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palavras-chave Gerador quântico de números aleatórios, Flutuações de amplitude em quadratura,
Estado de vácuo, Extração de aleatoriedade, Deteção homódina.

resumo Geradores quânticos de números aleatórios (QRNGs) prometem sistemas
informação-teoricamente seguros explorando as propriedades intrinsecamente pro-
babilísticas da mecânica quântica. No entanto, experimentalmente, um conjunto
de pressupostos é tipicamente imposto sobre os dispositivos experimentais. Nesta
dissertação, analisou-se uma abordagem para geração de números aleatórios que
explora as flutuações de amplitude em quadratura de um estado vácuo. Para tal,
recorre-se a um esquema de deteção homodina que permite um elevado desempe-
nho e estabilidade, requerendo apenas dispositivos de baixo custo.
Um modelo matemático das diferentes etapas do gerador foi desenvolvido de forma
a fornecer uma prova de segurança, e contabilizou-se o ruído de discretização intro-
duzido pelo conversor analógico-digital. Adicionalmente, caracterizou-se o impacto
de imperfeições experimentais como a resolução do conversor analógico-digital e a
presença de ruído em excesso como consequência de uma deteção não balanceada.
Uma abordagem para estimar esta contribuição no modelo de entropia de Shannon
foi também proposta e experimentalmente verificada.
Adicionalmente, uma implementação em tempo-real foi caracterizada. A curva
de caracterização do detetor homodino foi experimentalmente verificada, e uma
preponderância de ruído quântico observado para potências óticas inferiores a
45.7 mW. Através de uma estimativa da min-entropy condicionada ao ruído ele-
trónico, aproximadamente 8.39 bits por medição podem ser extraídos, o que cor-
responde a uma taxa de geração máxima de 8.23 Gbps. Estes podem ser extraídos
a uma taxa de 75 Mbps com um parâmetro de segurança de 2−105, ilustrativo da
qualidade desta implementação, através de um algoritmo eficiente de multiplicação
de matrizes de Toeplitz. Posteriormente, o esquema foi validado, passando todos
os testes estatísticos das baterias NIST, DieHarder, e SmallCrush, assim como a
maioria das avaliações contidas na bateria Crush.
Por último, foi proposta uma abordagem para integrar esta fonte de entropia num
canal de comunicação clássico, removendo desta forma a necessidade de uma im-
plementação dedicada. Após avaliação das condições de preponderância do ruído
quântico, foram observadas taxas de geração até 1.3 Gbps. Os números obtidos
foram também submetidos à bateria de testes do NIST, passando consistentemente
todas as avaliações. Adicionalmente, a constelação de modulação de amplitude em
quadratura obtida viabiliza a operação multifuncional do sistema.





keywords Quantum random number generation, Quadrature amplitude fluctuations, Vacuum
state, Randomness extraction, Homodyne detection.

abstract Quantum Random Number Generators (QRNGs) promise information-theoretic se-
curity by exploring the intrinsic probabilistic properties of quantum mechanics. In
practice, their security frequently relies on a number of assumptions over physi-
cal devices. In this thesis, a randomness generation framework that explores the
amplitude quadrature fluctuations of a vacuum state was analyzed. It employs a
homodyne measurement scheme, which can be implemented with low-cost com-
ponents, and shows potential for high performance with remarkable stability.
A mathematical description of all necessary stages was provided as security proof,
considering the quantization noise introduced by the analog-to-digital converter.
The impact of experimental limitations, such as the digitizer resolution or the
presence of excess noise due to an unbalanced detection, was characterized. More-
over, we propose a framework to estimate the excess entropy introduced by an
unbalanced detection, and its high impact within the Shannon entropy model was
experimentally verified.
Furthermore, a real-time dedicated QRNG scheme was implemented and validated.
The variance characterization curve of the homodyne detector was measured, and
the quantum fluctuations were determined to be preponderant for an impinging
power PLO < 45.7 mW. By estimating the worst-case min-entropy conditioned on
the electronic noise, approximately 8.39 true random bits can be extracted from
each sample, yielding a maximum generation rate of 8.23 Gbps. With a length-
compatible Toeplitz-hashing algorithm, these can be extracted at 75 Mbps with an
upper security bound of 2−105, which illustrates the quality of this implementation.
Moreover, the generation scheme was validated and verified to pass all the statis-
tical tests of the NIST, DieHarder, and TestU01’s SmallCrush batteries, as well as
most of TestU01’s Crush evaluations.
Finally, we propose a framework for time-interleaving the entropy source within
a classical communication channel, which removes the need for a dedicated gen-
eration device. After assessing the conditions where quantum noise is dominant,
support for generation rates up to 1.3 Gbps was observed. The random bitstream
was subjected to the NIST randomness test suite and consistently passed all evalua-
tions. Moreover, a clean quadrature phase shift keying constellation was recovered,
which supports the multi-purpose function of the scheme.
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Chapter 1

Introduction

Randomness is a deep philosophical concept that has always paradoxically intrigued and un-
settled humanity. It clashes with our inherent desire to understand the things around us and
negates our predisposition to establish intent or causality in all circumstances. In fact, through-
out history, randomness was intertwined with ideas of coincidence, luck, and fate that tried to
confer meaning upon its nature. Science has not been impervious to such notions, as illustrated
by Laplace’s beliefs on causal determinism and the fundamentally predictable nature of the uni-
verse [1]. Somewhat ironically, the emergence of quantum mechanics has made randomness an
unavoidable aspect of modern physics. Nonetheless, such thoughts have seldom been quieted, as
sentiments such as those famously professed by Einstein reveal: ”As I have said so many times,
God doesn’t play dice with the world.”

Although not immediately apparent, defining the attribute of being random is itself a non-
trivial question. It is unavoidable to look at the statistical notions of distributions and probabili-
ties to derive its properties. Indeed, some of the earliest efforts to understand the laws surrounding
randomness were inspired by chance games and population studies. Later contributions from the
field of thermodynamics, where randomness assumed a fundamental role in the kinetic theory of
gases, significantly developed probability theory and helped uncover the statistical properties that
emerge from a set of random events [2]. While such notions are useful, the defining property of
randomness is the unpredictability of individual outcomes, which can only be applied to a set of
Random Numbers (RNs), rather than to any individual value [3]. This does not, however, neces-
sarily imply an equiprobability of outcomes. One can thus describe randomness as the attribute
of a source of uncorrelated values that follow a certain statistical distribution [4]. Nevertheless, in
practical applications, and especially in cryptography, a uniform distribution is typically expected
so that no meaningful information can be extracted. For this reason, efforts to certify randomness
by evaluating the statistical properties of the supposedly random sets typically operate under the
assumption of uniformity.

In the 1950s, the concept of Kolmogorov complexity was developed, describing the length of the
shortest algorithm that can produce the evaluated sequence. Here, a random sequence is distin-
guishable by its incompressibility and consequent high Kolmogorov complexity [5]. Unfortunately,
despite the development of numerous other statistical tests [6, 7, 8], it is impossible to confidently
certify randomness. A sequence that passes a large number of evaluations certainly has properties
that closely resemble those of a random one, but could still have been carefully designed using
some deterministic process. In this case, its randomness is only apparent, as the set can be easily
reconstructed by an agent with knowledge of the respective generation process. Furthermore, the
question of to whom the sequence is random should also be considered. The unpredictability of
a sequence to a given agent does not imply its randomness, and even a truly random sequence is
predictable if publicly stored. Thus, more than a property of any sequence, randomness emerges
from the generation method and is conditioned upon the maximum information that any agent
can gather [3]. Any certification process should therefore consider both the randomness source
itself and its privacy [9].
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RNs play an essential role in numerous contemporary applications such as in numerical simula-
tions, statistic analysis, decision-making, or even lotteries and other games of chance [3, 4, 10, 11].
In fact, its presence is ubiquitous in our daily days. They are, for example, used in statistical
sampling to assure a representative and unbiased sample in scientific studies or other selection
processes. In simulation, they are fundamental to model the behavior of systems whose numeri-
cal analysis proves too complex. Here, Monte Carlo methods are a particularly notable instance
of the indispensability that RNs have assumed in scientific research and engineering applica-
tions. Moreover, any randomized or non-deterministic algorithms, such as neural networks or
genetic simulations, will require a randomness source [11]. In fundamental sciences, RNs are also
necessary to guarantee that no biases are introduced in the experimental results. This is par-
ticularly important in trials or simulations dealing with quantum mechanics, where randomness
plays a central role. Notably, they are required to select the measurement basis on loophole-free
Bell inequality tests [12].

It is, however, in cryptography that the importance of randomness is most significant. Indeed,
RNs are used as random keys or initialization sequences (seeds) in the encryption, authentica-
tion, and digital signature protocols that support much of the modern communication infrastruc-
ture [13]. Contemporary cryptographic systems generally rely on the assumption that an adversary
does not have enough computational power to break the protocol’s security. The public-key pro-
tocol RSA, for example, relies on the hard problem of factorizing the product of two large prime
numbers [14]. In accordance with Kerckhoffs’s principle, these systems must be secure even if all
details of the implementation (except for the key itself) are known [10]. Unintentionally, although
often overlooked, this binds the security proof to the statistical properties of the random keys
used. If the randomness source is structurally predictable or susceptible to be jeopardized by an
attacker, the entire protocol is compromised even if the underlying algorithm is secure [2]. As a
matter of fact, this is the case even for the unconditional secure One Time Pad (OTP) cipher,
where the message is encrypted and decrypted by modular addition with a single-use previously
shared secret key [3, 15]. In any case, a cryptographic system is only as secure as its weakest
link. The recent emergence of post-quantum cryptographic protocols, as well as Quantum Key
Distribution (QKD) and Quantum Oblivious Key Distribution (QOKD) algorithms, which require
high-quality RNs to be secure [16, 17], is bound to guarantee an increase in the demand for fast
and reliable randomness generation schemes in the forthcoming years.

1.1 State of the art
The first publicly available sources of randomness circulated in the form of pre-compiled tables

drawn from a variety of methods [4]. In 1939, one of the first purposefully built mechanical
Random Number Generators (RNGs) was used to compile a list of 100 000 numbers. These tables
allowed easy access to relatively large amounts of RNs in a time when mechanical methods were
too slow or inaccessible. Perhaps the most famous example, entitled ”A million random digits
with 100 000 normal deviates”, was published in 1955 by the RAND corporation by extracting
the output of an electronic roulette wheel [10]. Despite their popularity, such practices quickly
proved to be inadequate for the growing demand due to memory limitations and the inconvenience
of preparing such compilations. With the introduction of the first computers, the interest for on-
demand algorithmic RNGs quickly arose [4].

Since 1946, when John von Neumann first suggested its middle-squared algorithm, Pseudoran-
dom Number Generators (PRNGs) have traditionally been used as randomness sources [4]. These
resort to deterministic algorithms to obtain an apparently unpredictable sequence from a shorter
random key, the initial seed. As such, the yielded randomness follows the definition presented by
Kolmogorov and is solely based on computational complexity [3]. An ideal PRNG should stand
against the continuous scrutiny of every statistical test applied, such that, to an adversary, its
output is indistinguishable from a truly random sequence. Even so, as Neumann himself pointed,
such deterministic solutions cannot truly yield random results since their output is only depen-
dent on the seed and the algorithm itself. Consequently, an inherent periodicity can be found,
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and sufficient knowledge of these conditions allows the recreation of the entire pseudo-random
sequence. Ironically, this reproducibility can be an advantage in applications such as simulations,
where one may want to repeat a certain result [10]. In fact, several different implementations,
such as linear congruential generators or linear shift feedback registers, have materialized and the
best can pass numerous tests and present long-period cycles. The most widely used PRNG, the
standard Mersenne Twister, belongs to the latter category and presents a period of 219937 − 1 [10].

Unfortunately, due to their high output rates and easiness of implementation, the limitations
of these computational methods tend to be overlooked. A PRNG is obviously susceptible to
cryptanalysis from an adversary looking to predict its outcome and is thus woefully inadequate
for applications such as cryptography, where unpredictability is required [18]. The output of
the standard Mersenne Twister, for example, can be deduced from a sufficiently long output
sequence [10]. As such, the use of the so-called Cryptographically-secure PRNGs (CSPRNGs) is
recommended in critical applications. Nonetheless, the prospect of increasing computational power
and the maturity of quantum computation makes these implementations poor alternatives in the
long run. In fact, carelessness in implementing PRNGs has already resulted in several disasters.
Examples such as the Debian SSL generator, which was allowed to be vulnerable for two years,
and the infamously bad RANDU generator, which was widely employed in the 1960s, show only
a glimpse of the consequences of a vulnerable PRNG. RNG attacks are suspected to be the cause
of several high-notoriety security breaches such as the Bitstamp exchange attack, which resulted
in the theft of 18 866 bitcoins [2, 11]. Moreover, in 2012, a sanity check found that numerous
RSA keys throughout the web offered no security at all due to insufficient randomness [19]. More
severely, trust in the standardized solutions that should mitigate these problems has been eroded
by the discovery that the NSA intentionally lowered the security of several RNGs through practices
such as the deliberate insertion of a backdoor in the NIST certificated Dual EC DRBG CSPRNG [11].
This is especially worrying as the adoption of new communication technologies has increasingly
exposed large amounts of data to the internet. There is, consequently, high demand for fast and
reliable randomness generation methods for security-critical applications.

Nowadays, True Random Number Generators (TRNGs) are increasingly popular as a way
to build resilience against future threats and mitigate the shortcomings presented by traditional
PRNGs. These devices, like the first mechanical generators, use some apparently unpredictable
physical phenomena as their randomness source. Some non-physical TRNGs rely on collecting
parameters accessible to the operating system such as mouse movements, disk access times, or
keystrokes [3, 10]. None of these phenomena are particularly good Entropy Sources (ESs) and
can be prone to severe biases. More complex implementations use a dedicated device to measure
an external physical process that has the desired statistical properties. Some examples include
measuring atmospheric noise [20], electrical noise in electronic circuits [21], the evolution of chaotic
systems [22], or the period of ring oscillators [23]. Initial implementations presented limited output
rates and were mostly used to obtain random values to seed CSPRNGs, but modern devices can
already reach several Gbps. In fact, successful commercial TRNGs can be found online as early as
1998, as is the case with the widely known Random.org service, and integrated solutions already
exist, such as the generator provided by Intel [24]. Sadly, although believed to be a more secure
approach to RN generation, it is hard to give a convincing argument for the randomness yielded
by these classical TRNGs. This is particularly true for implementations based on fundamentally
deterministic processes, such as chaos-based generators. Ultimately, such as in the case of a
PRNG, the randomness extracted is still merely based on incomplete knowledge of the system or
on the computation infeasibility to guess their output, given current technology. Moreover, ESs
rarely produce an unbiased and uncorrelated distribution of outcomes. To obtain a bit-stream
able to pass most statistical tests, TRNGs typically apply a randomness extraction algorithm that
increases the available randomness by sacrificing the sequence’s length. This postprocessing can
mask failures of the ES that are hard to detect, which is particularly worrying given the lack
of fundamental proof for their unpredictability. Physical sources are also frequently sensitive to
environmental conditions, which makes them especially prone to manipulation by an adversary
with even partial access to the ES [10]. As a matter of fact, successful attacks have already been
conducted in systems sensitive to variations of temperature [25], input voltage [26], or susceptible
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to strong electromagnetic fields [27].
Quantum random number generation is one of the many recent technologies to emerge from

the second quantum revolution. In conjunction with the development of QKD protocols, it has
driven innovation in the field of quantum cryptography, which explores the unique properties of
quantum mechanics to achieve stronger security than its classical counterpart [28]. In contrast to
classical TRNGs, Quantum Random Number Generators (QRNGs) derive their randomness from
the intrinsic probabilistic nature of quantum phenomena. As illustrated in Fig. 1.1, these also
belong to the class of physical TRNGs, but here the ES is clearly defined, fundamentally unpre-
dictable to any adversary, and is thus able to yield information-theoretically provable randomness
under reasonable assumptions such as a trusted-device scenario [29]. Instead of simply assessing if
the output sequences of a deterministic process have all the statistical properties of a random se-
quence, a rigorous analysis of the physical process can be made to guarantee its privacy and justify
its security. The first QRNGs were based on measurements of radioactive decays [30], but the need
for a radioactive source and their limited output rate has hindered their popularity. Nowadays,
most implementations explore the quantum properties of light due to the high availability and af-
fordability of optical components, and the high generation rates that such devices can achieve [10].
Several different proofs of concept have been proposed, exploring phenomena such as amplified
spontaneous emission [31], photon arrival times [32], photon number statistics [33], single-photon
branching paths [34], stimulated Raman scattering [35] or the phase noise of a laser [36]. Recent
developments have focused on achieving generation schemes with higher performance, with speeds
up to 68 Gbps being reported [37]. Additionally, various self-testing, device-independent, or semi-
device independent protocols have been proposed [38]. Although generally slower, these remove
the necessity to have complete trust in the implementation details of the generator. Recently,
some integrated solutions have also materialized [39, 40]. These remove the necessity of bulky
implementations and are a fundamental step towards competing with the traditional algorithmic
generators. Indeed, QRNGs are currently one of the few well-established quantum technologies
able to make the jump from the research domain to a commercial market in rapid expansion [11].
However, their adoption is still restricted by a high cost in face of the traditional alternatives.

Random Number Generators (RNGs)

Cryptographically-secure 

PRNGs

Pseudorandom Number

Generators (PRNGs)

True Random Number Generators (TRNGs)

Non-physical

TRNGsClassical TRNGs

Physical TRNGs

Fig. 1.1: Schematic diagram with the various types of RNGs. These can mainly be distinguished
between PRNGs, which algorithmically expand an initial random seed, and TRNGs, which explore
an entropy source, either through an external signal or a dedicated physical device. Physical
TRNGs are further divided between those who explore classical and quantum phenomena. Only
the latter can yield information-theoretically provable randomness.

A particularly promising solution explores the quadrature fluctuations of a vacuum state by
resorting to a balanced homodyne detection scheme. These so-called vacuum-based QRNGs can
achieve high generation rates with low-cost and widely available technologies. In fact, many imple-
mentations able to reach several Gbps have already been proposed [40, 41, 42, 43]. Furthermore,
these QRNGs show high potential for chip integration due to the low number of components
required and can potentially be incorporated within already existing optical fiber networks, as
recently demonstrated [44]. The vacuum state is also easily obtainable and, assuming a trusted-
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device scenario, its purity cannot be tampered with by an adversary, which guarantees the quality
of the ES. Despite this, realistically, the quantum fluctuations will always be mixed with non-
random contributions and, consequently, these schemes rely on randomness extraction algorithms.
The first proposals have generally estimated these contributions by following the concept of Shan-
non entropy [45, 46]. As recommended by the NIST SP 800-90B standard, this is an inadequate
estimator to quantify randomness [15, 47]. More recently, [29] developed a framework to assess the
extractable entropy through a min-entropy estimator and proposed two information-theoretically
provable random extraction algorithms. Posteriorly, authors in [48] proposed an estimation model
considering the Analog-to-digital Converter (ADC) discretization, and analyzed the impact of the
acquisition range and resolution of the ADC. Recently, [49] was able to increase the conditional
min-entropy by discarding boundary-bin measurement and introducing multi-interval sampling.
Besides improving performance, current research is focused on assessing and mitigating the im-
pact of experimental non-idealities, such as an imperfect balancing condition, which can lead to
the introduction of security loopholes. In [50], a novel approach that considers the fluctuations
of a non-ideal Local Oscillator (LO) is developed. Other approaches concentrate on achieving
a high-performance randomness platform [51], surpassing technical challenges posed by chip in-
tegration [52], or developing device-independent solutions [53, 54]. Meanwhile, research on new
possible attacks is underway [55], which will surely improve the security of these protocols.

1.2 Motivation and objectives
Despite the recent developments reported, real-time implementations of vacuum-based QRNGs

still generally rely on some unclarified assumptions such as a balanced detection scheme, or an ideal
optical source without quantifying its impact on the security of the system. Moreover, detailed
characterization of the entropy model behavior in a real-time operation is necessary, as the system
is typically assumed to remain static and without fluctuations in the classical noise level. This
is especially worrisome, as most implementations solely rely on the NIST statistical test suite
for validation, which, while the most widely used randomness testing tool, is less rigorous than
other extensive batteries such as Dieharder or TestU01 that could help reveal overlooked biases.
Furthermore, while chip-integrated solutions are being developed, few efforts into removing the
necessity of a physical dedicated implementation were taken.

This dissertation has focused on achieving a high-speed real-time QRNG implementation based
on vacuum fluctuations using widely available optical devices and components, which is also able
to address these omissions. Specifically, the following main objectives can be highlighted:

• Provide a comprehensive proof of randomness based on a mathematical description of a
vacuum-based QRNG and the development of its variance model.

• Characterize the impact of non-ideal optoelectronic devices and other imperfections on the
performance of the QRNG [56, 57].

• Comparatively analyze the main entropy estimation methods within the scope of a real-time
QRNG based on homodyne measurements of vacuum fluctuations.

• Develop a framework to estimate the excess entropy contributions resultant from an unbal-
anced homodyne detection [57].

• Implement and validate a QRNG scheme time-interleaved with a Quantum Phase Shift
Keying (QPSK) tributary signal within a classical coherent detector [58].

1.3 Dissertation structure
This document is organized into 6 chapters, with this introduction to RNGs being the first,

and the others are summarized as follows:
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• Chapter 2 introduces the conceptual formalism necessary to describe a QRNG implemen-
tation based on homodyne measurements of vacuum fluctuations. Namely, fundamental
concepts in quantum optics and information theory are explored.

• Chapter 3 presents a block description of the proposed QRNG scheme, including a theoretical
model of the physical layer and the postprocessing necessary to extract true random numbers.

• Chapter 4 describes and analyses the dedicated real-time experimental scheme implemented,
comparing the performance under different postprocessing methods and describing the key
technical challenges. Furthermore, extensive statistical validation is applied to guarantee
the quality and security of the QRNG output.

• Chapter 5 includes a description of an alternative QRNG scheme, which removes the need
for a dedicated physical implementation and proceeds with its experimental validation.

• Chapter 6 summarizes the main conclusions and outlines the future work.

1.4 List of Publications
The work developed in this dissertation has resulted on the following publications:

• Ferreira, Mauŕıcio J. and Silva, Nuno A. and Pinto, Armando N. and Muga, Nelson J.
Characterization of a quantum random number generator based on vacuum fluctuations.
Applied Sciences, 11(16), 2021

• Ferreira, Mauŕıcio J. and Silva, Nuno A. and Pinto, Armando N. and Muga, Nelson J.
Homodyne noise characterization in quantum random number generators. In 2021 Telecoms
Conference (ConfTELE), pages 1–6, Leiria, Portugal, 2021

• Mauŕıcio Ferreira and Daniel Pereira and Nelson Muga and Nuno Silva and Armando Pinto.
Time-interleaved quantum random number generation within a coherent classical commu-
nication channel. In Anais do I Workshop de Comunicação e Computação Quântica, pages
37–42, Porto Alegre, RS, Brasil, 2021. SBC
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Chapter 2

Theoretical Background

In this chapter, the theoretical formalism necessary to describe a QRNG based on homodyne
measurements of vacuum fluctuations will be discussed. In section 2.1 a brief introduction to
quantum optics is made, namely by analyzing the concept of number and coherent states. Poste-
riorly, the fundamental concepts of information theory are described in section 2.2. This supports
the description of the homodyne detection model and the entropy estimation models presented in
chapter 3.

2.1 Quantum optics
The quantization of the electromagnetic field is made by associating a quantum-mechanical

harmonic oscillator of angular frequency ωk with each mode k in a quantization cavity. Assuming a
single polarization, its Hamiltonian Ĥ is thus simply obtained from the multi-modal generalization
of the one-dimensional oscillator, which yields [59]:

Ĥ =
∑

k

p̂2
k

2m
+ 1

2mω2
kq̂2

k, (2.1)

where q̂k and p̂k are, respectively, the position and momentum operators which follow the canonical
commutation relation [q̂k, p̂k′ ] = iℏδk,k′ . One can also rewrite (2.1) in relation to the dimensionless
annihilation and creation operators, âk and â†

k, defined as:

âk = 1√
2mℏωk

(
mωkq̂k + ip̂k

)
,

â†
k = 1√

2mℏωk

(
mωkq̂k − ip̂k

)
.

(2.2)

Since different modes are independent, their commutation relation follows:[
âk, â†

k′

]
= âkâ†

k′ − â†
k′ âk = δk,k′ , (2.3)

and the Hamiltonian becomes:

Ĥ =
∑

k

1
2ℏωk

(
âkâ†

k + â†
kâk

)
. (2.4)

By analogy with the total radiative energy in the classical case, the classical vector potential can be
associated with the quantum-mechanical annihilation and creation operators [59]. The quantized
electric field operator is thus defined as:

ÊT =
∑

k

√( ℏωk

2ε0V

)[
âke−iχk + â†

keiχk
]
, (2.5)
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where χk = ωkt − k⃗ · r⃗ − π
2 . Here, ε0 is the the vacuum permittivity, V the volume of the

quantization cavity, k⃗ the wave vector, and r⃗ the position vector.
Other useful quantities when describing the quantum harmonic oscillator are the quadrature

operators, which derive from the position and momentum operators:

X̂k =
√

mωk

2ℏ q̂k = 1
2(â†

k + âk),

Ŷk = 1√
2mℏωk

p̂k = i

2(â†
k − âk),

(2.6)

whose commutation relation yields: [
X̂k, Ŷk′

]
= i

2δk,k′ . (2.7)

In opposition to the creation and annihilation operators, these follow the hermitian condition and
thus correspond to observables of the optical state. With these definitions, we can verify that:

Ĥ =
∑

k

ℏωk

(
X̂2

k + Ŷ 2
k

)
. (2.8)

and from (2.5) the electric field operator becomes:

ÊT =
∑

k

√(2ℏωk

ε0V

)[
X̂k cos χk + Ŷk sin χk

]
, (2.9)

Thus X̂k and Ŷk yield, respectively, the in-phase and in-quadrature components of the electric
field amplitude. It can also be demonstrated through the Heisenberg uncertainty principle for
non-commuting operators that the multiplication of their variances [60]:

σ2
X̂k

σ2
Ŷk′

≥ 1
4

∣∣∣〈[
X̂k, Ŷk′

]〉∣∣∣2

≥ 1
16δk,k′ ,

(2.10)

which implies that the quadratures of the electric field in a given mode cannot be simultaneously
measured with arbitrary precision.

2.1.1 Number states
Single-mode numbers states, or Fock states, noted |nk⟩ form a complete set of orthonormal

states that are characterized by the exact number of photons nk excited in the cavity mode. They
are the eigenstates of the Hamiltonian for each individual mode in the quantum harmonic oscillator
defined in (2.4) and thus satisfy the energy eigenvalue relation [59]:

Ĥk |nk⟩ = Enk |nk⟩ , (2.11)

where the eigenvalue Enk is the corresponding energy level:

Enk =
(

nk + 1
2

)
ℏωk, nk ∈ N0. (2.12)

Thus consecutive eigenvalues are equally spaced by an energy quantum ℏωk and, for each mode,
the vacuum state |0k⟩ of the field in which no photons are excited has by definition the smallest
allowable energy of 1

2ℏωk [59]. Similarly, the energy eigenvalue of a multi-mode number state
|{nkλ}⟩, where {nkλ} denotes the number of photons in each of the cavity modes that describe
the total electromagnetic field, is given by the sum of the individual contributions shown in (2.12):

Ĥ |{nkλ}⟩ =
∑

k

ℏωk

(
nk + 1

2

)
|{nkλ}⟩ . (2.13)
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Strikingly, as no upper bound in the range of allowed frequencies ωk exists, it is implied that the
zero-point energy of the electromagnetic field is infinite, although only the excitation energy above
this value contributes to the observable optical intensity [59].

Simultaneously, a nk-number state is an eigenstate of the number operator:

N̂k = â†
kâk, (2.14)

such that N̂k |nk⟩ = nk |nk⟩. Thus, the null uncertainty in the photon number remains implicit and
σ2

nk
= 0. Moreover, the action of the creation and annihilation operators on this state yields [59]:

âk |nk⟩ = √
nk |nk − 1⟩ ,

â†
k |nk⟩ =

√
nk + 1 |nk + 1⟩ .

(2.15)

From their application in the vacuum state results [59]:

âk |0k⟩ = 0,

⟨0k| â†
k = 0.

(2.16)

Consequently, any generic photon state can be obtained by repeatedly applying the creation op-
erator on |0k⟩ [59]:

|nk⟩ = (â†
k)nk

√
nk!

|0k⟩ . (2.17)

Given these formulations, the relations in (2.15) and the orthonormality shared by number states,
the field quadrature properties yield:

⟨nk| X̂k |nk⟩ = ⟨nk| Ŷk |nk⟩ = 0,

σ2
X̂k

= σ2
Ŷk

= 1
2

(
1
2 + nk

)
.

(2.18)

Thus, these fluctuations have identical properties for both phase quadratures and their variance
depends explicitly on the number of photons excited in the cavity mode. Accordingly, the expected
mean electric field is null and its variance follows (2.18), which means that a number state cannot
carry information suitable for homodyne detection [59].

As shown in (2.6), the quadrature eigenstates |xk⟩ and |yk⟩ are a generalization of the usual
position and momentum basis states on a quantum-mechanical harmonic oscillator. Consequently,
the in-phase quadrature probability distribution Pnk(x) of a given number state |nk⟩ can be
obtained from the eigenfunction solutions of the time-independent Schrödinger equation in the
coordinate basis, Ψ(q) [61]:

Ψ(q) = 1√
2nknk!

(mωk

ℏπ

)1/4
e− mωk

2ℏ q2
Hnk

(√
mωk

ℏ
q
)

, (2.19)

where Hnk denotes a Hermite polynomial of rank nk. Given the definition of the quadrature
operator with a continuous eigenvalue x and the orthonormality condition of these functions, the
wave function can be rewritten on the quadrature basis as:

Ψ(x) = 1√
2nknk!

( 2
π

)1/4
e−x2

Hnk

(
x

√
2
)

, (2.20)

and thus, as given by the Born rule [60]:

Pnk(x) = |⟨xk|nk⟩|2 = 1
2nknk!

( 2
π

)1/2
e−2x2

(
Hnk

(
x

√
2
))2

, (2.21)
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where |xk⟩ is the eigenstate of the quadrature operator X̂k. Similarly, an identical expression
can be derived for the in-quadrature probability distribution Pnk(y) from the momentum rep-
resentation of the wave function. Consequently, quadrature measurements of a number state
are inherently probabilistic and will fluctuate with a probability distribution described by (2.21)
around the null expected value. The phase space distribution of a single mode number state with
nk > 0 along any direction is thus characterized by the null probability fringes corresponding to
the zeros of the Hermite polynomials, as shown in Fig. 2.1 for nk = 0, nk = 3, and nk = 4.

(a) (b) (c)

Fig. 2.1: Representation of the phase space probability distribution of number states with (a)
nk = 0, (b) nk = 3, and (c) nk = 4. Dark zones represent an higher probability density. The
radial projection in any direction is described by the quadrature probability distribution.

2.1.1.1 Vacuum state

As previously mentioned, the vacuum state |{0}⟩ of the electromagnetic field corresponds to
the state in which no photons are excited in any cavity mode and is thus the ground state of the
single-mode quantum harmonic oscillator. As will be further discussed in section 2.1.2, it has the
special property of simultaneously being a number and a coherent state of the electromagnetic
field. For any particular individual mode, the quadrature properties of the vacuum state can be
derived from (2.18):

⟨0k| X̂k |0k⟩ = ⟨0k| Ŷk |0k⟩ = 0,

σ2
X̂k

= σ2
Ŷk

= 1
4 ,

(2.22)

which is the minimal value compatible with the uncertainty relation (2.10). As also shown in
Fig. 2.1a, |0k⟩ is consequently a quadrature-minimum uncertainty state. Furthermore, considering
that the Hermite polynomial H0(x) = 1, its quadrature probability density function yields:

P0k(x) =
( 2

π

)1/2
e−2x2

. (2.23)

Here, its dual nature becomes clear. Akin to the coherent states, the quadrature measurements
in each mode follow an isotropic Gaussian distribution with variance equal to 1

4 . Simultaneously,
similarly to the other number states, the vacuum fluctuations oscillate around a null expected
value and have a completely random phase [59].

Despite the theoretical simplicity of number states, it is usually difficult to experimentally
obtain optical states with a well-defined number of photons. This contrasts with the vacuum
state, which can be produced with good approximation at a frequency ωk by assuring a certain
temperature of the optical system T , as given by the Plank thermal excitation function. It describes
the mean number of photons excited in a thermal state [59]:

⟨nk⟩ = 1

e
ℏωk
kBT − 1

, (2.24)
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where kB is the Boltzmann constant. As such, as long as T ≪ ℏωk
kB

, ⟨nk⟩ ∼ 0 and the number of
photons excited can be considered negligible [59]. At the conventional 1550 nm band this yields
approximately 9282 K, an thus the condition is satisfied at room temperature.

2.1.2 Coherent states
A single-mode coherent state |α⟩ is defined as a linear superposition of number states that can

be described in the form [59]:

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ , α = |α|eiθ ∈ C. (2.25)

These are the states with properties more similar to those of a classical electromagnetic wave, as
they have a constant field amplitude and, in contrast with the number states previously described,
a fixed phase. It follows from their definition that coherent states are normalized such that
⟨α|α⟩ = 1. They do not, however, share orthogonality, as:

⟨α|β⟩ = e− 1
2 (|α|2+|β|2)+α∗β and |⟨α|β⟩|2 = e−|α−β|2

. (2.26)

Although never orthogonal, they become approximately so when |α − β| ≫ 1, which describes
their proximity in the complex plane.

Coherent states follow a right-eigenstate relation with the annihilation operator, where α is
the eigenvalue. Similarly, the conjugate relation is obeyed by the creation operator [59]:

â |α⟩ = α |α⟩ and ⟨α| â† = ⟨α| α∗. (2.27)

These relations allow to obtain the mean photon number and photon number variance, as given
by the number operator N̂ :

⟨n⟩ = ⟨α| N̂ |α⟩ = α∗α = |α|2,

σ2
n = ⟨α| N̂2 |α⟩ −

(
⟨α| N̂ |α⟩

)2 = |α|2.
(2.28)

The photon number mean and variance are thus equal, solely depending on the amplitude of the
coherent state. In fact, its distribution follows a Poisson statistic [59]:

Pα(n) = e−⟨n⟩ −⟨n⟩n

n! , (2.29)

which approaches a Gaussian distribution for large values of ⟨n⟩. Consequently, the relative
fluctuation of the photon number diminishes with increasing values of the mean photon number,
becoming negligible for large fields. Nonetheless, this uncertainty is experimentally observed as
shot noise in optical detection, and its variance is proportional to the impinging optical power, as
implied by (2.28).

Alternatively, coherent states can also be defined as a displacement of the vacuum state in
phase space [59]:

|α⟩ = eαâ†−α∗â |0⟩ = D̂(α) |0⟩ , (2.30)
where D̂(α) is the so-called coherent-state displacement operator. It becomes clear, as previously
discussed, that the vacuum state can simultaneously be described as the base number state or a
non-displaced coherent state. As seen in Fig. 2.2, applying this translation transforms the vacuum
state into a coherent state of well-defined phase without changing the distribution of its quadra-
tures. In fact, using the relations described in (2.27) and considering the polar representation of
the complex amplitude α:

⟨α| X̂ |α⟩ = Re(α) = |α| cos θ,

⟨α| Ŷ |α⟩ = Im(α) = |α| sin θ.
(2.31)
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Fig. 2.2: Representation of a coherent state |α⟩ as a displacement of the vacuum state |0⟩ in the
phase space by the complex amplitude α. While the quadrature distributions remain isotropic and
of minimum uncertainty, their expected values are now shifted by |α| cos θ along the X-quadrature
and |α| sin θ along the Y -quadrature.

Thus, the mean values of the quadrature operators yield the real and imaginary parts of its complex
amplitude. Furthermore, the quadrature variances are:

σ2
Ŷ

= σ2
X̂

= 1
4 , (2.32)

which shows that a coherent state has minimum quadrature uncertainty for any photon number
|α|2, which is consistent with the definition (2.30). Lastly, analogously to the quadrature mea-
surements of a vacuum state, the coherent state also follows a Gaussian quadrature probability
distribution such that [60]:

Pα(x) =
( 2

π

)1/2
e−2(x−Re(α))2

. (2.33)

2.1.2.1 Continuous-mode coherent state

While the fundamental properties of coherent states are accurately reflected in the single-mode
description made, a time-dependent representation necessarily requires considering the infinite
range of excitations modes in a multi-mode optical state. As the multi-mode number state previ-
ously described, the multi-mode coherent state |{α}⟩ defines the set of complex amplitudes that
represent the coherent states in each excited cavity mode [59]. However, most of the realistic
optical experiments are better characterized by a free space quantization of the field, which is
defined by a continuous wave vector. For a cavity of length L, the summations over k are con-
verted to integrations as

∑
k → 1

∆ω

∫
dω, where ∆ω = 2π

L → 0 as L → ∞ . Consequently, the
continuous-mode creation and annihilation operators [59]:

âk → (∆ω) 1
2 â(ω) and â†

k → (∆ω) 1
2 â†(ω), (2.34)

and the corresponding time-dependent operators, â(t) and â†(t), are obtained through their Fourier
transform. Here,

[
â(t), â†(t′)

]
= δ(t − t′) and the number operator is now defined as:

N̂ =
∫

â†(t)â(t) dt =
∫

f̂(t) dt, (2.35)

where f̂(t) is the photon flux operator.
Continuous-mode coherent states are obtained through a generalization of the relation men-

tioned in (2.30). As their single-mode counterparts, they remain left-eigenstates of the continuous-
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mode annihilation operator [59]:

â(t) |{α}⟩ = α(t) |{α}⟩ ,

⟨{α}| â†(t) = ⟨{α}| α∗(t),
(2.36)

and the mean photon flux yields:
⟨f̂(t)⟩ = |α(t)|2. (2.37)

This formalism is useful to describe the emission of a single-mode laser operating above the thresh-
old level [59], as will be required in chapter 3.

2.2 Information theory
Quantifying the unpredictability of a given random variable is a central problem in randomness

generation as it is essential to characterize a randomness source and account for potential access
to side information by an eavesdropper.

The uncertainty associated with the outcomes of a certain random variable X is given by its
entropy, which can be defined in many different ways. Shannon entropy is often proposed as a
good estimator and is defined in the unit of bits as [62]:

H(X) = −
∑

i

PX(xi) log2 PX(xi), (2.38)

where PX(xi) is the probability of each outcome xi. This quantity expresses the average informa-
tion conveyed by each outcome xi and thus constitutes a measure of the average unpredictability
of X. If a second random variable Y is considered, their joint Shannon entropy is [60]:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PX,Y (x, y), (2.39)

where PX,Y (x, y) is the joint probability function of these variables, and X , Y their respective
images. The joint entropy can be rewritten through the chain rule for entropies as [60]:

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ), (2.40)

where H(Y |X) is the conditional entropy between the two random variables [60]:

H(Y |X) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PY |X(y|x). (2.41)

The conditional entropy describes the entropy of Y given that the result of X is known to an
observer. Their mutual information, which yields the amount of information gathered about one
variable by measuring the other, is thus defined as [62]:

I(X : Y ) = H(Y ) − H(Y |X) =
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2
PX,Y (x, y)

PX(x)PY (y) . (2.42)

Finally, for a continuous variable X, the definition (2.38) is no longer valid. Instead, the analogous
differential entropy for a distribution pX(x) is defined as [62]:

h(X) = −
∫

x∈X
pX(x) log2 pX(x) dx. (2.43)

The term entropy is generally interpreted as Shannon entropy by default. Unfortunately, Shan-
non entropy is inadequate to quantify randomness, particularly for highly skewed distributions.
Consider, for example, a random variable B with n + 1 outcomes, where an extreme outlier exists
and the remaining are normally distributed:
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• B = 0 with PB(0) = 1
2 ,

• B ∈ {1, 2, ..., n} with PB(bi) = 1
2n .

In this case H(B) = − 1
2 log2

1
2 − 1

2 log2
1

2n → ∞ when n → ∞ [15]. Thus it is possible to define a
random variable with large Shannon entropy whose guessing is trivial. Here, H(B) acts, at best,
as an upper entropy bound, and for a large n it is no longer an adequate estimator. In such cases,
the unpredictability is better characterized by the min-entropy [63]:

Hmin(X) = − log2 max
xi∈X

PX(xi), (2.44)

which describes the entropy associated with the best strategy to guess the random variable. The
probability of observing any outcome is thus no greater than 2−Hmin and the min-entropy is
maximized for a uniform distribution when it is equal to the Shannon entropy [63]. In the example
described, Hmin(B) = 1 regardless of n and thus sets a lower bound for the unpredictability of B.
For a random variable X, the classical worst-case conditional min-entropy Hmin(X|E) conditioned
on classical side-information E is determined by [48]:

Hmin(X|E) = − log2 max
ej∈supp(PE)

max
xi∈X

PX|E(xi|ej), (2.45)

where the support supp(PE) is the set where PE(ej) > 0 and equals R for a normal distribution.
As will be described in chapter 3, the measured distribution M will simultaneously contain

contributions from quantum noise Q and classical fluctuations E. This constitutes an additive
white noise Gaussian channel, where all contributions are normally distributed independent ran-
dom variables such that M = Q + E. In these circumstances, their respective variances can be
written as σ2

M = σ2
Q + σ2

E , and the mutual information between the measured distribution and
the quantum noise yields [62]:

I(Q : M) = H(M) − H(M |Q)
= H(M) − H(Q + E|Q)
= H(M) − H(Q|Q) − H(E|Q),

(2.46)

and since, using (2.41), H(Q|Q) = 0 and H(E|Q) = H(E) [62]:

I(Q : M) = H(M) − H(E)

= 1
2 log2(2πeσ2

M ) − 1
2 log2(2πeσ2

E)

= 1
2 log2

(σ2
M

σ2
E

)
= 1

2 log2

(
1 + 10

QCNR
10

)
,

(2.47)

where the Quantum-to-classical Noise Ratio (QCNR) is defined as:

QCNR = 10 log10
σ2

Q

σ2
E

. (2.48)

The formalism here introduced allows to give a detailed randomness proof for the ES described
in chapter 3. The key concepts to retain are the description of the vacuum state made in sec-
tion 2.1.1.1, which characterizes its expected quadrature behavior, and the entropy definitions
presented in (2.38) and (2.45), which provide a mathematically rigorous approach to quantify the
randomness present in the generation scheme.
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Chapter 3

A Vacuum-based Quantum
Random Number Generator

In this chapter, a complete description of the implemented continuous-variable QRNG based
on homodyne measurements of vacuum fluctuations is presented. Initially, an overview of a QRNG
scheme and its subdivision into different stages is made. In section 3.1, the formalism previously
introduced is applied to derive a theoretical description of a homodyne detection scheme. Finally,
comparative analyses of the different entropy estimation methods and randomness extraction
algorithms implemented in chapter 4 are presented in sections 3.2 and 3.3, respectively.

A typical QRNG can generally be subdivided into two very distinct stages with different func-
tions: the physical layer and the postprocessing layer. The physical layer is perceived as the
randomness source of the implementation and contains both the quantum phenomena being ex-
plored and the physical apparatus necessary to prepare, maintain or measure the ES. As seen
in Fig. 3.1, in this stage, it is possible to distinguish between the physical ES, from where the
quantum entropy is extracted and the trustworthiness of the system derives, and the analog-to-
digital conversion, which introduces additional noise. The physical layer ultimately determines
the maximum achievable performance, as no other stage can compensate for an eventual lack of
entropy. Unfortunately, the quantum signal is inevitably mixed with classical noise contributions.
These typically originate from the digitization stage, where electronic noise intrinsic to the phys-
ical devices is superimposed on the acquired signal, but other factors such as an improper state
preparation can also contaminate the raw output [15]. Moreover, even if the measured quantity
is truly random, seldom physical phenomena are uniformly distributed in nature. This results
in a fundamentally biased output, which is not desirable for cryptographic applications. Even
worse, these classical noise sources can potentially be manipulated or explored by an eavesdropper
seeking to increase its probability of guessing the RNG outcomes. Consequently, a postprocessing
layer is necessary to remove classical contributions and attain uniformly distributed RNs [10].

Entropy 

Es�ma�on

Randomness 

Extrac�on

Postprocessing Layer
Random 

OutputPhysical 

Entropy Source
Digi�za�on

Physical Layer Raw 

Output

(biased)

0111100000001000

Random Seed

00101100 11111101 

10010110 00001011

11011110 11010110

Fig. 3.1: Block diagram of a typical QRNG. The ES outputs raw measurements, which simultane-
ously contain quantum and classical contributions. Posteriorly, the postprocessing layer extracts
a shorter set of uncorrelated and uniformly distributed RNs by applying a randomness extractor.

The postprocessing layer consists of an entropy estimation module to quantify the impact of
side-information introduced by classical sources, followed by a randomness extraction stage. Ran-
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domness extractors are deterministic functions able to extract almost-uniformly distributed data
from a biased source by sacrificing a portion of the output sequence. Similarly to PRNGs, these
may also require a short initial random seed, which can be obtained from a second randomness
source or by forfeiting part of the RNG output. Here, however, the randomness obtained remains
unpredictable as long as the input of the extractor is not deterministic and thus possesses some
usable entropy. This differs from the PRNG construct, where the output is solely dependent on
the initial seed. Nonetheless, the postprocessing layer imposes some computational costs, which
limits the real performance of the implementation and reduces the output bit rate [3, 15].

As seen in chapter 1, numerous distinct QRNG schemes exist and the exact description of
each stage will vary considerably. Implementations can generally be distinguished between device-
dependent QRNGs, which rely on security assumptions about the various components of the
physical layer, and device-independent generators. These rely on some fundamental quantum
properties such as the violation of Bell inequalities to obtain certified RNs that do not depend on
the implementation details, but are generally slow and difficult to implement. Semi-device inde-
pendent solutions are also available and offer a compromise between the two approaches. Here,
one considers the case in which an adversary has access either to the randomness source or to
the detection scheme. Nonetheless, in practice, the security proof will rely on the characterization
of at least some part of the implementation. Device-dependent schemes, in particular, assume
that the implementation can be appropriately modeled to quantify all the noise sources present
at the output. The choice of the postprocessing layer is thus interlinked with the physical imple-
mentation, and the entropy estimation must derive from a careful analysis of the physical layer.
Furthermore, although some physical RNGs can drop its implementation if the raw sequences pos-
sess a negligible bias, the randomness extraction algorithms must be carefully chosen to balance
the tradeoff between speed and the security level [10].

3.1 Physical layer
In this thesis, as previously mentioned, a device-dependent QRNG based on probing the

quadrature amplitude fluctuations of the vacuum state will be implemented and validated. As
the relation (2.23) shows, quadrature measurements of such a field follow an inherently proba-
bilistic Gaussian distribution that can be repeatedly taken to obtain random outcomes. However,
direct detection cannot measure the phase properties of incident light since it only measures the
photon flux of the light beam [59]. Consequently, vacuum-based QRNGs rely on a homodyne
detection scheme, which can measure the amplitude quadrature component of an input signal by
comparing it with a laser of the same frequency, the so-called Local Oscillator (LO). In Fig. 3.2,
such a schematic model of a self-homodyning detection scheme is illustrated. A strong laser beam,
represented by the annihilation operator âLO(t), acts as the LO and interferes with the vacuum
state, v̂s(t), in a lossless Beamsplitter (BS). Here, as shown by (2.24), the purity of the optical
state can be guaranteed with good approximation by blocking one of the input ports so that no
input signal is present and only the vacuum fluctuations may arise.

In the quantum mechanical picture, a lossless BS, as the one depicted in Fig. 3.3, is described
in terms of the annihilation operators by its 2x2 BS matrix [59]:(

â3
â4

)
=

(
R31 T32
T41 R42

) (
â1
â2

)
, (3.1)

where R31, T32, R42, and T41 represent, respectively, the complex reflection and transmission
coefficients for each optical path [59]. Considering the energy conservation between input and
output arms, these quantities follow:

|R31|2 + |T41|2 = |R42|2 + |T32|2 = 1 and R31T ∗
32 + T41R∗

42 = 0. (3.2)
By writing these coefficients in their polar form and considering the previous relations:

ϕ31 + ϕ42 − ϕ32 − ϕ41 = ±π and |R31|
|T41|

= |R42|
|T32|

, (3.3)
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Fig. 3.2: Schematic representation of the homodyne detector model considered for quadrature
measurements of the vacuum state. Here, each Variable Optical Attenuator (VOA) is obtained
from a lossless BS. Similarly, each practical Photodetector (PD) can be modeled by introducing a
lossless BS before a perfectly efficient PD. Electrical paths are presented as dashed lines.

which shows that the two sets of coefficients must have equal amplitudes:

|R31| = |R42| = |R| and |T32| = |T41| = |T |. (3.4)

Fig. 3.3: Quantum mechanical representation of a lossless BS as a function of the annihilation
operators associated to the input, (â1, â2), and output, (â3, â4), quantized electric field operators.

For simplicity, it is assumed that these coefficients are symmetrical, which yields ϕ31 = ϕ42 =
ϕR and ϕ32 = ϕ41 = ϕT . In this case, the phase shift between the reflected and transmitted beams
yields ϕR − ϕT = ± π

2 . By fixing ϕT = 0 and admitting ϕR = π
2 , the output signals, â3,4(t), in

the considered homodyne model are described as [59]:â3(t) = i
√

1
2 + ∆ âLO(t) +

√
1
2 − ∆ v̂s(t)

â4(t) =
√

1
2 − ∆ âLO(t) + i

√
1
2 + ∆ v̂s(t)

, (3.5)

considering the imbalance of the BS, ∆, such that |R|2 = ( 1
2 + ∆).

The resulting fields are posteriorly measured by two detectors, PD1 and PD2, that yield a
photocurrent, î3,4(t), proportional to the photon flux in each output arm and thus, following the
definition (2.35):

î3,4(t) = qd̂†
3,4(t)d̂3,4(t), (3.6)

where q is the charge of the electron [59]. Unfortunately, in a realistic application, neither the BS
nor the PDs are ideal devices. In fact, the homodyne detection will always be slightly unbalanced
due to different coefficient amplitudes in the BS. Thus, typically, a VOA is introduced in each
channel to allow balancing of the detection scheme. In this framework, these devices can also
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quantify the attenuation at each output arm, which in opposition to the BS imbalance, does not
preserve the total impinging optical power. Additionally, a realistic PD can only register a fraction
of the photon arrivals, which is reflected in its quantum efficiency. Such a device is modeled by
imposing a virtual BS before a theoretical perfect PD [59]. As illustrated in Fig. 3.2, one of the
output signals, ê3,4(t), will be lost while the other, d̂3,4(t), is measured by the detector, such that,
analogously to the relations in (3.5):{

ê3,4(t) = i
√

1 − η3,4 b̂3,4(t) + √
η3,4 v̂3,4(t)

d̂3,4(t) = √
η3,4 b̂3,4(t) + i

√
1 − η3,4 v̂3,4(t)

, (3.7)

where η3,4 denote the quantum efficiency of each PD, and v̂3,4(t) their input vacuum states. Here,
b̂3,4(t) represent the output signals of each VOA, which, similarly to the PDs, are moduled as two
additional lossless BSs with variable transmissivities ηVOA3,4 . Consequently, the set of equations
required to describe the impinging signals yields [64]:

d̂3(t) = i

√(1
2 + ∆

)
η3ηVOA3 âLO(t) +

√(1
2 − ∆

)
η3ηVOA3 v̂s(t)

+ i
√

η3(1 − ηVOA3) v̂VOA3(t) + i
√

1 − η3 v̂3(t)

d̂4(t) =
√(1

2 − ∆
)

η4ηVOA4 âLO(t) + i

√(1
2 + ∆

)
η4ηVOA4 v̂s(t)

+ i
√

η4(1 − ηVOA4) v̂VOA4(t) + i
√

1 − η4 v̂4(t),

(3.8)

and v̂VOA3,4(t) are the vacuum fields arising from each VOA [59].
Finally, the photocurrents yielded in each PD are subtracted so that, in a balanced detection,

only the LO shot noise remains. The photocurrent difference operator, îH, is thus given by:

îH = î3 − î4 = q
[
d̂†

3(t)d̂3(t) − d̂†
4(t)d̂4(t)

]
. (3.9)

As described in chapter 2, a strong coherent laser signal operating above the threshold level can
be described by a continuous-mode coherent state with amplitude:

αLO(t) = α(t)ei(ωLOt+θ(t)) =
√

F + ∆flo(t)ei(ωLOt+θ(t)), (3.10)

where α(t) is the time-dependent photon flux, ωLO the frequency and θ(t) the initial phase of the
laser, F the time-independent mean photon flux and ∆flo(t) denotes the laser intensity fluctuations
such that ⟨∆flo(t)⟩ = 0 [59]. The time-dependence of the initial phase generally implies the
existence of phase noise, but in this analysis, no additional noise contribution will be considered.
This consideration remains valid as long as no additional phase shift, ∆ϕ, is introduced between
the output beams of the BS. Here, identical optical path lengths are considered for both output
arms, such that ∆ϕ = 0, and this contribution is thus safely disregarded [57].

We shall consider, as a preliminary approach, the theoretical scenario of a perfectly balanced
homodyne detection where η3 = η4 = ηVOA3 = ηVOA4 = 1, and ∆ = 0. Here, no attenuation of
the optical signal is imposed by the VOAs, and each PD acts as an ideal device. Following the
previous definitions, and abiding by the formalism in chapter 2:

⟨d̂†
3,4(t)d̂3,4(t)⟩ = ⟨1

2
[
â†

LO(t)âLO(t) ∓ iâ†
LO(t)v̂s(t) ± iv̂†

s(t)âLO(t) + v̂s(t)†v̂s(t)
]
⟩, (3.11)

yielding ⟨d̂†
3,4(t)d̂3,4(t)⟩ = ⟨ 1

2 |αLO(t)|2⟩. Given that the phase difference between the LO and the
vacuum field is arbitrary [15]:

⟨̂iH(t)⟩ = q⟨ i

2

[
v̂†

s(t)âLO(t) − â†
LO(t)v̂s(t)

]
⟩,

= q
√

F ⟨ i

2

[
v̂†

s(t) − v̂s(t)
]
⟩ = q

√
F ⟨Ŷvac⟩ = 0,

(3.12)
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where Ŷvac represents the mean quadrature field of the vacuum state at the BS input, v̂s(t). This
yields a null value in accordance with the properties established by (2.22). Thus it is verified that
under ideal conditions the balanced homodyne detection scheme probes the quadrature amplitude
of the vacuum field, as revealed by the LO shot noise level.

A complete analysis must, however, consider the presence of excess noise under non-ideal
conditions. The output signal is finally amplified by the Transimpedance Amplifier (TIA) and will
always contain at least electronic noise, which is independent of the impinging optical power. The
resultant output voltage, v̂H(t) is consequently given by the convolution between the detector’s
impulse response function, h(t), and the sum of all amplified electric currents:

v̂H(t) = GTIA
[̂
ie(t) + îH(t)

]
⊛ h(t), (3.13)

where GTIA is the TIA gain, and îe is the amplifier electronic noise [64]. Here, h(t), implies addi-
tional assumptions, since that, to obtain a complete description, the detector’s impulse response
function should simultaneously consider the time response of the TIA and the impulse response
of each PD, h1,2(t), which are not necessarily equal. To simplify the analysis, it was considered
that h(t) can mainly be characterized by the former contribution, since the PDs typically present
a much higher bandwidth than the amplifier. Consequently, an equal ideal response was assumed
for both photodiodes, such that h1(t) = h2(t) = δ(t). Under these approximations, the description
in (3.13) remains valid, and the impulse response of the PD can be approximated to a Butterworth
filter, whose frequency response is:

|H(ω)|2 = 1
1 +

(
ω

2π∆f

)2n , (3.14)

where n is the filter-order, and ∆f is the detector’s bandwidth. As n → ∞ it behaves as an ideal
low-pass filter, removing all frequencies above the noise bandwidth [57]. Moreover, it is assumed
to be normalized in the time-domain such that

∫ +∞
−∞ h(t) dt = 1.

In this framework, it shall be considered that the electronic noise mainly arises from the
random movements of charge carriers [65]. Consequently, similarly to the intensity fluctuations,
the electrical noise is moduled as white noise with a constant power spectral density level over the
detector bandwidth. Hence, through the Wiener-Khintchine theorem [65]:

⟨̂ie(t1)̂ie(t2)⟩ = 2kBT

R
δ(t1 − t2), (3.15)

where R is the load resistance of the TIA. The electronic noise is thus considered a process with a
null mean, ⟨̂ie⟩ = 0, whose variance level only depends on the temperature of the optical system
and the design of the detector. Similarly, for a theoretical perfect PD with unitary quantum
efficiency [65, 66]:

⟨∆flo(t1)∆flo(t2)⟩ = RINF 2δ(t1 − t2), (3.16)
where RIN represents the average Relative Intensity Noise (RIN) over the bandwidth of the de-
tector. Finally, considering a non-ideal detection scheme, (3.11) can be rewritten as:

⟨d̂†
3,4(t)d̂3,4(t)⟩ =

(1
2 ± ∆

)
η3,4ηVOA3,4⟨â†

LO(t)âLO(t)⟩ =
(1

2 ± ∆
)

η3,4ηVOA3,4 F. (3.17)

And since the impulse response is normalized, the expected output voltage yields:

⟨v̂H(t)⟩ = qGTIAγ′F, (3.18)

where:
γ′ =

(1
2 + ∆

)
η3ηVOA3 −

(1
2 − ∆

)
η4ηVOA4 . (3.19)

As expected, fluctuations common to both PDs are cancelled, and ⟨v̂H(t)⟩ = 0 in a balanced
homodyne scheme. The voltage variance, σ2

H(t), can be obtained from the autocovariance function,
K(τ), evaluated at τ = 0 [65]. For an ergodic stochastic process [65]:

K(τ) = ⟨v̂H(t)v̂H(t + τ)⟩ − ⟨v̂H(t)⟩⟨v̂H(t + τ)⟩, (3.20)
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where:

⟨v̂H(t)v̂H(t + τ)⟩ = G2
TIA

∫ +∞

−∞
dτ ′

∫ +∞

−∞
dτ ′′

[
⟨̂ie(τ ′)̂ie(τ ′′)⟩

+ ⟨̂iH(τ ′)̂iH(τ ′′)⟩
]
h(t − τ ′)h(t + τ − τ ′′),

(3.21)

and:

⟨̂iH(τ ′)̂iH(τ ′′)⟩ = q2⟨
[
d̂†

3(τ ′)d̂3(τ ′) − d̂†
4(τ ′)d̂4(τ ′)

][
d̂†

3(τ ′′)d̂3(τ ′′) − d̂†
4(τ ′′)d̂4(τ ′′)

]
⟩. (3.22)

This expression is subsequently expanded using the formalism in chapter 2:

⟨d̂†
3,4(τ ′)d̂3,4(τ ′)d̂†

3,4(τ ′′)d̂3,4(τ ′′)⟩ = ⟨âLO(τ ′)†âLO(τ ′′)†âLO(τ ′)âLO(τ ′′)⟩
[
η3,4ηVOA3,4

(1
2 ± ∆

)]2

+ δ(τ ′ − τ ′′)⟨âLO(τ ′)†âLO(τ ′′)⟩
[[

η3,4ηVOA3,4

(1
2 ± ∆

)]2
+ (η3,4ηVOA3,4)2

(1
2 + ∆

)(1
2 − ∆

)
+ η2

3,4ηVOA3,4(1 − ηVOA3,4)
(1

2 ± ∆
)

+ η3,4(1 − η3,4)ηVOA3,4

(1
2 ± ∆

)]
.

(3.23)
Moreover:

⟨d̂†
3,4(τ ′)d̂3,4(τ ′)d̂†

4,3(τ ′′)d̂4,3(τ ′′)⟩ = ⟨âLO(τ ′)†âLO(τ ′′)†âLO(τ ′)âLO(τ ′′)⟩[
η3η4ηVOA3ηVOA4

(1
2 + ∆

)(1
2 − ∆

)]
,

(3.24)

where:

⟨âLO(τ ′)âLO(τ ′′)⟩ ≈ Fei(ω(τ ′′−τ ′)+ϕ(τ ′′)−ϕ(τ ′)), (3.25)

⟨âLO(τ ′)†âLO(τ ′′)†âLO(τ ′)âLO(τ ′′)⟩ = F 2 + RINF 2δ(τ ′ − τ ′′). (3.26)
With these considerations, it is finally possible to rewrite the autocovariance function as:

K(τ) =
[
2G2

TIA
kBT

R
+ q2G2

TIAβ′F + q2G2
TIARINγ′2F 2

] ∫ +∞

−∞
dτ ′ h(t − τ ′)h(t − τ ′ + τ), (3.27)

where:
β′ =

(1
2 + ∆

)
η3ηVOA3 +

(1
2 − ∆

)
η4ηVOA4 . (3.28)

Although the solution of the cross-correlation present in (3.27) is non-trivial in the time-domain,
it can be simplified by considering the convolution theorem [65]:

F{K(τ)} =
[
2G2

TIA
kBT

R
+ q2G2

TIAβ′F + q2G2
TIARINγ′2F 2

]
F{h(τ)}F{h(τ)},

=
[
2G2

TIA
kBT

R
+ q2G2

TIAβ′F + q2G2
TIARINγ′2F 2

]
|H(f)|2,

(3.29)

where F represents the Fourier transform, and F is its complex conjugate. Finally, the voltage
variance yields:

σ2
H(t = 0) = 2π

3 G2
TIA∆f

[
2kBT

R︸ ︷︷ ︸
Electronic Noise

+
Shot Noise︷ ︸︸ ︷

q2β′F + q2RINγ′2F 2︸ ︷︷ ︸
RIN Noise

]
, (3.30)

for a Butterworth’s filter of order n = 3. It is thus possible to distinguish the three main sources
of noise in a homodyne detection scheme. Besides the electronic noise, the ideal operation of
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the detector is deviated by the RIN from the LO, which follows a quadratic dependence with its
photon flux. It appears due to imperfections in the measurement scheme such as an unbalanced
BS, different PD efficiencies, or different signal attenuations in the optical path, which lead to an
inability to cancel the fluctuations of the LO. This contrasts with the linear dependence of the
shot noise contributions [66]. Obviously, all excess noise should be minimized by assuring a good
balancing condition and guaranteeing a significant shot noise preponderance above the electronic
noise level. However, the RIN contribution can quickly become dominant, and thus a careful char-
acterization of the detector must be made [57]. During the QRNG operation, these contributions
are typically assumed to remain constant, but the classical noise levels can be periodically assessed
or continuously monitored through on-off keying the LO [56].

The equation (3.30) generally and adequately characterizes the output signal of the detector.
However, although not considered, other factors such as a non-linear response, or an imperfect
Common-mode Rejection Ratio (CMRR), can also cause deviations in the detector’s response. An
example of such an additional noise source comes from the ADC discretization of the continuous
outcomes, vH(t), into a discrete set. The description of the physical layer is thus incomplete without
considering a model of the ADC. As represented in Fig. 3.4, a uniform mid-tread quantizer with
resolution of n bits and bin width of δd = R

2n−1 was considered. Here, R defines the sampling
range, which is performed over [−R + δd

2 , R − 3δd

2 ] [48]. In this case, the discretized outcomes,
mi(vH(t)):

mi[vH(t)] =


−R, vH(t) < −R + δd

2
δd⌊ vH

δd
+ 1

2 ⌋, −R + δd

2 ≤ vH(t) < R − 3δd

2
R − δd, vH(t) ≥ R − 3δd

2

, (3.31)

which, as will be developed in section 3.2.2, highlights the relevance of choosing an acquisition
range that does not misrepresent the output distribution. The quantization error is thus defined as
e(t) = mi[vH(t)] − vH(t). Assuming that the measured signal amplitude is significantly larger than
the bin width of the ADC, e(t) can be considered uniformly distributed between [− δd

2 , δd

2 ]. Under
these assumptions, the quantization noise has null mean, and its probability density function is
P (e) = 1

δd
. Moreover, it is uncorrelated with the sampled continuous signal. Consequently, its

variance, σ2
e is calculated as [67]:

σ2
e =

∫ δd
2

− δd
2

e2P (e) de =
∫ δd

2

− δd
2

e2 1
δd

de = e3

3δd

∣∣∣ δd
2

− δd
2

= δ2
d

12 . (3.32)
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Fig. 3.4: Discretization model of a mid-tread n-bit ADC with bin width δd and acquisition range
[ − R + δd

2 , R − 3δd

2 ]. A non-null mean is modeled by a second reference frame r centered at the
offset ∆d such that the acquisition range is [ − R − ∆d + δd

2 , R − ∆d − 3δd

2 ]. Adapted from [48].

Assuming the independence of all noise sources, the total variance is given by the sum of
these contributions. Hence, it is finally possible to rewrite the equations (3.18) and (3.30), after
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ADC discretization, in function of the wavelength-dependent responsivity, R(λ) = qλ
hc η(λ), and

the optical power of the LO, PLO. Assuming that η3 = η4 = η:{
⟨v̂H(t)⟩ = GTIAγ

σ2
H(t = 0) = 2π

3 G2
TIA∆f

[
2 kBT

R + qβ + qRINγ2
]

+ δ2
d

12
, (3.33)

where γ and β are, respectively, the redefined γ′ and β′ quantities, such that:β = R(λ)PLO

[( 1
2 + ∆

)
ηVOA3 +

( 1
2 − ∆

)
ηVOA4

]
γ = R(λ)PLO

[( 1
2 + ∆

)
ηVOA3 −

( 1
2 − ∆

)
ηVOA4

] . (3.34)

As described in chapter 1, the QRNG approach here illustrated presents numerous advantages.
Besides allowing high-speed generation rates with widely available products, it relies on an easily
obtainable quantum optical state. Moreover, a balanced homodyne detection scheme rejects most
of the excess LO noise, which provides resilience against external perturbations.

3.2 Entropy estimation
A secure implementation will require the application of a postprocessing layer consisting of an

entropy estimation module followed by a randomness extractor. As required by NIST recommen-
dations [47], a credible justification for the expected entropy estimation should be provided, and
the prediction model must be supported by thorough characterization of the randomness source.
Here, once again, vacuum-based QRNGs present an advantage since, as shown in the previous sec-
tion, the ES is clearly defined even when accounting for additional classical noise. In this scheme,
two distinct real-time implementations of the models explored in [45] and [48] were considered and
are respectively presented in the following sections. In both cases, a device-dependent solution is
considered, which implies the trustworthiness of all experimental components. As such, only the
presence of an eavesdropper is accounted for, but, as previously described, the classical noise level
can still be periodically assessed to ensure that it does not increase.

3.2.1 Shannon entropy
Considering the additive white noise Gaussian channel discussed in chapter 2, the measured

distribution can be written as M = Q + E, where Q is the quantum noise distribution, and
E the electronic noise. After discretization by the ADC into 2n bins, the amount of random-
ness originating from the ES gathered from measuring M can thus be quantified by the mutual
information [15]:

I(M : Q) = H(M) − H(M |Q) = −
2n∑
i

PM (mi) log2(PM (mi)) −
∫

dq PQ(q)H(M |Q = q), (3.35)

since Q is a continuous distribution. With increasing binning resolution, this value approaches
the maximum channel capacity determined in (2.47):

I(M : Q)max = 1
2 log2

(
1 +

σ2
Q

σ2
E

)
, (3.36)

which implies that the amount of randomness extractable from each sample is physically limited
by the QCNR observed at the physical layer [15].

For the uniform ADC model considered, M yields a discretized normal distribution, and thus
biased raw data is obtained from the sampling process. To maximize the Shannon entropy of the
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Fig. 3.5: Partitioning into equiprobable bins of the homodyne noise distribution M for a sequence
length of 2 bits. This binning is posteriorly imposed upon the electronic noise distribution E in
order to calculate the probability of an outcome e falling in each bin. Furthermore, the conditional
probability distribution of P (M |Q) for an arbitrary quantum noise outcome q is represented.

measured data, the measurements are projected into a uniform distribution by partitioning them
into a set of 2n equiprobable bins [45], whose edges are calculated as:

xp = µM + σM

√
2
[

erf−1 (
2FM (xp) − 1

)]
, 0 ≤ p ≤ 2n, (3.37)

where xp is the p-th edge, erf−1 is the inverse error function, and FM (x) is the probability of a
measurement not being greater than x. In these conditions, a reflected binary sequence of length
n can posteriorly be assigned to all outcomes that fall in the same bin, yielding unbiased n-bit
random sequences, as represented in Fig. 3.5 for a length of 2 bits. The total entropy of M is
now only dependent on the amount of binning, such that H(M) = n. As can be seen in the same
figure, the conditional probability distribution P (M |Q) corresponds to the probability density
function of the electronic noise shifted by the outcome q.1 Since the equiprobable partitioning
yields a higher concentration of bins near m = 0, H(M |Q) as given by (2.41), is intuitively higher
at q = 0, which yields the probability density function of the electronic noise. A lower bound for
the mutual information can consequently be established by only considering this case [15]:

I(M : Q) ≥ H(M) − H(M |q = 0) = H(M) − H(E). (3.38)

Consequently, the minimum fraction of entropy that can be extracted from each sample without
compromising the implementation is simply given by the subtraction between the entropy of the
binned signal and the electronic noise entropy. An estimation of H(E) can similarly be obtained
by imposing the binning calculated on its measurements H(E) = −

∑2n

i=1 pe
i log2 pe

i , where pe
i is

the probability of finding an electronic noise measurement in each bin [45]. Finally, although
the electronic noise constitutes the major contribution to the fraction of entropy originating from
classical effects, on a practical generation scheme, an additional component will be introduced by
excess LO noise due to an unbalanced detection, Hunbal, such that Hclass = H(E) + Hunbal, and:

I(M : Q) ≥ n − Hclass. (3.39)

Unfortunately, it is not easy to quantify these contributions and, consequently, only the electronic
noise is typically considered since it can simply be measured by removing the LO.

This entropy estimation method is exemplified in Fig. 3.6 for a QCNR of 20 dB. As can be
seen, the effective entropy that can be extracted from each sample asymptotically approaches a
maximum value, which is significantly lower than the theoretical maximum I(M : Q)max. As seen
in Fig. 3.6a, this limit results from a similar increase rate on the entropy of the electronic noise
and the measured distribution. After a certain amount of binning, the higher concentration of
bins near m = 0 leads to the electronic noise being partitioned at the same rate of the measured

1This result will be demonstrated in section 3.2.2.
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distribution, and thus no additional effective entropy can be extracted. Consequently, it is nec-
essary to determine the binning that maximizes the effective bits extracted. In this algorithm,
the distribution is partitioned for increasing sequence lengths until gain in the extractable entropy
is no longer observed. This is defined by the stopping criteria of 0.1 bit. This hard limit on the
extractable randomness ultimately restricts the generation rate of the QRNG regardless of how
the distribution is binned. Moreover, as discussed, randomness is not adequately estimated by the
Shannon entropy, which challenges the reliability of this protocol.
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Fig. 3.6: (a) Entropy of the measured distribution H(M) and the classical noise H(E) under
multiple partitioning lengths. (b) Respective lower bound for the mutual information I(M |Q).
Dashed line represents the theoretical maximum for the mutual information. Adapted from [15].

3.2.2 Worst-case conditional min-entropy
A more acceptable entropy estimation can be obtained by considering the discretization im-

posed by the ADC instead of an arbitrary binning, and quantifying the maximum probability of an
eavesdropper guessing an outcome of the generator, given knowledge of all classical contributions.
With this objective, the ADC model described in section 3.1 is considered, and a non-null mean of
the measured distribution M is modeled by a reference frame r centered at the offset ∆d. Under
this framework, the probability distribution of the discretized signal [48]:

PM (mi) =


∫ −R−∆d+ δd

2
−∞ pM (r) dr, i = −2n−1∫ ri−∆d+ δd

2

ri−∆d− δd
2

pM (r) dr, −2n−1 < i < 2n−1 − 1∫ ∞
R−∆d− 3δd

2
pM (r) dr, i = 2n−1 − 1

, (3.40)

where pM (m) follows a Gaussian distribution centered at the origin. Here, the ADC resolution
and acquisition range present a relevant consideration. For a given resolution, the acquisition
range must be properly chosen as to not risk endangering the security of the implementation.
For instance, a wide acquisition range will lead to the concentration of all samples on a small
number of quantization levels. Thus we misrepresent the Gaussian distribution and necessarily
limit the randomness that can be extracted. The necessity to lower the entropy estimation in this
situation is justified by the consideration that, with increasing acquisition ranges, the homodyne
and electronic noise distributions will be progressively indistinguishable, since measurements are
mapped to the same limited number of bins. In an extreme case, guessing the yielded outcome
will become trivial to an adversary, as the limited number of unique values greatly increases
the probability of finding a measurement in each particular bin. On the other hand, a narrow
acquisition range increases the probability of a measurement falling outside the considered interval
and, consequently, leads to saturation of the first and last bins. In this case, the probability of
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these particular results increases, which could be used by an observant adversary to increase its
chances of predicting the QRNG outcome [48, 57].

The conditional probability density function pM |E(m|e) can be calculated through:

pM |E(m|e) = pM,E(m, e)
pE(e) =

(
σE

√
2π

2πσM σE

√
1 − ρ2

)
e

− 1
2(1−ρ2)

[(
m

σM

)2
−2ρ

(
me

σM σE

)
+

(
e

σE

)2
]

+ 1
2

(
e

σE

)2

,

(3.41)
where ρ is the correlation coefficient between M and E:

ρ = cov(M, E)
σM σE

= cov(Q + E, E)
σM σE

= σE

σM
, (3.42)

since Q and E are statistically independent. Consequently [48]:

pM |E(m|e) = 1√
2π(σ2

M − σ2
E)

e
− (m−e)2

2(σ2
M

−σ2
E

) = 1√
2π(σ2

Q)
e

− 1
2 ( m−e

σQ
)2

, (3.43)

and its discretized conditional probability distribution P (M |E) follows (3.40). This expresses the
probability of an eavesdropper with full access to the classical fluctuations guessing a particular
outcome of M , and yields the probability density function of Q shifted by the electronic noise
outcome e [15]. A similar result ensues for P (M |Q), as shown in Fig. 3.5. An entropy estimation
can now be made considering the maximum probability of the discretized conditional distribution.
Following the definition of the worst-case min-entropy (2.45) and (3.40):

max
mi∈M

PM |E(mi|e) = max


1
2

{
1 − erf

( e+R+∆d− δd
2

σQ

√
2

)}
erf

(
δd

2σQ

√
2

)
1
2

{
1 + erf

( e−R+∆d+ 3δd
2

σQ

√
2

)} , (3.44)

where erf is the error function. The maximum probability of PM |E(mi|e) lies in either one of
the boundary bins or at the central value ri − e = 0, since this corresponds to the best guessing
strategy. In fact, if the classical noise outcome largely exceeds the ADC range, the outcome mi

has a high probability of being saturated at one of the edge bins. Thus guessing it becomes trivial
to the eavesdropper and no randomness can be obtained. Since a trusted device scenario is here
considered, a maximum excursion for the classical noise e ∈ [emin, emax] can be assumed from the
characterization of the implementation. If the interval is symmetric, the probability value of the
lower boundary is always inferior, and can consequently be dropped [48]:

Hmin(M |E) = − log2

[
max

{1
2

[
1 + erf

(emax − R + ∆d + 3δd

2
σQ

√
2

)]
, erf

( δd

2σQ

√
2

)}]
,

= − log2

[
max

{
c1, c2

}]
.

(3.45)

In this implementation, a maximum excursion of 5σE was always assumed for the classical
noise. This is expected to fail only once in every 1 744 278 measurements. As can be seen in
Fig. 3.7, the min-entropy is now dependent not only on the QCNR but also on the sampling
range and resolution of the ADC. As such, the performance of the implementation is no longer
limited by the QCNR, and a higher extraction ratio can be obtained by simply increasing the
ADC resolution. Conversely, a less powerful digitizer is necessary for high QCNRs. Surprisingly,
randomness can be extracted even for negative QCNRs, when the classical fluctuations overcome
the quantum noise. Nonetheless, for an unoptimized R, there is a threshold QCNR at which
the distribution saturates the boundary bins, and thus the entropy estimation quickly diminishes.
For higher resolutions, the larger amount of bins imposes a lower threshold as the probability of
guessing the most likely value will be lower. This point, where c1 = c2, can be used to reach the
optimal min-entropy value in ADCs with variable sampling ranges [48].
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Fig. 3.7: Worst-case conditional min-entropy as a function of the QCNR for an 8-bit, 12-bit, and
16-bit ADC. An unoptimized R results on a threshold at which the entropy estimation quickly
diminishes. Simulations taken for a maximum excursion of 5σE , ∆d = 0, R = 20, and σE = 1.

3.3 Randomness extraction
Two probability distributions X and Y defined in the same domain X are said to be ϵ-close if

their statistical difference is bound [68]:

d(X, Y ) = max
x∈X

|PX(x) − PY (x)| ≤ ϵ, (3.46)

where ϵ is the security parameter. A (n, m, k, ϵ) randomness extractor is a mathematical function
that converts n bits from a (n, k)-source into m bits with a distribution ϵ-close to a uniform distri-
bution Um over {0, 1}m, which is the ideal output of a RNG [68, 29]. Here, a random distribution
is considered a (n, k) source if its min-entropy Hmin ≥ k. This value defines the maximum number
of uniformly distributed bits that can be extracted from the original n-bit sequence. Nonethe-
less, randomness can only be extracted if the input sequence already possesses some extractable
entropy. Consequently, m ≤ k must necessarily hold to obtain a uniform sequence. The specific
extractor implementation chosen must always consider the algorithmic speed, as to not compro-
mise the final throughput of the generator, and preserve as many bits as allowed by the entropy
estimated in section 3.2. Here, two distinct algorithms based on different principles were explored,
although only the Toeplitz extractor was chosen in the final implementation.

3.3.1 SHA-512 hashing
Deterministic randomness extractors are defined as a function Ext : {0, 1}n → {0, 1}m, and

are very attractive for forgoing additional randomness sources, as only the input sequence is
required. Unfortunately, no universal deterministic extractor exists for unpredictable sources [10,
68]. Nonetheless, several methods have been proposed, such as XORing parallel randomness
sources or different subsets of random sequences, taking the least significant bit, applying the
von Neumann de-biasing algorithm, or feeding a linear feedback shift register [15, 29]. These
methods are frequently uncritically accepted as they require few resources, forgoing execution on
a computer or micro-controller, and can produce sequences that pass numerous statistical tests.
Nevertheless, the distilled randomness is not information-theoretically secure, and their application
may actually introduce unexpected correlations [69]. Alternatively, one-way cryptographic hash
functions project their input sequence to a set of fixed length m such that the input values can
not be determined solely from the output sequence. Consequently, their output is as close to
uniformly distributed as possible, minimizing the probability of two different inputs resulting in
the same hash value. Nevertheless, collisions still occur, and blindly applying a hash function does
not suffice since the size of the input sequence n must be chosen so that it has enough entropy.
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In this implementation, a randomness extraction algorithm was developed by hashing subsets
of the QRNG output using the SHA-512 function, which outputs sequences of 512 bits [63]. In
this case, n must clearly be higher than 512 bits to guarantee a uniformly distributed output. In
fact, the input sequence length is chosen as [57]:

n = ⌈512 Ht
Hq

⌉, (3.47)

where Hq is the estimated entropy due to quantum fluctuations and Ht the total entropy of the raw
output. This method has the advantage of relying on well-tested and fast hashing implementations,
such as the one here chosen [70]. The implemented algorithm can process the raw output at
approximately 8.69 Mbps on a Intel i7-9700K CPU. Unfortunately, nonuniversal hashing still relies
on computational assumptions and, ultimately, does not provide information-theoretically provable
RNs [29]. Even worse, biases of the hashing function are inherited by the output RNs even if the
input is perfectly random [69].

3.3.2 Toeplitz-hashing
A (n, m, d, k, ϵ) seeded extractor is defined as Ext : {0, 1}n × {0, 1}d → {0, 1}m. It accepts a n-

bit input sequence, and a perfectly random d-bit seed to output a m-bit sequence ϵ-close to Um. In
particular, an extractor is said to be strong if concatenating the output Ext(X, Ud) with the seed
Ud yields a distribution ϵ-close to Um+d, and thus maintains the randomness of the initial seed [68].
Consequently, the QRNG output can be subdivided into blocks that are subsequently hashed with
the same seed without compromising the security of the implementation. These constructions are
especially attractive for providing some information-theoretically provable randomness extractors
secure against quantum adversaries such as the Trevisan extractor. Unfortunately, this specific
implementation is particularly slow [29]. An alternative method for constructing seeded extractors
employs two-universal hashing functions, which are randomly chosen from a universal hashing
family H = {h : S → T }, where the probability Ph∈H{h(x) = h(y)} ≤ 1

|T | , ∀x ̸= y ∈ S [29].
One particularly promising implementation employs universal hashing by constructing a n × m

Toeplitz matrix and obtaining m random bits by multiplication with the raw data vector. Since a
Toeplitz matrix is solely defined by the first column and the first row, a seed of length m + n − 1 is
required. Consequently, a seed longer than the output vector is necessary, and no net randomness
can be extracted. Fortunately, a Toeplitz extractor constitutes a strong extractor [48], and hence
the initial seed can be recycled in each subsequent application. If the good statistical properties
of the initial seed are assured, the uniformity of the output is information-theoretically guaran-
teed by the leftover hash lemma. This theorem states that given a two-universal hashing family
H = {h : {0, 1}n → {0, 1}m}, and a probability distribution X ∈ {0, 1}n with Hmin(X) ≥ k, if [68]:

m = k − 2 log2
(1

ϵ

)
, (3.48)

then for x ∈ X, h ∈ H, and ϵ > 0, Ext(x, h) := h(x) is a (k, ϵ) strong extractor. In other words,
the statistical distance d

((
Ext(X, Ud), Ud)

)
,
(
Ud, Um

))
≤ ϵ [68].

In the real-time implementation of this algorithm, the raw bits were subdivided into sequences
of 212 bits (n = 4096) and the output m was chosen so that [57]:

m = ⌊212p
Hq
Ht

⌋, (3.49)

where p was arbitrarily chosen at 90% to account for any potential entropy overestimation. Note
that this method does not fix a specific security parameter and thus a careful analysis of the matrix
dimensions should be made. Furthermore, estimations obtained through the Shannon entropy do
not satisfy (3.48), which can decrease the security level of this particular random extractor. In
general, the length of the output sequence is given by [29]:

m = n
Hq

Ht
− 2 log2

(1
ϵ

)
, (3.50)
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where Hq

Ht
expresses the fraction of entropy from quantum contributions on a 1-bit sequence. In

the following analysis, numbers from a Mersenne Twister PRNG were used to seed the Toeplitz
matrices.

3.3.2.1 Length-compatible Toeplitz-hashing

With the Toeplitz-extractor described, raw bits can be processed at approximately 3.68 Mbps
for an input length of 32 Mbits, which severely limits the output rate of the QRNG. Further-
more, the algorithmic complexity of the Toeplitz-vector multiplication is O(n2), and thus the
postprocessing rate quickly decreases when hashing sequences of greater length. To improve the
speed of the implementation, a fast multiplication algorithm for Toeplitz matrices that reduces
the complexity to O(nlog(n)) was implemented [71]. This method explores a well-known method
for multiplication of n × n circulant matrices, Cn, which are a particular kind of Toeplitz matrices
where each row is shifted by only one entry. These can be solely characterized by the first column
a⃗n, and have the useful property of being diagonalized by the discrete Fourier transform matrix Fn

such that Cn = F −1
n diag(Fna⃗n)Fn, where diag(· · · ) represents the diagonal matrix. Consequently,

its multiplication with a given vector x⃗ yields [72]:

Cnx⃗ = F−1{F (⃗an) ⊙ F(x⃗n)} = F−1{v⃗ ⊙ y⃗}, (3.51)

where ⊙ represents the Hadamard product and F−1 the inverse Fourier transform. An arbitrary
n × m Toeplitz matrix, Tn×m, can be embedded into a circulant matrix of size n + m simply
by concatenating extra elements. In fact, if a⃗n = [a0, · · · , an−1] is its first column and b⃗m =
[a0, · · · , a−(m−1)] is the first row, then the Toeplitz matrix can be contained in a circulant described
by [72]:

a⃗n+m = [a0, a1, · · · , an−1, a0, a−(m−1), · · · , a−1]. (3.52)

As such, it is possible to transform the Toeplitz hashing into a circulant matrix multiplication by
a vector r⃗ with the raw binary output by following the steps:

1. Construct a⃗n+m from the elements of the Toeplitz matrix, as described by (3.52).

2. Append 0⃗ of size m to r⃗ and compute y⃗ = F{[r⃗, 0⃗]}.

3. Compute u⃗ = F−1{F (⃗an+m) ⊙ y⃗}.

4. Extract the first m entries of u⃗, which are the solution for Tn×mr⃗.

The length-compatible algorithm described was thus implemented on a GeForce RTX 3070
GPU. To avoid exhausting the memory of the GPU, the multiplication problem is subdivided into
smaller matrices with 4 Mbits input blocks, which are serially processed. Since the computational
precision required to retrieve accurate results from the Fourier transform increases with the input
length, the blocks are further subdivided into parallelized smaller batches to allow the use of
single-precision calculations, which vastly increases the postprocessing speed [71]. In Table 3.1,
these results are compared with a non-parallelized implementation on an Intel i9-10900k CPU for
different batch sizes. Batches of 2 Mbits show better performance and are thus chosen in the final
implementation, yielding a mean postprocessing rate of 143.29 Mbps.

Table 3.1: Speed (Mbps) of the hashing algorithm for different input lengths and batch sizes.

CPU Implementation GPU Implementation Gain (%)
Input length

(Mbits) 1 Mbit Batch 2 Mbit Batch 1 Mbit Batch 2 Mbit Batch 1 Mbit Batch 2 Mbit Batch

4 68.67 74.28 125.12 143.29 82.13 92.91
8 72.33 89.19 126.48 143.18 74.87 60.53
16 58.73 83.42 111.52 137.35 89.89 64.65
32 38.28 62.59 83.01 116.21 116.85 85.67

28



Chapter 4

Implementation of a Real-time
Vacuum-based QRNG

In this chapter, a dedicated real-time implementation of the vacuum-based generation scheme
previously described in chapter 3 is explored, and its main experimental results are presented. In
section 4.1, the physical layer is described and characterized. In 4.1.1, the variance characterization
curve of the homodyne detector is taken to assess the conditions where randomness extraction is
feasible. Moreover, a study of the output homodyne noise was posteriorly made in section 4.1.2
to verify the preponderance of quantum fluctuations. The analysis then moves to comparatively
characterize the performance of the entropy estimation models employed. In section 4.2, the results
under a Shannon entropy model are presented, and in 4.2.1 a framework to estimate the excess
entropy contribution from an unbalanced detection under this method is proposed. Posteriorly,
results pretending to the final implementation are shown in section 4.2.2. Finally, the quality of
extracted randomness is assessed, and the implementation validated, by applying a set of statistical
tests in section 4.3.

4.1 Experimental Setup
A diagram of the experimental setup used during the characterization of the QRNG scheme is

presented in Fig. 4.1.
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Fig. 4.1: Experimental setup employed for the characterization of the QRNG implementation. A
laser is split by a BS with one of its input ports blocked (BS2) and the subsequent photocurrents
are subtracted. An 80/20 BS (BS1) and an Optical Power Meter (OPM) allow monitoring of the
input power which, such as the balancing condition, is controlled by a VOA. The resulting signal
is processed in real-time by a Matlab application to obtain a string of unbiased random bits.

In this scheme, a continuous-wave laser (Yienista OSICS TLS/C) tuned at 1550.92 nm is em-
ployed as the LO, and a VOA is used to accurately vary its output power. Posteriorly, a 80/20
BS (BS1) and a OPM were introduced to monitor the input power at a 50/50 BS (BS2). Here,
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another VOA was used to allow variation of the balancing condition of the detection scheme. The
resultant output beams are detected by an AC-coupled balanced receiver (WL-BPD1GA) with a
transimpedance gain of 3500 V/W and an output bandwidth from 300 kHz to 1 GHz. This sup-
presses the low-frequency noise contributions that arise from electric hum and flicker noise in the
circuit, which would otherwise need to be removed by introducing a DC block or by digitally se-
lecting a flat spectral band, as will be described in chapter 5. The subsequent response is sampled
at 983.04 MSa/s by a 16-bit ADC module (Texas Instruments ADS54J60EVM) with a ±0.95 V
acquisition range, which yields a quantization noise variance, δ2

d

12 , of 7 × 10−5 mV2. As specified by
the Nyquist sampling theorem, the signal cannot be accurately recovered when its bandwidth is
larger than half the sampling frequency, fs. Here, however, the aliasing effects are advantageous.
Since only white noise is measured, they lead to a flatter spectral band and higher entropy. In fact,
perfect reconstruction of the homodyne signal is not the objective of a RNG. Consequently, to
avoid temporal correlations between measurements, the sampling rate must be less than twice the
detector’s bandwidth, or, in this case, 2 GSa/s. Finally, the raw measurements are continuously
postprocessed in real-time by a Matlab graphical interface that implements the entropy estimation
models and randomness extractors described in chapter 3.

Since a device-dependent implementation was considered, a careful analysis of all the optical
components is required to assure the viability of the implementation. Consequently, the charac-
terization curve of each BS was traced to assess their balancing condition and evaluate the power
relations between their output arms. For the BS1, a linearisation with a coefficient r2 = 0.9999
yields an asymmetry of (79.22±0.04) %, and the power at the 80% output, P80%, can be estimated
from the value measured at the OPM through a multiplication by (3.812 ± 0.009) . Similarly, the
50/50 BS was found to be subjected to a maximum asymmetry of (50.78 ± 0.05) %.

4.1.1 Characterization of the balanced detector

To guarantee that the LO output power is chosen so that quantum fluctuations dominate the
measured noise, the characterization curve of the WL-BPD1GA balanced detector was also traced.
As represented in Fig. 4.2a, the variance of the output signal was taken, for 2.5 M noise samples,
at different LO powers, which were set by varying the optical attenuation of the VOA. As explored
in section 3.1, the variance σ2 of the measurements taken follows a quadratic dependency with
the input power at BS2, PLO:

σ2 = aP 2
LO + bPLO + c, (4.1)

where a represents the LO excess noise, b the shot noise contribution, and c the electronic noise
floor. Here, a quadratic fit with r2 = 0.998 yields c = 1.24 × 10−6 V2, b = 2.81 × 10−6 V2/mW,
a = 6.15 × 10−8 V2/mW2. This clearly illustrates the good balancing condition of the homodyne
scheme, as the variance follows an almost linear relation with the LO power. In these conditions,
the increase in the signal’s variance can mainly be attributed to the preponderance of shot noise
and thus a higher QCNR can simply be obtained by increasing the impinging power. This max-
imizes the entropy obtained per sample and is thus the desirable operation region. Nonetheless,
care should be taken to not saturate the TIA. Moreover, for a higher impinging power, slight
asymmetries in the detection eventually result in the appearance of excess noise. However, this
detection scheme presents an extremely long linear stage, with contributions dominated by quan-
tum fluctuations in the region PLO < b

a ≈ 45.7 mW. Consequently, to experimentally verify this
quadratic power dependency, the characterization under a purposefully unbalanced condition is
represented in Fig. 4.2b. The quadratic fit with r2 = 0.989 now yields c = 1.30 × 10−6 V2,
b = 2.06 × 10−6 V2/mW, a = 3.32 × 10−7 V2/mW2, and presents predominance of shot noise
contributions for approximately PLO < 6.20 mW. Besides describing the homodyne noise, the
characterization curve allows to express the detector voltage response in shot-noise units by di-
viding the acquired signal, expressed in physical units (Volts), by a conversion factor, k:

k =
√

4bPLO. (4.2)
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Fig. 4.2: Characterization curve of the balanced detector for (a) the good balancing condition
determined by BS2 (50/50 ± 0.78%), and (b) under an intentionally unbalanced detection (1.3 dB
attenuation in one output arm). Each variance was evaluated over 2.5 M noise samples.

This allows conversion of variances in volts to shot-noise units by dividing them by k2. Here, k is
defined so that the measured quadrature variance of a vacuum state, in shot noise units, is equal
to 1

4 , in accordance with the theoretical values established in (2.22) [53].

4.1.2 Noise characterization
With the previous analysis supporting the detection scheme, the laser output power was set at

11 dBm, and the VOA was removed so that approximately 5.5 mW reach the input of the BS2. In
Fig. 4.3a, the spectral power density of the measured homodyne noise is represented. As can be
seen, the strong spectral contributions observed when only one of the photodiodes is illuminated
are effectively rejected in the subtraction signal with a CMRR up to 25 dB. At low frequencies,
the spectral band is defined by the high-pass filter imposed by the AC coupling of the detector and
the ADC board, which allows forgoing the introduction of additional filtering. Nonetheless, strong
contributions were observed at 245.76 MHz and 491.52 MHz. These, however, do not result from
any classical contributions, but are intrinsic to the ADC and remain even with an idle channel.
These spurs, located exactly at fs

4 and fs

2 , result from a mismatch in the DC offset of the four time-
interleaved cores employed by the ADS54J60 to reach the chosen sampling rate [73]. Akin to gain
mismatches, these non-idealities are corrected by a dedicated circuit, which estimates and holds
the internal DC offset after power up with no signal applied. This allows the complete removal
of these contributions, and the scheme thus yields the flat power density curve expected for a
viable QRNG. Unfortunately, variations in temperature will lead to an outdated estimation and
the reappearance of these spectral spurs. Consequently, they should be continuously monitored
and a new offset calibration made, if necessary. At room temperature, these variations proved to
be negligible, allowing the continuous operation of the QRNG for long time periods. Finally, the
spectral density of electronic noise was taken, confirming the preponderance of quantum noise.

In these conditions, an average variance of 1.64 × 10−5 V2 was observed over 1 × 109 samples.
As shown in Fig. 4.3b, the scheme presents high stability over long periods of time. This indicates
a stable balancing condition, and the absence of large fluctuations of the electronic noise floor over
a period of at least 24 h, which is essential to the reliability of the implementation. Moreover, all
the measured noise follows the expected null-mean Gaussian distribution, as shown in Fig. 4.4a.
In fact, negligible means of −0.0171 mV and −0.0140 mV were respectively calculated for the
homodyne noise and electronic noise distributions, both being smaller than the ADC bin width of
0.0290 mV. Here, once again, the high noise clearance obtained can be highlighted since a noise
floor of 1.04 × 10−6 V2 was observed. Neglecting any excess noise from the LO and considering
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Fig. 4.3: (a) Spectral power density taken for the homodyne noise (blue), electronic noise (or-
ange), and for a single-photodiode (black). Inset highlights low-frequency contributions. (b) Time
evolution of the noise variance. Each variance was evaluated over 503 × 103 samples.

the quantization noise, the variance of quantum contributions σ2
Q = σ2

M −σ2
E −2( δ2

d

12 ) yields 1.54×
10−5 V2, and a QCNR of approximately 11.7 dB was obtained. Moreover, the noise distribution
can be converted from physical units to the phase space by following (4.2). As represented in
Fig. 4.4b, the measured state closely follows the theoretical probability distribution curve for the
quadrature values of a vacuum state defined in (2.23). Nevertheless, a variance of σ2

M = 0.2644
was calculated, which is slightly larger than the expected value of 1

4 due to the presence of classical
noise [53].
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Fig. 4.4: (a) Time representation of the total (blue) and electronic (orange) signal for 10 M noise
samples. The electronic noise histogram is represented for 2.5 M samples. (b) Distribution of
the total noise represented in shot-noise units for 10 M samples. Solid line shows the expected
probability distribution for the quadrature of a vacuum-state.

In Fig 4.5a, a correlation analysis for 10 M points over a delay of 1×103 samples is represented.
This acts as a basic statistical validation since, for a sufficiently large sample size L, the normalized
autocorrelation coefficients of a white noise process are normally distributed around a null average
value with a standard deviation of 1√

L
[74]. In practice, the finite bandwidth of the signal and the

presence of classical noise impose some residual correlations. Here, a mean value of 9.96×10−4 was
observed, and the coefficients are largely well within the expected standard deviation of 3.16×10−4
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for truly random data of this sample size. Nonetheless, for delays up to 60 samples relatively high
correlations are observed, which could compromise the security of the QRNG. These can be largely
attributed to the non-ideal response of the TIA amplifier [75] and are effectively removed by the
randomness extraction. Regardless, the correlations observed are consistent with the assumption
of almost-uncorrelated samples and starkly contrast with the values observed for the electronic
noise distribution shown in Fig. 4.5b. Here, a mean value of 1 × 103 is seen, and the coefficients
largely fall outside the theoretically expected interval. This clearly illustrates the unreliability
of electronic noise and the necessity to carefully quantify the entropy available for randomness
generation.
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Fig. 4.5: Absolute autocorrelation coefficients for 10 M samples taken from (a) the measured total
distribution and the (b) electronic noise. Dashed line represents the theoretical standard deviation
for the autocorrelation function of 10 M truly random samples.

4.2 Entropy Estimation
In the aforementioned conditions, the measured noise samples were initially subjected to the

Shannon entropy estimation model described in section 3.2.1. Here, through (3.36), a maximum
mutual information between the total noise distribution and the quantum signal of 1.99 bits was
calculated for the observed QCNR. In practice, the binning of the distribution consistently con-
verges to a sequence length of 4 bits, after which no significant gain in bits extracted is observed.
The distribution is thus partitioned into 16 bins, as previously exemplified, yielding a mean ex-
tractable entropy of 1.29 bits per sample. Consequently, an extraction ratio, Hq

Ht
, of approximately

0.323 is achieved, which clearly shows the inability of this framework to reach high extraction rates
even when faced with a large noise clearance. Following this model, the QCNR must increase to
improve the performance of the generator. As shown through (3.33), this can be achieved either
by minimizing the electronic noise or simply increasing the LO power, which is not always possible
due to the additional RIN contributions, Hunbal, that lead to an overestimation of the available
quantum entropy.

4.2.1 Estimation of excess entropy due to an unbalanced detection
To study this effect, a slight variation on the experimental setup needs to be introduced since

the following results pertain to the implementation explored in [57]. Specifically, the detector was
here replaced by a ThorLabs PDB450C balanced photodetector with a coupled 8535 Inmet RF DC
Block to remove low-frequency contributions, and the signal was sampled by an 8-bit Picoscope
6403 ADC set to a ±50 mV acquisition range. As seen in Fig. 4.6a, we measured the entropy
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contributions as a function of the detection asymmetry ∆P = P1
Ptotal

, which is defined as the ratio
between the optical power measured at the output without the VOA, P1, and the total impinging
power, Ptotal. Here, the LO power was fixed at approximately 1.33 dBm to avoid saturating the
TIA output signal. Posteriorly, the attenuation of the VOA at the BS2 output arm was increased
to iterate over the detection’s asymmetry. It should be noted that this is theoretically distinct
from simply varying the BS transmittance since the total power that reaches the PDs decreases
with the additional attenuation. The measured entropy, as can be seen in Fig. 4.6a, appears to
increase with the imbalance of the detection. Since the total impinging optical power does not
increase, it is trivial to attribute this to excess LO noise.

To obtain an estimation of Hunbal, we start by calibrating the measurement scheme and con-
sider that the most balanced state achievable (asymmetry of 50.75%) has a negligible excess LO
noise contribution. Assuming that Hquant remains relatively constant, all posterior increases are
thus the result of introducing excess LO noise. As seen in Fig. 4.6b, for small asymmetries this
contribution increases almost linearly. By contrast, as a consequence of a higher signal-to-noise
ratio, the contribution from the electronic noise decreases in the same proportion that Hunbal
increases. Thus, given a constant total entropy and impinging optical power, the fraction of en-
tropy from classical effects is in reality constant and independent of the asymmetry. If the excess
LO noise is unaccounted for, this results in more bits accessible to an eavesdropper. Naturally,
these assumptions result in an overestimation of Hquant, since the measurement scheme is always
slightly unbalanced. To obtain an acceptable estimation, a linearisation with r2 = 0.9523 was
performed, yielding Hunbal = 0.0741 (∆P− 1

2 ). Then, knowing the maximum possible asymmetry,
we estimate that Hunbal = 0.0554 bits for our balanced implementation. We thus find a corrected
quantum contribution of 0.0282 bit, which corresponds to a decrease of 66.3% relative to the origi-
nal estimation. Unfortunately, these assumptions hold true only when no additional attenuation is
introduced, and thus this method is best applied when only the BS ratio varies. Here, the decrease
in Ptotal leads to a reduction in the quantum noise contributions with an increasing attenuation,
and the corrected estimation should be adjusted accordingly. Nonetheless, the value obtained is
an acceptable worst-case estimation for asymmetries close to a balanced detection.
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Fig. 4.6: (a) Quantum entropy contribution in function of the detection asymmetry. Dark blue
shaded area shows the corrected Hq, when Hunbal is considered. (b) Fraction of entropy from
classical effects. Red lines present the entropy values for the theoretically expected variances.

4.2.2 Worst-case conditional min-entropy
The previous results clearly demonstrate the high impact of excess LO noise under the Shan-

non entropy framework. Unfortunately, due to saturation of the TIA output, the same study is
difficult to apply to this implementation at the chosen LO power. In an effort to improve the
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extraction ratio without the necessity for an arbitrary increase in the QCNR, the model described
in section 3.2.2 was implemented.

For the experimental conditions described in section 4.1.2, the min-entropy obtained from (3.45)
yields an average value of approximately 8.40 bits, which results on an extraction ratio of 0.53.
This corresponds to an immediate relative increase of 62.5% without any changes to the physical
layer. With this model, the extraction ratio is now mainly limited by the acquisition range of the
chosen ADC, which is much larger than the maximum amplitude of the measured signal. This
increases the probability of an eavesdropper guessing an outcome, although this constraint is here
partially compensated by the high resolution of the ADC. Nonetheless, the performance of the
implementation could significantly be improved by using a more appropriate sampling range. In
fact, if the optimized interval of 20 mV were to be used, approximately 13.97 bits per sample could
be extracted without further changes to the physical layer. Alternatively, the output signal could
be further amplified to the appropriate levels, although this would introduce additional noise.

In practice, despite the stability of the signal’s average variance, small oscillations in its value
also induce fluctuations in the entropy estimations, as represented in Fig. 4.7a. As expected from
the previous analysis, these values are consistent over time and have no significant fluctuations.
Nonetheless, a small upwards trend in the values of the Shannon entropy model is seen, being
most likely due to a small increase of the thermal noise floor. As seen in Fig. 4.7b, the calculated
entropies fall between [1.2829, 1.3043] bits and [8.3947, 8.4155] bits for the Shannon and min-
entropy respectively, yielding similar variation amplitudes. Besides highlighting the necessity of
regularly evaluating the contributions of the electronic noise, this shows that simply trusting the
entropy assessment for any data set is inadequate. Naturally, a cautious approach should be taken,
and solely considering the average values is insufficient for a secure real-time implementation.
Consequently, the worst-case is considered, and to account for the possibility of some excess noise,
a min-entropy of 8.39 bits was chosen, yielding an extraction ratio of 0.5244.
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Fig. 4.7: (a) Evolution of the entropy estimation under both entropy estimation models. Each
value was calculated over 503 808 samples, and the black lines represent the corresponding linear
fits. (b) Distribution of the 1920 entropy estimation values acquired during the this time period.

In the aforementioned conditions, sets of 503 808 samples were continuously acquired by the
Matlab application and subjected to the real-time Toeplitz extractor previously described. Con-
sidering the description in section 3.3.2, for the conventional Toeplitz multiplication the matrix
parameters are set as n = 4096 and m = 1933, yielding an effective extraction ratio of 0.472 ran-
dom bits from each raw ADC bit. Thus the security parameter for the hashed values is calculated
through (3.50) as ϵ ≈ 2−107. This value can easily be adjusted according to the security require-
ments by simply varying the matrix dimensions. With this configuration, considering the used
sampling rate, a maximum theoretical generation rate of 7.42 Gbps can be achieved, if the compu-
tation constraints are disregarded. Unfortunately, the slow Toeplitz algorithm limits the effective
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throughput to approximately 2 Mbps. Lastly, as described, the length-compatible Toeplitz multi-
plication was implemented to increase the efficiency of the randomness extractor. Here, each hash
iteration was performed over blocks of 2.5 × 105 raw samples (4 Mbits), and posteriorly processed
in smaller batches. Given the large input size, the effective extraction ratio can be increased to
maintain the same security bound, since this parameter will drastically decrease with the matrix
size chosen [41]. This minimizes the number of bits that are discarded by the randomness extrac-
tion algorithm and allows effective extraction ratios closer to the value defined by the min-entropy.
The final implementation thus yields an effective extraction ratio of 0.5243 and ϵ ≈ 2−105. This
allows generation rates up to 8.23 Gbps, although the effective throughput is still limited by the
hashing algorithm and thus highly dependent on the hardware used. For the configuration pre-
sented in section 3.1 a maximum effective generation rate of approximately 75 Mbps is expected.
Removing this constraint should obviously be the focus of future work.

4.3 Statistical Validation
As a preliminary assessment of the effectiveness of the randomness extraction algorithm, the

autocorrelation analysis was repeated for the extracted binary sequences. As can be seen in
Fig. 4.8a, the Toeplitz-hashing algorithm successfully removes correlations from the raw sequence.
In fact, a delay of one bit guarantees absolute coefficients inferior to 9.38 × 10−4 . This contrasts
with the raw bit sequence, which presents the most significant correlations within a delay of
16 bits due to the resolution of the ADC. The validity of the randomness extraction is further
proven by plotting a histogram of 16-bit integers derived from the QRNG output, which, as can
be seen in Fig. 4.8b, follows the expected uniform distribution. These results clearly support the
implementation but are not sufficient evidence of randomness.
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Fig. 4.8: (a) Autocorrelation coefficients for 16 M bits taken for the raw data and Toeplitz-hashed
random bits. Dashed line represents the theoretical standard deviation for the autocorrelation
function of 16 M truly random bits. (b) Distribution of 20 M 16-bit random numbers extracted
from the raw data. Dashed line represents the expected number of outcomes for a given code.

To test the reliability of the implementation, the generator was subjected to an extensive set
of statistical tests that search for evidence of non-random behavior in the output sequences. Note
that, here, this usually means a deviation from the uniform distribution, and, consequently, the raw
output is expected to fail the majority of tests even if perfectly random. Unfortunately, certifying a
RNG is a futile task as there is no set of statistical tests that can conclusively validate a generator.
An implementation should continuously be subjected to ever more stringent evaluations until a
conclusive failure is obtained, after which design improvements are required. Moreover, it should
be highlighted that it is the generator that is validated, never the random sequences themselves.
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In fact, a good RNG is expected to produce some sequences that fail the statistical tests, and their
absence is enough evidence of a poor implementation.

In this work, the standard NIST [6], Dieharder [8], and TestU01 [7] (both the SmallCrush
and Crush batteries) statistical suites were applied. In total, 145 different tests and respective
subtests were considered. Although describing each one is beyond the scope of this work, all
evaluate the null hypothesis (that the sequence under test is random) and return a P-value that
expresses the probability of a true random generator yielding a result less random than the one
observed [6]. Given a chosen significance level α, which expresses the probability of Type I errors,
if P-value < α, the null hypothesis should be rejected. The same is done for P-value > 1 − α as it
indicates that the generator produces sequences too close to uniformity. Moreover, under the null
hypothesis, the P-values for different sequences under test should be uniformly distributed, and a
certain proportion of sequences is expected to fail in any given run. Consequently, any statistical
evaluation should be applied to multiple sequences of the generator, and two test passing criteria
are established: uniformity of the P-values for a given test, and the minimum proportion of
sequences that should pass. As an example, for α = 0.01 and a given test run with n = 1000
sequences, approximately 10 sequences are expected to fail. The acceptable proportion range can
be calculated as (1 − α) ± 3

√
α(1−α)

n [6]. The uniformity of P-values can in its turn be evaluated
through a goodness-of-fit test such as a Kolmogorov-Smirnov (KS) test, and its own value used to
summarize the test result for multiple sequences.

The NIST statistical test results for approximately 10 Gbits are represented in Fig. 4.9. Here,
the default significance level α = 0.01 was chosen and 1000 sequences of 10 Mbits were sub-
jected to the statistical evaluations. For any given sequence, the null hypothesis is rejected if
the P-value < 0.01. The uniformity of the P-values of each statistical test is evaluated using a
chi-squared test, yielding the respective P-valueT [6]. These values are represented for each test
in Fig. 4.9a. The generator is considered to pass a given test if P-valueT ≥ 0.0001 [6]. Moreover,
as seen in Fig. 4.9b, a minimum pass proportion of 980/1000 should be observed for all tests with
the exception of the random excursions and random excursions variant assessments, where it is
855/873. As can be seen, all of the evaluations meet these criteria and thus we fail to reject the
null hypothesis. Passing these NIST statistical tests is an excellent indicator of the quality of the
generator and fulfills the certification standards employed in most literature works.
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Fig. 4.9: NIST test results for α = 0.01 and a data size of 10 Gbits (1000 bit streams of 10 Mbits).
To pass an test (a) P-valueT should be larger than 1 × 10−4 , and (b) the proportion of sequences
satisfying P-value ≥ 0.01 should be ≥ 0.98 . Red lines represent the minimum pass thresholds.
For tests with multiple parameters the worst case is represented.

Nonetheless, as mentioned, the statistical validation is never complete and additional testing
can be applied to better characterize the quality of the QRNG. Consequently, both the TestU01
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and Dieharder statistical suites were provided with a random pool of approximately 232 Gbits,
although the amount of randomness consumed by each battery depends on the applied tests. This
provides enough numbers to minimize the number of times that the pool is rewound, which causes
tests to iterate over the same sequences. In Fig. 4.10a, the results of the TestU01 SmallCrush
battery are summarized. Here, blocks of 32 bits are used to obtain double-precision floating-point
values in the interval [0, 1], which are posteriorly tested. It provides a fast verification to detect
if more stringent validation is worth applying. As can be seen, unsurprisingly, this battery fails
to detect any deviation in the expected behavior of the generator output, and all P-values fall
inside its significance threshold of [0.001, 0.9990]. This is also consistent with the results obtained
with the Dieharder battery, as represented in Fig. 4.10b. Here, the default significance level of
α = 0.000001 is used to mark a given test result as failed, and a 0.005 threshold to flag a weak
result. Furthermore, the battery was configured to resolve ambiguity mode. This progressively
increases the amount of numbers tested when a weak result is found until the P-value is either
within the acceptable range or the test has conclusively failed. Given these parameters, the
Dieharder battery is significantly more stringent than the previous statistical suites, and its failure
is highly significant. Here, a preliminary run returned 2 weak results on Diehard OPSO with
p-value = 0.9991 and Diehard Minimum Distance with 0.0041 . Posterior analysis with increased
statistical power conclusively resolved this uncertainty, and thus, again, we fail to reject the null
hypothesis. Nonetheless, it should be highlighted that some rewinds of the bit file still occur
during the suite run, and analysis with larger random pools should be made in the future.
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Fig. 4.10: (a) Results for TestU01 SmallCrush applied with α = 0.001. Line represents the
significance level. (b) Results for the Dieharder battery set to resolve ambiguity mode with
α = 0.000001. Lines represent the weak (black) and fail (red) threshold values. For tests with
multiple p-values a KS test is applied to obtain a representative value.

Given these results, we failed to find evidence of non-random behavior in the QRNG output,
illustrating the reliability of the implementation. Obviously, this does not certify randomness
and only means that no evidence of non-randomness was observed in this specific instance. This
analysis should be continuously expanded until some weakness is found. With this objective, we
applied the TestU01 Crush battery, which is known for being hard to pass for many standard
RNGs [76]. Note that due to the small size of the data pool, the statistical tests were applied to
the same number sequences, and the file rewound between each one. A preliminary run revealed
that 94 out of the 96 applied tests successfully passed, with two failures: one in the RandomWalk1
H test, and the other in the LinearComp. To assess the significance of these results, the suspect
tests were sequentially repeated for non-overlapping sequences. The results are summarized in
Table. 4.1. Here, only one sequence failed the RandomWalk1 H, while three failures were observed
for the linear complexity test. This could indicate that the former is the result of a statistical
anomaly. However, both cases failed to achieve the pass proportion threshold for the original
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significance level α = 0.001. Moreover, the worst P-value of the LinearComp test decisively
converges to 1, which indicates a conclusive failure.

Table 4.1: TestU01 Crush: Results for the repeated application of the suspect tests. The worst
P-value is represented. Here eps means a value < 1.0 × 10−300 and eps1 < 1.0 × 10−15 .

Statistical Test Parameters P-value Number of Tests Pass Proportion
RandomWalk1 H L = 10000 0.9997 50 0.98 (minimum 0.9856)

LinearComp r = 0 1 - eps1 200 0.985 (minimum 0.9923)

Consequently, we are forced to reject the null hypothesis and conclude that there is sufficient
evidence for non-randomness in the generator output. Nonetheless, a more exhaustive analysis
of the Crush battery results is necessary, given the limitations here imposed by the size of the
data being tested. It stays unclear if these results are a failure of the QRNG or a limitation of
the statistical analysis. Integration of these batteries in the Matlab algorithm could help mitigate
the constraints of feeding an adequate amount of RNs to the statistical tests. Nevertheless, a
possible reason for these results originates from the assumption that the seed of the Toeplitz
matrix is truly random. In fact, pseudo-random numbers from the Mersenne Twister PRNG were
used, which is known to fail the linear complexity tests of the Crush library [76]. Thus another
randomness source, preferably a TRNG, should be chosen. Despite an exhaustive evaluation
eventually rejecting this implementation, this does not imply the absence of useful randomness or
the inadequacy of the generation scheme, but merely suggests future design improvements. The
necessity of using the TestU01 Crush battery to detect any biases in the QRNG output highlights
the number of statistical tests passed, which goes beyond most certification efforts.
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Chapter 5

Time-interleaved QRNG within a
classical communication channel

In this chapter, an alternative QRNG scheme that is time-interleaved with a QPSK tributary
signal within a coherent classical communication channel is proposed in an effort to remove the
need for a dedicated generation device. This greatly reduces the cost of implementation since it
allows integration into already existing optical systems, which were not purposefully implemented
to support quantum randomness generation. After a brief description of the generation scheme,
the multi-purpose function of the implementation is certified in section 5.1.1 by retrieving the
classical data transmitted. Posteriorly, the QRNG operation is characterized in section 5.1.2 to
assure the preponderance of quantum noise, and a basic validation is performed in section 5.1.3
to assess the quality of the RNs obtained.

5.1 Experimental Setup
A schematic representation of the proposed QRNG scheme is shown in Fig. 5.1. A heterodyne

detection scheme was considered for the transmission of the QPSK signal. Although it requires
a more complex digital signal processing when compared with the conventional homodyne ap-
proach, this allows to simplify the experimental setup since a second balanced detector and a
90◦ optical hybrid are no longer necessary [77]. At the Tx side, a 1550 nm continuous-wave laser
(Yenista OSICS Band C/AG TLS) at 10 dBm is split by a 35/65 BS (BS1) formed by the combina-
tion of a Polarization Beamsplitter (PBS) and a Polarization Controller (PC). The 8.10 dBm beam
is posteriorly sent towards a balanced BS (BS2) where it acts as the LO in the coherent receiver.
Meanwhile, the polarization of the second beam is set by another PC to maximize the output

BS1
RF Signal

Generator

65%

DAC

Fig. 5.1: Schematic representation of the experimental setup for the time-interleaved QRNG. An
amplitude modulator allows to alternately perform heterodyne detection over the QPSK signal, or
obtain a balanced homodyne detection scheme with a vacuum state at one of the input ports [58].

power of a u2t Photonics I/Q optical modulator. Single sideband modulation is thus performed
by the I/Q modulator using a SHF 807 RF driver and the signal provided by a Digital-to-analog
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converter (DAC, Texas Instruments DAC38J84) running at a 1474.56 MSa/s sampling rate. The
electrical modulation contains a QPSK signal, y(t) = q(t)ei2πfQt, upconverted to fQ = 92.16 MHz,
where:

q(t) = hrc(t) ⊛
∑

k

a(k)δ(t − kT ). (5.1)

Here, hrc is a root-raised-cosine filter with roll-off factor β = 0.4, a(k) represents the complex-
valued QPSK symbols transmitted a(k) ∈ {exp

(
i π

4
)
, exp

(
i 3π

4
)
, ..., exp

(
i 7π

4
)
}, and T is the symbol

period [77]. As can be seen in Fig. 5.2a, a symbol rate of 46.08 MBaud was chosen, which results
on a maximum optical link throughput of 92.16 Mbps. An acousto-optic amplitude modulator
(Gooch & Housego 26035-2-1.55-LTD) with a 40 dB extinction ratio and a 35 MHz operating fre-
quency was posteriorly employed to impose on-off shift keying upon the QPSK signal. The driving
signal was provided by an HP 8116A signal generator, and rectangular pulses with an amplitude
of 5 V and a 50% duty cycle at a frequency of 700 Hz were used.
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Fig. 5.2: (a) Power spectral density of the single-polarization QPSK signal. Highlighted band rep-
resents the signal spectral bandwidth defined by the chosen symbol rate. (b) Time representation
of the interleaved operation. Higher amplitude periods correspond to classical data transmission.

Finally, at the receiving side, heterodyne detection is performed with a 1.6 GHz-balanced re-
ceiver (Thorlabs PDB480AC). The resulting signal is acquired at 2949.12 MSa/s by a ADC (Texas
Instruments ADC32RF45) configured for 12 bits resolution and the corresponding offline digital
signal processing routine is applied to either retrieve the transmitted symbols or extract RNs.
As can be seen in Fig. 5.2b, this setup allows interleaving the classical data transmission with
randomness generation by regularly removing the QPSK tributary signal, which reduces the im-
plementation to a homodyne detection scheme with the vacuum-state as the input. Unfortunately,
in reality, the impinging signal will never be completely removed due to the finite extinction ra-
tio of the amplitude modulator, and the vacuum state can be compromised. To mitigate this
problem, an amplitude modulator with a high extinction ratio was purposefully chosen. With the
chosen pulse parameters, roughly 0.714 ms of QPSK communication are obtained for every pe-
riod, which is enough to transmit a pre-chosen periodic sequence of 65 536 bits. These constraints
are necessary since the message is not synchronized with this transmission window. Obviously, a
realistic communication system will rarely obey these characteristics, and no fixed transmission
period will be able to guarantee the detection of all symbols transmitted. Consequently, although
not here considered, a synchronization mechanism between the two operation modes and the data
transmission is expected for supporting a practical application.

5.1.1 QPSK Transmission
In an effort to assess the viability of the two operation modes, we start by retrieving the

classical data transmission. At the detector side, the measured signal is down-converted such that
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x(t) = y(t)e(−i2πfQt2), t2 being the arbitrary time at the receiver. Here, to correctly retrieve the
sequence, the frequency shift of ±35 MHz induced by the acousto-optic modulator in the QPSK
signal needs to be considered. This originates two distinct spectral lobes centered, respectively, at
92.16±35 MHz. Here, the higher frequency was chosen to retrieve the QPSK signal. In a practical
application, the LO would typically be performed by a second laser at the receiver, which is not
frequency locked with the transmitter laser and thus introduces an additional frequency shift [78].
In this implementation, however, no frequency estimation routine was considered since the LO and
the QPSK signal are derived from the same laser, and no frequency offset is introduced. Lastly,
phase correction must be applied. The QPSK signal is again subjected to the root-raised-cosine
filter, performing matched filtering. As can be seen in Fig. 5.3a there is still an arbitrary phase
rotation of the constellation ϕ(t) = 2πfQ(t − t2). At this point, the downconverted signal can
be described as x(t) = exp

(
i 2k+1

4 π + iθ(t)
)
, where k = 0, .., 3, and x4(t) = exp

(
iπ + i4θ(t)

)
.

Consequently, a blind phase estimation algorithm can be implemented, where the phase difference
between the signal and LO is estimated as:

θ̃(p) = 1
4 arg

[
1

2L + 1

L∑
l=−L

x4
i (p + l)

]
, (5.2)

with a moving average of 2L + 1 samples [78]. Here, L = 10 was chosen, and the retrieved QPSK
constellations, before and after phase correction, are represented in Fig. 5.3a. As can be seen,
the constellation before the phase correction is simply a continuous rotation of the compensated
one. Finally, the fourfold ambiguity of the constellation is resolved by minimizing the Bit Error
Rate (BER) of the known binary sequence. After this digital signal processing, the transmitted
binary sequence was recovered in its entirety with a null BER, which is expected since a back-
to-back scenario was considered. Nevertheless, a relatively high amplitude noise was observed,
which could seriously compromise the QPSK transmission over a fiber-optic link. This originates
in the polarization mismatch between the signal and the LO and thus a careful alignment should
be made [77]. Alternatively, a polarization diverse coherent receiver can be employed to eliminate
the polarization sensitivity. Moreover, an analysis of the BER performance in transmission over
a fiber-optic link is necessary and is here left as future work. Nevertheless, the clean QPSK
constellation retrieved, seen in Fig. 5.3b, supports the multi-purpose function of the scheme.
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Fig. 5.3: (a) QPSK constellation before (blue) and after (orange) the blind phase correction for a
sequence of 10 k samples. (b) Total received QPSK constellation diagram with 156 224 symbols.

5.1.2 Noise characterization
In Fig. 5.4a, the power spectral density of the homodyne measurements, taken during the

QRNG operation window, is displayed. As expected, a relatively flat power density level is at-
tained, although strong spectral contributions can be observed at low frequencies as a consequence
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Fig. 5.4: (a) Power spectral density taken during the QRNG operation. Highlighted 200 MHz
frequency band is selected to perform randomness extraction. b) Spectral density after band
selection for the homodyne measurements (blue) and the electronic noise (orange).

of flicker noise and the finite common-mode rejection ratio of the detector. To remove these con-
tributions, a 200 MHz spectral band free of strong contributions and with high noise clearance,
centered around 192.16 MHz, was digitally selected by a rectangular bandpass filter. As can be
seen in Fig. 5.4b, the same process was applied to the detector’s electronic noise measurements,
and the quantum noise clearance was found to be above 10 dB, confirming a preponderance of
quantum fluctuations. Although randomness extraction was here performed over a single spectral
side-band, this technique can be expanded to extract RNs from multiple non-overlapping channels
to increase the generation rate [42].
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Fig. 5.5: (a) Correlation coefficients over 8.3 M noise samples at 2949.12 MSa/s, and after down-
sampling by a factor of 10. (b) Noise distribution of 7.9 M homodyne measurements and 1.9 M
electronic noise samples. Each ADC code represents 0.33 mV.

The previous spectral selection limits the signal to a frequency band of 200 MHz, and thus a
maximum sampling rate of 400 MHz is expected to avoid randomness overlapping, as given by the
Nyquist sampling theorem. Consequently, the signal was downsampled by a factor of 10, obtaining
an effective sampling rate of 294.912 MSa/s. The necessity of downsampling the signal becomes
clear in Fig. 5.5a, where clear correlations emerge for the higher sampling rate. By contrast, the
analysis of the downsampled signal shows a clear convergence to the theoretically expected result
of 3.4683 × 10−4 . Although the bandpass filter imposes some high coefficients at low delays, one
sample guarantees coefficient values inferior to 1 × 10−1. Furthermore, a histogram with 7.5 M
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measurements and 1.9 M samples of electronic noise was plotted to confirm that the noise follows
the expected Gaussian distribution. These results are shown in Fig. 5.5b, where a QCNR of
12 dB was obtained. Means of approximately 0.0035 mV and −0.0011 mV were calculated for the
homodyne and electronic noise samples, respectively, which are sufficiently low to be taken as
indicators of a balanced homodyne detection.

5.1.3 Statistical Validation
With the characterization performed in section 5.1.2, the randomness extraction algorithm

described in chapter 3 was applied offline to approximately 27.7 M samples to extract true random
numbers. Here, the worst-case conditional min-entropy model was considered, and the SHA-512
cryptographic hash function was chosen as the randomness extractor due to its simplicity and
relatively high postprocessing speed. Considering the ADC resolution of 12 bits and a sampling
range of 1.65 V, the min-entropy yields 4.58 bits per sample, and a total of 126.8 M uniformly
distributed bits were extracted. Under these circumstances, a theoretical maximum generation
rate of 1.3 Gbps can be observed, which yields approximately 928.2 Mbits in each QRNG operation
cycle. Moreover, the QRNG performance still has plenty of opportunities for further improvement
by extending the bandwidth of the detector available for randomness generation. Unfortunately,
the randomness extraction limits the effective throughput to 1.68 Mbps and constitutes the main
limitation of this implementation. Further efforts should be taken to improve the extraction rate,
for example, by replacing the SHA-512 hashing with the length-compatible Toeplitz randomness
extractor described in chapter 3. This would allow an immediate improvement of up to 50 Mbps.
Finally, to evaluate the quality of the extracted RNs, a basic statistical validation was applied.
Here, given the constraint on the effective generation rate, only the NIST statistical test suite
was used. As can be seen in Table. 5.1, the raw data fails almost all statistical tests due to its
Gaussian distribution and the presence of classical contributions. Meanwhile, the postprocessed
variant passes all evaluations, which confirms the necessity of the randomness extraction algorithm
and is a good indicator of quality for the implemented generator. This simple validation rules out
the presence of the most easily identifiable patterns and indicates that the QRNG can cautiously
be used as a source of high-quality entropy. Nevertheless, a more stringent statistical validation
is necessary, with the application of other randomness test suites and a larger sampling pool, to
rule out any failure of the ES. This is especially important given the lack of proof for the purity
of the vacuum state, which can be compromised due to contamination from the QPSK signal. If
the vacuum state cannot be trusted, a double homodyne measurement scheme can be employed
to retrieve both quadratures and arrive at a source-independent implementation [53].

Table 5.1: Results of the NIST statistical test suite, with α = 0.01 for a sequence of 1 268 689 bits.
The minimum proportion to pass is 96/100, except for the random excursions tests where 60/63
is accepted. When multiple p-values exist, the smaller proportion is shown.

Raw Data Postprocessed variant
Statistical Test Result P-value Proportion Result
Frequency FAILED 0.249284 100/100 PASSED
BlockFrequency FAILED 0.867692 99/100 PASSED
CumulativeSums FAILED 0.514124 100/100 PASSED
Runs FAILED 0.574903 100/100 PASSED
LongestRun FAILED 0.122325 100/100 PASSED
Rank PASSED 0.759756 100/100 PASSED
FFT FAILED 0.213309 97/100 PASSED
NonOverlappingTemplate FAILED 0.162606 96/100 PASSED
OverlappingTemplate FAILED 0.334538 100/100 PASSED
Universal FAILED 0.514124 100/100 PASSED
Approximate entropy FAILED 0.319084 98/100 PASSED
Random excursions FAILED 0.392456 62/63 PASSED
Random-excursions variant PASSED 0.723129 61/63 PASSED
Serial FAILED 0.153763 99/100 PASSED
LinearComplexity PASSED 0.739918 99/100 PASSED
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Chapter 6

Conclusion

In this work, a real-time QRNG framework based on probing the quadrature amplitude fluctua-
tions of a vacuum state was analyzed and experimentally demonstrated under a laboratory setting.
A focus on achieving a secure high-speed implementation that can pass the standard testing tools
using only relatively low-cost components, and that provides a comprehensive randomness proof
was made. Furthermore, efforts were taken to assess the viability of integrating this randomness
source within a classical communication channel to further reduce the cost of the implementation.

With this objective, a brief introduction of the quantum optics and information theory prin-
ciples that support the generation framework was provided, describing the expected quadrature
behavior for the vacuum state of the electromagnetic field. Posteriorly, the different stages of the
vacuum-based QRNG framework were described. Here, a variance model for the output noise of the
physical layer was developed considering the quantization noise imposed by the ADC. Moreover, a
comparative analysis of the two main entropy estimation methods employed in the literature was
made, highlighting their theoretical limits. The conditional min-entropy was shown to greatly im-
prove the extraction ratio by accounting for the entire resolution of the ADC. A description of the
two considered randomness extractors was also presented, and their performance was compared.
The length-compatible Toeplitz-hashing algorithm showed the potential to process 143.29 M raw
bits per second and was thus preferred for the final implementation.

As mentioned, two distinct generation schemes were considered. For the dedicated imple-
mentation, results of the variance characterization curve of the homodyne detector employed are
presented, which confirm the desired linear dependence with the LO optical power. This identifies
the operation region where quantum contributions are preponderant and allows to select the oper-
ating power for the LO. After assuring a reliable measurement system, a careful characterization
of the output noise reveals that it closely follows the expected behavior, with no strong spectral
contributions present, and guarantees its stability over a 24-hour time window. Nonetheless, an
autocorrelation analysis reveals the low-order correlations induced by the non-ideal response of
the TIA. Furthermore, the performance of the entropy estimation methods was evaluated, and a
method to quantify the excess entropy contribution introduced by an unbalanced detection was
proposed for the Shannon entropy model. Nevertheless, this contribution was considered negligi-
ble in the homodyne scheme implemented. For the chosen conditions, a clear preponderance of
quantum noise was obtained, and the generation scheme was shown to support output rates up to
8.23 Gbps with a security parameter of 2−105. Unfortunately, the effective generation rate is still
severely restricted by the extraction algorithm, being its main limitation.

Rigorous validation of the dedicated scheme was posteriorly applied. The final setup passed all
evaluations of the NIST, Dieharder, and TestU01 SmallCrush randomness test suites. However,
two inconclusive failures in the Crush battery were obtained, which could originate from the
use of the Mersenne Twister PRNG to seed the Toeplitz matrices. Consequently, an alternative
randomness source should be considered, and further validation is required. Despite this, the
extracted RNs pass a proportion of 98.6% of the considered tests, which highlights the viability of
the generation scheme. Further work is necessary to confidently identify the cause of these results
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and accordingly adjust the implementation design.
Finally, a time-interleaved QRNG within a classical communication channel was proposed and

validated. By imposing on-off keying modulation on the transmission channel, the input signal
is removed and a balanced homodyne detection is obtained. Here, if not limited by the extrac-
tion algorithm, a maximum output rate of 1.3 Gbps can be achieved. In a realistic application, a
method to synchronize the two operation modes with the transmitted data should be explored.
Meanwhile, the finite extinction rate of the amplitude modulator can lead to contamination of the
vacuum state, which opens security loopholes, and thus further security analysis is required. Al-
ternatively, measuring both quadratures could be explored to derive a source-independent scheme.
Nonetheless, the RNs pass the standard NIST randomness test suite, which clearly supports the
proposed framework, although stringiest validation tests should also be applied to identify any
statistical deviations.

In conclusion, we fulfilled all the proposed objectives. Future work should focus on removing
the computational constraints imposed by the randomness extraction algorithm, for example, by
employing Field-programmable Gate Arrays (FPGAs). Moreover, the available generations rates
can further be increased by optimizing the ADC range used. Since this is not possible with the
chosen board, increasing the TIA gain could be explored. In its current form, the physical layer
of the dedicated implementation presents an upper bound of extractable min-entropy of approxi-
mately 14 bits. Generation rates can further be improved by increasing the LO power, or the ADC
sampling rate. However, besides improving the output rate, further security considerations can be
included, for example, by exploring a source-independent implementation employing double homo-
dyne detection. This would increase the resilience of the generator against external perturbations.
Within this objective, the behavior of the implementation under an attack by a malicious adver-
sary should also be explored. Finally, replacing the bulkier lab setup with a compact self-contained
solution would be a fundamental step to increase competitiveness with software implementations.
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