
European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

24

A SURVEY ON TRADITIONAL PLATFORMS AND
NEW TRENDS IN PARALLEL COMPUTATION

Genci Berati, MSc
University of Tirana, Albania

Abstract
 The information processing is in continuous progress. High
Performance Computing is now a trend. The Parallel Computing is a
synonymous phrase for High Performance Computing. Parallel Computing
is the main field of information processing in our age. Both, the hardware
systems and the software platforms are developing very fast to support the
simple, rational and easy parallel data processing and programming. This
paper shows an overview of issues and improvements in parallel processing.
This paper deals with likewise the qualities and the favorable circumstances
of distinctive stages for parallelism. Herewith are dealt with different
architectures, innovations for parallelism and comparisons of results of
parallel processing. The main question is to introduce the Dataflow model
and some solid illustrations of Dataflow arrangement. The paper compares
the traditional control flow parallel platform in contrasts to the data flow
innovation.

Keywords: Control Flow Computing, Dataflow Computing, High
Performance Computing (HPC), Parallel Computing Technologies

Introduction
 Parallel techniques in traditional control flow computing, mostly are
very powerful and effective, but metaphorically speaking, it is like heaving
many expensive experts leading the process of work. Those expensive
experts cost money, power, time and space. One can ask: Is it possible to do
the same work by using more workers rather than using expensive experts. A
new alternative, supporting the metaphor of too many workers instead of
some expensive experts, for very fast parallel computing is considered the
data flow computing. Data flow computing was developed about 30 years
ago as a way of solving the parallel processing problem, but because of the
difficulties in technological implementation this alternative was left away
over time. But, during this decade the technology on parallelism is making a
comeback. The data flow computing is experiencing a rebirth, so it is worthy

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

25

to invest in possibilities to use the technology in large numerical calculation.
Data flow computers would provide plenty of computing power. However, a
direct implementation of computers based on the dataflow model has been
found to be a monumental challenge (Ben Lee, A. R. Hurson, 1993). This
paper presents a survey of characteristics in dataflow computing and a
comparison to the old parallel computing techniques. Dataflow is an
alternative that in our allegory can be compared with too many specialized
workers instead of many expensive experts. Experts are expensive and slow,
since the workers can be cheaper and faster. The dataflow approach of
computation offers many advantages for parallel processing. The hardware
implementation of this approach is very difficult, but nevertheless there are
really good successful efforts and still these efforts are continuing now a
days. Since the early 1970s, a number of hardware prototypes have been
built and evaluated (J. R. Gurd, C. C. Kirkham, and I. Watson, 1985) and
simulation studies of different architectural designs and compiling
technologies have been performed (Veen, A. H., 1986). The experience
gained from these efforts has led to progressive development in dataflow
computing. However, there are many doubts and the question still remains as
to whether the dataflow approach is a viable means for developing powerful
computers to meet today’s and future computing demands
(http://www.numericmethod.com).

Von Newman computing model
 The Von Neumann or control flow computing model consists of a
program which is a series of addressable instructions, each of which either
specifies an operation along with memory locations of the operands or it
specifies the transfer of control to some other instruction. Essentially, the
next instruction to be executed depends on what happened during the
execution of the current instruction. The next instruction to be executed is
pointed to and triggered by the PC. The instruction is executed even if some
of its operands are not available yet. (http://www.computerhope.com)
 In this article we are talking about two Control Flow parallel
platforms (OpenMP and MPI), which is the traditional way of processing
versus Data flow platform which presents the modern alternative for the
same purpose.

Sequential algorithms and parallelism in control flow
 What is important in our discussion is the parallelism potential of
such architecture. Let’s see some terminology and basic concepts of
parallelism.
 Flynn’s Taxonomy of Parallel Architectures

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

26

 A parallel computer can be characterized as a collection of processing
elements that can communicate and cooperate to solve large problems fast.
 A simple model for describing the parallelism in control flow
machines is given by Flynn’s taxonomy (http://en.wikipedia.org). This
taxonomy characterizes parallel computers, according to the global control
and the resulting data and control flows.
 There are four categories of architectures:
 1. Single Instruction, Single Data (SISD): There is one processing
element which has access to a single program and data storage. In each step,
the processing element loads an instruction and the corresponding data and
executes the instruction. The result is stored back in the data storage. Thus,
SISD is the conventional sequential computer according to the von Neumann
model.
 2. Multiple Instruction, Single Data (MISD): There are multiple
processing elements, each of which has a private program memory, but there
is only one common access to a single global data memory. In each step,
each processing element obtains the same data element from the data
memory and loads an instruction from its private program memory. These
possibly different instructions are then executed in parallel by the processing
elements using the previously obtained (identical) data element as an
operand. This execution model is very restrictive and no commercial parallel
computer of this type has ever been built.
 3. Single Instruction, Multiple Data (SIMD): There are multiple
processing elements, each of which has a private access to a (shared or
distributed) data memory, see Section 2.3 for a discussion of shared and
distributed address spaces. But there is only one program memory from
which a special control processor fetches and dispatches instructions. In each
step, each processing element obtains from the control processor and the
same instruction and loads a separate data element through its private data
access on which the instruction is performed. Thus, the instruction is
synchronously applied in parallel by all processing elements to different data
elements.
 4. Multiple Instruction, Multiple Data (MIMD): There are multiple
processing elements, each of which has a separate instruction and data access
to a (shared or distributed) program and data memory. In each step, each
processing element load a separate instruction and a separate data element,
apply the instruction to the data element, and stores a possible result back
into the data storage. The processing elements work asynchronously with
each other. Multicore processors or cluster systems are examples of the
MIMD model. (http://en.wikipedia.org)

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

27

Platforms of parallelism in control flow computing (OpenMP, MPI)
 OpenMP (Open Multi processing) is an API that supports multi-
platform shared memory multiprocessing programming in C, C++, and
FORTRAN, on most processor architectures and operating systems,
including Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, and Windows
platforms. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior
(http://www.OpenMP.org). De facto standard API for writing shared
memory parallel applications in C, C++, and Fortran OpenMP API consists
of: Compiler Directives, Runtime subroutines/functions, Environment
variables.(OpenMP Compilers, 2013)
 OpenMP is managed by the nonprofit technology consortium
OpenMP Architecture Review Board (or OpenMP ARB), jointly defined by
a group of major computer hardware and software vendors, including AMD,
IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Microsoft, Texas Instruments,
Oracle Corporation, and more.(OpenMP Tutorial at Supercomputing 2008)
 OpenMP uses a portable, scalable model that gives programmers a
simple and flexible interface for developing parallel applications for
platforms ranging from the standard desktop computer to the supercomputer.
 An application built with the hybrid model of parallel programming
can run on a computer cluster using both OpenMP and Message Passing
Interface (MPI), or more transparently through the use of OpenMP
extensions for non-shared memory systems.(http://people.sc.fsu.edu)

Matrix multiplication in c++ openmp
 Let’s treat the C++ OpenMP parallelization introducing by using a
simple example. Herewith includes an implementation of the matrix
multiplication in OpenMP. The directive of processor #pragma omp
parallel for default(none) shared(a,b,c) is the a simple modification of the
normal source code in c++ which can parallelize all the loop below this
directive. Let’s see the entire program for matrix multiplication.
/* Matrix_multiplication_in_openMP.cpp */
const int size = 1000;
float a[size][size];
float b[size][size];
float c[size][size];
int main()
{ // Initializing of matrix A, B, and C with zero values
 for (int i = 0; i < size; ++i) {
 for (int j = 0; j < size; ++j) {
 a[i][j] = (float)i + j;
 b[i][j] = (float)i - j;

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

28

 c[i][j] = 0.0f;
 }
 }
 // Perllogariten vlerat e elementeve te matrices
 // C <- C + A x B
 #pragma omp parallel for default(none) shared(a,b,c)
 for (int i = 0; i < size; ++i) {
 for (int j = 0; j < size; ++j) {
 for (int k = 0; k < size; ++k) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
 return 0;
}

 This platform works very well in shared memory systems like multi
core computers. Let’s suppose that our source code is executed on a shared
memory machine. What happens in the source code after we add our
parallelization directive? Let’ suppose that our machine has 4 cores. A
sequential algorithm uses just one core to accomplish the loop. While the
use of the arallelization directive makes active all cores like in figure 1.
 The directive, #pragma omp parallel for default(none) shared(a,b,c)
does implement the parallelization process. The runtime creates 3 additional
”worker” threads at start of openmp parallel region. OpenMP programs start
with a single thread; the master thread. At the start of the parallel region
master creates a team of parallel “worker” threads (FORK). Statements in
parallel block are executed in parallel by every thread. At the end of parallel
region, all threads synchronize, and join the master thread (JOIN).

Figutre 1.a) Serial execution uses only one core b) ParaleleOpenMP execution

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

29

Mpi platform in C++
 MPI is a directory of C++ programs which illustrate the use of the
Message Passing Interface for parallel programming. MPI is a library of
message passing routines. The library allows a user to write a program in a
familiar language, such as C, C++, FORTRAN77 or FORTRAN90, and
carry out a computation in parallel on an arbitrary number of cooperating
computers. This platform is used in distributed memory parallel systems.
 Herewith is a simple example which uses the MPI library, which
executes from each core an execution thread for matrix multiplication loops:
/* shumezim_matricash_MPI.cpp */
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define TAG 13
int main(int argc, char *argv[]) {
 double **A, **B, **C, *tmp;
 int numElements, offset, stripSize, myrank, numnodes, N, i, j, k;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &numnodes);
 N = atoi(argv[1]);
 if (myrank == 0) {
 tmp = (double *) malloc (sizeof(double) * N * N);
 A = (double **) malloc (sizeof(double *) * N);
 for (i = 0; i < N; i++)
 A[i] = &tmp[i * N];
 }
 else {
 tmp = (double *) malloc (sizeof(double) * N * N / numnodes);
 A = (double **) malloc (sizeof(double *) * N / numnodes);
 for (i = 0; i < N / numnodes; i++)
 A[i] = &tmp[i * N];
 }
 tmp = (double *) malloc (sizeof(double) * N * N);
 B = (double **) malloc (sizeof(double *) * N);
 for (i = 0; i < N; i++)
 B[i] = &tmp[i * N];
 if (myrank == 0) {
 tmp = (double *) malloc (sizeof(double) * N * N);
 C = (double **) malloc (sizeof(double *) * N);
 for (i = 0; i < N; i++)
 C[i] = &tmp[i * N];
 }
 else {
 tmp = (double *) malloc (sizeof(double) * N * N / numnodes);
 C = (double **) malloc (sizeof(double *) * N / numnodes);
 for (i = 0; i < N / numnodes; i++)
 C[i] = &tmp[i * N];
 }

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

30

 if (myrank == 0) {
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 A[i][j] = 1.0;
 B[i][j] = 1.0;
 }
 }
 }
 stripSize = N/numnodes;
 if (myrank == 0) {
 offset = stripSize;
 numElements = stripSize * N;
 for (i=1; i<numnodes; i++) {
 MPI_Send(A[offset], numElements, MPI_DOUBLE, i, TAG, MPI_COMM_WORLD);
 offset += stripSize;
 }
 }
 else {
 MPI_Recv(A[0], stripSize * N, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
 }
 MPI_Bcast(B[0], N*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 for (i=0; i<stripSize; i++) {
 for (j=0; j<N; j++) {
 C[i][j] = 0.0;
 }
 }
 for (i=0; i<stripSize; i++) {
 for (j=0; j<N; j++) {
 for (k=0; k<N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 if (myrank == 0) {
 offset = stripSize;
 numElements = stripSize * N;
 for (i=1; i<numnodes; i++) {
 MPI_Recv(C[offset], numElements, MPI_DOUBLE, i, TAG, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
 offset += stripSize;
 }
 }
 else {
 MPI_Send(C[0], stripSize * N, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);
 }
 if (myrank == 0 && N < 10) {
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 printf("%f ", C[i][j]);

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

31

 }
 printf("\n");
 }
 }
 MPI_Finalize();
 return 0;
}

Modern alternative architectures for parallel computing (dataflow)
 Dataflow architecture is a computer architecture that directly
contrasts the traditional von Neumann architecture or control flow
architecture. Dataflow architectures do not have a program counter, or (at
least conceptually) the executability and execution of instructions are solely
determined based on the availability of input arguments to the instructions,
so that the order of instruction execution is unpredictable: I. e. behavior is
undetermined. Although no commercially successful general-purpose
computer hardware has used dataflow architecture, it has been successfully
implemented in specialized hardware such as digital signal processing,
network routing, graphics processing, telemetry, and more recently in data
warehousing. It is also very relevant in many software architectures today,
including database engine designs and parallel computing frameworks.
 Synchronous dataflow architectures tune to match the workload
presented by real-time data path applications such as wire speed packet
forwarding. Dataflow architectures that are deterministic in nature enable
programmers to manage complex tasks such as processor load balancing,
synchronization and accesses to common resources.(EN-Genius, June 2008)
 Meanwhile, there is a clash of terminology, since the term Dataflow
is used for a Subarea of parallel programming: for dataflow programming.
 The execution is driven only by the availability of the operand! No
Program Counter is used and global updateable store, which are the two
features of von Neumann model that become a challenge in exploiting
parallelism are missing in DataFlow architecture.
 The execution algorithm of the dataflow instructions in pseudocode
can be:

WHILE(AVAILABLE_OPERATIONS
(STATE)) {
STATE = EXEC(AVAILABLEOPERATION(
STATE),STATE)
}
OPERATIONS “FIRE” WHEN
ALL INPUTS ARE AVAIALBLE

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

32

Figure 3. Example of a Java kernel progra

 One of the successful implementations of the dataflow philosophy is
Maxeler Data Flow Engine(http://www.maxeler.com/). The implementation
of the algorithm needs to modify the C source code, to write one or more
kernel files, one (or more) ava file, one manager file for transforming the
kernel(s), simulator builder, hardware builder and a series of default
programs for transferring the code to data flow engine module.

A modified Java program for execution in dataflow architecture is:

Figure 2. Execution in data flow engine

European Scientific Journal April 2015 edition vol.11, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

33

Conclusion
 Parallel computing is a trend of our age and is pushed and forced into
the computing paradigms just as Object Oriented was pushed in the previous
millennium into the programming issues. There are several types of parallel
computing, regards to the hardware architectures (shared or distributed
memory systems and data flow architecture systems). The hardware is
parallel so the Kernel is parallel. There are many levels of difficulties in the
parallelism. Some problems do not have work-efficient parallel algorithms
that allow the effective parallelism. Some of the parallel algorithms do not
have the same level of numerical stability as well-known sequential
algorithms. It is needed a very careful benchmarking process to be secure for
the effectiveness of the chosen architecture for parallelization, because some
time choosing an inappropriate platform can yield to a failure parallelism.
 As final conclusion, I would like to stress the fact that the DataFlow
computing is the future of parallelism in data processing.

References:
Ben Lee, A. R. Hurson, 1993: ISSUES IN DATAFLOW COMPUTING: In
Corvallis, Oregon University Press 97331-3211, page 2
J. R. Gurd, C. C. Kirkham, and I. Watson, 1985: The Manchester Prototype
Data-Flow Computer: In journal “Communications of the ACM”, Vol. 28,
page 34
Veen, A. H., 1986: "Dataflow Machine Architecture: In journal “ACM
Computing Surveys”, Vol. 18, No. 4, page 365
Retrieved on 14 October 2014 from:
http://www.numericmethod.com/About-numerical-methods/system-of-
linear-equations/gauss-elimination (Updated on 2014, October 13)
Retrieved on 11 October 2014
from:http://www.computerhope.com/jargon/c/contflow.htm
Retrieved on 11 October 2014 from:
http://en.wikipedia.org/wiki/Flynn's_taxonomy
"OpenMP Compilers". OpenMP.org. 2013-04-10. Retrieved 2013-08-14.
OpenMP Tutorial at Supercomputing 2008
Retrived on 15 January 2015 from:
http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html
"HX300 Family of NPUs and Programmable Ethernet Switches to the Fiber
Access Market", EN-Genius, June 18 2008.
Retrieved on 11 January 2015 from: http://www.maxeler.com/technology/

