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Abstract  
 The block product turbo code (BPTC) is classified as one of block 
turbo code concatenation forms. The Hamming code can detect two-bit error 
and correct one-bit error. The BPTC uses two Hamming codes for "column" 
coding and "row" coding, it has improved the Hamming code correcting only 
one error. In addition, the BPTC carries out block interleaving coding for 
disorganizing the transmission sequence before transmission, so as to avoid 
burst errors when the signal meets multi-path channel in the channel. This 
paper will discuss the decoding mechanism of the BPTC and analyze the 
efficiency of using a soft decoding algorithm in the decoding process. The 
soft Hamming Decoder is based on error patterns which belong to the same 
syndrome. It is shown that it is sufficient to investigate error patterns with 
one and two errors to gain up to 1.2 dB compared to hard decision decoding. 
Here, we will consider also the error patterns with three errors which belong 
to the determined syndrome, which increases the gain and improves the 
quality of the soft-output due to the increased number of comparisons with 
valid code words, in despite that, it will increase the complexity of the 
decoding process. The system is based on two Hamming block channel code 
combinations, which can be similar or different, a block interleaving to 
construct a BPSK modulation and BPTC coding system in the concept of 
feedback encoding in turbo code over an AWGN channel. To observe its 
coding improvement, we present the simulation results for the soft decoding 
of the BPTC codes of a code word length from 49 bits (using two (7,4) 
codes) up to 1440 bits (using two (127,120) codes). 
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Introduction 
 Concatenated coding schemes were first proposed by Forney as a 
method for achieving large coding gains by combining two or more 
relatively simple block or component codes. The resulting codes had the 
error-correction capability of much longer codes, and they were endowed 
with a structure that permitted relatively easy to moderately complex 
decoding. A serial concatenation of codes is most often used for power-
limited systems. The most popular of these schemes consists of a Reed-
Solomon outer (applied first, removed last) code followed by a convolutional 
inner (applied last, removed first) code. A turbo code can be thought of as a 
refinement of the concatenated encoding structure plus an iterative algorithm 
for decoding the associated code sequence. Turbo codes were first 
introduced in 1993 by Berrou, and Glavieux, where a scheme is described 
that achieves a bit-error probability of 10-5 using a rate 1/2 code over an 
AWGN channel and BPSK modulation at an Eb/N0 of 0.7 dB. The codes are 
constructed by using two or more component codes on different interleaved 
versions of the same information sequence. Whereas, for conventional codes, 
the final step at the decoder yields hard-decision decoded bits (symbols), for 
a concatenated scheme such as a turbo code to work properly, the decoding 
algorithm should not limit itself to passing hard decisions among the 
decoders. To best exploit the information learned from each decoder, the 
decoding algorithm must effect an exchange of soft decisions rather than 
hard decisions. For a system with two component codes, the concept behind 
turbo decoding is to pass soft decisions from the output of one decoder to the 
input of the other decoder, and to iterate this process several times so as to 
produce more reliable decisions. The purpose was to find digital 
communications systems that have a capacity and a performance close to the 
limits found by Shannon. For applications that require error correcting codes 
to operate with much shorter delays, Berrou, Evano, and Battail have 
advocated block component codes, maintaining turbo coding decoding 
principle. These codes, called turbo- block codes, exhibit a coding gain that 
is considerably larger than that of the standalone component block codes. 
Moreover, the decoding complexity for these turbo-block codes is quite 
reasonable, as long as the decoding complexity of the component block 
codes is so. The block product turbo code (BPTC) is classified as one of 
block turbo code concatenation forms. The Hamming code can detect two-bit 
error or correct one-bit error. The BPTC uses two Hamming codes for 
"column" coding and "row" coding, it has improved the Hamming code 
correcting only one error. In addition, the BPTC carries out block 
interleaving coding for disorganizing the transmission sequence before 
transmission, so as to avoid burst errors.  
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 We will introduce here the same concept behind the turbo decoding 
which is to pass the soft decisions between both decoders, and to iterate this 
process several times to produce more reliable decisions. The major 
contributions of this work are presented by the proposition of a new soft 
decoding algorithm which can achieve a linear complexity with a small 
degradation compared to maximum likelihood decoding but it permits to us 
to consider the error patterns with three errors, and the utilization of this soft 
decoder in the turbo principal process which will provide a lot of gain when 
compared to the turbo hard decision decoder and to the single soft decoder. 
 The remainder of this paper is organized as follows. In Section II, we 
discuss the background about the Hamming codes. Section III presents the 
syndrome based soft, and the soft decoding technique. The system design of 
the BPTC coding and decoding schemes are also presented in Section IV. 
The system performance is investigated in Section V through extensive 
trace-driven simulation. Finally, conclusions are given in Section VI along 
with the suggestions for future work.  

Theoretical Background 
A. Encoding and Transmission 

The encoding of the message bits m can be performed by a modulo 2 
vector matrix multiplication of m and the generator matrix G 

c ≡ m.G                                                  (1) 
 The expression "≡" is equivalent with c = (m.G) modulo 2. 

Hamming code is an important forward error correction (FEC) in theory 
and practice so far. It is a sort of binary linear block code. It put forward an 
important single-error-correcting code, using parity check matrix (H) to 
detect and correct errors. It is a simple type of systematic code, described as 
the following structure. 
Block length: n = 2p–1 
Number of data bits: k = 2p – p – 1 
Number of check bits: n – k = p 
Minimum distance: dmin = 3  Correct single bit error 
                (n, k) = (2p – 1, 2p – 1 – p) 
 We can use the following k × n array to define the generator matrix 
(G) 
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 Among which, V1~Vk are linearly independent vectors that can 
generate all code vectors. The data of the transmitting terminal are usually 
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expressed in column vectors, therefore, the sequence of k message bits, i.e. 
the message m is expressed as 1×k matrix.  
 The generator matrix of systematic (7, 4)-Hamming code is given by 
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 After the encoding, c is modulated, so that a logical zero is equivalent 
to a +1 and a logical one is equivalent to a -1, { }1±∈x . The modulated 
signal x is distorted by the additive white Gaussian noise (AWGN) w and 
results in the receive signal y, 

y = x + w                                                 (2) 
B. Hard Decision Decoding     

In order to decode the received signals, we need to define a parity check 
matrix and a syndrome. There is a (n-k)×n matrix H in each generator matrix 
G, so that the columns of G are orthogonal to the columns of H, i.e. G.HT=0, 
the HT is the transpose matrix of H. In order to meet the orthogonality of 
system coding, the component of matrix H can be expressed as [ ]T

kn PIH |−=  
 Therefore, the matrix HT can be expressed as 
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c is the code word derived from matrix G if and only if c.HT = 0. Let r be the 
vector received by the receiving terminal, so the r can be described as r = c + 
e, among which, e is the error vector resulted from the channel. The 
syndrome is defined as s = r.HT, it is the result of parity check implemented 
in r, judge whether r is an effective element in the codeword set. Based on 
development of equation s = (c + e).HT = c.HT + e.HT. However, for all 
elements in codeword set c.HT=0, therefore s = e.HT. 

Since the correction capability of Hamming code is 1, meaning the error 
pattern is one selected from n. Error patterns with 2 (duets) or 3 errors 
(triplets) which belong to the same syndrome are not taken into account for 
the decoding and the distorted code word is corrected as follow: 

1.Use s = r.HT to calculate the syndrome of r 
2.Find out common first item (error pattern) ej, its syndrome equals r.HT 
3.This error pattern is supposed to be the error caused by channel 
4.The identified receive correction vector or code word equals c = r + ej 

 In fact, every double error is decoded to a valid but wrong code word. 
This explains the poor performance of HDD for Hamming codes.                                                          
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Soft-Output Decoding 
A. Syndrome Based Soft Decision Decoding 

For the syndrome based soft decision decoding it is required to calculate 
the log-likelihood ratios (LLR) from the received signal y, 
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assuming that a logical zero and one have the same probability. 
Let us assume that the syndrome of the distorted bit sequence of a (7,4)-
Hamming code is s = (0 0 1). The possible error patterns are collected in 
matrix E with its elements ej,i 
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where the second to fourth row bears the duets and the fifth to eighth row 
bears the triplets. The error patterns for all syndromes are determined in 
advance and stored in a list. The size of the list rises quadratically for double 
errors and cubically for triple errors. Every row of E is multiplied by the 
absolute value of LLRs of the received signal L(x|y). Afterwards, the 
resulting row vector is added up. The vector with the lowest sum of LLR 
suggests the error pattern with the highest probability of a correct decoding.  
 

 
Fig. 1: Soft-Output Hamming Decoder 

B. Soft Decoding 
The structure of the soft hamming decoder is shown in Fig. 1. In general, 

soft-output decoding provides output values for iterative or turbo decoding. 
In order to generate soft-outputs, the following algorithm is proposed. The 
probability values of a code word are given by 
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Next, the probability values are multiplied column-wise for the given error 
pattern of every row i.  

( )
( )




==−
==

==∏ 1|ˆ1
0|ˆ~where~~

,

,

jijjj

jijjj
j

j
ji eifyccP

eifyccP
PPP               (6) 

Now iP~  is normalized, so that the sum of the normalized probabilities Pi over 
all rows i is equal to 1, 1=∑

i
iP . So the probabilities Pi are given by 
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Pi can be interpreted as the probability of correct decoding for the given error 
pattern of row i. In a last step, the probability that xj = +1, for a given 
received code word y, is calculated by the sum of Pi over all rows i, if ei,j = 

jĉ , where jĉ is defined as the logical received bit sequence. The estimation of 
the new probabilities after the soft decoding. 
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Due to the normalization, so that 1=∑
i

iP , the probability of ( )yxP j |1ˆ −=  

can be calculated by 
( ) ( )yxPyxP jj |1ˆ1|1ˆ +=−=−=                             (9) 

In order to exchange the information for turbo decoding it is required to 
calculate L-values from the derived probabilities. 
C. Some Simulation Results 

For the simulation results of the soft decoding, hamming codes of a code 
word length for 7 till 127 bit were investigated. Fig. 2, 3, 4, 5, and 6 illustrate 
the performance of the different decoding strategies for a certain code word 
length. Tab. 1 summarizes the results for all non-iterative codes. 
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Fig. 2: BER for different decoding for a (7,4) and (15,11)-Hamming code 

 
 Fig. 2 shows the bit error rate of the (7,4)-Hamming code for 
different types of decoding. It is shown that the decoding performance of the 
duet and triplet decoding is quite similar and very close to the union bound 
which is an upper bound for the bit error probability after maximum 
likelihood decoding. For the evaluation we focus on a BER=10-4. The coding 
gain amounts to 0.31 dB for the HDD, 1.36 dB for the duet decoding, and 
1.46 dB for the triplet decoding. The extension of the code word length, up 
to 15 bit, results in a further performance gain. It is also apparent that the 
difference between duet decoding and triplet decoding rises. The coding gain 
amounts to 0.9 dB for the HDD and 1.8 dB for the duet decoding. Further 
0.25 dB can be gained by triplet decoding.  

Nc     Kc HDD    Gain Duets   Gain Triplets    Gain 
7    4 7.80      0.31 6.75      1.36 6.65         1.46 

15   11 7.20      0.90 6.30      1.80 6.05         2.05 
31   26 7.00      1.21 6.05      2.16 5.80         2.41 
63   57 7.00      1.21 6.05      2.16 5.75         2.46 

127 120 7.10      1.11 6.35      1.86 6.00         2.21 
Tab. 1: Simulation Results for Eb/N0 in dB for a BER=10-4, and the resulting coding gain 

(uncoded 8.11 dB for BER=10-4) 
 

 The (31,26)-Hamming code obtained the results for codes, for duets 
as well as for triplets. Fig. 3 shows that the coding gain amounts to 2.16 dB 
for the duet decoding and 2.41 dB for the triplet decoding. Same figure can 
be drawn for the (63,57)-Hamming code. The coding gain is similar to the 
(31,26)-Hamming code, but the bit error curve falls sharply. It is also shown 
that the difference between duet and triplet decoding is higher with 0.3 dB. 
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Fig. 3: BER for different decoding for a (31,26) and (63,57)-Hamming code 

 
 Quite a similar picture can be drawn for the (127,120)-Hamming 
code which has the highest code rate (Rc = 0.944) of the considered 
Hamming codes (see Fig. 4). The coding gain is lower than for the (31,26)-
Hamming code (1.86 dB gain for the duet and 2.21 dB gain for the triplets), 
but the bit error curve falls more sharply. It is also shown that the difference 
between duet and triplet decoding is the highest with 0.35 dB. 

 

 
Fig. 4: BER for different decoding for a  (127,120)-Hamming code 

 
BPTC Coding and Decoding Schemes 
 Hamming put forward an important error-correcting code, Hamming 
code in 1948. It uses parity check matrix (H) to detect and correct errors, 
however, its ability in detection and correction is limited, it can only detect 
2-bit errors or correct 1-bit errors. 

 

 
Fig. 5: BPTC Encoder 

 
 The block product turbo code (BPTC) is classified as one of block 
turbo code concatenation forms. The Hamming code can detect two-bit error 
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or correct one-bit error. The BPTC uses two Hamming codes for "column" 
coding and "row" coding, it has improved the Hamming code correcting only 
one error. The encoder starts with the first row of information bits, calculates 
and appends the parity bits, and then moves on to the second row.  This is 
repeated for each row. Next, the encoder starts with the first column of 
information bits, calculates and appends the parity bits for that column, and 
moves to the next column.  Once the information block is complete, the 
encoder calculates and appends parity bits onto rows.  It is important to note 
that different code lengths may be used for the horizontal and vertical blocks. 
In addition, the BPTC carries out block interleaving coding for disorganizing 
the transmission sequence before transmission, so as to avoid burst errors. 
A. Encoder System Design 
 The general structure of a BPTC encoder is shown in Fig. 5. It 
consists of two systematic hamming encoders C1 and C2. It should be noted 
that the size of these two hamming codes could be the same and the free 
distance of any hamming code is always 3 which means it can correct one-bit 
error. The output sequences, however, are the same for identical input 
sequences. The N bit data block is first arranged in (k1 x k2) matrix form 
before encoded by C1, an additional zero padding bits are placed at the end 
of the data block if needed. After encoded by the first encoder, the output 
block is then (n1 x k2) matrix after adding the corresponding bits to each 
column. The output data block of the C1 is also encoded by C2 giving an 
output encoded data of (n1 x n2) matrix after adding the corresponding bits to 
each row. Then this data block will be interleaved by a random interleaver. 
The main purpose of the interleaver is to randomize bursty error patterns so 
that it can be correctly decoded. It also helps to increase the minimum 
distance of the BPTC. The turbo coder obtained here can be described with 
the following structure. 

Block length: N = n1 x n2 
Number of data bits: K = k1 x k2 
Number of check bits: P = (n1-k1) x k2 + (n2-k2) x k1 + k1 x k2  
Coding Rate: R = K/N = R1 x R2. 

B. Decoder System Design 
 The decoding procedure described below is generalized by cascading 
elementary decoders illustrated in Fig. 6. Let us consider the decoding of the 
rows and columns of a product code described in Section A and transmitted 
on a Gaussian channel using BPSK signaling. On receiving (n1 x n2) matrix 
R corresponding to a transmitted (k1 x k2) codeword E, the second decoder, 
corresponding to the second encoder C2, performs the decoding of the rows 
using the input matrix but first de-interleaved by the block de-interleaver 
corresponding to the interleaver used at the transmitter. The output (n1 x k2) 
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matrix of the second decoder is entered to the first decoder, corresponding to 
the first encoder C1, which performs the decoding of the columns.  

  

 
Fig. 6: BPTC Hard Decoder 

 
C. BPTC coding mechanism analysis 
 Although the BPTC is composed of Hamming code, its probability of 
being corrected in the second dimension coding is increased by using the 
fundamental characteristics of turbo code. So the correction capability will 
increase normally to more than three-bits error. But we should mention here 
that it is unfair to compare a simple hamming code with the corresponding 
product turbo code formed by the concatenation of two from this simple 
code. For example, we can’t compare the performance of the (7,4)-Hamming 
code with the BPTC code formed from two concatenated (7,4)-Hamming 
code, because the first one has a coding rate of 4/7 slightly bigger than half, 
but the second one has a coding rate of (4/7)2 slightly lower than third. 
Therefore, in the simulation results presented here we will consider these 
remark by comparing approximatively equally coding rate. 
 Fig. 7 shows the performance of a BPSK system aver AWGN 
channel using a BPTC coding with the conventional hard decoding. We can 
simply remark that a gain is obtained with respect to the hard decoding of a 
simple hamming coding at high SNR (bigger than 5 dB). And the curves of 
BPTC system are sharper when the codeword length of the coding used 
increase. Also the different curves in Fig. 7 show that at approximatively 6.3 
to 6.5 dB we can obtain a BER = 10-4. Finally, these results show that the 
proposed Soft decoder of a simple Hamming decoder, where we can obtain 
the 10-4 of BER at approximatively 6.05 dB (see Tab. 1), can give a better 
performance than most of the Hard decoded BPTC system, and the gain is 
around 0.25-0.3 dB (see Fig. 2, 3, and 4). 
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Fig. 7: BER of BPTC for different rates with Hard Decoding 

 
D. BPTC with Soft Decoder 
 The LLR based decoding procedure described above can be used in 
the Soft Decoder of the BPTC. The Decoding process is done by cascading 
the proposed decoders and it is illustrated in Fig. 8. Let us consider the soft 
decoding of the rows and columns of a product code described in Section A 
and transmitted on a Gaussian channel using BPSK signaling. On receiving 
the observations y corresponding to the message x transmitted. The LLR 
calculator compute the (n1 x n2) L-values matrix corresponding to these 
observations, after the block de-interleaver, the second soft decoder performs 
the decoding of the rows using the input LLR matrix to compute the (n1 x n2) 
L-values output. Only the (n1 x k2) portion of the output matrix is taking into 
account in the first soft decoder which performs the soft decoding of the 
columns and give at its output (n1 x k2) containing the (k1 x k2) L-values 
corresponding to the sent codeword. Finally, a threshold based decision 
device is needed to obtain the (k1 x k2) output decoded bits. 

 

 
Fig. 8: BPTC Soft Decoder 

 
Simulation Results and Analysis 
 A key performance index to evaluate the capacity-approaching is the 
BER given a received SNR over an AWGN channel. We consider a received 
SNR from 0 to 9 dB and examine the BER, as shown in the performance 
figures presented previously, Fig. 2, 3, 4, and 7. The received signal to noise 
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ratio is considered here as Eb/N0 where Eb is the received energy per bit, and 
N0 is the noise power spectral density. Monte Carlo simulation by MatLab is 
used to obtain the results shown in the past and following figures. For the 
evaluation, all size of hamming code from code length 7 into 127 was 
compared together, and the value of coding rate of each product turbo code is 
considered when compared to a simple hamming code. The code chosen are 
the (7,4), (15,11), (31,26), (63,57), and (127,120)-Hamming code. And the 
turbo product code chosen are formed by to identical hamming code. We can 
predict before simulations that the BPTC formed by the (7,4)-Hamming code 
will not give good performances because its small code length. 

 
Fig. 9: Simple (7,4)-Hamming code vs. BPTC. 

 
A. (7,4)-Hamming Code 
 For the (7,4)-Hamming code, which takes 4 information bits and adds 
3 parity bits to give the corresponding codeword and has approximatively 
half coding rate. The concatenation of two (7,4)-Hamming code which form 
the (7,4)2 BPTC will encode 16 information bits into 49 coded bits and will 
have a coding rate near to 0.3. Normally, the BPTC should give a better 
performance than the simple hamming code. But Fig. 9 shows, in despite that 
the soft decoding of the simple hamming code improve the performance of 
hard decoding by approximately 1 dB at BER = 10-4, the performance of the 
BPTC with soft decoder decrease this gain to 0.9 dB. This is slightly 
predictable because of the small size of this code. So, it is un-useful to 
concatenate the (7,4)-Hamming code.  
B. (15,11)-Hamming Code 
For the (15,11)-Hamming code, which gives to each 11 information bits 4 
additional parity bits, and has a coding rate of approximately 0.7. The 
(15,11)2 BPTC formed by the concatenation of these two hamming will 
encode each 121 information bits to 225 coded bits and will have 
approximately half code rate. Fig. 10 shows also that the performance of the 
BPTC using the soft decoder which correct duets bit error. Using the soft 
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decoder correcting the triplets bit error, the BPTC increases the gain of the 
simple hamming code soft decoded by approximately 0.5 dB and the gain 
with the hard decoded to 1.5 dB at BER = 10-4. 

 
Fig. 10: Simple (15,11)-Hamming code vs. BPTC. 

 
C. (31,26)-Hamming Code 
 The (31,26)-Hamming code encodes every 26 information bits into 
31 coded bits, thus, its coding rate is 0.8. However, the (31,26)2 BPTC 
formed by the concatenation of two of this hamming code has a coding rate 
approximately equal to 0.7 where it encodes each 676 information bits into 
961 coded bits. The results, presented in Fig. 11, show a big improvement of 
the BPTC using soft decoder of triplet error bit with respect to the soft 
decoding of a simple Hamming code, where it increases the gain to 0.75 dB 
at BER = 10-4, and to 2 dB with respect to the hard decoding.  

 
Fig. 11: Simple (31,26)-Hamming code vs. BPTC. 
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D. (63,57)-Hamming Code 

 
Fig. 12: Simple (63,57)-Hamming code vs. BPTC. 

 
 The (63,57)-Hamming code encodes every 57 information bits into 
63 coded bits, so, its coding rate is 0.9. However, the (63,57)2 BPTC formed 
by the concatenation of two of (63,57)-Hamming code has a coding rate 
equal to 0.8 where it encodes each 3249 information bits into 3969 coded 
bits. Fig. 12 shows that the gain between the BPTC using soft decoder of 
triplet error bit and the soft decoding of a simple Hamming code is slightly 
decreased from 0.75 dB in the previous case to 0.72 dB here at BER = 10-4, 
in despite that the gain with respect to the hard decoding remains the same (2 
dB). 
E. (127,120)-Hamming Code 

 
Fig. 13: Simple (127,120)-Hamming code vs. BPTC. 

 
 The same phenomenon is remarked in the Fig. 13, where we 
compared the (127,120)-Hamming code, which encodes 120 information bits 
into 127 coded bits with a rate equal to 0.94, with the (127,120)2 BPTC code, 
which is formed by the concatenation of both of this code to obtain a code 
rate approximately equal to 0.9. Thus the improvement is decreased to 0.7 
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dB at BER = 10-4 with respect to the soft decoding of the simple Hamming 
code and to 1.7 dB when compared to the hard decoding.  
  
F.  BPTC Comparison 
 With respect to the performances shown in the last five figures (Fig. 
9, 10, 11, 12, and 13), the question will be: “Which is the better BPTC code 
to use?” Fig. 14 shows a comparison between the five cases presented 
before, where we remark directly that the (7,4)2 case is the worst case, so it 
gets out from the competition. The (31,26)2 and the (63,57)2 cases show the 
best performance, where the (31,26)2 BPTC slightly outperforms the (63,57)2 
BPTC at low SNR (SNR<5 dB) and the (63,57)2 BPTC has a very small gain 
with respect to the (31,26)2 BPTC code. We should not forget the coding rate 
when we want to compare different schemes of coding.    

 
Fig. 14: BPTC performances comparison. 

 
 The Fig. 15 shows the performances of the block product turbo code 
using hamming and the performances of the simple hamming code which has 
approximately the same corresponding coding rate. Both use the soft 
decoding algorithm presented previously. The results obtained show that the 
BPTC outperforms the simple hamming code in all cases and rates. For 
example, let us see the half rate case, where we compare the (15,11)2 to 
(7,4)-Hamming code, the gain obtained here is about 1 dB at BER = 10-4. 
When the coding rate is 0.7 in the case of the (31,26)2 and the (15,11)-
Hamming code, the gain obtained is also about 1 dB at BER = 10-4. This gain 
will be decreased slowly when we compare the (63,57)2 and the (31,26)-
Hamming code, where the coding rate is equal to 0.8, and it will be equal to 
0.75 dB at BER = 10-4. The decreasing of gain continues with the last case 
where the coding rate is approximately 0.9, the (127,120)2 compared to the 
(63,57)-Hamming code, and this gain is decreased to 0.6 dB at BER = 10-4. 
We should mention, finally, that the (31,26)2 BPTC code has the best 
performance at BER = 10-4 where it obtained it at 5 dB with a gain of 0.25 
dB to the nearest block product turbo code. 
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Fig. 15: Simple Hamming code vs. BPTC, with the coding rate. 

 
Conclusion 
 In this paper, the design and implementation of the soft decoding 
algorithm for the Hamming codes with duet and triplet bit error correction. 
And the structure of the block product turbo code (BPTC) is shown with two 
different decoding scenarios, the first one is the hard decoding and the 
second is the soft decoding which use our proposed soft decoder scheme. 
The simulation results show that the soft decoding of the Hamming codes 
improves well the performance of the coding by more than 1 dB in some 
case. The BPTC scheme decoded hard doesn’t improve the performance with 
respect to the soft decoding of the simple Hamming code, but when our 
proposed soft decoder is used in the BPTC scheme, we obtained a gain of 
approximately 1 dB with respect to the soft decoding of the simple Hamming 
code. Finally, we have shown a good comparison between different 
Hamming code size and rate, and we have demonstrated that the (31,26)-
Hamming code can be a good compromise when concatenated to give a 
BPTC code. 
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