured way. 

They were built to take into account the size of the state space when 

designing a model. Indeed, a telecommunication system is modeled from 

several components often evolving in parallel (independently), except in 

certain synchronization actions where the components interact with one 

another. In this formalism, the behavior of a component of the system is 

represented by a set of states which constitutes an automaton (a Markov 

chain with a reasonable state space). Each automaton is described by a local 

matrix. The set of all the automata thus constituted is represented by a 

multidimensional Markov chain, whose states are those of the product 

space, with an underlying matrix called descriptor (Plateau, 1984). It is 

obtained by applying the operators of the tensor algebra (or of Kronecker) 

on the local matrices of each automaton. The generator structure allows a 

considerable gain of the memory space since it avoids the storage of the 

entire generator matrix. Effective resolution techniques (Durbach, 1998) and 

(Benoit, 2003) are then available for quantitative analysis. But, the use of 

independent components connected via the synchronization functions can 

produce a state space with many inaccessible states. In order to overcome 

all these limitations, we integrate the tools of Artificial Intelligence that are: 

Neural Networks and Fuzzy Logic.  

 

Preliminary interpretations  

 In The dynamic capacity management of telecommunication 

systems remains a major challenge for telecom operators who must take into 

account the interest of Artificial Intelligence in the monitoring of these 

systems (Offole, 2016).  

 Any physical system is governed by two main dynamics which are: 

a continuous dynamic materialized by the differential equations and a 

discrete dynamics materialized by the Boolean equations (Perez, 2009).  

 In the case of a telecommunication system, these dynamics are 

defined as follows:  

 the continuous dynamics f, characterized by the flow of message so 

the modeling was done by the first-order differential equations (1) of the 

form: 

 

 

Where  

         �̇�   represents the variation of message flow in the system; 

        U    represents the input variables of the system; 

        t     represents the operating time. 

�̇� =  𝑓(𝑋, 𝑈, 𝑡)             (1)                                                    

(1)                                                
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 the discrete dynamic, characterized by operating states  of the main 

components of the system. It is modeled by the equations of the Boolean 

algebra. 

 The actual dynamic systems respond not only in function of time 

(continuous models), but also according to their environment and the events 

that may occur there. If the continuous models are good approximations of 

steady-state operation, and discrete models, good descriptors of the 

operating sequences of a system, it is clear that the global model closest to 

reality is a dynamic hybrid system.  

 Some events are random (component failure in particular) and confer 

a stochastic aspect of the problem. A model in the form of a hybrid 

stochastic automaton makes it possible to model the reality of a system 

control / command. Whatever the model used, standards and needs of safety 

and criticality requirements are strict for all command and control systems. 

The evaluation of system performance within a dynamic framework 

becomes a necessity.  

 A Hybrid Automaton (Perez, 2009) and (Marzat, 2008) appears as 

the association of finite state automata piloting a set of continuous dynamic 

equations. The equations modeling the continuous behavior of the system at 

a given instant therefore depend on the discrete state in which the system is 

found (Wolff, 1998).  It latter can evolve according to the value of the 

continuous greatness.  

 A Hybrid Automaton is Stochastic, if the probability densities are 

taken into account associated with transitions between states, as well as 

clocks.  

 Formally, a Hybrid Stochastic Automaton is an 11-tuple: 

       (X, E, A, X, A, H, F, p, x0, x0, p0 )                                  

in which :  

 X  is a finite set of discrete states;                    

 E  is a finite set of events; 

 A is a finite set of arcs of the form (Figure 1) where: 

 x  et x ‘are the origin states and the arc, « e » is the event associated 

with the arc, « G » the guard condition and « R » is the reset function.   On 

occurrence of « e »  if the guard condition « G » is verified, the rocking of 

the state system x  to the state x’, in which « R » defines the initial values of 

the continuous variables of the system; 

 X is a finite set of real variables; 
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 A : X ×  X → (R+→ R) is a function of « activities », which associates 

to an element of X  × X a defined function on R +  and has value in R; 

 H   is a finite set of clocks; 

 F : H → (R → [0,1]) is an application which associates with each 

clock, a distribution function; 

 p is a state transition probability distribution p(x' x, e). For example, 

if we have the same event « e » defining transitions from discrete state x  to 

the discrete states x’ and x’’  (it is said that there are conflicting transitions). 

We can define the probability p to pass from the state x  to the state x’  and 

the probability (1 - p) to pass from the state x’  to the state x’’ ; 

 x0 , x0 and p0  correspond to the initial discrete state x , to the initial 

value of the continuous state variable x and has the initial transition 

probability, respectively. 

 Once the Hybrid Stochastic Automaton model is obtained, a 

combination with neuro-fuzzy networks is necessary, to obtain the desired 

model, namely: « a neuro-fuzzy Hybrid Stochastic Automaton ». It will 

function to control the prediction error on telecommunication systems.  

The modeling done takes into account the operation of the system without 

Artificial Intelligence on one hand, and on the other hand, by integrating 

Artificial Intelligence (a neuro-fuzzy ANFIS block).  

 

Method

s 

Hybrid stochastic modeling of the telecommunication system   

 The transmission of messages in a telecommunication system is 

carried out between the different stations (knots). These messages can 

borrow several paths to reach their recipients (stations).  

 Indeed, during this process, once the information is transmitted, the 

knots retrieve the reference or address of the recipient, through the 

intermediate of switch in the message header. Then, the router will 

multiplex the different messages on the determined output. During this 

process, the collision of information (or messages) can be recorded. They 

occur when receiving package. The small size of the bandwidth results in a 

significant loss of data. Hence the saturation of the network.  

 The reliability diagram characterizing the state model of the 

telecommunication system integrating failures (dysfunction), is modeled by a 

hybrid stochastic automaton (Fig. 2). His behavioral study is characterized 

by two main states: 
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 the continuous state that takes into account continuous events 

(message flow, ...); 

 the discrete state that takes discrete events into account (operating 

states of the various knots (stations)). 

 The various states in which a telecommunication system may be 

located as a function of transient events are:  

State 1: The system is functioning normally; the data transmission is 

performed from one knot (station) to another.  

State 2: The receiver knot has a failure. During this time, the transmitter is 

active and sends the information (or messages).  

State 3: The receiver breaks down and goes into repair, while the 

transmitting knot (station) is always active and continues to transmit 

information to the receiver.  

State 4: The transmitter break down in turn, while the receiver, after repair, 

becomes active again.  

State 5: The transmitter is being repaired and the receiver remains active.  

 The model of states of such a system is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The hybrid stochastic automaton model of Fig.2 has been translated 

into Scilab whose model is given in Fig.3.  

 This scheme shows the mode block that represents the message flow 

as continuous variables used. It is constituted of different components 

namely :    

 Mathematical expression : these are the mathematical equations. 

They define the continuous operation of the system; 

 Extract : allows to extract the positive values of the variables; 

μ
λ

 λ  is the rate of failure; 

 μ  is the rate of repair; 

 �̇�  is the average ; 

 𝑥max  is the maximum 

value. 

Fig.2: Hybrid stochastic automaton representing the state model of the telecommunication 

system 
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 Mux : is the adder, which allows to combine the mathematical 

expressions; 

 The values 1, 2, 3: are the input ports, corresponding to the different 

variables of the system, such as : time, command, and state; 

 A value of 0 is used to initialize the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Fig.4 shows the block of discrete variables, consisting of five 

modes. Each mode represents the five states of Fig.2. The continuous 

variable block of Fig.3 is the exploded schema of a mode among the five 

modes of the discrete variable block of Fig.4. 

 

Fig.3:  Mode block of the hybrid stochastic automaton 
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Fig.4: Generator block of the hybrid stochastic automaton 

 

 This scheme shows the generator block which represents the discrete 

states of the system. It symbolizes the operating states of the different knots 

(stations). It is constituted of different components that are: 

 Mode: is the state of the system that corresponds to each of the five 

(05) states of the system shown in Fig.2; 

 Extract: allows to extract the positive values of the variables; 

 Automaton: this is the decision block, in which Artificial Intelligence 

(neuro-fuzzy networks) has been integrated. 

 

Functional Behavioral Study of the System Integrating Artificial 

Intelligence  

 The objective of the behavioral study of the system is to better 

apprehend, control, appreciate and visualize, from the tools of Artificial 

Intelligence (Neuro-Fuzzy ANFIS networks) functional behaviors and 
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dysfunctional of the telecommunication system, during its phase of useful 

life.  

 The aim is to anticipate the probability of occurrence of a possible 

failure, especially the progressive. The binary operation mode “on”, “off” is 

prohibited. The system uses membership functions allowing an evolutionary 

control of an upstream nominal mode, to a downstream degraded mode. 

  Dynamic monitoring will be done favor to the ANFIS neuro-fuzzy 

networks (Fig 5). It allows to observe the presence of degradation, either to 

control its evolution. The expert (operator) can therefore be informed, 

allowing thus his intervention which would prevent lead a system failure 

(shutdown).  

 The modeling allows to know the functional and dysfunctional 

behaviors of the system. The indicators mainly target to check the 

accessibility of the service, its continuity, its availability and its reliability. 

They also affect the voices (failure rate, cutoff rate, success rate, ...) than on 

data transmissions (connection delay, download delay, reception rate, 

transmission delay, data error rate, ...), as well on the state of the system 

(safety functioning). They aim is to guarantee a satisfactory level of quality 

of service to customers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The tools of Artificial Intelligence namely the ANFIS neuro-fuzzy 

networks have been integrated, to ensure decision-making at the transitions 

level between the nominal mode (on) and the degraded (off) mode. We 

represent the dynamics of the events inside the transitions.  

μE 
λE 

Fig.5: Hybrid Stochastic Automaton of a telecommunications system integrating artificial 

intelligence 
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 This modeling consists in replacing transition at a non-constant rate 

between two states, by a combination of transitions at constant rate (Cox 

model) (Kombe, 2011). It makes it possible to model any transitions, 

namely, the failures rates of increasing relating to a phenomenon of wear or 

deterioration. Thus, the Neuro-Fuzzy ANFIS networks are combined with 

transient states, to the control of the evolution of functional behaviors and 

system dysfunctional. This combination will allow make de good decisions, 

and to know the actions to lead for the smooth running of the system. The 

aim is to avoid that the system does not toggle in degraded mode. Integrated 

Artificial Intelligence makes it possible to fine-tune decision-making.  

 Whether the events are continuous or random, the expert can now 

notice the presence of degradation. Knowing that there is a class 

membership, there is a degree of confidence compared to the limits that the 

system will have to learn. The malfunction will be corrected 

thereafter thanks to the error gradient, which has the role of to master the 

error in the system.  

 

Results and Discussion of simulation of the dynamic system  

 The softwares used for the simulation are: Scilab and 

Matlab/Simulink.  

 The simulation model of the telecommunication system used has 

been implemented under Scilab to obtain the generator blocks (Fig 3, Fig.4). 

Once the model is implemented on Scilab, we simulate on Matlab/Simulink 

to generate graphs of discrete events and continuous state.  

 This simulation of the model makes it possible to follow in parallel, 

the variation of discrete states (the operation of different knots (stations)) 

following discrete events, and which in turn impacting the variation of the 

message flow, from continuous events.  

 It also allows appreciating the operation of the various knots 

(stations) in the discrete state, without Artificial Intelligence and with 

Artificial Intelligence.  

 The Fig. 6 presents the variation of the discrete states (the 

functioning of different knots (stations)) following discrete events, and 

which in turn impacting the variation of the message flow from continuous 

events without Artificial Intelligence.  

 Fig. 6b shows the five (05) system states from discrete events. These 

events represent the functional states and dysfunctional of the 

telecommunication system. In Fig. 6a, we have to ordinate, the message 

flow and to abscissa the time (hours).  

 We considered that the maximum message flow is 40 messages, and 

the simulation time is 20000 hours, in the objective to better appreciate the 

behavior of the system.  
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 The system is at the beginning in the discrete state 1 when the time t 

= 0 until t = 4800 hours (Fig. 6b), which sending back to the nominal state. 

Then, the message flow is constant and stable at 40 messages (Fig. 6a). The 

data transmission is performed from a knot (station) to another. This 

situation obeys the defined functional behavior by the hybrid stochastic 

automaton of the system.  

 From t = 5000 hours to t = 7100 hours, the system state changes, that 

is to say passes from the discrete state 1 to the discrete state 2. Then from 

state 2 to state 3 between 7100 and 11700 hours. This state change is due to 

the presence of a failure of the knot. This failure impacts the message flow 

when transmitting data (Fig. 6a). It is materialized by "peaks" very 

accentuated, which sending back to the state of dysfunction. Thereafter, the 

system switches from the discrete state 3 to the discrete state 1 between 

11700 and 14000 hours, which bring back the system to the nominal state. 

Then, the system switches from the discrete state 1 to the discrete state 5 

following a failure between 14000 and 14950 hours, because a knot is still 

under repair (Fig. 2). It therefore cannot have a data transmission, a less 

pronounced peak is observed at this instant (Fig. 6a). For the rest, the 

system switches from the discrete state 5 to the discrete state 4 between 

14950 and 16200 hours. This state change is due to the presence of a failure 

of the knot. This failure affects the message flow when transmitting data. It 

is materialized by "peaks" very accentuated, which sending back to the state 

of dysfunction. From t = 16200 hours to t = 17400 hours, the system passes 

from the discrete state 4 to the discrete state 5. This state change is due to 

the presence of a failure of the knot. This failure affects the message flow 

when transmitting data. It is materialized by a "peak" less accentuated, 

which sending back to the state of dysfunction. The system switches from 

the discrete state 5 to the discrete state 4 between 17400 and 18900 hours, 

following a failure of the knot. This failure impact the message flow when 

transmitting data. It is materialized by very "peaks" accentuated, which send 

back to the state of dysfunction. Finally, the system switches from discrete 

state 4 to discrete state 1 between 18900 and 20000 hours, which bring back 

the system to the nominal state. Transmission of the data stream becomes 

stable.  

 The control of the transition from "nominal mode" towards 

"degraded mode" is done without the integration of a tool of Artificial 

Intelligence. This is what can explain the very sudden tipping from a 

nominal state to a degraded state, without evolutionary transition from 

degradation, and without the expert to notice. This is observed at 14000 

hours, where the system goes from state 1 to state 5 (Fig. 6a).  

 The curve of Fig. 7 shows the variation of discrete states (the 

operation of different knots (stations)) during time. The occurrence of 
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discrete events impact in turn, the variation of the flow of messages 

(continuous events). This variation obeys the functional behavior and 

dysfunction defined by the hybrid stochastic automaton associated with 

neuro-fuzzy networks.  

 We considered that the maximum message flow is 40 messages, and 

the simulation time is 20000 hours. The system is initially in the discrete 

state 1 when the time is t = 0 until t = 5400 hours (Fig. 7b), which sending 

back to the nominal state. The message flow is constant and equal to 40 

messages (Fig. 7a). The data transmission is carried out from one knot 

(station) to another. This variation obeys the defined functional behavior by 

the hybrid stochastic automaton of the system.  

From t = 5400 hours to t = 7200 hours, the system switches from the discrete 

state 1 to the discrete state 2. One observes then a fluctuation of the flow of 

messages, characterized by peaks, but this time, less accentuated (Fig. 7a). 
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          Thereafter, the system switches to the discrete state 2 to the discrete 

state 3 between 7200 and 11500 hours. This is due to the presence of a 

failure of the knot. This failure slightly impacts the message flow when 

transmitting data.  

 This decrease in amplitude of peaks observed on the curve is the 

result of the fact that a control of the gradual evolution of the degradation 

was carried out, which made it possible to anticipate on the dysfunction of 

the system. Thereafter, the system switches from the discrete state 3 to the 

discrete state 1 bringing back the system to the nominal operating mode. 

 The weak changes in states still observed do not impact not strongly 

the transmission of data, which oscillates slightly around 40 messages. In 

this model, the system works with the membership classes.  

 That is to say that the presence of a failure in the telecommunication 

system does not toggle this last automatically from nominal mode to 

degraded mode. This shift is fact rather of way gradual. This makes it 

possible to anticipate on the total failure, through to supervision exerted by 

the neuro-fuzzy networks.  

 

System Performance Indicators Integrating Artificial Intelligence  
 The evaluation of some dynamic parameters namely: Reliability, 

Availability and Maintainability was made using the Hybrid Stochastic 

Automaton, combined with neuro-fuzzy networks ANFIS, implemented 

under Scilab. One simulates repeatedly the model designed for the 

determination of the parameters such as: the average duration of the running 

times between two consecutive failures of a repaired entity, or still called 

Mean Time Between Failure (MTBF), the average duration of operation of 

an entity before the first failure, or still Mean Time To Failure (MTTF), 

Mean Time To Repair (MTTR) integrating this time the Neuro-Fuzzy 

ANFIS networks.  

 The determination of all these parameters will allow to trace the 

evolution of reliability curves, Availability and Maintainability, undeniable 

performance indicators of a telecommunication system.  

 

Intelligent Reliability of the telecommunication system   

 The Reliability of a system is the probability that it performs a 

required function under given conditions, during a given time t (Villemeur, 

1988).  

 Concerning the evaluation of the reliability of the system, we have 

limited ourselves to the evaluation of the MTBF. Subsequently, we calculate 

the failure rate λ from the following equation (2):  

 

  
λ = 

1

𝑀𝑇𝐵𝐹
                                  (2)                            

 



European Scientific Journal June 2017 edition Vol.13, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

 

513 

 Once λ obtained, we calculate the reliability R(t) (equation (3)). 

Recall that we are at the useful life stage of the system, therefore the events 

are characterized by the exponential law. 

 

 

 

 The simulation results show that the reliability curve is decreasing 

and almost damped. Over time, it tends to zero (0). We realize that initially,      

A(t) = 1 when t = 0. As time progresses, the system reliability curve begins 

to decrease but slightly.  

 This decrease of almost damped curve is due to the presence of 

neuro-fuzzy networks in the monitoring of the system. This variation shows 

the slow evolution of degradation systems with time, and the good 

performance of the system. The simulation duration here is 2 × 104 hours. 

Fig.8 presents these results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Intelligent Availability of the telecommunication system  
 Availability is the probability that a system is in state to perform a 

required function under the conditions given at time t considered 

(Villemeur, 1988).  

According to the curve of Fig.7a, the state of unavailability of the system is 

materialized by the presence of less "peaks" accented. These system failures 

do not necessarily render the system unavailable. 

  Concerning the evaluation of the Availability of the system, we first 

defined the MTTR. Subsequently, we calculate μ (the repair rate) from the 

following equation (4): 

 

𝑅(𝑡) = 𝑒−𝜆𝑡 
 

(3) 

𝜇 =  
1

𝑀𝑇𝑇𝑅
 (4) 

 

Time (hours) 

Reliability 

 

Fig.8: System reliability integrating neuro-fuzzy networks 
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Once μ obtained, we calculate Availability A (t) (equation (5)). 

 

 

 

 The results of the stochastic simulation of the state automaton show 

that Availability A (t) = 1 at    t = 0. Over time, the curve decreases slightly 

and stabilizes at 85% (Value required by the World Class Performance) (Q-

mation, 2016) (Ayel, 2004) (Cimnet, 2004) and (Clemons, 2004).  

 This stability is due to the presence of neuro-fuzzy networks in the 

system. They already prevent errors due to failures. This shows that the 

system regains more stable availability. The simulation duration here is 2 × 

104 hours. Fig. 9 presents these results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intelligent Maintainability of the telecommunications system  

The Maintainability of a system is the probability that the maintenance of an 

assured system under given conditions ends at time t, knowing that the 

entity was failing at t = 0 (Villemeur, 1988). 

Once μ obtained by the formula (4), we calculate the Maintainability M(t) 

(équation (6)). 

 

 

 The simulation results show that Maintainability is increasing and 

tends towards one.  Initially, the Maintainability of the system is M (t) = 0 

when t = 0. Over time, the curve begins to grow slightly and stabilizes at 1 

(Value Required for Optimal Maintainability).  

A(t) = 
𝜇

𝜇 + 𝜆
 - 

𝜆

𝜇 + 𝜆
𝑒(𝜇+𝜆)𝑡                (5)      

 

𝑀 (𝑡)  =  1 − 𝑒−𝜇𝑡 

 

(6) 

Fig.9: Availability of the system integrating the neuro-fuzzy networks 
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 This growth is achieved thanks to the instantaneous reactivity of the 

tool of Artificial Intelligence which thus makes the duration of maintenance 

almost null. The simulation time here is 2 × 104 hours. Fig. 10 presents these 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intelligent Effectiveness of the Telecommunication System  

 Define the performance of a telecommunications system is complex, 

because it groups several dimensions (Mathe, 1999). Starting from the two 

main assessment criteria of the performance that are: effectiveness and 

efficiency, a first classification of these dimensions can be realized. The 

success, competitiveness, the key success factors constitutes the main 

dimensions of appreciation effectiveness. The productivity, costs, yield and 

profitability, are those of appreciation efficiency.  

 The effectiveness is defined as the ability of an organization to 

achieve the objective it has set fixed (Jacot, 1997). According to (Longeaux, 

1994), Effectiveness is the best possible report between the degree of 

customer satisfaction and the means implementation to obtain it. The 

customer satisfaction is in this case one of the dimensions of organizational 

success. The effectiveness, success are then close concepts. 

 We observe (Fig. 11) a very large difference between these two 

effectiveness curves. The effectiveness curve does not integrate the Neuro-

Fuzzy ANFIS networks (blue) decreases rapidly with time and stabilizes at 

a lower 62% threshold.  

 This is due to the absence of control of the occurrence of failures in 

the system. What keeps it in a less high-performance state. The curve of the 

effectiveness integrating the Neuro-Fuzzy ANFIS networks (red) as for it 

 

Maintainability 

 

Fig.10: Maintainability system integrating neuro-fuzzy networks 
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presents a slight decrease and stabilizes at 67%.  

 This shows that there has been anticipation on appearance of failures 

thanks to the mastery of the error of prediction. The effectiveness curve 

integrating neuro-fuzzy ANFIS networks is above the curve of the 

effectiveness not integrating the Neuro-Fuzzy ANFIS networks.  

 The Effectiveness curve is obtained from the combination of the three 

performance indicators previously evaluated namely: Reliability, 

Availability and Maintainability. Analysis of this curve allows to record that, 

at 70%, effectiveness is average. It improves thereafter to reach a value close 

of 80% (threshold judged good). But this value could have reached 90% 

(threshold judged excellent) if one was making to pass the number of 

iterations to more than 46. 

 
Fig.11: Effectiveness of the system integrating Artificial Intelligence (AI) neuro-fuzzy 

networks 
 

Conclusion  

 We have shown the relevance of our approach by integration of 

dynamic Hybrid Stochastic Automata, for the performance evaluation of the 

telecommunication system.  

 It allowed us to combine discrete events (operating states of the 

different knot (station)) with continuous events (message flow) both from a 

deterministic and a stochastic point of view. Subsequently, the Artificial 

Intelligence tool namely the Neuro-Fuzzy networks has been integrated, in 

order to better diagnose and monitor by supervision with a smart block to 

the good going of the telecommunications system.  

 This integration of Artificial Intelligence has allowed to improved 

performance indicators that are: the Reliability, the Availability, the 

Maintainability, and the one of Efficiency who is effectiveness. This allows 
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us to record that the systems of surveillance by Artificial Intelligence can be 

excellent decision support tools. 
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