
European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

228

Enhancement of Web Security Against External

Attack

Md. Fazlul Haque

 Mohammad Badrul Alam Miah

Fuyad Al Masud
Department of Information and Communication Technology,

Mawlana Bhashani Science and Technology University,

Santosh-1902, Tangail, Bangladesh.

doi: 10.19044/esj.2017.v13n15p228 URL:http://dx.doi.org/10.19044/esj.2017.v13n15p228

Abstract

 The security of web-based services is currently playing a vital role

for the software industry. In recent years, many technologies and standards

have emerged in order to handle the security issues related to web services.

This paper shows techniques to enhance the security of web services, and

some of the recent challenges and recommendations of a proposed model to

secure web services. It shows the security process of a real life web

application, which includes; HTML5 forms, login security, and a single sign-

on solution. This paper also aim to discuss the ten (10) most common web

security vulnerabilities and how to prevent the web application from three

(3) of the vulnerabilities. Amongst them are; SQL Injection, Cross Site

Scripting and Broken Authentication, and Session Management.

 Keywords: Security, External Attack, Vulnerability

Introduction

 The world wide web is largely based on Hypertext Transfer Protocol

(HTTP), which specifies the format of message exchanged by a client

known, in this case, as the user agent and the server. However, the request

format which is most familiar to internet users is what is commonly called

the Uniform Resource Locator (URL). When a user enters a URL into the

browser window, the browser first checks the scheme of the URL to

determine the protocol. Terms like web application, website, web-based

system, web-based software, or simply web may have the same meaning.

The web is indispensable in modern commerce, entertainment, and social

interaction. It is a complex delivery platform for sophisticated distributed

applications with multifaceted security requirements.

http://dx.doi.org/10.19044/esj.2017.v13n15p228

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

229

 However, most web browsers, servers, network protocols, browser

extensions, and their security mechanisms were designed without analytical

foundations. In complicating matters further, the web continues to evolve

with new browser features, protocols, and standards which were added at a

rapid pace. The specifications of new features are often complex, lack clear

threat models, and involves unstated and unverified assumptions about other

components of the web. As a result, new features can introduce new

vulnerabilities and break security invariants assumed by web applications.

 In this paper, we take the first step towards building a comprehensive

formal foundation for web security. Also, we discuss the common web

security vulnerabilities and how to prevent the web application from the first

three vulnerabilities, and then implementing those vulnerabilities in real life

web application.

 Consequently, there is a large number of work on formally verifying

security properties of network protocols, web security including model

checking using a variety of tools (Mitchell et al., 1997), and constraint-based

methods (Millen & Shmatikov, 2001). Based on the study of SQL Injection

Attacks and Countermeasures (Sayyed Mohammad et al., 2013), this paper

gives scientific categorization of strategies to avert and recognize SQLIA.

We characterize web application vulnerabilities and how they may bring

about SQLIA. At a point, we show an order of SQLIA in view of its

weakness. Sonoda et al. (2016), in their paper, show the Maximum

Likelihood Estimation in Stochastic Model of SQL Injection Attacks. In the

paper titled “SQL Injection Detection and Prevention using Pattern Matching

Algorithm”, they try to use Pattern Matching Algorithm to detect and prevent

SQLI attacks on websites, hence providing maximum security to websites

(Kharche et al., 2015).

 Gupta et al. (2016) in their paper show a context-sensitive

sanitization based on XSS defensive framework for the cloud environment. It

discovers all the hidden injection points in HTML5-based web applications

deployed on the platforms of cloud. Furthermore, it sanitizes the XSS attack

payloads injected in such points in a context-sensitive manner.

 The Organization of this Paper: The remainder of this paper is

organized as follows:

 The Common Models section represents the existing models and

related reference papers.

 The Most Common Vulnerabilities section shows the ten common

vulnerabilities.

 The Implementation section implements our proposed model.

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

230

Common Models

 There are many threats associated with web browsing, web

applications and web security. They include phishing, drive-by downloads,

blog spam, account takeover, and click fraud. Although some of these threats

revolve around exploiting implementation vulnerabilities such as memory

safety errors in browsers or tricking the user. Our focus in this paper is on the

ways in which an attacker can abuse web functionality that exists by design.

For example, an HTML form element allows a malicious website generate

GET and POST requests to arbitrary web sites, leading to security risks like

Cross-Site Request Forgery (CSRF). Websites use a number of different

strategies to defend themselves against CSRF (Barth et al., 2008). However,

we lack a scientifically rigorous methodology for studying these defenses.

By formulating an accurate model of the web, we can evaluate the security of

these defenses and determine how they interact with extensions to the web

platform.

 The core idea in our model is to describe what could occur if a user

navigates the web and visits sites in ways the web was designed to be used.

For example, the user could choose to type any web address into the address

bar and visit any site, or click on a link provided by one site to visit another.

Since browsers support the “back” button, returning the user to a previously

visited page, many sites in effect allow a user to click on all of the links

presented on a page, and not just one. When the user visits a site, the site

could serve a page with any number of characteristics, possibly setting a

cookie, or redirecting the user to another site. The set of events that could

occur, therefore, includes; browser requests, responses, cookies, redirects,

and so on, transmitted over HTTP or HTTPS. Therefore, we believe that

examining a set of possible events accurately captures the way web security

mechanisms are designed. For example, the web is designed to allow a user

to visit a good site in one window and a potentially malicious site in another.

Since the back button is so popular, web security mechanisms are usually

designed to be secure even if the user returns to a previously visited page and

progresses differently the second (or third or fourth) time.

The Most Common Vulnerabilities

 There is a paper in which there are Tracing known as security

vulnerabilities in software repositories, and it uses a Semantic Web-enabled

modeling approach (Alqahtani et al., 2016). Thus, the common

vulnerabilities which we got in real applications are:

 i) SQL Injection: Injection is a security vulnerability that allows an

attacker to alter back-end SQL statements by manipulating the user supplied

data. Injection occurs when the user input is sent to an interpreter as part of a

http://www.guru99.com/sql.html

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

231

command or query to trick the interpreter into executing unintended

commands and gives access to unauthorized data.

 The SQL command which when executed by web application can

also expose the back-end database.

 ii) Cross Site Scripting: Cross Site Scripting is shortly known as

XSS. XSS vulnerabilities target scripts embedded in a page that are executed

on the client side i.e. user browser rather then at the server side. These flaws

can occur when the application takes untrusted data and send it to the web

browser without proper validation. Attackers can use XSS to execute

malicious scripts on the users in the case of victim browsers. Since the

browser cannot know if the script is trustworthy or not, the script will be

executed, and the attacker can hijack session cookies, deface websites, or

redirect the user to unwanted and malicious websites. XSS is an attack which

allows the attacker to execute the scripts on the victim's browser.

 iii) Broken Authentication and Session Management: The

websites usually create a session cookie and session ID for each valid

session, and these cookies contain sensitive data like username, password,

etc. When the session is ended either by logout or the browser closed

abruptly, these cookies should be invalidated i.e. for each session, there

should be a new cookie.

 If the cookies are not invalidated, the sensitive data will exist in the

system. For example, for a user using a public computer (Cyber Cafe), the

cookies of the vulnerable site sits on the system and is exposed to an

attacker. When an attacker uses the same public computer, the sensitive data

would be compromised after some time.

 In the same manner, a user using a public computer, instead of

logging off, he closes the browser abruptly. When an attacker uses the same

system, when browsing the same vulnerable site, the previous session of the

victim will open up. Then, the attacker can do whatever he wants to do like

stealing profile information, credit card information, etc.

 iv) Insecure Direct Object References: It occurs when a developer

exposes a reference to an internal implementation object, such as a file,

directory, or database key as in URL or as a FORM parameter. The attacker

can use this information to access other objects and can create a future attack

to access the unauthorized data.

 v) Cross Site Request Forgery: Cross Site Request Forgery is a

forged request from the cross site. CSRF attack is an attack that occurs when

a malicious website, email, or program causes a user's browser to perform an

unwanted action on a trusted site for which the user is currently

authenticated. A CSRF attack forces a logged-on victim's browser to send a

forged HTTP request, including the victim's session cookie and any other

automatically included authentication information, to a vulnerable web

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

232

application. A link will be sent by the attacker to the victim. When the user

clicks on the URL when logged into the original website, the data will be

stolen from the website.

 vi) Security Misconfiguration: Security Configuration must be

defined and deployed for the application, frameworks, application server,

web server, database server, and platform. If these are not properly

configured, an attacker can have unauthorized access to sensitive data or

functionality. Sometimes, such flaws result in complete system compromise.

Keeping the software up to date is also a form of good security.

 vii) Insecure Cryptographic Storage: Insecure Cryptographic

storage is a common vulnerability which exists when sensitive data is not

stored securely. The user's credentials, profile information, health details,

credit card information, etc. comes under sensitive data information on a

website. These data will be stored on the application database. When these

data are stored improperly by not using encryption or hashing*, it will be

vulnerable to the attackers. (*Hashing is transformation of the string

characters into shorter strings of fixed length or a key. To decrypt the string,

the algorithm used to form the key should be available)

 viii) Failure to Restrict URL Access: Web applications check URL

access rights before rendering protected links and buttons. Thus, applications

need to perform similar access control checks each time these pages are

accessed. In most of the applications, the privileged pages, locations, and

resources are not presented to the privileged users. By an intelligent guess,

an attacker can access privilege pages, access sensitive pages, invoke

functions, and view confidential information (Shinde et al., 2016).

 ix) Insufficient Transport Layer Protection: This deals with

information exchange between the user (client) and the server (application).

Applications frequently transmit sensitive information like authentication

details, credit card information, and session tokens over a network. By using

weak algorithms or using expired or invalid certificates or not, using SSL

can allow the communication to be exposed to untrusted users. This may

result to the compromise of a web application and/or the stealing of

sensitive information (Duncan et al., 2016).

 x) Unvalidated Redirects and Forwards: The web application uses

few methods to redirect and forward users to other pages for an intended

purpose. If there is no proper validation while redirecting to other pages,

attackers can make use of this and can redirect victims to phishing or

malware sites, or use forwards to access unauthorized pages.

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

233

Implementation of the Proposed Model

 In this section, we described our proposed model and showed the first

three common vulnerabilities effect and how to protect them. Here, we will

cover the SQL Injection, Cross Site Scripting, and Broken Authentication

and Session Management.

 i) SQL Injection Attacks

 SQL injection attacks are caused by an unexpected user input for the

developer of the web application (Shinde et al., 2016). The method of attack

is very simple, but the power of SQL injection attacks is very strong.

However, it causes a serious social problem. Now, we will give an example

of SQL injection attack. Assume that there exists a web application that has

the following login authentication program as stated below:

 SELECT * FROM users WHERE id=’userID’ AND pw=’pass’

 From the above example, if malicious user input ’ OR 1=1-- into the

form of id, then the following SQL sentence is constructed by the web

application.

 SELECT * FROM users WHERE id=’’ OR 1=1--’ AND pw=’pass’

1 = 1 is always true and the string -- deauthorizes the following strings.

’ AND pw=’pass’

 Therefore, if this attack were successful, then malicious user can gain

unauthorized access to the database of the web application.

 In our proposed model, we tried the following SQL injection queries.

 Executed SQL query when username is userID and password is a

single quote:

SELECT * FROM users WHERE name=userID and password='''

 Executed SQL query when username is userID and password is ' or

'1'='1:

SELECT * FROM users WHERE name='userID' and password='' or '1'='1'
Table 1. The Cheat Sheet for checking the SQL Injection in our model

username password SQL Query

userID userID SELECT * FROM users WHERE name='userID'

and password='userID'

userID ' or '1'='1

SELECT * FROM users WHERE name='userID'

and password='' or '1'='1'

userID ' or 1='1

SELECT * FROM users WHERE name='userID'

and password='' or 1='1'

userID 1' or 1=1 --

-

SELECT * FROM users WHERE name='userID'

and password='' or 1=1-- -'

' or '1'='1

' or '1'='1

SELECT * FROM users WHERE name='' or '1'='1'

and password='' or '1'='1'

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

234

' or ' 1=1

' or ' 1=1

SELECT * FROM users WHERE name='' or ' 1=1'

and password='' or ' 1=1'

1' or 1=1

-- -

blah

SELECT * FROM users WHERE name='1' or 1=1 - -' and

password='blah'

 Furthermore, we used the SQL Queries from the Table 1 Cheat Sheet

on our proposed model architecture, and finally prevented the SQL injection.

We have seen few SQL injection-preventing algorithm. Also, we found that

our proposed architecture is the simple and easiest to implement in the web

application. In Figure 1, we show the proposed model architecture for SQL

injection. Here, we used three input text fields for login to the database. We

used an auto-generated Captcha, which prevents our web application from

the robotic request. In SQL query generation section, we placed all the

queries from our cheat sheet and then checked the coding level condition.

Finally, we are trying to match the condition on Matching query section.

After putting all the SQL queries, we put whitelisting in our HTML text

Field. Even though the query is successful, we still put whitelisting in our

HTML text Field. The most important thing in our evaluation is that we do

not show any error or success message anywhere in the Web Application.

Figure 1. The proposed model architecture for SQL injection

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

235

 ii) Cross Site Scripting: Cross Site Scripting is shortly known as

XSS. XSS vulnerabilities target scripts embedded in a page that is executed

on the client side i.e. user browser rather than at the server side. These flaws

can occur when the application takes untrusted data and send it to the web

browser without proper validation. Attackers can use XSS to execute

malicious scripts on the users in the case of victim browsers. Since the

browser cannot know if the script is trustworthy or not, the script will be

executed. Also, the attacker can hijack session cookies, deface web sites, or

redirect the user to unwanted and malicious websites. XSS is an attack which

allows the attacker to execute the scripts on the victim's browser.

 In 2016, Shashank Gupta and B.B.Gupta conducted a survey on the

various journals on “Cross Site Scripting attacks and Defense mechanism”

(Shashank Gupta et al., 2016). They analyzed the major concerns for web

applications and Internet-based services which are persistent in several web

applications. They highlighted some of the serious vulnerabilities found in

the modern web applications. Below is our Proposed Architecture for Cross

Site Scripting:

Figure 2. The proposed model architecture for Cross Site Scripting

 For an attack to happen, the attacker tries to find the user input areas.

The user input is given such priority because it is the only way for the user or

client to interact with the server. If the attacker can be successful in injecting

the malicious code into the server, an attack is guaranteed to happen. In order

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

236

to prevent the attacker to have that privilege, we sanitize the user input. As

shown in Figure 2, we initially considered the user input. If the user input

contains any HTML-specific tags like “<i>,
, <a> etc..", we sanitize the

request and store it in the database. If the user input contains any special

symbols which are generally used in script functions, they should be

sanitized. If the user input contains any script tags which are one of the most

important ways an attack is made possible, they should be properly sanitized.

If the user input contains any styling related code, then the code should be

filtered and stored in the database. Finally, we have restricted the redirection

of a specific web application page to some other page through which we can

stop most of the attacks. This can be done by sanitizing the user input if it

contains any window location or document refferer methods. If the above

methods are not followed, the attacker tries to steal the valuable information

of the users like cookies. Usually, if we consider any login page, example

sessions will be created for every user. The flaw in any browser is that it

stores the session id in the form of a cookie. So, if the attacker steals this

cookie, he can enter into the web application as an authorized user and the

results can be more devastating.

 iii) Broken Authentication and Session Management: The

websites usually create a session cookie and session ID for each valid

session, and these cookies contain sensitive data like username, password,

etc. When the session is ended either by logout or the browser closed

abruptly, these cookies should be invalidated i.e. for each session, there

should be a new cookie.

 If the cookies are not invalidated, the sensitive data will exist in the

system.

 A check should be done to find the strength of the authentication and

session management. Keys, session tokens, and cookies should be

implemented properly without compromising passwords.

Vulnerable Objects

• Session IDs exposed on URL can lead to session fixation attack.

• Session IDs same, before, and after logout and login.

• Session Timeouts are not implemented correctly.

• Application is assigning same session ID for each new session.

• Authenticated parts of the application are protected using SSL, and

passwords are stored in hashed or encrypted format.

• The session can be reused by a low privileged user.

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

237

Implications

 • By making use of this vulnerability, an attacker can hijack a

session, and gain unauthorized access to the system which allows disclosure

and modification of unauthorized information.

 • The sessions can be highjacked using stolen cookies or sessions

using XSS.

Proposed Model Architecture for Broken Authentication and Session

Management

 In this section, we focus on previously known session vulnerability.

Also, we proposed the architecture which is shown in Figure 3, and our

implementing login page shown in Figure 4. When any user or attacker tries

to login into the admin page, they will need to put a username, password, and

an auto-generated captcha.

Figure 3. The proposed model architecture for Session Management

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

238

Figure 4. The login page of our implementing website

 If all the fields matches with the database, then they can login or

show the admin page. Now there are two options to hijacking the session;

One is the logout or logoff section and another is the browser back and

forward button section. Here, we made the most important security. We also

made a fake.php page and linked it to our admin home page. If anyone can

try the browser forward and the back button, then he can see the fake.php

page. Actually, we placed there a condition which checks the value of the

username and password. If anyone of these is empty, then it automatically

shows the fake page with Object not found! and Error 404.

 On the other section logoff option, we made an awesome security. If

we tried to log out, we will have to execute the following code:

<?php

error_reporting(0);

session_start();

session_unset();

session_destroy();

?>

 The session_unset() function frees all session variables currently

registered, and the session_destroy() destroys all of the data associated with

the current session. It does not unset any of the global variables associated

with the session, or unset the session cookie. To use the session variables

again, session_start() has to be called. Through this way, we can prevent our

web application from Session hijacking.

Conclusion

 In this paper, we tried to focus on the most common vulnerabilities of

recent time. Also, we proposed individual prevention architecture for 'SQL

Injection', 'Cross Site Scripting', and 'Broken Authentication and Session

Management'. On the other hand, by implementing our proposed models, we

have successfully prevented a real life website from those external attacks.

Finally, it can be concluded that we have partially enhanced the web security

European Scientific Journal May 2017 edition Vol.13, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

239

against recent external attacks. Of course, our implemented model does not

capture the entire web platform and web security concerns.

References:

1. Alqahtani, Sultan S., Ellis E. Eghan, and Juergen Rilling (2016).

"Tracing known security vulnerabilities in software repositories–A

Semantic Web enabled modeling approach." Science of Computer

Programming 121: 153-175.

2. Barth, Adam, Collin Jackson, and John C. Mitchell (2008). "Robust

defenses for cross-site request forgery." Proceedings of the 15th

ACM conference on Computer and communications security. ACM.

3. Duncan, Bob, Andreas Happe, and Alfred Bratterud (2016).

"Enterprise IoT security and scalability: how unikernels can improve

the status Quo." Proceedings of the 9th International Conference on

Utility and Cloud Computing.

4. Gupta, Shashank, and B. B. Gupta (2016). "CSSXC: Context-

sensitive Sanitization Framework for Web Applications against XSS

Vulnerabilities in Cloud Environments." Procedia Computer

Science 85: 198-205.

5. Kharche, Swapnil, Kanchan Gohad, and Bharti Ambetkar (2015).

"Preventing SQL Injection attack using pattern matching algorithm."

arXiv preprint arXiv:1504.06920.

6. Millen J. and Shmatikov V. (2001). “Constraint solving for

boundedprocess cryptographic protocol analysis,” in CCS ’01:

Proceedings of the 8th ACM conference on Computer and

Communications Security. New York, NY, USA: ACM, pp. 166–

175.

7. Mitchell J., Mitchell M., and U. Stern (1997). “Automated analysis of

cryptographic protocols using Mur',” in Proc. IEEE Symp. Security

and Privacy, pp. 141–151.

8. Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli Pour (2013).

“Study of SQL Injection Attacks and Countermeasures”,

International Journal of Computer and Communication Engineering,

Vol. 2, No. 5, September 2013

9. Shinde, Prashant S., Shrikant B. Ardhapurkar, and P. G. Scholar

(2016). "Design and Implementation of VAPT Tool for Cyber

Security Analysis using Response Analysis." International Journal of

Engineering Science 4150.

10. Sonoda, Michio, Takeshi Matsuda, and Daiki Koizumi (2016). "On

the approximate maximum likelihood estimation in stochastic model

of SQL injection attacks." Systems, Man, and Cybernetics (SMC),

2016 IEEE International Conference.

