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Palavras Chave circuitos integrados, CMOS, dispositivo implantável, estimulação elétrica, medula
espinal, neurorregeneração

Resumo Lesões na Medula Espinhal são causadas sobretudo devido acidentes rodoviários,
quedas e lesões na prática de desportos. Estas têm graves consequências no estado
de saúde dos pacientes, uma vez que saõ responsáveis por diagnósticos como tetra-
plegia e paraplegia. Até hoje, terapias eficazes para este tipo de lesões ainda não
foram conseguidas, o que torna esta temática num foco de estudo. Atualmente,
uma das orientações deste foco de estudo está direcionado em dispositivos elétricos
implantáveis capazes de estimular a espinal medula in-vivo, promovendo a rege-
neração da mesma. Adicionalmente, o uso de materiais (scaffolds) que permitem
manter o alinhemento no crescimento das fibras, em conjunto com estimulação
elétrica é vista como a solução consensual para terapias relacionadas com Lesões
na Medula Espinhal. Assim, o projeto NeuroStimSpinal, na qual este trabalho se
insere, foi proposto. Este tem como objetivo propor uma terapia para esta proble-
mática usando estimulação elétrica em conjunto com scaffolds impressas em 3D. O
trabalho apresentado nesta dissertação é baseado num circuito integrado de apli-
cação específica (CIAE) para estimulação em corrente da espinal medula, com o
intuito de promover a regeneração da mesma. Os desafios na implementação deste
tipo de circuitos estão relacionados com a necessidade destes terem de ser peque-
nos em tamanho e consumir uma potência reduzida, mantendo as características
necessárias para a estimulação, uma vez que é necessário que o mesmo faça parte
de um dispositivo implantável. O circuito de estimulação proposto consiste: numa
interface de comunicação com a unidade de controlo (microcontrolador) usando o
protocolo Serial Peripheral Communication (SPI); um conversor digital para ana-
lógico de 10 bits, o qual se baseia numa arquitetura de escalonamento binário por
carga; um conversor tensão para corrente rail-to-rail e uma ponte H que direciona
a corrente pela scaffold, cuja implementação se baseia no uso de portas de trans-
missão como comutadores. Resultados ao trabalho desenvolvido mostram que o
circuito é capaz de estimular a scaffold com correntes entre 0 to 200µA com um
erro na corrente de estimulação inferior a 0.75µA. O circuito é capaz ainda de
fornecer uma corrente linear, na gama mencionada, a cargas com impedancias até
15kΩ. Para cargas superiores o circuito é capaz de fornecer uma corrente linear,
embora em gamas de correntes menores. O circuito implementado usa como ten-
são de alimentação 5V, tem um consumo médio de potência de 19.5mW e ocupa
uma área de 0.19mm2. No decurso do trabalho desenvolvido foi utilizada uma
tecnlogoia CMOS de 0.35um. A implementação e resultados foram obtidos com
recurso ao software Cadence.





Keywords ASIC, CMOS, electrical stimulation, implantable device, scaffold, SCI.

Abstract Spinal Cord Injuries (SCI) have severe consequences such as tetraplegia and para-
plegia, which dramatically affect the healthcare of the patients. Successful thera-
pies for such injuries are yet to be attainable. Currently, there is a focus on the
study and implementation of small implantable devices that are capable of provid-
ing in-vivo electrical stimulation to the spinal cord. Since the impedance of the
neural tissue experiences constant changes, the focus is on using current stimu-
lation instead of voltage, to compensate the impedance variations. Furthermore,
the usage of scaffolds to provide alignment on the regrown fibers, combined with
electrical stimulation is viewed as possible solution for SCI therapy. The NeuroStim-
Spinal project, in which this work is inserted, aims to propose a SCI therapy based
on in-vivo electrical stimulation combined with 3D printed scaffolds that have in
its composition based materials (GBM) and adipose derived decellularized tissue
(adECM). The work presented is an application-specific integrated circuit design
(ASIC) that provides current-mode stimulation for neuronal regeneration, with the
objective of providing in-vivo electrical stimulation for SCI therapy. The main chal-
lenges on the design of such devices is in obtaining low circuit area and power
consumption, while maintaining the specifications needed. These characteristics
are important, since it is intended to be an implantable device. The stimulation
circuit consists of, a communication interface with a microcontroller using the Se-
rial Peripheral Communication (SPI) protocol, a 10-bit DAC (Digital-to-Analog
Converter) based on a binary charge scaling architecture, a voltage-to-current con-
verter with a feed-forward voltage attenuator (FFVA) architecture, and a H-bridge
circuit composed of CMOS switches to drive the scaffold. Results demonstrate
that the system developed is capable of driving current from 0 to 200µA with an
absolute error bellow 0.75µA. In addition, the developed circuit can provide these
range of currents with high linearity to a 15kΩ load impedance. The system can
still provide linear stimulation for higher load impedance’s, but in smaller current
ranges. Furthermore, the circuit uses a supply voltage of 5V and has an average
power dissipation of 19.5mW. The ASIC was developed using a 0.35µm CMOS
technology, has dimensions of 270µm per 700µm, which corresponds to a total
area of 0.19mm2. The work was developed using the Cadence software.
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CHAPTER 1
Introduction

1.1 Motivation

Spinal Cord Injuries (SCI) are catastrophic injuries on the nervous system that have severe
consequences, being responsible for diagnostics such as tetraplegia and paraplegia. Therefore,
SCI therapy is considered to be a global health priority [1]. Studies performed indicate that
around 50% of the SCI cases occur in the age group of 16 to 30 years, mainly due to traffic
accidents, acts of violence, falls and injuries in sports, which greatly affect the health and
quality of life of the patients. Furthermore, health care expenses due to spinal cord injuries,
are brutal and directly proportional to the injury severity [2].

A successful therapy to fully recover patients from spinal cord injuries remains to be
achieved. The main challenge on SCI treatment is the fact that the spinal cord is constantly
suffering changes, which interfere with the neuronal regeneration. Therefore, current therapies
rely on preventing complications on the diagnostic and physical rehabilitation [3]. Scientific
and technological advances in areas such as engineering and computer science opened the
path for new approaches for SCI treatment. In particular, advances on Implantable Medical
Devices (IMD) used for electrical stimulation of the spinal cord is currently being a research
focus for SCI treatment. However, the design of this type of wireless implantable devices,
for in-vivo electrical stimulation, poses many challenges. Since it is an wireless implantable
device, it needs to be small in size and the battery’s lifespan must be extended as much
as possible. Therefore optimal power consumption and circuit area are requirements. In
addition, biocompatibility and effective wireless communication interfaces must be assured.
To tackle the biocompatibility issue, there have been research efforts on the area of neural
tissue engineering. These are based on the usage of materials that act as scaffolds for the
neuronal regeneration. These scaffolds are made to match the geometry of the spinal cord,
providing a healthier mechanical support for neuronal regeneration [4]. Furthermore, 3D
scaffolds can be used to provide alignment of the regrown fibers. Having this in mind, the
usage of such scaffolds in combination with electrical stimulation is viewed as a possible for
SCI treatment [3].
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The work developed presents an Application Specific Integrated Circuit (ASIC) for in-vivo
electrical stimulation applications, inserted in the NeuroStimSpinal (NSS) project. NSS aims
to propose an effective therapy on SCI. The project proposes a scaffold for implantation
on the region of injury, based on a combination of Graphene Based Materials (GBM) and
adipose derived decellularized tissue (adECM) [5]. The scaffold together with an implantable
electrical stimulation device aims to promote the growth and consequently, the reconnection
of the ruptured nerves. This is the first time that a scaffold composition of this nature is
being proposed for SCI therapy.

1.2 Objectives

The final goal of the presented work is the design of an ASIC able to support electrical
stimulation of graphene scaffolds, for spinal cord injuries therapy, for in-vivo stimulation. To
achieve this goal, the work entails:

• Understand the basics on neural stimulation, particularly electrical stimulation.
• Perform a study on current state-of-the-art on electrical stimulation systems for in-vivo

stimulation.
• Propose an architecture that fit the system specifications. This entails the investigation

on the most adequate circuits.
• Circuit design on Cadence software and simulation.
• Layout implementation and verification, followed by parasitic extraction and post layout

simulation.

1.3 Methodologies

The work was developed in the Cadence integrated circuits design software. A first stage
of implementation based on the simulation of the design circuits was performed in Spectre.
After proving that the developed system complies with the specifications, the physical layout
and verification was made in the Assura and Virtuoso design environments. Finally, parasitic
extraction and post layout simulation was performed. The work was developed on the
AustriaMicroSystems (AMS) 0.35µm, Complementary Metal Oxide Semiconductor (CMOS)
technology.

In addition, MATLAB was used to process the simulation results, and to generate the
plots included on the present document.

1.4 Document Organization

This dissertation is divided into seven chapters, including the present one.

• Chapter 2 starts by presenting the NeuroStimSpinal project. Then, basic concepts on
electrical stimulation are presented, followed by an analysis on current state of the art
stimulation circuits and devices. Finally, the general approach taken for the system
developed in this dissertation is presented, as well as the system specifications.
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• Chapter 3 is dedicated to present the most common architectures of the circuits needed
in the system. A comparison between the different architectures is also made, in order
to assess the ones that most fit the system requirements.

• Chapter 4 focuses on the system implementation. It starts by presenting a detailed
architecture of the implemented system. Later, the circuits developed and details on
the design are presented. This chapter also presents some preliminary simulations
that helped on the circuit design and to prove the operation of the digital components.
Finally, use cases of the system operation are also part of the chapter.

• In chapter 5, circuit simulation results, on Spectre, of the implemented circuits are
presented. At the end of the chapter, full system operation simulations are also presented.
This chapter aims to prove that the designed system complies with the specifications
and is ready for the layout implementation.

• Chapter 6 is dedicated to present the implemented circuit layout and the main con-
siderations and techniques used on the implementation. Post-extraction results and
characterization of the layout of each implemented circuit component is also part of this
chapter. In addition, chapter 6 also focuses on presenting the ASIC final results, after
parasitic extraction. The operation of the system is demonstrated, the errors of the
system are quantified and the obtained results are discussed.

• Chapter 7 aims to draw conclusions on the work developed. The implemented system
and the key results are discussed. The chapter ends with possible future work directions.
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CHAPTER 2
NeuroStimSpinal

This chapter aim is to present the NeuroStimSpinal project, presenting its objectives
and the project general methodology. Basic concepts on neural stimulation, in particular,
electrical stimulation are also presented. Furthermore, a state of the art assessment of electrical
stimulation systems for in-vivo applications is presented. Finally, the chapter ends with the
presentation of the implemented ASIC general architecture, as well as, the specifications that
need to be fulfilled.

2.1 NeuroStimSpinal: Description and Objectives

Spinal cord injuries refer to damages that happen specifically on the spinal cord or to
nerves and tissue at the spinal canal’s end. Spinal cord injuries may result in diagnostics,
such as paraplegia and tetraplegia that are caused by the partial or complete disruption
of descending motor and ascending sensory neurons [5]. This may potentially have severe
consequences on the patients, since it can lead to sensory loss and paralysis. Having this in
mind, NSS (logo in figure 2.1) project aims to develop an efficient treatment for spinal cord
injuries.

In figure 2.2, a short schematic on the NSS project steps is presented. It follows three
main steps: scaffolds preparation, in-vitro electrical stimulation tests and in-vivo electrical
stimulation tests.

Figure 2.1: NSS Logo [5]
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Figure 2.2: NeuroStimSpinal Project Overview [5]

The scaffolds are composed by a combination of GBM and adECM. The scaffold is
intended to be implanted on the spinal cord, in the region of the injury, which together
with electrical stimulation promotes the growth and consequently, reconnects the region that
suffered partial or complete disruption. In this phase, several scaffolds of different shapes,
sizes and compositions of adECM/GBM are developed, using 3D printing, in order to adapt
to different spinal cord regions and to test the concentrations of adECM/GBM that provide
the best results on the nerve regeneration [5].

The in-vitro stimulation tests are made in laboratory in a controlled environment. A custom
off-the-shelve component stimulation system is developed and, electrical stimulation in the
developed scaffolds on neural cells is performed. The objective is to assess the biocompatibility
and bio-functionality of the scaffolds and to test the electrical stimulation performance.

The next step is to perform in-vivo stimulation. In-vivo refer to tests and experiments
that are made in living organisms. The present work inserts in this part of the project, since
it aims to develop the ASIC that is dedicated to perform the wireless electrical stimulation.

2.2 Neural Stimulation

Common methods for neural stimulation are: electrical, optical and chemical stimulation
[6]. NeuroStimSpinal project focuses on a neural stimulation system based on electrical
stimulation, therefore this topic is going to be the study focus of the present section.

2.2.1 Electrical Stimulation

In electrical stimulation, the main objective is to deliver a certain amount of charge to
excitable cells, promoting an electric field on the tissue that potentiates ion movements on the
cells. On the state of the art, there are three main techniques used for electrical stimulation:
direct coupling, capacitive coupling and inductive coupling [7].

In direct coupling, the electrode is in direct contact with the cell culture or implanted
on the animal. An electrical signal, being it a voltage, a current or charge is applied to a
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pair of electrodes, which interacts directly with the cells. It is the simpler method to perform
electrical stimulation. However, direct coupling raises issues associated with the electrodes
materials biocompatibility and unwanted cells reactions [8].

In capacitive coupling, the stimulation is achieved through an electric field applied on the
cells. Two metal electrodes are placed in parallel and an electric field is created between the
plates. The cells are placed between the plates, being exposed to the electric field produced.
An homogeneous electric field can be achieved using this method, therefore, the cells are
stimulated with equal amount of charge independently of their position [8].

In inductive coupling, a magnetic field is used instead of an electric field. The magnetic
fields are created with the use of coils, and the cells to be stimulated are placed in the center of
the coils. An homogeneous magnetic field is produced across the cells, with the currents being
generated from the magnetic field and stimulating the cells. In this method, no electrodes are
required [8].

Both the inductive and capacitive coupling provide the advantage of being non-invasive,
tackling the issues of the direct coupling stimulation method. However, for in-vivo stimulation
these techniques do not prove to be an adequate solution, at the moment, due to high circuit
area and high compliance voltages being required. Therefore, the stimulation method followed
in the project is based on direct coupling [8].

2.2.2 Direct Coupling Stimulation

The stimulus applied with direct coupling can be generated in the form of voltage, current
or charge.

Voltage stimulation circuits are based on potentiostats. A potentiostat is a device that is
capable of applying a voltage potential to a certain load and, measure the generated current
on the load [9]. This way, it is possible to prevent damages on the cells, by acting on the
voltage that is being applied [9]. Voltage stimulation has a major drawback. It does not allow
a precise control of the charge that is being stimulated. For this reason, it is usually preferred
the charge and current stimulation architectures.

Figure 2.3: Curent/Charge Stimulation. At the left: half bridge circuit; at the right: h-bridge circuit
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Current stimulation is achieved with the usage of programmable current sources that
provide stable currents, and additional circuits to drive the cells. Furthermore, control on
the current direction can be achieved using circuits such has the half bridge or the h-bridge
architectures [10] (figure 2.3). However, current stimulation is limited by the supply voltage,
which can be problematic for very high load impedance. Stimulation using charge control
can be implemented using similar circuits. By controlling the time that the switches from
the bridge circuit are active, the charge applied to the load is also controlled [10]. Current
or charge stimulation are more desirable, since with these methods it is possible to apply a
controlled stimulus, if the voltage drop at the load impedance (RL) is lower than the supply
voltage (VDD), that is RLoad · ILoad < VDD. Furthermore, stimulus direction control can easily
be achieved [10].

Important factors to take into consideration on the electrical stimulation topic is the
stimulation polarity control capability, the stimulating frequencies and the current amplitude.
For effective neuronal regeneration, studies report that the current amplitudes and frequencies
are smaller than those used on pain relief spinal cord implants and deep brain stimulation
[11]. Furthermore, bidirectional stimulation is important to provide effective regeneration of
the descending motor and ascending sensory neurons.

Major constraints on the design of ASIC for in-vivo stimulation system are power con-
sumption and circuit area. Since batteries’ have limited lifespan, power efficient circuits are
desirable, to maximize batteries life. In addition, with direct coupling, the stimulation circuit
is in direct contact with the cells and, many times are implanted on the animal, therefore
having a device small as possible is a requirement.

2.3 Electrical Stimulation Systems: State of the Art Review

The first studies and experiences on neurostimulation can be traced back to 1811, where
Bell conducted experiments on spinal cord nerves. Several studies and discoveries followed on
this topic. However, in the 20th century, with the development of powerful electronic circuits
and systems the understanding on the nervous system operation and its interactions improved
significantly [12]. Furthermore, with the development of these powerful electronic systems, new
venues on neurostimulation have been explored, as the example of the electrical stimulation.
Initially, electrical stimulation’s aim was to increase SCI patients’ mobility. However, with the
further development on circuits and biomedical systems, electrical stimulation applications
extended to applications such as heart pacemakers, cochlear implants and bladder control [2].
Today, numerous electrical stimulation systems are reported on the literature, in particular,
stimulation systems using ASICs.

In 1997, a programmable current-source dedicated to implantable microstimulators was
presented, in Bipolar CMOS (BiCMOS) 0.8µm technology [13]. It was based on a binary
weighted current steering Digital-to-Analog Converter (DAC) that received a binary word
and converted it into a proportional current. This current was amplified using current mirrors
placed in parallel. Finally, the proposed solution presented an h-bridge architecture output
stage to drive the nerve with bidirectional current. It provided 32 steps of stimulation (5 bits)
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and up to 4mA of maximum current. In 1998, a similar stimulation system was presented
for a visual microstimulator [14] in a 0.35µm technology. The main difference was on the
DAC. This work proposed a current steering DAC based on thermometer decoders and similar
current cells. This further increased the provided current accuracy. In 2004, an implantable
electrical neural stimulation device for motor recovery for SCI patients, in a 0.8µm technology
was presented [15]. The general architecture is based on a 8 thermometer decoded current
steering DAC and an output stage based on a current mirror that drive the load with a
maximum current of 20mA, with a resolution of 20µA. To provide higher voltage compliance,
a DC-DC converter based on a charge pump architecture was developed. In the same year, a
stimulation ASIC for cochlear implant was proposed, [16], using a 0.35µm technology. The
general circuit architecture was similar to [15]. A thermometer decoded DAC was used to
provide the necessary current and an h-bridge architecture was used to stimulate the load
in both directions. A different approach was presented in 2005 [17]. The authors presented
a stimulation circuit based on voltage-to-current conversion, where the current generated is
controlled by switching the resistor responsible for conversion. A DAC converter with the
output signal in voltage is used to maintain N-Channel Metal Oxide Semiconductor (NMOS)
transistors in triode operation, region where the NMOS resistance changes linearly with the
applied voltage applied. In 2012, two approaches for neural stimulation have been reported.
An high voltage reconfigurable stimulator for SCI, with voltage stimulation was presented
in [18]. In this approach, the amplitude of the pulses to be applied are sent to the ASIC
using a binary word. Then selection logic, based on sample and hold circuits and decoders,
is used to select the output channels from the 16 provided. This approach also provides
control on the pulse width and frequency. Additionally, a charge pump to increase the voltage
compliance is added. In [19], a wireless programmable neural stimulator is presented. The
pulse frequency, amplitude and shape is controlled with a microcontroller that communicates
with the implanted ASIC with an inductive link. The stimulation circuit itself is based on a
voltage output DAC and a voltage-to-current converter that provides the stimulation current.
To drive the load, an array of switches and additional logic is used. In 2015, an electrical
stimulation ASIC in 0.18µm technology was presented by [20] for cochlear implants. It is based
on a 7 bit current steering DAC composed by the combination of two subDACs. The currents
from the subDACs are summed and provided to a modified half bridge architecture that
stimulates the load. In 2017, [21] another architecture that provides bidirectional stimulation
current was presented. Two 4 bits current steering DACs, with a R-2R architecture are used.
At the output a half bridge circuit is used to drive the load, where one DAC acts as a current
source and the other as a current sink, providing the bidirectional stimulation. To further
increase the stimulation current accuracy, a DAC calibration circuit is introduced by the
authors. Still in 2017, an ASIC capable of neural stimulation and recording was proposed
[22] implemented in a 0.18µm technology. Focusing on the stimulation, it presents two DAC
converters based on a current steering topology. One DAC acts as a current source and the
other as a current sink. To control the current source and sink a half bridge output stage is
used. Calibration on the DACs is included to increase the current accuracy and resolution. In
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addition, a digital interface to control the operation flow and to communicate with an RF
module that consequently communicates with the microcontroller is also part of the system.
Finally, in 2020 a different approach for a implantable medical device was presented [23]. It
uses a general voltage-to-current converter, however, instead of feeding at the output of the
Operational Transconductance Amplifier (OTA) a voltage from an DAC, a reference voltage
is used. The objective is to control current through the transistor at the output of the OTA.
To provide a programmable output current, 8 replicas of this voltage-to-current converter are
included, with switches to enable or disable each one. In addition, to provide bidirectional
current to the load a half bridge architecture is used.

2.4 NeuroStimSpinal: In-Vivo System

After assessing the state of the art on the stimulation systems, the in-vivo system general
block diagram is presented on figure 2.4. The microcontroller is responsible for the communi-
cations, data processing and control the current applied to the scaffold. The ASIC part is
composed by a stimulation system and an acquisition system.

The acquisition system has the objective of acquiring the voltage at the terminals of the
scaffold, convert this voltage into a binary word and send it to the microcontroller. This way,
the scaffold impedance can be measured. Changes on the scaffold impedance can provide
information on the cell growth due to stimulation, without the need of surgical intervention.
The acquisition system is another work that was implemented in parallel with the stimulation
system. Therefore, it is not in the scope of the presented work.

The stimulation system should provide electrical stimulation with direct coupling, with the
stimulation being made with current. It is responsible for providing a stable current through
the scaffold, with controlled amplitude and flow direction. The current amplitude is coded
with a binary word and is sent to the ASIC, by the microcontroller, using Serial Peripheral
Communication (SPI). In addition, the microcontroller has the capability of controlling the

Figure 2.4: In-Vivo System Concept
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Figure 2.5: Stimulation System General Block Diagram

current direction and frequency by applying square signals to external pins from the ASIC.
The stimulation system is responsible for converting the digital word presented at its input
into a proportional current and drive it to the scaffold. The current amplitude should vary
from 0 to 200µA with a step resolution of 0.5µA, which is equivalent to 400 steps. Therefore,
the minimum number of bits needed for the binary word and the hardware responsible for the
conversion is 9 bits.

Figure 2.5 presents the general block diagram at block level of the stimulation system. It
should provide compatibility with the SPI protocol, so an interface for this feature, must be
part of the system. The current amplitude data word received is converted into current using
a programmable current-source, which is composed by a digital-to-analog converter and a
voltage-to-current converter capable of providing the necessary current. Finally, an h-bridge
architecture is used to drive the scaffold, since with this circuit it is possible to control the
current direction through the scaffold, using only one current source.

The in-vivo system specifications are presented in table 2.1. In addition to this specifi-
cations, the circuit area occupation should be low, since it is intended to be an implantable
device, and power consumption should be as low as possible to maximize the battery autonomy.

Table 2.1: In-Vivo System Specifications

Characteristics In-Vivo System
Stimulation Mode Current
Amplitude Range 0-200µA

Amplitude Resolution 0.5µA
Compliance Voltage 5V

Frequency 1Hz - 100kHz
Acquisition Support Voltage
Design Approach ASIC

Communication With Microcontroller SPI
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CHAPTER 3
Theoretical Background

This chapter has the objective of assess the different architectures for the required circuits
and to present some theoretical background on these circuits. The circuits studied are: the
digital-to-analog converters, the voltage-to-current converters and the h-bridge. In addition, a
comparative analysis on the different circuits architectures is performed in order to choose
the architectures that most fit the system requirements. Lastly, the SPI protocol, which is
responsible for interfacing the ASIC with the microcontroller, operation and main features
are presented.

3.1 Digital-to-Analog Converters

Data converters, in particular DACs, are components that are gaining more and more
importance on today’s electrical systems. Digital data processing reduces systems costs and
hardware requirements, therefore, there is an increasing tendency to store and process data
digitally. The device capable of converting data from the digital to the analog world is called
Digital-to-Analog Converter. These type of components are important to interface digital
components such as microcontrollers, digital sensors and communication systems.

Digital-to-analog converters receive a binary word at its input and produces at the output
an analog signal. The analog output (i.e. a voltage or current) can be expressed by expression
3.1, where Vref is the reference voltage, D the digital word applied at the input and N the
number of bits [24].

Vout = D

2N · Vref (3.1)

DACs can be classified based on their conversion speed, as represented in figure 3.1. Serial
or pipeline DACs are implemented with charge scaling approaches and switch capacitors. The
charge redistribution and the algorithmic architectures are examples of this type of DAC.
These have the advantage of being simple and optimal in area, but require one clock pulse to
convert one bit. Since speed on conversion is a priority for the converter, these architectures
were not considered any further. On the other hand, parallel digital-to-analog converters
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Figure 3.1: Digital-to-Analog Converters classifications [25]

Figure 3.2: Subranging techniques. a - analog scaling, b - reference scaling

are faster on the digital word conversion [25]. It can use current, voltage or charge steering
approaches, concepts that are going to be explored in this section.

In addition to the traditional architectures and to achieve DACs with higher resolutions,
techniques of subranging are used. These techniques divide the total number of bits (N) of
the DAC into k smaller sub-DACs. Sub-ranging can be made using scaling on the reference
voltage (or current) or scaling the analog output of each sub-DAC. The subranging techniques
are presented in figure 3.2.

3.1.1 General Concepts and Performance Metrics

A digital-to-analog converter converts a binary word presented at its input into an analog
quantity. The N bit word presented at the input, can code 2N possible analog values at the
output, which is called the converter resolution. The bits presented at the input have also
different weights associated. The bit with the highest value is called the Most Significant
Bit (MSB) the one with the lowest is called the Least Significant Bit (LSB). In the present
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document the MSB is going to be referred as the bit b0 and the LSB to bN − 1 [25].
A LSB can also be referred as the minimum analog output step size, which is equivalent

to 3.2.

VLSB = VFS
2N − 1 (3.2)

VFS refers to the full scale voltage. Full scale is equal to the difference between the analog
output when all bits are ’1’ to the analog output when all bits are ’0’, which can be expressed
by 3.3, where VREF is the DAC reference voltage.

VFS =
(
VREF − VREF

2N
)

− 0 (3.3)

As for performance, a DAC can be characterized with static and dynamic measurements.
The static measurements describe the converter behaviour when a certain word is applied at
the input. The most important static characteristics are:

• Offset error: defined as the DC offset present in the DAC transfer function with reference
to the ideal one. For example, when the input digital word codes an analog value of 0,
the obtained analog output should also be 0.

• Gain error: defined as the difference between the slope of the actual DAC transfer
function when compared to the ideal one [26].

• Differential Non-Linearities (DNL): can be defined as the maximum LSB change in the
transfer function from the ideal step size. Ideally, a change of 1 LSB in digital code
corresponds to a change of exactly 1 LSB of analog signal. Usually measured in LSB
[26].

• Integral Non-Linearities (INL): measures the deviation from the real DAC transfer
function from an ideal one in LSB [26].

• Monotonicity: A DAC is classified as monotonic when the obtained output increases
with the increase of the input [26].

As for the dynamic performance, it describes the DAC behavior when digital words are
changed at the input of the DAC. The dynamic errors influence mainly the conversion speed,
which is the time that a converter takes to provide the analog output when digital words are
changed at the input. Examples of dynamic measures used to evaluate a converter are:

• Settling Time: measures how long it takes to the converter to settle the analog output
on the final value.

• Glitches: glitches are caused by changes in codes. It is defined as the overshoot and/or
undershoot of the DAC output when a transition of a digital word at the input occurs.
It is measured when on the highest transition of codes at the input (i.e., when it changes
from 01..1 to 10..0) [26].

• Slew rate: measures the maximum rate at which a converter is capable of changing the
output. Usually it is associated with the operational amplifiers needed at the output for
most DAC architectures.
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Figure 3.3: Binary Weighted Resistor DAC

3.1.2 Binary Weighted Resistor Ladder

The binary-weighted resistor DAC consists on N binary weighted resistors. The MSB is
encoded with the resistance R, being the following bits resistances divided by binary factors of
the MSB resistance. It is common to have the resistors connected to the inverting input of an
operational amplifier in order to convert the output to voltage. In figure 3.3, it is presented a
general topology of binary weighted resistor DAC.

The working principle is: based on the active switches, the resistors are connected to
either the reference voltage or ground. For example, if the bit bi is 1, the resistor 2i−1R is
connected to VRef . In contrast, if the bit is 0 the resistor is connected to ground. In those
connected to the reference voltage a binary weighted current flows through these resistors.
Since at the inverting input there is a virtual ground, the current flowing on the resistors is
summed up and flows through the feedback resistor RF . The analog voltage at the output of
the DAC is given by equation 3.4, where bi represents the logic level of the bit i. Note that
the RF resistor can be used to scale the voltage at the output.

Vout = −RF IF = −RFVRef
(
b0
R

+ b1
2R + ...+ bN−1

2N−1 ·R

)
(3.4)

This architecture is simple to implement. However, increasing the resolution, requires
an increase on the components value spread, which is unfeasible for high resolution DACs.
Moreover, the resistors matching is low due to variations on the fabrication process, decreasing
the bits accuracy. Additionally, the power dissipation is higher than in other architectures.
Finally, the switches on resistance must be low, otherwise it will affect the resistors’ value
significantly [24].

3.1.3 R-2R Ladder

The R-2R ladder architecture is an alternative to the binary-weighted resistor that
eliminates the large component spread from the latter. It consists on a ladder of resistors
with resistances R and 2R as it is shown in figure 3.4. With this topology, binary weighted
currents are achieved, since the currents are reduced by factors of two when flowing from
the left side of the resistor ladder to the right side [25]. As the previous case, an operational
amplifier is usually included at the output, with the current from the resistor ladder entering
in the inverting output of the amplifier. This way, the currents are summed up and converted
to voltage at the output through the feedback loop.
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Figure 3.4: R-2R Ladder DAC

This DAC architecture is widely used since it is fast and simple to implement, with small
components spread. However, there is always a path of resistors conducting, therefore it
is not energy efficient. In addition to this disadvantage, the number of R and 2R resistors
needed increase linearly with the resolution, therefore it can also be inefficient regarding area
occupation. Finally, this architecture can be affected by mismatches on the resistors, due to
the fabrication process, which may decrease the converter accuracy [27].

3.1.4 Binary Weighted Current Source

Binary weighted current scaling DACs have similar implementation as the binary weighted
resistor ladder, the difference is instead of using resistors acting as current sources, transistors
are used. A general schematic of this type of architecture of DAC is presented in figure 3.5.
It is composed by N current sources, each one producing a binary scaled current.

To produce each of the currents, several techniques can be used, namely:
• Implement each individual current source with one transistor, where the dimension ratio

of each is scaled with binary weighted dimensions ratio [14]. However, this approach
leads to high spread in the transistors size ratio, if high resolution is needed. Additionally,
it is sensible to layout mismatches on the transistors, which may introduce errors on the
conversion.

• A second approach used to reduced the mismatch problems with the previous architecture
is to use transistors with similar dimensions ratio and place the transistors in series or
in parallel, creating binary weighted current sources as presented in [28], [13]. These

Figure 3.5: Binary-weighted current source
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topology still presents problems. With the increase of the resolution needed, the number
of components used increase, as well as the circuit complexity.

These DACs output is usually given in current, but can also have an output in voltage.
For that a current to voltage converter based on an operational amplifier is used.

Overall these presented current scaling architectures provide fast conversion. However,
for high resolution circuits, they get complex, power dissipation is high when compared to
the charge scaling approach and components mismatch can affect significantly the DAC’s
performance [29].

3.1.5 Current Scaling with Similar Current Sources

Another approach on current scaling DACs is to use similar current sources, which divide
a reference current. Digital codes are then used to activate each of the current sources. A
common digital code used to enable the current sources are thermometer codes. A general
representation of current scaling DACs with a thermometer decoder is presented in figure
3.6. The output of each signal from the binary-to-thermometer decoder is connected to a
switch that controls a current source. To activate the equivalent to a certain binary word, the
decimal number of current sources must be enabled (i.e. if the input code is 100, 4 current
sources are enabled).

This type of architecture is widely used since it is always monotonic, due to the fact that
for a certain binary word an equivalent number of current sources being enabled. Weaknesses
on components mismatch are reduced, since to guarantee a monotonic DAC, the mismatch
should be less than 50% [30]. For these reasons, the thermometer coded current scaling
DACs, provides a high speed and accurate conversion. However, this architecture has also
disadvantages. The number of current sources needed grows with the number of bits needed.
For N bits, it is needed 2N current sources, which increases the circuit’s complexity and area

Figure 3.6: Current scaling with thermometer decoder
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occupation. In addition, it is needed additional hardware to decode binary to thermometer,
which increase the complexity, area occupation and dynamic power consumption. Finally, this
architecture power dissipation is much higher than the charge scaling counterpart.

The implementation of the thermometer decoded DACs is diverse. In [16], two thermometer
decoders are used, one for the MSB part of the DAC and the other for the LSB part, with the
scaling being made on the reference current. In [14] and [31], a matrix of current sources is
made, where a binary-to-thermometer decoder decodes the matrix rows and other the columns.
In reference [32], a 10 bit DAC is presented, which combines a 6 bit thermometer decoded
DAC at the MSB with a binary weighted for the 4 LSB bits.

3.1.6 Resistor String Voltage Scaling

A typical topology for the voltage scaling DAC is presented in figure 3.7. It consists on
2N resistors in series, where all resistors have the same weight (value). Since at the top of
the resistor ladder is the reference voltage and at the bottom is ground, the analog output is
produced by the direct voltage division of the resistors. The switches select the resistors used
for the voltage division and consequently the output voltage. The presented topology uses
decoders that receive as input the bits and activate the resistor ladder taking into consideration
the active bits [25].

Figure 3.7: Voltage scaling DAC

This architecture is simple to implement and guarantees that the DAC is monotonic.
However, for high resolutions, a large number of resistors is needed, which is inefficient on area
occupation. Another problem of this architecture is that it is sensible to parasitic capacitances
at each node, especially for higher resolutions degrading the conversion speed [25].

3.1.7 Binary Weighted Charge Scaling

Charge scaling digital-to-analog converters are a popular choice in CMOS technology. A
binary weighted charge scaling DAC is presented in figure 3.8. The converter is composed
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Figure 3.8: Binary Weighted Charge Scaling DAC

by parallel array of capacitors with binary weighted values, a switching network and an
operational amplifier in buffer configuration. The operation is based on the principle of
”capacitive attenuation of the reference voltage” [25]. This means that the capacitors array
work as voltage attenuators of the reference voltage, being the output a function of the
capacitors connected to the reference voltage. In most implementations, an operational
amplifier is included at the output in order to provide a virtual ground at the output node of
the converter, isolating the capacitor array from the remaining circuit and reducing capacitive
load effects on the converter, which could degrade the conversion.

The operation of this converter is made in two phases. First is the reset phase where the
reset switch is activated and all the capacitors are connected to ground where they discharged.
The second phase happens after the capacitors being discharged. It starts when the reset
switch is disabled and a digital word is presented to the switches array at the DAC input.
Each of the bit connects a capacitor top plate to ground or to the reference voltage, if the bit
presented is ’0’ or ’1’ respectively. After the activation of the switches with the digital word,
the DAC computes the correspondent analog voltage. Applying the Thevenin equivalent at
each input bit, it can be obtained the voltage expression at the DAC output 3.5.

Vout =
[
b0
2 + ...+ b9

2N
]

· VRef (3.5)

The binary weighted charge scaling DAC is characterized for having low power dissipation
since it is mainly composed by capacitors, being simple to implement, providing high accuracy
and conversion speed. As for the main disadvantages, this DAC is sensible to parasitics
and capacitors mismatch, which increase the inaccuracy of the converter. Additionally, for
higher resolutions, the number of capacitors needed increase to 2N . To mitigate the second
disadvantage, analog sub ranging techniques can be used. These techniques are based on
dividing a N bit converter into various B bits converters with scaling capacitor in between
the subDACs. As for the parasitic present on the converter, its effects can be reduced with
the inclusion of certain techniques into the layout design. Some of them are: connecting the
capacitors top plate to the output node and the common centroid technique [33], [34] [35].
These techniques helps improving the components matching, as well as, reducing the parasitic
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effect. This converter architecture is very popular as a block for Successive Approximation
Register (SAR) Analog-to-Digital Converter (ADC)s ([36]) and for low power applications
where an interface from the digital to analog worlds is needed [37].

3.1.8 C-2C Ladder

The C-2C ladder DAC is a charge scaling DAC that aims to reduce the usage of high
relations of capacitors from the binary weighted charge scaling approach, and consequently,
to reduce the area consumption. The architecture of this DAC is presented in figure 3.9.
This converter presents an architecture similar to the R-2R but, instead of resistors it is
used capacitors. A switching network is also part of the architecture, where each switch
is connected to a terminal of a capacitor with value C. These switches are responsible of
enabling and disabling the capacitors used on the conversion, by connecting each capacitor to
the reference voltage if the bit at the input is ”1” and to ground if it is ”0” [38]. Using the
Thevenin equivalent recursively on each input bit, it can be proven that this DAC follows
expression [38].

Figure 3.9: C-2C Ladder DAC

Vout = D0
Vref

2 + ...+DN−1
Vref
2N (3.6)

The advantages of this architecture include low power consumption, low area occupation
and high speed on conversion [39]. The disadvantage of this converter is the fact that it is
sensible to parasitics on the interconnecting nodes, which cause an increase in the converter
non linearities, therefore, affecting the converter accuracy. Due to this factor the usage of this
type of architectures is, usually, limited to DACs of 6 bits [40]. Reference [41], presents an
implementation of a C-2C DAC with floating voltage shield to reduce the parasitic influence
on the converter and increasing its usage and resolution. Finally, [39] present the usage of the
C-2C with other DAC architectures such as the binary charge scaling and with the use of
thermometer decodes, respectively.

3.2 Voltage-to-Current Converters

The Voltage-to-Current (V-I) converter is an analog block that takes at its input a voltage
and converts it into an appropriate current. These blocks are important components in analog
and mixed signals applications such as analog multipliers, variable gain amplifiers, sensor
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interfaces, continuous-time filters and data converters [42]. A V-I converter should have a high
linear relation between the input voltage and the produced current, appropriate bandwidth,
be insensitive to load effects and have high input resistance [43]. Additionally, for low power
and supply voltage applications, a near rail-to-rail operation and low power consumption are
important factors to take into consideration on the design.

The present section is going to revise classical V-I converters architectures, as well as
present current high performance architectures that were taken into consideration on the
system design.

3.2.1 Current Mirrors

Before entering into the voltage to current converters, typical architectures of current
mirrors are going to be introduced, since it is a major component for this analog block.
Current mirrors are widely use as biasing elements and amplifier stages [44].

Current mirrors are important analog blocks that receive at its input a certain current
and replicates it at its output. The current provided at the output can be similar or a scaled
version, by applying a certain gain (K), to the input current (expression 3.7). Ideally, a current
mirror should have: zero input impedance, infinite output impedance and the output to input
relation should be a linear curve.

Iout = K · Iin (3.7)

Figure 3.10 present some of the classic current mirror approaches. In 3.10a, the simple
current mirror is presented. In this topology, assuming that the transistors have equal
length, the output current is given by the ratio of the width of transistor M2 over transistor
M1, multiplied by the input current. However, this architecture is severely sensitive to the
transistors matching. Furthermore, it is sensible to deviations on the transistors’ Vds. If these
parameters are not fully matched, the current copy accuracy is poor. In addition, the output
resistance which is given by L

λID
(transistor rds), which can be low for several applications

[44].
In 3.10b, the cascode current mirror is presented. It includes one additional transistor in

each side of the mirror. M1 and M3 should have the same size ratio as well as M2 and M4.
This way, if the same length is used, the relation of currents is the same as the simple current
mirror case. The advantages of this architecture is that the current copy accuracy is increased
since the mismatch effects are attenuated by adding the extra current mirror in series and
the output resistance is increased to Rout = rds2 + rds4(1 + gm4rds2) [44]. However, the
compliance voltage at the output may be low for low power applications, since the maximum
voltage for the circuit to operate, in saturation region, is given by VDD − VDS2 − VDS4 − VT

and the minimum voltage needed is VDS1 + VDS3 + 2VT .
The wide swing cascode current mirror is presented in figure 3.10c. This architecture is an

improvement to the typical cascode current mirror and was designed to increase the output
voltage swing, while maintaining good mirroring accuracy. The maximum output voltage
compliance is VDD − VDS2 − VDS4, which is an increase in output swing when compared to
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Figure 3.10: Current mirror architectures. a) simple current mirror; b) cascode current mirror; c)
wide-swing cascode current mirror; d) regulated current mirror

the cascode current mirror. As for the minimum input voltage, it requires a voltage of at
least VDS1 − VT to operate. Additionally, the wide swing current mirror offers a lower input
resistance (1/gm) when compared to the regular cascode architecture, since the drain of M4
is connected directly to the gate of M1, while still offering the same output resistance [45].

The final current mirror presented is in figure 3.10d [42]. This architecture uses an error
amplifier which ensures that VDS1 is equal to VDS2, due to the virtual short circuit. This way,
it provides an accurate current mirroring and increases the current mirror working range since
the minimum input voltage necessary to operate is VDS1 and the maximum is V DD − VDS2.
However, it presents the drawback of needing an additional operational amplifier, which
increases the power dissipation, area occupation, circuit complexity and limits the current
mirror bandwidth.

3.2.2 Conventional V-I Converter

The most common topology of a voltage-to-current converter consists of an operational
amplifier driving a NMOS transistor, a current mirror of P-Channel Metal Oxide Semiconductor
(PMOS) transistor to replicate the current to the output and a resistor to ground on a negative
feedback loop as shown in figure 3.11. In this architecture, the input voltage is presented at
the input of the operational amplifier and is fed to the resistor through a negative feedback
loop. The resistor is responsible for converting the input voltage into the desired current. In
the presented figure example, the current is mirrored and is fed onto the load. Several types
of current mirrors can be used at the output as the ones described previously.

The current through the resistor can be given by equation 3.8. This current however,
can be scaled by providing a current gain or attenuation (K) with the current mirror at the
output, so the output current can be given by 3.9.

IR = Vin
R

(3.8)

Iout = K · Vin
R

(3.9)
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Figure 3.11: Conventional V-I Converter

The output swing is limited by the minimum voltage necessary for the current mirror
transistors to operate in saturation region. This way, the output swing from this topology goes
from 0 to VDD−VDS1 −VT1. Increasing the M1 transistor size ratio, VDS1 can be reduced, but
this topology still has a limited output swing, specifically low for applications where having
high operating range is a priority. Furthermore, if the VDS of M2 and M3 transistors is not
exactly the same, the current copy accuracy to the output will be degraded. Nevertheless, this
architecture provides a high input impedance, since the voltage is presented to an operational
amplifier input [46].

3.2.3 Wide-Swing V-I Converter

The wide-swing V-I converter presents a similar architecture as the conventional one, only
that instead of using an operational amplifier driving a NMOS transistor, it uses an OTA
driving the PMOS transistor that is responsible for the current mirroring to the output as
presented in figure 3.12. The working principle is also similar the previous architecture. The
voltage to convert is provided at the input of the OTA, which is presented to a resistor that is
responsible for the conversion to current with a negative feedback loop. Then, the current
flows through a current mirror with a gain (K) that is responsible to scale the converted
current and deliver it to the output. The feedback loop appears to be positive, but transistor
M1 is in a inverting common source configuration, which makes the feedback negative. The
output current can be also expressed by equation 3.9.

The wide-swing V-I converter presents a major advantage. Since the OTA drives directly
the current mirror PMOS transistor, the converter output swing is extended to V DD− VDS2,
which is equal to the voltage swing of a simple current mirror. When the input voltage is
higher than this value, the transistor M1 leaves the saturation region and works on the triode
region. As consequence, the converter stops being linear at these voltages.

To summarize, the wide-swing V-I converter presents similar operation as the conventional.
It is sensitive to mismatches on the VDS of M2 and M3 transistors. The voltage swing is
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extended, however several applications may require a higher voltage swing.

Figure 3.12: Wide-Swing V-I Converter

3.2.4 Rail-to-Rail V-I Converter

To extend even further the output swing from the wide-swing V-I converter architecture,
three different architecture based on the same principle of operation have been proposed [47].
The three converters are the Feedforward Voltage Attenuation (FFVA), the Feedback Voltage
Attenuation (FBVA)) and the Feedforward Current Attenuation (FFCA). The working
principle behind these architectures is to attenuate the input voltage before fed it to an
wide-swing V-I converter. The advantage of this, is to maintain the current mirror transistors
working in the saturation region for the entire voltage swing.

Feedforward Voltage Attenuation V-I converter

The Feedforward Voltage Attenuation architecture is presented in figure 3.13. This circuit
is composed by a main wide-swing V-I converter that is responsible for converting the input
voltage to current and mirror it to the output and to a voltage attenuator (comprised by
the transistor M1, the input OTA and the resistors R1 and R2) before the main converter.
The principle of operation is the following: the input voltage is fed to an OTA, which, using
negative feedback, presents this voltage into a resistive voltage divider that attenuates this
voltage by a factor α. The attenuated voltage ( α · Vin) is then fed to the main wide-swing
converter. Finally, the voltage presented is buffered to the resistor Rs, which converts the
voltage to current in similar fashion as previously explained.

Since the voltage presented to the main converter is between 0 and α ·Vin, if the attenuation
factor is sufficiently low, the current mirror transistors never leave the saturation region,
therefore, rail-to-rail operation is achieved if the voltage presented at the input is also rail-to-
rail. Again, a current gain (K) can be used on the current mirror to scale the output current.
The example presented uses a cascode current mirror since it provides a good copy of the
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Figure 3.13: Feedforward Voltage Attenuation V-I Converter

current and a high output impedance. However, different types of current mirrors can be used
to perform the current copy. The output current is given by expression 3.10.

Iout = α · Vin
K ·Rs

(3.10)

As it is reported in [47], high linear relation between the input voltage and output current
and a near rail-to-rail operation is achieved with this topology. The factor that limits the signal
excursion is that M1 for voltages above VDD − VDS1 works in the triode region. To decrease
VDS1 as much as possible, high transistors dimension ratios can be used. Increases in this
transistor size relation, however, decreases the converter performance regarding bandwidth.
Note that for the present application, bandwidth requirements are not demanding.

Feedback Voltage Attenuation V-I converter

The Feedback Voltage Attenuation V-I converter is presented on figure 3.14. In this
architecture, the voltage attenuator is composed by the resistors R1 and R2, the bottom OTA
and M1 transistor. The main differences of this architecture from the previous is that the
OTA from the main converter is responsible for receiving the input voltage and providing it
to the voltage divider, using negative feedback (provided by the OTA and the M1 transistor
in common source configuration). The attenuated voltage is then provided to the resistor
responsible for the voltage to current conversion by the voltage attenuator OTA. Then, the
process of conversion is the same as previously described. The RS resistor converts the
attenuated voltage into a proportional current and the output current source scales the current
with a current gain K and provides it to the output load. This way, the obtained equation is
similar as the FFVA case presented in 3.10.

The FBVA presents a very similar architecture as the FFVA, only that the voltage
attenuator is placed in the main converter negative feedback loop, which may cause stability
problems [47]. For this reason, this architecture is slightly more complex than the previous
considered.
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Figure 3.14: Feedback Voltage Attenuation V-I Converter

Feedforward Current Attenuation V-I converter

Finally, the Feedforward Current Attenuation V-I converter approach is demonstrated on
figure 3.15. The principle of operation of this converter is similar to the other two, however it
uses a slightly different architecture. In general, the FFCA is composed by two wide-swing
voltage to current converters. The input voltage is presented at both OTAs’ inverting inputs.
The first stage, converts the presented input voltage into a proportional current by the R1
resistor. The obtained current is mirrored and provided to the second stage with a current
gain K1. At this point the current can be described by equation 3.11.

Iout = Vin
K1 ·R1

(3.11)

Since the OTA input resistance is high, the current I1 drives the resistor R2 between
the non-inverting input of the OTA (from the second stage) and the RS resistor. With the
inclusion of R2, it is possible to attenuate the input voltage presented at the second stage.

Figure 3.15: Feedforward Current Attenuation V-I Converter
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Observing the second stage of the converter, the voltage present at the inverting input, is the
input voltage and, the non-inverting input is equal to the voltage present at the resistor RS
(VS) plus the voltage drop at R2 resistor (V2). Since the voltage at both inputs from the OTA
are at the same voltage, relations 3.12 and 3.13 can be used to relate the voltage presented to
the resistor RS .

V+ = V− <=> Vs − V2 ·R2 = Vin (3.12)

Vs = Vin − Vin
KA ·R1

(3.13)

From 3.13, the attenuation factor α can be obtained and is equal to 3.14. It is dependant
on the resistors R1 and R2 value, as well as, the current gain from the current mirror of the
first stage (K1).

α = K1 ·R1 −R2
K1 ·R1

(3.14)

Finally, having obtained the voltage at the resistor RS , it is converted into current with
the methodology previously explained for the wide-swing converter approach. This current is
then mirrored with a gain K2 to the output. The output current can be given by expression
3.15.

Iout = VS
K2 ·RS

(3.15)

In general, this converter topology presents similar performance and characteristics as the
previous, however, it is more complex to implement and to scale.

3.3 H-Bridge

H-Bridge circuits are commonly used to applications such as, driving DC motors, DC-DC
converters, class D audio amplifiers and robotics [48].

The particularity about the h-bridge circuit is that it allows the control of the direction
of a current applied to a certain load using only one current source. A general topology for
this circuit is presented in figure 3.16. It is composed by 4 switches that form an H shape,
with the load to drive in the middle and a current source that provides the necessary current.
Metal Oxide Semiconductor Field Effect Transistor (MOSFET) transistors can be used as
the bridge switches. The working principle of this circuit is the following:

• When the S1 and S4 switches are activated and S2 and S3 are ”off”, the current flows
through the load using the path formed by S1 and S4.

• When the S2 and S3 switches are activated and S1 and S4 are ”off”, the current flows
through the load using the path formed by S2 and S3. So, in the reversed direction from
the previous case.

• When all the switches are in the ”off” state, no current flows through the load.
• The circuit operation prevents the situation where the switches are all closed.
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Figure 3.16: H-Bridge general architecture

Therefore, the current applied to a certain load can be bidirectional. A summarized h-bridge
operation is presented in table 3.1.

Table 3.1: H-Bridge control logic truth table

S1 S2 S3 S4 Voltage across the load
0 0 0 0 OFF
0 1 1 0 Negative
1 0 0 1 Positive

Having the pair S1 and S3 or the pair S2 and S4 active simultaneously it is, in most cases,
not desirable since it can damage the bridge transistors. However, in some applications, these
states are desired (i.e. for braking a motor), being used diodes to protect the switches.

To complement the direction control, in applications such as DC motors driving, the motor
rotation speed can be controlled by applying Pulse Width Modulation (PWM) signals to the
pair of opposite transistors part of the h-bridge. For the case of the present application, the
parameters that need to be controlled are the direction of the current (controlled by pulses
from the microcontroller) and the current amplitude applied (controlled by the usage of the
programmable current source).

3.3.1 MOSFET Switch

A MOSFET device can work as a switch by biasing it in the cutoff or in the triode regions.
When biased in the cutoff region, no current (to be more precise, small amount of current)
flows through the MOSFET, being equivalent as a switch in the open state. In contrast, when
biasing the MOSFET in the triode region, the current that flows is linear to the VDS applied
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to the transistor (which is small to keep the MOSFET device in triode). When in triode, the
MOSFET is equivalent to a switch in the closed state.

Ideally, a MOSFET when working as a switch should have no voltage losses when operating
in the ”on” state (zero ”on” resistance), when in the ”off” state the resistance between the
source and drain should be infinite and there should be no restrictions on the commutation
speed. These characteristics do not happen in practice. Namely the on resistance is a
characteristic that should be focused on the switch design on low power applications. The on
resistance parameter (rDS) is given by the ratio of VDS and IDS as represented in expression
3.16 [49].

rDS = VDS
IDS

(3.16)

Considering a NMOS transistor, the IDS in the triode region can be given by equation
3.17, when considering that VDS is much smaller than VGS − VT [49].

IDS = µnCox
W

L
(VGS − VT )VDS (3.17)

Therefore, replacing equation 3.17 in equation 3.16, the rDS when the transistor is
conduction in the triode region can be obtained in relation to the geometry of the transistor
and VGS − VT (equation 3.18) [49]. Analysing expression 3.18, it can be seen that maintaining
a certain VGS − VT , to reduce the ”on” resistance the transistor dimension ratio should
be increased. So, when low resistance is required, the switches’ size increase, which have
consequences in area consumption. Furthermore, increasing the transistors size, the dynamic
power consumption increases, being also factor to take into consideration.

rDS = 1
µnCox

W
L (VGS − VT )

(3.18)

3.3.2 CMOS Switch

Figure 3.17: CMOS Switch

The CMOS switch (or transmission gate) improves the MOS switches dynamic range and
reduces the resistance when conducting, by combining in parallel a NMOS and a PMOS switch
as represented in figure 3.17. Since they are combined in parallel, when in conduction the
equivalent resistance is also the parallel of the two transistors, therefore, the ”on” resistance is
reduced [25]. Additionally, since the CMOS switch is a combination of a NMOS and a PMOS,
for lower output voltages the NMOS is the only transistor conducting, being the resistance
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only due to this transistor. On the other hand, if the switch voltage is near VDD, only the
PMOS is conducting and the resistance is only due to this transistor. Therefore, the dynamic
range of the switch is increased, using the best operating regions of both transistors.

The CMOS switch is controlled by two complementary signals (”A” and ”NA”). When
”A” is in the high state, ”NA” is in the low state and vice versa. When a high signal (for
example VDD) is applied to ”A” the NMOS transistor conducts and a low signal (i.e. ground)
is applied to the PMOS, and therefore both transistors are conducting. On the other hand, if
a low signal is applied to ”A”, both transistors are on the off state.

In conclusion, the CMOS switch provides reasonable values for the ”on” resistance, while
requiring transistors with smaller dimension ratio and, therefore, occupying less area.

3.4 Serial Peripheral Interface

As it is presented on the system specifications, the ASIC should support communication
with the microcontroller using the Serial Peripheral Interface (SPI) communication protocol.
The SPI is a protocol that is suited and commonly used for communications between integrated
circuits, or between integrated circuits and external peripherals and microcontrollers [50]. SPI
is used in a large variety of devices such as: sensors, memory cards, ADCs, DACs, display
drivers and communication between microcontrollers [50].

SPI is a synchronous communication protocol that presents a ”Master-Slave” architecture
with a single-master. This means that one device (called ”master”) is responsible for establish-
ing communication (with the ”slave” device) and controlling the data transfer. Additionally,
the master is the only device of the capable of controlling the clock, synchronising the master
and the slave. It is a full-duplex communication protocol, this means that it has the capability
of bidirectional communication between the master and slave. However, it is possible to
perform communication only from the master to the slave (”write” operation) or from the slave
to the master (”read” operation). For the first case it is of the master device responsibility, to
discard the received information, and on the second case it is the slave device responsibility
to do so [51].

The SPI protocol requires 4 signals to operate [51]:
• Clock signal (SCLK). It is sent from the master to all slaves and synchronizes all the

communication system devices.
• Chip Select (CS) or Slave Select (SS) signal. It is activated by the master and is used to

select the slave to establish communication. It is usually enabled at the ”LOW” state.
• Master Output Slave Input (MOSI). Serial data line, used for the master to send

information to a certain slave.
• Master Input Slave Output (MISO). Serial data line, used for the master to receive

information from a certain slave.
In addition to these signals, since a certain master can be connected to multiple devices
(”slaves”), a slave select signal is needed for each one of the slaves. Figure 3.18a demonstrates
the SPI interface for one slave device and figure 3.18b presents the signal interface for multiple
slave devices, where for each slave device there is a slave select signal. It is important to note
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that, even though multiple slaves can be connected to a single master, the master can only
establish communication with a single slave device at a time. In addition to the presented bus
architectures, a third one is presented in 3.18c, called daisy-chain. With this architecture, it
is possible to have multiple slaves connected to the master using only one slave select signal.
This is possible by connecting the MISO of each slave to the MOSI of the next, this way the
group of slaves is seen by the master has a single slave with higher size. If each slave can work
with b bits, the group of slaves (N) behave has a single slave of size N*b bits.

Figure 3.18: a. SPI master connected to a single slave, b. SPI master connected to multiple slaves,
c. SPI communication in daisy-chain operation [51]

In figure 3.19, an example of the protocol operation is presented. Before the communication
process, the master configures the clock signal at a frequency of operation supported by both
the slave and the master devices. The SPI master starts the communication process, which
can be to send or to receive information, by activating the chip select signal line (pulling low)
of the desired slave device and the clock signal is enabled at the previous configured frequency.
At each clock edge (in the presented case at the falling edge of the clock), an information bit
generated by the master is put on the MOSI line and an information bit generated by the
slave device is put on the MISO line. At the opposite clock edge (rising edge), the information
on the MOSI line is sampled by the slave and the information on the MISO is sampled by the
master. The information is transferred, using the described process, one bit per clock cycle
until the end of the data stream. When the data transfer is finished, the slave select line and
the clock signal are deactivated [52].

The SPI protocol has 4 modes of communication. These modes are dependent on two
bits, the CPHA and the CPOL. The CPOL bit indicates the clock logic level when it is on
the idle state (when it is not active). This means that if CPOL is set to ”1” the clock will
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Figure 3.19: Typical SPI operation example

Table 3.2: SPI Operation Modes [52]

Mode CPOL CPHA Clock in Idle State Clock Phase

0 0 0 Low Data sampled on rising edge
Data toggled at the falling edge

1 0 1 Low Data sampled on falling edge
Data toggled at the rising edge

2 1 0 High Data sampled on falling edge
Data toggled at the rising edge

3 1 1 High Data sampled on rising edge
Data toggled at the falling edge

.

be in idle in the ”High” state, if CPOL is set to ”0” the clock will idle on the ”Low” level.
The CPHA bit selects the clock phase. If CPHA is ”0” the sampling of the data will be
made on the rising edge and the toggle data will be in the falling edge. On the other hand,
if CPHA is ”1” the sampling will be on the falling edge of the clock and the toggle of data
on the rising edge. The four operation modes (mode 0, 1, 2 and 3) and the influence of each
signal is summarized on table 3.2 [52]. It is important to note that the master and the slave
should have the same operation mode to be possible to establish correctly the information.
If multiple slaves architecture is used and these slaves have different operation modes, the
master is responsible to reconfigure itself before establishing communication [51].
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CHAPTER 4
Architecture

This chapter presents the general architecture and the circuits used on the implemented
system. The approach on the design of each circuit is presented and the topology chosen for
the various circuits implemented is explained.

In figure 4.1 a general architecture of the system is presented. The system is composed
of a programmable current source, used to control the stimulating current amplitude, and a
h-bridge to drive the load. The programmable current source requires a DAC that allows to
set the desired current according to a binary word at its input. The topology chosen for the
digital-to-analog converter was based on a binary-weighted with charge scaling architecture.
Being the DAC output a voltage, a voltage to current converter is also necessary (part of
the programmable current source), in order to convert the voltage to a proportional current
with values varying in the range of the specifications. Additionally, it is a requirement for
the binary word to be received from the control unit via SPI communication, so additional
hardware to provide the interface for this protocol is required and is part of the system.

Figure 4.1: Stimulation system general architecture
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4.1 Digital-to-Analog Converter

As previously stated, the amplitude of the current applied through the scaffold is coded
and sent to the system in a digital word. This word is received by the stimulation system and
is converted into an analog signal using a digital-to-analog converter. The DAC should have
the following main characteristics: rail-to-rail operation (operate between 0 and VDD), high
accuracy, fast conversion and low power consumption. Additionally, low area consumption is
also an aspect that should be taken into consideration on the design.

The designed DAC was based on a charge scaling binary weighted topology, using the
split array method with a resolution of 10 bits. Its schematic is presented on figure 4.2. The
charge scaling architecture was chosen, because it is accurate and fast. Additionally, it has
less power dissipation than the remmaining mentioned types of converters, since the power
dissipation is mainly due to dynamic power consumption of the transistor switches required to
apply the digital word at the input of the DAC. The main disadvantage of the charge scaling
topology is the fact that it requires a large component spread and large sized capacitors for
high resolution DACs. An example is that for a 10 bit DAC resolution it is needed, for the
MSB, a capacitor with the value of 512*C, if C is the unit capacitor. This disadvantage can be
diminished using the subranging technique. Dividing the 10 bit DAC into two 5 bit subDACs,
the maximum capacitor value can be reduced to 16*C. To connect the LSB array with the
MSB, a scaling capacitor (Cs) is used to scale the LSB array weight. At the output of the
DAC, an operational amplifier in buffer configuration is included, to prevent load capacitive
effects on the converter by the external circuits.

Figure 4.2: Implemented charge scaling split array DAC

4.1.1 Operation and Design

The electrical components that constitute the implemented DAC (figure 4.2) are capacitors
with binary weighted values, an operation amplifier and switches. The switches are built with
transmission gates and inverters, which are going to be presented in the following subsection.

The implemented DAC is composed by two 5 bit charge scaling subDACs, being the main
DAC the one with the MSB capacitors array and where the output is taken. Additionally, the
analog output needs to be properly scaled which is done using the scaling capacitor Cs. This
capacitor is placed between the MSB and LSB arrays. Finally, a terminating capacitor Ct is
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Figure 4.3: DAC Thevenin equivalent

included in the LSB array and has the same value of the unit capacitor (C/16), in order to
make the LSB array equivalent capacitance 2C.

The Cs can be calculated knowing that the combination in series of the LSB array with
the scaling capacitor must serve has termination of the MSB array. Which means that the
series of Cs and the LSB array must be equal to the unit capacitor (C/16). This can be
expressed by equation 4.1. Manipulating this expression it is obtained that Cs is equal to
2C/31.

C

16 = 1
1
Cs

+ 1
2C

(4.1)

The DAC expression can be obtained resorting to the DAC Thévenin equivalent presented
on figure 4.3. In it, V1 and Ceq1 refer, respectively, to the equivalent voltage and capacitance
of the MSB array and V2 and Ceq2 to the same metrics of the LSB array. For each array, the
equivalent capacitance can be calculated by the parallel association of the capacitances in the
array.

Ceq1 = C

16 + C

8 + C

4 + C

2 + C = 31
16C (4.2)

Ceq2 = C

16 + C

16 + C

8 + C

4 + C

2 + C = 2C (4.3)

Having obtained the equivalent voltages, V1 and V2 can be obtained and are expressed
on expressions 4.4 and 4.5, respectively.
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Ceq1
b0 +
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C
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V2 = C
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37



Using the superposition principle and applying the voltage divider through the capacitors
for V1 and V2 independently, the expression at the output can be given by equation 4.6 and
simplified into 4.7.

Vout =
( 1

2 + 31
2

1
2 + 31

2 + 16
31

)
· V1 +

( 16
31

1
2 + 31

2 + 16
31

)
· V2 = 30

32 · V1 + 1
32 · V2 (4.6)

Vout = b0
2 + b1

4 + b2
8 + b3

16 + b4
32 + b5

64 + b6
128 + b7

256 + b8
512 + b9

1024 (4.7)

The value used for the unit capacitor was 400fF. The main factors for choosing the
unit capacitor size are: area consumption and mismatch between the capacitors [33]. Small
capacitors are usually desired since it decreases circuit area and increases the converter speed.
However, the influence of mismatches between the capacitors are reduced, when the sizes of
the capacitors are increased [40]. The choice of the unitary capacitor will be also discussed in
chapter 6. In table 4.1 it is presented the values used for the capacitors.

Table 4.1: DAC Capacitor Values

Capacitor Value (fF)
C/16 400
C/8 800
C/4 1600
C/2 3200
C 6400
CT 400
Cs 412.9

4.1.2 Switch

As seen in figure 4.2, the DAC receives at its input digital bits. If a certain received bit
has the logic value ’1’, the respective capacitor is switched to VDD. If it is received the value
’0’, the correspondent capacitor is switched to ground. This behavior on the switches matches
a 2x1 multiplexer operation. In CMOS, a 2x1 Multiplexer (MUX) can be implemented with
the circuit presented on figure 4.4. The selection signal is represented by the ”In” signal on
the presented schematic, which can only assume the values of VDD or GND. If ”In” is in the
HIGH state, the MN1 and MP1 transistors will be active and the other two turn off and, at
the output VDD will be presented. On the opposite side if ”In” is in the LOW state, MP2
and MN2 will be the active transistors and GND will be presented at the output.
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Figure 4.4: Implemented 2x1 multiplexer as DAC switch

4.1.3 Rail-to-Rail Operational Amplifier

The output of the DAC is buffered using an operational amplifier. Therefore, a rail-to-rail
operational amplifier was designed, and it is presented on figure 4.5. The amplifier was
designed taking in consideration the following main characteristics.

• Rail-to-rail operation at both the input and the output. This is an important feature
for low voltage applications as the present one.

• High slew-rate. One of the main sources of delay for the DAC to provide the voltage
at its output is the operational amplifier. In order for the conversion to be as fast as
possible the slew-rate must be high.

• Low power dissipation, due to power constraints.

Figure 4.5: Implemented rail-to-rail opamp schematic

As for the topology, the designed amplifier is comprised on a parallel differential pair at
the first stage (transistors MP1, MP2, MP3, MN1, MN2, MN3). Its objective is to achieve rail-
to-rail operation at the input as desired. The transistors from the complementary differential
pair should be small in size, to reduce their capacitance and consequently attenuate potential
capacitive load effects on the DAC capacities. The second stage of the operational amplifier
is based on a folded-cascode topology, which is composed of transistors MP6, MP7, MP8,
MP9, MN5, MN6, MN7 and MN8. This configuration is used to sum the currents from the
parallel complementary differential pair at the first stage. The folded-cascode configuration
also provides an improved copy of the currents. Finally, the last stage is composed by a class
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AB push-pull output stage (transistors MP10 and MN9). This last stage is used with the
objective of achieving near rail-to-rail operation at the output. In addition, a RC network
circuit was included between the last two stages in order to perform compensation on the
stability, increasing the phase margin and avoiding oscillatory behaviour from the operational
amplifier. Additionally, a loop to bias the three amplifier stages is also included, being the
operational amplifier self biased (transistors MP4, MP5, MN4 and resistors R1 and R2).

The transistors dimensions are presented on table 4.2. On the compensation network, the
Cc capacitor has the value of 3pF and the Rc resistor has the value of 2kΩ.

Table 4.2: Opamp Transistors Dimensions

Transistor Width (µm) Length (µm)
MP1, MP2 15 0.7

MP3 150 0.7
MN1, MN2 10 0.7

MN3 12.7 0.7
MP4, MP5, MP6, MP7, MP8, MP9 180 1

MN5, MN6, MN7, MN8 150 1.4
MP10 10 0.7
MN9 5 0.7

.

To characterize the opamp, simulations on the Input Common Mode Range (ICMR),
voltage gain, phase-margin, gain-bandwidth product, Common Mode Rejection Ratio (CMRR),
slew-rate and power dissipation were performed. Corner analysis was also performed specifically
for the typical operation (tm), worst power (wp) and worst speed (ws) corners. The results
obtained are summarized in table 4.3. The frequency response of the designed rail-to-rail
opamp, for the three considered operation corners, is presented in figure 4.6.

Table 4.3: Opamp Main Characteristics

Parameter tm ws wp
Offset Voltage 46.4µV 72.07µV 4.73µV

Gain 111.55dB 114.47dB 107.16dB
Phase-Margin 59.55º 46.6º 63.17º

Gain-Bandwidth 39.68MHz 30.42MHz 47.43MHz
Slew-Rate 78.28v/µs 63.05v/µs 94.78v/µs
CMRR 156.99dB 164.47dB 115.9dB

Power Dissipation 6.25mW 5.07mW 7.9mW

.
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Figure 4.6: Rail-to-Rail Opamp Frequency Response

4.2 Voltage to Current Converter

To perform conversion from the voltage received from the DAC to a current directly
proportional to the voltage presented at the the input a V-I converter is used. For the present
application, the main aspects that should be taken into consideration are rail-to-rail operation,
high linearity between the input voltage and the current produced at the output, and high
output impedance since it acts as a current source for the h-bridge and the scaffold. Considering
these specifications, the rail-to-rail voltage-to-current converters presented in section 3 are the
ones that provide the best performance. The three rail-to-rail V-I converters considered in
this section presented similar characteristics therefore, the one chosen to implement was the
Feed Forward Voltage Attenuation, since it is simpler to implement.

The implemented V-I converter is presented in figure 4.7. This circuit is composed by a
main enhanced V-I converter and a voltage attenuator. The principle of operation of this
circuit is to attenuate the input voltage using the voltage divider (comprised by the transistor
M1, the OTA and the resistors R1 and R2) by a factor α (expression 4.8), before applying
this voltage to the input of the OTA common-source V-I converter at the second stage. Using
negative feedback, this voltage is buffered to the resistor Rs responsible for the conversion to
current. This way, it is possible to maintain the transistors M2, M3, M4 and M5 working in
the saturation region for most of the input voltage signal excursion (0 to VDD). The maximum
signal excursion is limited by the voltage where transistor M1 enters the triode region, which
can translate into a near rail-to-rail operation of the converter if this transistor size ratio is
high enough.

α = R2
R2 +R1

(4.8)
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Figure 4.7: Implemented Voltage to Current converter

The current that was produced by the resistor Rs is copied through a current mirror, by a
factor of K. A cascode current mirror is used in order to improve the current copy from the
transistors M2 and M4 to the transistors M3 and M5.

As for the design followed in this work, the factor of attenuation (α) used was 0.5. In
addition, the current gain used on the current mirror (K) was 1, which makes the output
current be given by expression 4.9

Iout = α · Vin
K ·Rs

= Vin
2 ·Rs

(4.9)

The values for the transistors used are summarized on table 4.4. M1 has a high relation
on the geometry ratio, to reduce the saturation Vds of this transistor. Additionally, it was
used a length of 2.1µm for the cascode current mirror transistors to improve the current copy
accuracy. For R1 and R2 it was used 1kΩ and Rs is external to the ASIC to be possible to
adjust the stimulating current if needed. The implemented OTA will be presented in the
following subsection.

Table 4.4: V-I Converter Transistors

Transistor Width (µm) Length (µm)
M1 200 0.7
M2 20 2.1
M3 20 2.1
M4 20 2.1
M5 20 2.1

4.2.1 OTA

The operational transconductance amplifier (OTA) designed for the described V-I converter
schematic is presented on figure 4.8. This amplifier topology is equivalent to the first two
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Figure 4.8: Implemented OTA schematic

stages of the previously described amplifier, these being: a parallel complementary differential
pair at the first stage and a second stage with a folded-cascode topology to perform the current
summation and mirroring from the first stage. Since, the design is mostly the same as for the
operational amplifier previously designed, this section will not go to more detail. The main
characteristics that were taken into consideration on the design process were, a high gain,
near rail-to-rail operation at both the input and the output and a high slew-rate. Low power
dissipation and low area consumption were also factors that were taken into consideration.

The OTA presents, at its output, the capacitor CL. This capacitor purpose is to perform
frequency compensation on the V-I converter, by limiting the OTA bandwidth. Without it,
the current and the voltages on the converter have an oscillatory behaviour presenting high
frequency components. This capacitor has the value of 5pF, and it was obtained by trial error,
varying its value and analyzing the V-I converter output current curve.

The transistors dimensions are presented on table 4.5.

Table 4.5: OTA Transistors Dimensions

Transistor Width (µm) Length (µm)
MP1, MP2 15 0.7

MP3 60 0.7
MN1, MN2 10 0.7

MN3 12.7 0.7
MP4, MP5, MP6, MP7, MP8, MP9 180 1

MN5, MN6, MN7, MN8 150 1.4

.

As for the operational amplifier, simulations on the same parameters and with corner
analysis was performed, being the main characteristics summarized in table 4.6. The frequency
response of the designed OTA for the three considered operation corners is presented in figure
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4.9.

Table 4.6: OTA Main Characteristics

Parameter tm wp ws
Offset Voltage 19.28µV 89.97µV -18.97µV

Gain 77.15dB 75.13dB 78.12dB
Phase-Margin 85.3º 84.87º 87.74º

Gain-Bandwidth 11.53MHz 13.99MHz 9.03MHz
Slew-Rate 24.4v/µs 21.01v/µs 27.28v/µs
CMRR 121.56dB 119.6dB 122dB

Dissipated Power 3.84mW 4.5mW 3.36mW

.

Figure 4.9: OTA Frequency Response

4.3 H-Bridge

To drive the current through the scaffold, an H-Bridge circuit was implemented and is
presented in figure 4.10. This type of circuit was implemented since it provides the capability
of controlling the direction of a Direct Current (DC) through the load. In addition, a circuit
to drive the switches was also implemented.

Figures 4.11 present the possible operation modes for the H-Bridge circuit.
• The figure on the left demonstrates a positive current applied through the scaffold. This

is done by closing simultaneously the switches S1 and S4, while maintaining S2 and S3
open.

• The picture on the middle shows the current applied on the opposite direction of the
previous case (considered the negative direction). To apply the current on this direction
the switches S2 and S3 must be closed simultaneously and S1 and S4 should be open.

• The figure on the right shows the case where no current is applied on the scaffold. For
this all switches of the H-Bridge must be open.
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Figure 4.10: H-Bridge circuit schematic

Figure 4.11: H-Bridge operation. Left figure shows a positive current through the load; middle figure
a negative current; right picture no current is applied

The main aspects that were taken into consideration on the H-Bridge design were the
switches and the control logic that drives the switches. The design of these units is going to
be presented in the following subsections.

4.3.1 Switches

The main requirements on the switch design are: low resistance on the ”on” state and
high switching speed, while maintaining low area consumption. On typical PMOS and NMOS,
high speed on switching is achieved with the increase of the transistors’ geometry ratio. The
”on” resistance parameter follow the same trend. If the transistors’ size ratio are increase
this parameter should decrease. However, to achieve negligible ”on” resistance the transistors
should have a very high size ratio, which increases the area. Having this constraints in mind,
the switches on the H-Bridge were implemented using transmission gates, since it provides
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Figure 4.12: Transmission gate on resistance simulation

lower resistance when in conduction.
A simulation was made were the size ratios of the transistors on the transmission gate were

varied and ”on” resistance was measured. The simulation results are presented on figure 4.12.
This simulation shows that the higher the relation in the dimensions of the transmission gates,
the lower the ”on” resistance. However, increasing the transistors sizes, has the drawback of
increasing area and power consumption. Taking into account the performed simulation, the
values of 50µm of width and 0.7µm of length were chosen as the best compromise in resistance,
area consumption and power dissipation. With this value, the resistance is at maximum around
170Ω, which means that a maximum of around 34mV is lost in each transistor, if considering
the maximum current from the specifications (200µA) flowing through the transistors. Note
that during the performed simulation the width of the transistors was varied, but the length
was maintained at 0.7µm.

4.3.2 Control Logic

A control logic to drive the switches that was implemented, is presented on figure 4.13
[13]. The control block is composed by simple logic gates (nands and inverters). It was
implemented using the logic gates provided by the AMS digital libraries. For the operation of
the implemented control block, two digital signals are required:

• Enable signal: digital signal responsible for enabling or disabling the current from the
V-I converter. Logic level ’1’ enables the current and the level ’0’ disables it.

• Direction signal: it is responsible to determine the current through the load. Logic level
‘1’ corresponds to the considered positive direction of the current and logic level ‘0’ to
the negative one.

In table 4.7, it is presented a summary of the influence of the ”Enable” and ”Direction” digital
signals have on the switches and consequently on the current applied.
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Figure 4.13: H-Bridge control logic

Besides determining the operation of the H-Bridge, the control logic also has the objective
of guaranteeing that both pairs of opposite switches are never active at the same time. This
is achieved using the ”Direction” signal which is responsible for driving the opposite pair
of transistors with complementary signals. The ”Enable” and ”Direction” are inputs of the
system and are external pins of the ASIC.

Table 4.7: H-Bridge control logic truth table

Enable Direction S1 S2 S3 S4 State
0 0 0 0 0 0 OFF
0 1 0 0 0 0 OFF
1 0 0 1 1 0 Negative
1 1 1 0 0 1 Positive

4.4 SPI Communication Interface

As it is expressed in the system specifications, the communication between the micro-
controller and the stimulation system present in the ASIC should be performed using the
Serial Peripheral Communication protocol. The stimulation system acts as a slave and the
control unit a master, and the communication is performed only from the control unit to
the stimulation system. This means that the stimulation system only receives information.
To support this communication protocol, additional hardware in the ASIC is required to
provide the necessary interface. This interface is responsible for receiving the serial bit stream
from the control unit, convert the serial information into parallel and feed the parallel digital
word into the DAC. Furthermore, it is required additional logic to provide the word to the
DAC, only when the digital bit stream is sent correctly and reset the interface when the
communication is not completed correctly.

The circuit developed to provide interface to the SPI protocol is present on figure 4.14. As
it can be seen in the figure, the interface is composed by a 16 bit serial input parallel output
shift register, a 16 bit parallel input parallel output register (data register), 4 bit up-counter
and additional logic gates (one inverter and one nand). These circuits were implemented
using the components present in the AMS digital libraries and their implementation will be
discussed in the following subsections. The clock frequency considered during the development
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Figure 4.14: SPI interface schematic

Figure 4.15: Bit stream

of this work was 20MHz, since it is a commonly used frequency of operation for current micro
controllers.

The bit stream sent by the microcontroller is presented in figure 4.15. The bit stream is a
16 bit digital word where the 6 LSB (bit 5 to 0) are unused and the 10 MSB (bit 15 to 6) are
the digital word that encodes the amplitude to be sent to the scaffold (called ”data word”).
Additionally, it is important to understand that the word received on the DAC follows the
received word from the data word. This means that the MSB of the data word (D0) is also the
most significant bit on the DAC and the LSB of the data word (D9) is the LSB of the DAC.
It is considered that the word is sent from the LSB to the MSB. A bit stream of 16 bit is
used, since for typical microcontrollers the data is usually sent packages of 1 byte. Therefore,
to send 10 bits of information, a package of 16 bits is required.

4.4.1 Interface Operation

In figure 4.16 it is presented a simplified state diagram that describes the interface operation.
The communication starts when the chip select signal (CS) is activated (active-low signal).
When this event occurs, the bit stream is received, by the stimulation system, one bit per
clock pulse rising edge. The information is sent by the MOSI of the micro controller and
received by the SDI pin on the stimulation system. The bits sent are stored on the shift
register. Simultaneously, the 4-bit up-counter is enabled. When 16 clock cycles have occurred,
the digital bit stream is fully transmitted and the start of conversion signal (SOC), that is
’1’ when the counter reaches ”1111” at its output, is activated. This signal enables the data
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Figure 4.16: SPI state diagram

Figure 4.17: Turn off system protocol

register, and the word present in the shift register is stored and presented to the DAC, which
starts the conversion. After the 16 clock cycles, the chip select signal must be set to ”off”.
When this is done, the counter and the shift register are reset. If the CS signal is pulled high
before the 16 clock cycles are completed (and therefore the communication is not completed
properly), the interface is also reset.

On figures 4.17, 4.18 and 4.19 temporal diagrams that represent use cases on the com-
munication protocol and system usage are presented. On the first case, it is demonstrated
how to turn off the current applied to a scaffold. For that, the ”Enable” signal should be put
to the logic value ’0’, which deactivates the current through the scaffold. Then, the word
”000000000” should be sent through SPI to guarantee the data register reset.
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Figure 4.18: Apply current on the negative direction

The second use case presented (from figure 4.18), refers to the process to apply a current
through the scaffold. In this case, it is demonstrated the application of a current on the
negative direction. Firstly, the word is sent via the implemented SPI interface, with the same
process previously explained. After the communication process is done and the DAC finished
the conversion, the user must choose the current direction desired with the ”Direction” signal.
In the use case, it is desired for the current to flow on the negative direction, therefore this
signal is ’0’. After defining the direction, the current through the scaffold should be enabled,
activating the ”Enable” signal. Note that to apply a current on the considered positive
direction, the operation would be similar, only the ”Direction” signal should have the logic
value ’1’ when the current source is enabled.

Finally, in the last presented use case (figure 4.19) it is represented the process of having
applied a certain current, apply a different current on the opposite direction. On this use
case, first it is sent a current on the positive direction using the same process previously
explained. Then, if the user desires to apply a different current in the opposite direction,
it should deactivate the current on the load and send via SPI the desired current to apply.
During this process if the current source is disabled, the user can change the ”Direction”
signal. When the communication process is done and the DAC conversion time has passed,
the user must switch the ”Enable” signal to ’1’ once again, the current is activated and the
process is finished. Note that, if it is desired to switch the current direction and maintain the
applied current, the user should disable the ”Enable” signal, change the ”Direction” signal
and, after this, activate once again the ”Enable” signal. Therefore, there is no need for the
microcontroller to transmit the correspondent digital word once again.
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Figure 4.19: Transition between a positive to a negative current example

4.4.2 16 bit Shift Register

The implemented serial-input parallel-output 16 bit shift register is presented in figure
4.20. As previously mentioned, it receives one bit at a time through a single serial data line
(from the microcontroller) and provides, at its output, the data in parallel.

Figure 4.20: Implemented 16 bit shift register

The shift register is comprised of 16 type D flip flops with synchronous input data enable
and data clear signals. For these flip flops it was resorted to the digital components from the
AMS libraries, DFCX6_V5_3B, D flip flop with clear input. Important to notice that for
these, the clear input is ”active-low”. Since, D flip flops with synchronous enable were not
included in these libraries, for the enable functionality a 2x1 mux (MUX2X6_V5_3B) was
added as it is shown in figure 4.21. If the enable is active, the input of the flip flop will be D
(the signal presented at the input), if not the input of the flip flop will follow the output. In
the designed SPI interface, the ”Enable” and ”Reset” signals are both connected to the chip
select signal.

The main aspect taken into consideration when choosing the components from the digital
cells was speed, since when considering a clock frequency of 20MHz, these components must
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be fast to respond. So, it was used the flip flops with the largest size ratio on the libraries.
As consequence, this implies a higher dynamic power consumption and area occupation.

Figure 4.21: Implemented synchronous flip flop with enable input

Simulation

A simulation to verify the operation of the implemented shift register was performed in
Cadence. The simulation results are in figure 4.22. The clock signal applied has a period of
50ns (frequency of 20MHz) and the rising and falling times of the control signals (clock and
clear) were 1ns. The enable signal was maintained active throughout the simulation. A pulse
of 10ns was presented at the data input (Input Data Signal) at the first clock rising edge. In
the presented results it is possible to see that the data signal is correctly shifted through the
various flip flops that implement this component. It is only presented the 10 MSB flip flop
output, since these are responsible for storing the current amplitude word. It is also possible
to verify the correct operation of the ”reset” signal. This signal is active in the Low state.
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Figure 4.22: Shift Register Operation Test

4.4.3 Data Register

The data register is a 16-bit parallel-input parallel-output register, which is the unit
responsible for receiving and storing the information provided by the shift register and present
it to the DAC for conversion. The schematic for the implemented data register is presented in
figure 4.23. The ”Enable” signal is responsible for activating the inputs of the flip flops and
store the data present in the shift register. It was used the same digital libraries for the flip
flop, only this time, the flip flop used was the DFX6_V5_3B, which did not include the clear
input since it is not needed for this component. The same technique of using the 2x1 mux to
provide the synchronous enable was again used. The components chosen from the libraries
were once again the fastest ones (with higher transistors’ size relation) to be fast to respond
to the 20MHz signals, having the same type of constraints in power and area consumption.
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Figure 4.23: Implemented 16 bit register

Simulation

The data register operation test is presented in figure 4.24. The clock signal period, rising
and falling times used were 1ns, the same for the shift register test. It was applied to the
parallel inputs of the data register the binary word ”1010101010101010” and after 850ns the
enable signal was activated. As it can be seen from figure 4.24, at 850ns the data word is
provided to the output of the register correctly. Additionally, only the 10 MSB outputs were
plotted, similar with the shift register test.
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Figure 4.24: Data Register Operation Test

4.4.4 Counter

The implemented 4-bit up counter is presented on figure 4.25. It is composed of 4 D type
flip flops with a signal to reset the flip flops value, 4 nand and 4 xor logic gates. The ”Enable”
input, when activated, starts the up counting and the logic circuit composed by the 4 nand
and 4 xor gates guarantee that a binary count is presented at the output. When the ”reset”
signal is activated (it activates with the logic value ’0’), the flip flops are cleared and the count
is restarted. In the SPI interface designed, these signals are both connected to the chip select.
Additionally, another 4x1 nand gate and an inverter were used. The 4 input of the 4x1 nand
gate are connected to the outputs of the 4 flip flops. The output of this added logic circuit is
only activated when flip flops present the value ’1’ at their output. That is, when the count
to 16 is finished the start of conversion signal (SOC) is activated enabling the data register.
All the components used were from the AMS digital libraries. The components were chosen
having in consideration similar characteristics as for the previous digital components design.
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Figure 4.25: Implemented 4 bit up-counter

Simulation

A test on the implemented counter was also performed to verify its operation. The
simulation results are presented in figure 4.26. The clock signal period, rising and falling
times were the same as the simulations for the data and shift registers. The enable signal was
maintained active throughout the simulation. From the simulation results, it is possible to see
that the counter operation is demonstrated for the 20MHz operation frequency, in particular,
the start of conversion signal is active when the count reaches ”1111” as expected and the
clear signal resets the count properly.
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Figure 4.26: Counter Test
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CHAPTER 5
Simulation Results

The present chapter aims to report the simulation of the circuits implemented and present
the main results. Simulations on the complete integrated system are also presented in order
to evaluate if the system complies with the specifications.

5.1 DAC

The DAC converter was tested by applying at the input the combination of all digital
values (1024 values since it is a 10-bit DAC). Since DAC receives at the input 10 digital
signals, one for each of the 10 bits, a down counter emulating the ramp signal was used. The
counter was implemented using ideal pulse wave sources. For the LSB, a signal with a period
of 2µs was used. For the remaining bits, the period of the signals applied was 2N−1 times the
period of the LSB, where N is the bit to be generated. The rising and falling times of the
signals used were 1ns. The test setup is represented on figure 5.1.

Figure 5.1: DAC Test Setup
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Figure 5.2: a - DAC Curve, b - Time the DAC takes to Stabilize the Output

Applying a ramp signal at the input of the DAC, the voltage transfer function curve was
obtained, being presented on figure 5.2a. In the same plot, it is deceit the ideal transfer
function for comparison purposes. Analysing the curve, on the first step of the simulation,
the DAC transfer function does not start directly on 5V. This happens, due to the fact
that the DAC has a delay on providing the converted voltage, at the output. The obtained
transfer function is also used for the static characterization of the converter, which will be
later presented.

The measurement of the DAC conversion time is presented in figure 5.2b. It was measured
by applying, at the input, the correspondent word to 0 (”0000000000”) and, then, change
it to the word correspondent to 5V (”1111111111”). The transition from 0 to 5V was used,
since it is the highest output swing, and therefore, the transition that takes more time to be
provided at the output. Analysing this curve, it is possible to see that the DAC output is
fully stabilized around 200ns. The causes for the delay on the conversion time of the DAC
are, mainly, the operational amplifier slew-rate limitation and the capacitors charging time.

In addition, the voltage value for each bit was measured. The measurements were made
by activating a voltage pulse of each bit at a time, and measure the voltage at the output of
the DAC. In table 5.1, the results for these measurements are presented as well as the ideal
values of each bit.

Furthermore, the DAC was characterized on its static performance. This includes the DNL,
INL and offset error. Results are presented in figure 5.3. These parameters were calculated
from the curve obtained in figure 5.2 and MATLAB computations. For most codes, the
obtained DNL (figure 5.3a) is around 0.03 LSB. However, it peaks at around -0.93 every 32
codes, when high transitions at the input of the DAC occur, for example when the input goes
from ”0000011111” to ”0000100000” (code 31 to 32). Since the DNL is between -1 and 1, the
DAC is monotonous and has no missing codes. In figure 5.3b, the obtained INL for the DAC
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Table 5.1: Voltage Values for each Bit

bit Ideal Value (V) Schematic (V)
B0 (MSB) 2.5 2.497

B1 1.25 1.248
B2 625m 624.16m
B3 312.5m 312.08m
B4 156.25m 156.13m
B5 78.125m 80.1m
B6 39.0635m 39.58m
B7 19.53m 18.85m
B8 9.766m 9.87m

B9 (LSB) 4.883m 4.79m

Figure 5.3: a - DAC DNL, b - DAC INL

is presented. It varies from around -0.087 LSB to 0.9 LSB. Observing the obtained curve, the
peaks in the INL value occur on the same code interval as the DNL. The obtained INL results
mean that the accuracy of the output varies between -0.087 LSB and 0.9 LSB. Finally, the
DAC offset was also calculated. For that, the output voltage value for the first code (that
ideally should be 0) is measured, having been obtained a voltage offset of 1.11mV.

5.2 V-I Converter

For the voltage-to-current converter, the main tests performed were: the input common
mode range (ICMR), load dependence and the obtained current curve when applied at the
input the voltage equivalent to the 1024 different codes from the DAC.
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Figure 5.4: V-I Converter Test Setup

The first test setup used is presented on figure 5.4. It is based on the designed current
source and the H-Bridge circuit at the output. For the simulations performed, the h-bridge was
maintained operating with the same current flow direction (same pair of opposite transistor
conducting). With this setup, the tests on the ICMR were performed.

In the first test performed, a DC voltage source was applied at the input, with the DC
voltage being varied from 0 to 5V, and the current at the load was measured. The curve
obtained is presented in figure 5.5. It can be seen that the V-I converter output current curve
stops being linear when the voltage applied at the input is higher than 4.86V. Therefore,
the compliance voltage of the converter is from 0 to 4.86V. To support this information, the
derivative of the ICMR curve is also plotted in figure 5.5. The derivative presents the linearity
achieved by the V-I converter and it can be seen that from 0 to 4.86V the derivative is almost
constant, therefore the V-I converter achieves good linearity. For voltages higher than 4.86V
of the input voltage, the derivative decays exponentially and therefore the linearity is lost.

This simulation gives information on two important aspects. The first is on the Rs resistor
value. Since, the maximum compliance voltage is of 4.86V, for achieving a certain current
range this resistor should be scaled for 4.86V. Therefore, to achieve a current range from 0 to
200µA as presented on the specifications, the resistor value is given by 5.1, expression that
was derived from equation 4.9. The second information given by this simulation is that, being
the linear range between 0 and 4.86V, the voltages applied at the input should be in this
range. Therefore, the digital words applied at the input of the system should be equivalent to
this voltage range. As consequence, the highest 29 steps are lost. This implies a reduction
on the resolution, however a resolution of 200µA/(1024 − 29) = 0.2µA can still be achieved,
fulfilling the specifications.

Rs = Vin
2 · Imax

= 12150Ω (5.1)

The second set of tests performed on the V-I converter were performed using the test setup
on figure 5.6. This test setup is similar to the one used in figure 5.4. However, instead of using
the DC voltage source at the input, the DAC with the down counter was used. With this
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Figure 5.5: V-I Converter Operating Voltage

setup the current curve at the output, for a 10kΩ for the 1024 possible different input codes
was obtained. In addition, the same setup was used to study the output current dependence
with the load value.

Figure 5.6: V-I Converter Test Setup with DAC

The equivalent voltage to the 1024 different digital steps, generated by the designed DAC,
was applied at the input of the V-I converter and the current was measured on a 10kΩ load.
Curves for the current when it flows on both directions of the load were recorded and the
results are presented in figure 5.7. The error between the obtained current and the ideal one
will be presented when simulations to the entire system are presented. However, from 5.7,
it can be seen that the current presents a linear relation with the digital codes at the input.
Furthermore, at the last 29 steps of the simulation, the current loses the linear characteristics,
due to the V-I converter input voltage range limitations.

The simulations results performed on the current dependence on the load at the output is
presented on figure 5.8. To obtained these results, the output load was varied with 6 different
values (100Ω,1kΩ, 10kΩ, 15kΩ, 20kΩ, 50kΩ and 100kΩ) and the current was measured. From
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Figure 5.7: Current Curve on both Directions

the obtained results, it is possible to see that for loads until 15kΩ, the current curve obtained
are similar. When the load is increased to 20kΩ, the maximum current is around 190µA.
This is due to the fact that, there are voltage drops on the cascode current mirror and the
transmission gates and therefore, a supply voltage of 5V is not enough to give the 200µA
to a 20kΩ load. Furthermore, analysing the curves for 50kΩ and 100kΩ, it is concluded
that, for these loads, a supply voltage of 5V is not enough to provide the currents from the
specifications as expected. Therefore, the maximum load for the system correct operation is
bellow 15kΩ. However, if the scaffold resistance is higher than this value, the stimulation can
still be performed in a linear range, although in a smaller range of currents.

Figure 5.8: Current Curve for Several Loads

64



5.3 H-Bridge

The h-bridge circuit was tested with the test setup represented in figure 5.9a. The objective
was to test the implemented control logic and to test the switches speed on the rising and
falling edges. For the test performed on the control logic, an enable signal with frequency of
100kHz, rising and falling times of 1ns was applied. The Direction signal used has a period
of 50µs, and 1ns of rising and falling times. Finally, it was applied a current of 200µA to a
10kΩ resistive load and a 1pF capacitive load. The results are presented in figure 5.9b. It
is demonstrated the proper operation of these signals, since the ”Enable” signal enables the
current properly and the ”Direction” signal changes the current flow on the load as expected.

Figure 5.9: a. H-Bridge Test Setup, b. H-Bridge Control Signals Test

The h-bridge switches commutation speed characterization was also performed and is
presented in figure 5.10b and figure 5.10c using the test setup presented from figure 5.10a.
For the test, it was applied, at the input, a pulse signal with a rising (or falling) time of 1ns
between 0 and 5V for the rising edge (or between 5V and 0 for the falling edge). The output
signal was plotted and it was measured the time at 10% and 90% of the output, for both the
falling and rising edge and the difference was computed. It was obtained a rising edge time of
around 1.32ns and 0.715ns for the falling edge.
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Figure 5.10: H-Bridge Switches Test, a. Test Setup, b. Rising Edge Test, c. Falling Edge Test

5.4 SPI Communication Interface

The test setup for the SPI communication interface is presented in figure 5.11. It is based
on the implemented communication interface with the DAC at the output. The objective
of this test was to evaluate the previous explained operation of the interface. The signals
applied to the test setup were:

• Clk - the circuit clock signal. It is simulated by pulsed signal with a period of 50ns
(frequency of operation of 20MHz), with 50% duty-cycle and falling and rising times of
1ns.

• Chip Select (CS) - signal sent from the microcontroller responsible for enabling commu-
nication with the stimulation circuit. It was simulated using an active-low pulsed signal.
It has a period of 850ns, with a pulse width (at ”0”) of 16 clock cycles (800ns), since it
is supposed to send 16 bits of information. Rising and falling times used were 1ns.

• Serial Data In (SDI) - it is responsible to send the serial data word to the system. It
is a pulsed signal, with minimum voltage of 0 and maximum of 5V. It has a period of
100ns, a duty-cycle of 50% and the equal falling and rising times as the previous signals.
With this period and duty-cycle, the word ”1010101010” is sent to the interface.

Using the explained setup, the test was performed using a transient analysis during 1µs.
The results obtained are presented on figure 5.12. The communication starts when the ”Chip
Select” signal is pulled down. After 16 cycles, the word is fully received and the ”Start of
Conversion” signal is activated. This signal enables the data register, which receives the data
word in parallel from the shift register, and provides it at its output. It is presented the output
of the 10 MSB of the data register (Q15 to Q6), since these are the responsible for providing
the digital word to the DAC. As it can be seen by analysing figure 5.12, right after the word is
provided at the output of the data register, the DAC starts the conversion and takes around
200ns to provide the output voltage. Note that, during the development of this work, the
maximum frequency of operation tested was 20MHz. Therefore, 20MHz is the maximum
communication frequency guaranteed. With the presented results, the communication interface
correct operation and its integration with the DAC is verified.
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Figure 5.11: SPI Communication Interface Test Setup

Figure 5.12: SPI Communication Interface Test Results
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5.5 Full System Simulation

The various components of the system were integrated and the system was tested. For the
test, it was used the setup presented in figure 5.13. The ”Enable”, ”Direction”, ”Chip Select”,
”Clock” and ”SDI” were applied as previously. The resistor RS used was the previously
calculated (12.150kΩ) and the load impedance was 10kΩ of resistance and a capacitance of
1pF. The tests presented in this section are: a use case of the system operation, the current
curves when applied at the input the 1024 different possible codes with corner analysis, the
error for each obtained current curve and the operation at the maximum frequency of the
specifications (100kHz).

A system operation use case is presented in figure 5.14. The aim is to assess the operation
of the whole system integrated. In this use case, firstly it is applied a digital word ”1111111111”
at the input of the system. Before activating the current with the ”Enable” signal, the current
direction is defined to the positive one. After 1.1µs of the start of the communication, the
enable signal is defined in order to give time for the data word to be received and the DAC to
convert it. Then, a different data word is applied (”1010101010”). Before establishing again
the communication, the current on the h-bridge is disabled. The previous process is repeated,
with the communication being established, the current direction being defined, and after the
communication and the word conversion is finished, the current is enabled.

In figure 5.15a, the current curves for the 1024 different possible input codes were measured,
with a corner analysis. The corners used on the simulation were, typical operation (tm), worst
power (wp) and worst speed (ws). From the obtained plot, it is concluded that the current
curves presented, are almost overlapping, which means that the corner divergence is low.
However, zooming the plot, it is possible to see that the worst speed presents higher current
and the worst power smaller current, when compared with the typical mode. Furthermore,
this can be especially observed in the region of the maximum current.

To further quantify the divergence of the current curves, the error between the ideal
current and the typical mode, worst power and worst speed currents, were computed and
plotted. The results obtained are presented on figures 5.15b, c and d. Analysing the results,
it is possible to see that the error on the typical corner current varies between -0.4µA and
0.3µA, being at the limits of the range higher than the ideal one and at the middle lower

Figure 5.13: Integrated System Test Setup
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Figure 5.14: System Operation Use Case

than the ideal. Analysing the worst speed error curve, the error, for the most range, varies
between -0.2µA and 0.5µA. On the higher codes, the error increases and peaks at around
1.5µA. However, this occurs when the V-I converter already left the linear zone of operation,
therefore this range is not important on the analysis. Comparing the error from this curve
with the ideal one, it is confirmed the referred tendency. On the worst speed corner, the
current is higher than the obtained when considering the typical corner. Analysing the worst
power operation corner, the opposite is seen. The error, for the most range, varies between
around 0.1µA and -0.5µA, and for the higher digital codes, the error peaks in -1.5µA in the
range where the circuit leaves operating in the linear region.

To test the developed system with the maximum frequency of operation from the specifi-
cations a simulation was performed. The word ”1111111111” was transmitted to the system,
the current direction was maintained and, at the ”Enable” signal, was applied a pulse signal
with a frequency of 100kHz. The simulation results are presented on figure 5.16. Therefore,
the operation for the maximum frequency from the specifications is proven.

Finally, a simulation on the power consumption from the whole system was performed.
The test setup was the one in figure 5.13. It was sent the word ”1111111111” to the input
of the system and the current from the supply voltage was measured during the process of
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Figure 5.15: Output Current Curve: Corner Analysis. a) obtained current curves, b) error in typical
corner, c) error in worst speed corner and d) error in worst power corner

Figure 5.16: Output Current with a 100kHz signal

Table 5.2: Circuit Power Consumption

Operation Corner tm wp ws
Power Consumption 19mW 21.2mW 17.3mW

receiving the information, converting it and providing the correspondent current to the 10kΩ
load. Furthermore, it was computed the average value of the current and it was multiplied by
VDD (5V). This process was performed for the three operation corners as it is presented in
Table 5.2. As expected, power consumption is higher for worst power corner and lower for the
worst speed corner, when compared to the typical corner. For the typical operation corner a
power consumption of 19mW was measured. During the simulation, the word ”1111111111”
was sent since it provides the maximum current and, therefore, maximum power consumption.
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CHAPTER 6
Layout and Results

This chapter presents the implemented circuit’s layout. The main considerations and
techniques used in the layout implementation are presented, followed by the post-layout
simulation results and characterization.

6.1 Design Procedure

The layout is the physical representation of the circuit in layers. It is based on the
combination of geometrical rectangles, which combined create the electrical circuit components
and the connections between them. The layout design steps are described in figure 6.1. The
layout design process starts after having the circuit implemented and tested in a schematic cell.
The circuit elements and their connections are designed in the Virtuoso Layout environment.
During the design process, the layout must be verified using the Assura verification tools,
which are going to be described later in this section. When a full verified layout is obtained, the
parasitic extraction process is performed using the Quantus Extraction Solution (QRC) tool
and Post-Layout Simulations are performed to test the circuit operation and characteristics,
comparing them to the ones obtained in the schematic. The layout design is an iterative
process. During the design, the layout must be iteratively verified to comply to certain rules
and adjusted if the required operation is not achieved.

The first step in the layout verification is the Design Rule Check (DRC). There are a number
of rules that need to be complied during the layout development, called the”Design Rules”.
These are associated with the physical limitations inherent to the Integrated Circuit (IC)
fabrication process, which establish the minimum size of the different layout elements and
minimum distances between them. It is imperative to guarantee that all the Design Rules are
ensured through the DRC, since it helps ensuring that the circuit operation and characteristics
are maintained when it is fabricated. The DRC is a tool that checks if every polygon of the
design complies with the specified rules. The DRC should be run frequently as the different
cells and circuit components are added, to ease the process of identification of the cells with
errors and correct them.
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Figure 6.1: Layout Design Procedure

The second step of the verification makes use of the Layout Versus Schematic (LVS) tool.
As the name suggests, this tool extracts a netlist of the implemented layout and compares
it with the netlist from the schematic view. The comparison includes the geometry of the
different components and the connections between the different elements of the circuit. This
tool has the objective of ensuring that the implemented layout matches the schematic cell
netlist. This way, it is guaranteed that the designed layout implements the required operation.

After the DRC and the LVS (verification process) have passed successfully, parasitic
extraction is performed using the QRC tool. The QRC tool goes through all the layout
components and connections between these and calculates the parasitic components present
in the layout. The parasitic extraction recreates the layout with the parasitic components,
creating a more realistic model of the circuit. This way, more accurate simulations on the
circuit performance can be performed, which is the final step in the layout implementation,
the ”Post-Layout Simulation”. The parasitic extraction can be performed using several
extraction parameters. The ones used in the present work were the ”RC” (parasitic resistors
and capacitors) coupling type, with reference to the ground node.

The final step of the layout design process is the ”Post-Layout Simulation”. In this step,
the circuit is simulated once again using Spectre, but this time it is simulated the layout with
the parasitic components extracted. The Post-Layout Simulations are important to verify if
the circuit operation and characteristics are maintained with the parasitics and to characterize
the circuit with a model closer to the fabricated circuit.
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Figure 6.2: Stimulation System Layout. In yellow: SPI Communication interface, green: DAC, red:
V-I Converter, blue: H-Bridge

6.2 Implemented Layout

The implemented layout is presented in figure 6.2. In the design, several techniques were
used to minimize the area consumption, noise, the error introduced by the fabrication process
and the influence of the parasitic components on the circuit performance.

The first technique is a ”rule of thumb” on integrated circuits. It is based on positioning
the transistors following the same orientation, maintaining this orientation for all elements
of the circuit. In the case of the present work, the transistors were disposed in the vertical
orientation. This way, the layout is uniform which improves the components matching.

Area consumption is a typical concern on integrated circuits design. ICs are required to
be as small as possible, therefore optimizing the arrangement of the transistors and the other
components that compose the circuit, is a key concern on the layout design.

Noise caused by the electronic components can degrade the circuit characteristics and,
in worst case scenarios, can cause complete malfunctioning of the circuit. Noise is injected
in the circuit substrate and is spread to all components that share the substrate. Therefore,
techniques to reduce the noise spread should be used, especially when it is present a mixture
of digital and analog components. Digital components inject noise in the substrate from the
fast commutations that are subjected to. Since in analog components noise is a key concern,
isolating the digital part from the analog one should be a priority.

A common technique to perform the isolation of circuits from the noise are guard rings.
Guard rings provide low resistance paths that collect carriers from the silicon. They are
structures that can be made from p+ or n+ diffusion layers. Typically, the p+ structures are
used around n type substrate and are connected to ground. On the other hand, n+ structures
are used on p type substrate, being connected to VDD. Besides isolating circuits from the noise
of the substrate, guard rings are also used to reduced latchup problems caused by parasitic
bipolar transistors that promote low impedance paths between the power supply rails [25].

The fabrication process has limitations related to variations on the components’ sizes.
Smaller components are more prone to errors due to fabrication process, since a small variation
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Figure 6.3: DAC Capacitors Array Distribution

on the fabrication process can be significant to such devices. Therefore, it is a major factor that
introduces errors on the circuit and its consequences should be reduced. Several techniques
were used to reduce the fabrication process influence and, therefore, the components mismatch.

• when transistors have large width, typically they are divided into several smaller
transistors. This way, structures around transistors are similar which reduces the
fabrication mismatches. Furthermore, this technique helps in optimizing the area.

• the use of ”dummy” elements between between components (i.e. transistors) of the
same geometry is a common technique. This makes the components more similar and
uniform, reducing errors from the fabrication process.

Furthermore, especially on the DAC implementation, where reducing mismatches on
the capacitors and the parasitic effects are important, a few more aspects were taken into
account on the design. To improve the matching between the capacitors and to reduce area
consumption, it was made an array of capacitors, each capacitor with the size of the unitary
one 21µm per 21.8µm, which gives a value around 400fF. To form the higher valued capacitors,
several capacitors were connected in parallel. The common centroid distribution technique
was used on the capacitors array. It is based on the distribution of the circuit components
(in this case the capacitors) in a symmetry axis, with the capacitors with lower values (and
therefore, combined with the less capacitors in parallel) being on the center of the centroid
and the larger valued capacitors are placed more on the periphery. This brings symmetry on
the design reducing mismatch errors [33]. The common-centroid placement can be seen on the
stimulation circuit layout presented in figure 6.2, however a simplified representation of the
followed capacitors’ distribution is presented in figure 6.3. In addition, parasitic components
(capacitors) can be significant on the DAC capacitors array. In a binary charge scalling DAC,
the parasitic effects can be reduced by connecting the top plate of the capacitors to the
output node, instead of the back plate, which proves to be a major factor on this matter [40].
In addition, the larger the size of the capacitors, the smaller the effects of the fabrication
mismatches. Therefore, the unitary capacitor was chosen to optimize the mismatches and
area. Finally, the DAC capacitors were isolated with guard rings from the rest of the circuit
to reduce the noise effects.
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The stimulation system circuit has a size of around 700µm of width and 270µm of length,
which makes a total circuit area of 0.19mm2.

6.3 Circuits Results

Following the layout design and parasitic extraction, post-layout simulations were per-
formed on the various circuits. This section presents the results on the DAC, the V-I converter
and the communication interface, evaluating if the characteristics of these components are
maintained. Results on the fully integrated system are presented on the following section.

6.3.1 DAC

The DAC converter was the component which had its performance affected the most with
the layout design, due to errors caused essentially by the parasitic capacitances. Therefore, a
careful characterization of the DAC was performed. The tests performed and the setups used
were similar to the ones presented in the previous chapter.

In figure 6.4a, the obtained DAC curve for all the codes is presented and compared to the
ideal one. Furthermore, in figure 6.4b, the maximum conversion time of the DAC is presented.
It was tested by presenting at the input of the DAC, firstly the code ”0000000000” and then
change it to ”1111111111”. It can be seen that the output stabilizes at around 250ns.

Additionally, the voltage values that corresponds to each input bit of the DAC were
measured, being the results presented in table 6.1. In this table, the ideal values for each bit
and the ones obtained through the schematic simulation are also presented for comparison.
Analyzing the table, it can be seen that all bits present a smaller value than both the ones
obtained from the schematic and the ideal value. These results are explained, mainly, by the
presence of parasitic capacitors in each of the capacitors from the array. These are significant
enough to change the value of each capacitor of the array and, therefore, the weights associated
to each bit is changed. Furthermore, the errors increase for the more significant bits, since
the scaling capacitor has a different value from the remaining of the capacitors on the array,
it is sensible to mismatches and the parasitic components.

Table 6.1: Voltage Values for each Bit after Parasitic Extraction

bit Ideal Value (V) Schematic (V) Layout (V)
B0 (MSB) 2.5 2.497 2.491

B1 1.25 1.248 1.244
B2 625m 624.16m 618.5m
B3 312.5m 312.08m 306m
B4 156.25m 156.13m 150.45m
B5 78.125m 80.1m 75.6m
B6 39.0635m 39.58m 37.73m
B7 19.53m 18.85m 18.63m
B8 9.766m 9.87m 8.99m

B9 (LSB) 4 .883m 4.79m 4.76m

75



Figure 6.4: a. DAC obtained curve for all input codes after parasitic extraction, b. DAC conversion
time after parasitic extraction

Using the curve from figure 6.4a, the DAC was characterized on its DNL, INL and offset
error. The DNL and INL curves are presented in figure 6.5. Analyzing the DNL curve, it
varies for most of the codes between 0.036 LSB to -0.28 LSB, where the peaks on -0.28 LSB
occur every 16 codes (transitions from ”01111” to ”10000”). In addition, the DNL curve
presents variations of -0.81 LSB, that corresponds to the transitions from ”011111” to ”100000”.
Furthermore, at the codes 256 and 768 the DNL reaches the value of 1.24 LSB and at the
code 512 reaches 1 LSB. Codes 256 and 768 happen when a transition from ”0111 11111”
to ”1000 00000” occur and code 512 happen when the input of the DAC goes from ”01111
11111” to ”10000 00000”. Since it presents 3 codes where the absolute value of the DNL is
above 1 LSB, the DAC is not fully monotonous in these regions. As for the INL presented in
figure 6.5b, it varies from -1LSB to 1.85LSB. Differences on the DNL between two adjacent
codes occur in the same transitions pointed out on the DNL. The obtained INL demonstrates
that there is an inaccuracy between -1 LSB and 1.85 LSB on the DAC which, consequently,
translates in errors on the stimulation current. The errors on the current are going to be
quantified in the following section. Measuring the output value equivalent to the code 0 from
figure 6.4a, the DAC offset was obtained, being around 1.4mV.

In summary, differences in the performance of the DAC from the schematic and the one
with the layout with parasitic extraction occur mainly due to the parasitic capacitances on
the capacitors array, that changes the equivalent output voltage value for each bit. In the
specifications a resolution of 0.5µA is desired, however since the DAC implemented is of 10-bit,
a smaller resolution is achieved (0.2µA). Therefore, the DAC designed with the presented
non-linearities and errors is still appropriate for the system.
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Figure 6.5: a. DNL Curve after Parasitic Extraction, b. INL Curve after Parasitic Extraction

6.3.2 V-I Converter

The V-I converter was mainly characterized, to check the input voltage common range
and to obtain the current curves through all the input codes. The simulations performed
and test setups used were similar to the ones from the previous chapter. The results on the
first characteristic are presented in figure 6.6a. The obtained curve is very similar to the one
obtained in figure 5.5. As it can be seen, the output current is linear with the input voltage
in the range of 0 to 4.86V, maintaining the input voltage common range from the simulation
results. The derivative of this curve is also presented, which supports the previous drawn
conclusions on the converter linearity. In figure 6.6b, it is presented the output current curve
for all digital input codes. This curve will be the target of a more in-depth study on the next
chapter.
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Figure 6.6: a. V-I Converter Input Voltage Common Range after Parasitic Extraction, b. V-I
Converter Curve with the 1024 Different Input Codes after Parasitic Extraction

Figure 6.7: SPI Communication Interface Operation Test after Parasitic Extraction
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6.3.3 SPI Communication Interface

Tests on the SPI communication interface were performed with the objective of guaranteeing
that its operation is as expected, with the physical layout and the parasitic extraction. The
demonstration of the operation of this interface is presented in figure 6.7. The test setup used
was based on the setup from figure 5.11. The input word applied was ”1111111111111111” and
a clock signal with 50ns of period. As it can be seen from figure 6.7, the interface operation is
as expected. When the chip select signal is active the communication starts, after 16 clock
cycles, the start of conversion signal is activated and the word applied at the input is presented
in parallel at the output of the interface (signals Q15 to Q6).

6.4 Final Results

This section highlights the main results on the stimulation system circuit layout after
parasitic extraction. Main results include the system operation use case and the quantification
of the the stimulation current errors. Corner analysis and power consumption simulations
are also presented. Simulations were performed using Cadence software, using the Spectre
simulation tool.

The setups used for the following tests were based on the one presented in figure 5.13. The
clock operation frequency is 20 MHz, the rising and falling times of all pulsed signals applied
are 1ns, and the load is composed by a 10kΩ resistor in parallel with a 1pF capacitor. The
first test performed was a demonstration of the system operation, to check that the system
behavior is as expected. Results are presented in figure 6.8. This simulation is very similar to
the one performed in figure 5.14. The stimulation system receives a binary word when the
chip select signal is active. The word received is ”1111111111”, which is applied to the system
by a pulse signal connected to the SDI pin. After receiving the digital word, the current
direction is defined as positive, and the current is enabled. The process is then repeated for
the other direction.

A second simulation was performed to analyze the stimulation current performance for
both directions for all different possible codes. 1024 different codes were applied at the input
of the system and the stimulation current on both directions was measured. In addition, the
difference between the obtained values and the ideal ones were computed and the curve was
plotted. Results are presented in figure 6.9. The ”Enable” signal used was maintained active
during simulation. As for the ”Direction” signal was maintained at ’1’ at the positive current
and ’0’ at the negative. The load used for this test was also maintained with the parallel
of a 10kΩ resistor and 1pF capacitor. Analyzing figure 6.9, it is concluded that the current
error (analyzing for the positive current), varies between 0.2µA and -0.75µA, being most of
the range bellow 0, which means that for the most range the stimulation current is bellow
the ideal one. For the negative one, the current varies between -0.2µA and 0.75µA, which
means that in absolute value the stimulation is bellow the ideal one. Therefore, comparing
the curves for the current on both directions, it can be seen that the errors associated are
very similar. Comparing the obtained error at this point with the one obtained in figure 5.15
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Figure 6.8: Post-Layout Simulation: System Operation Use Case

for the typical mode, it is concluded that the absolute errors in current increase. Furthermore,
the error curves from figure 6.9, present transitions in the error curve that are not equal for
the complete range, especially when high transitions of the digital codes at the input occur.
For example, when the transition from ”0111111111” to ”1000000000” occurs, the current
error goes from -0.22µA to -0.42µA. These errors are mainly due to the parasitic capacitances
on the DAC as it was mentioned previously in this chapter. Both of these factors increase the
errors on the conversion and, as a consequence, the voltage difference between two consecutive
steps is not the same for all the steps, creating the behavior of the error presented.

Furthermore, the stimulation current performance was also evaluated, using the same
setup for the corners performance (wp and ws). As previously done, the current curves for
all possible codes were plotted and the error between these and the expected current was
calculated. Results are presented in figure 6.10. The conclusions taken from the obtained
results are similar as the ones presented in the corner analysis performed on chapter 5. For
worst power operation, the stimulation current bellow the expected one for most input codes.
At around code 800, the trend reverses and the stimulation current is above the ideal current.
The error varies between -0.68µA and 0.58µA, and peaks at 1.43µA, for the 29 most significant
codes. For worst speed corner operation, the current is bellow the expected one for all input
codes, in exception for the first two. The error varies in the useful range between 0.08µA and
-0.77µA, and peaks at -1.63µA when the circuit is operating in the non-linear region. Note
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Figure 6.9: Post-Layout Simulation: Current Curves on both Directions

that, since the voltage-to-current converter as an operation range between 0 and 4.86V, as
previously stated. This means that in this region, the circuit is not operating in the linear
region and therefore the error peaks at -1.63µA (for the ws corner) and at 1.43µA (for the wp
corner) are not relevant. Furthermore, since the error trend is very similar for both current
directions, the corner analysis was carried out for only positive direction.

Using a similar setup as for the previous simulations, the current curves for different loads
were measured on the typical operation mode. The resistive part of the impedance was varied,
being used the values: 100Ω, 1kΩ , 5kΩ, 10kΩ, 15kΩ and 20kΩ. The results obtained are
presented in figure 6.11. This figure shows that the loads from 100Ω to 15kΩ present similar
curves. For the resistive load of 20kΩ, the maximum current is limited to around 187µA,
due to the limits of the circuit voltage compliance, as pointed out in chapter 5. Therefore,
it is guaranteed that the circuit operates in the current range of the specifications with a
maximum load of 15kΩ. Note that the stimulation can still be performed for higher loads,
however in a smaller range of currents.

To finalize the post-layout simulation, the developed layout was tested on its power
consumption. The tests were performed similarly as it was described in chapter 5 on a 10kΩ
load and the average power consumption was computed for the 3 considered corners. Results
are presented in Table 6.2. The average power consumption obtained was around 19.5mW
for the typical corner. This is around 0.5mW above the one obtained on circuit simulation.
This happens, since the layout takes into consideration the parasitic elements, which cause
resistive connections between the components and a higher dynamic power consumption.
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Figure 6.10: Post-Layout Simulation: Corner Analysis on Stimulation Current

Figure 6.11: Post-Layout Simulation: Load Dependence

Table 6.2: Post-Layout Simulation: Circuit Power Consumption

Operation Corner tm wp ws
Power Consumption 19.5mW 21.5mW 17.7mW

82



CHAPTER 7
Conclusion

This dissertation describes the design, implementation, simulation and results of an ASIC
for current mode electrical stimulation of the spinal cord for neuronal regeneration, in a
0.35µm CMOS technology.

The work started with understanding the problem at hands, the study on basic funda-
mentals of electrical stimulation and the research on state-of-the-art stimulation circuits in
order to reach to the architecture proposed. Having the architecture defined, studies on the
necessary circuits were performed, where it was made a comparison on the different possible
circuit topologies, to evaluate which are more suitable for the application. The necessary
circuits schematics were implemented and validated using the Spectre simulation tool from
Cadence software. At this stage, validation of the system integrated was also performed.
Having the system operation verified in the schematic, the circuit layout was designed, fol-
lowed by parasitic extraction and post-layout simulations. Post-layout simulations included
characterizing the circuits developed and perform a comparative analysis with the results
obtained from simulation. Furthermore, the integrated system operation was evaluated, the
errors associated with the stimulation current were quantified, corner analysis was performed,
the system output loads range was studied and the average power dissipation of the circuit
was measured.

The stimulation circuit provides currents between 0 and 200µA, with current steps around
0.2µA. In addition, the errors associated with the stimulation current are lower than 0.75µA.
The system errors are mainly due to the DAC. The influence of parasitic components and
mismatches on the capacitors array decrease the DAC conversion performance. As consequence,
the current accuracy decreases and the steps between two consecutive levels of current are
not equal for all input binary codes. To increase the DAC performance, software or hardware
calibration could be included, if even higher accuracy on the DAC is required. However, this
would increase the system complexity, and since the accuracy achieved is satisfying for the
application, calibration on the DAC was not considered. Another limitation of the system is
that the V-I converter work range is limited to 4.86V, which reduces the system resolution
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and the system voltage compliance. Nevertheless, a resolution of 0.2µA is achieved, higher
than the 0.5µA from the specifications. Moreover, the system voltage compliance allows to
provide currents in the range of 0 to 200µA to output loads below 15kΩ, which is satisfying
for the application. Nevertheless, the developed system is still capable of providing a linear
stimulation current for higher loads, however with smaller current ranges. Furthermore, the
stimulation current provided by the presented circuit, is capable of mimicking the mammalian
embryonic current levels, with a high resolution, being adequate for cells regeneration purposes.

To conclude, the proposed system has a low-voltage supply (5V), an average power
consumption of 19.5mW and a circuit area of 0.19mm2, making it suitable for an implantable
device supplied by a battery.

7.1 Future Work

Even though the stimulation part of the proposed ASIC has been successfully implemented
and simulated in the Cadence software environment, to have a fully developed prototype,
further work is still required. The aspects that are suggested as future work from this
dissertation include:

• Integration of the stimulation and acquisition circuits layout.
• Perform tests to evaluate the ASIC performance with the acquisition and stimulation

circuits integrated.
• Inclusion of the contact pads for the input and output pins of the ASIC, and the choice

of a suitable packaging for the ASIC. The choice of the packaging will depend on the
total circuit area occupation including both circuits and the pads. Nevertheless, the
Quad-Flat No-leads (QFN) 16 [53] is suggested as a good possibility, since it has the
number of pins needed to accommodate all the ASIC pads. Furthermore, it is small in
size (5mm per 5mm), making it a viable option for an implantable device.

• Tests on the produced circuit.

In addition to finalize the prototype development, implementing different architectures of
the used components, especially the DAC, and comparing these with the developed on this
dissertation can be useful to improve the stimulation system overall performance.

7.2 Contributions

In result of this work, a paper titled ”ASIC with Current-mode Stimulation and Indirect
Impedance Acquisition for Neuronal Regeneration”, was submitted to a conference, IEEE
International Symposium on Circuits and Systems 2022 (ISCAS22). Currently, it is being
peer reviewed.
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