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Palavras-Chave Doença de Alzheimer, neuroimagem FDG-PET, dataset ADNI, redes neu-
ronais convolucionais, transferência de aprendizagem, aprendizagem pro-
funda personalizada

Resumo Doença neurodegenerativa é um termo utilizado para uma série de condições
incuráveis e debilitantes que afetam o sistema nervoso humano. Destas
condições, a doença de Alzheimer (DA) é a mais preocupante, tanto pelo
número de pessoas afetadas como pelos elevados custos em tratamento
médico. Os principais desafios associados a esta doença estão relacionados
com os sintomas subtis, o rápido desenvolvimento de incapacidade e ao
longo peŕıodo de tempo durante o qual os pacientes necessitarão de cuida-
dos especiais. Pesquisas recentes têm sido dedicadas ao desenvolvimento de
ferramentas computacionais capazes de ser integradas nos procedimentos
médicos como complemento para apoiar o diagnóstico precoce e tratamen-
tos adequados. Esta dissertação procura estudar a aplicação de técnicas
de aprendizagem profunda (AP) na classificação automatizada da DA. Este
estudo tem como foco principal o papel da neuroimagem PET como biomar-
cador de doenças neurodegenerativas, especialmente na classificação de pa-
cientes saudáveis em comparação com pacientes com DA. Imagens PET
do metabolismo cerebral de glucose com flúor-18 (18F) fluorodesoxiglucose
(18F FGD) foram obtidas através da base de dados da Alzheimer’s Disease
Neuroimaging Initiative (ADNI). O dataset pré-processado é usado para
treinar duas redes neurais convolucionais (RNCs). A arquitetura da primeira
RNC procura explorar a transferência de aprendizagem como uma solução
promissora para o problema dos dados através da utilização de um modelo
Inception V3 2D, da Google, previamente treinado num dataset maior. Esta
abordagem requer um passo de pré-processamento onde dados volumétricos
PET são convertidos numa imagem bidimensional que por sua vez será os
dados de entrada do modelo pré-treinado. A segunda abordagem involve
uma RNC 3D personalizada de maneira a utilizar os padrões espaciais pre-
sentes nos volumes PET através de filtros 3D e camadas de pooling 3D.
O estudo comparativo foca-se no desempenho e robustez dos dois modelos
ao lidar com a disponibilidade limitada de dados classificados. O desem-
penho dos classificadores é avaliado através de um processo de validação
cruzada, atribuindo uma pontuação de 83.62% à RNC 2D e de 86.80% à
RNC 3D. Os resultados obtidos contribuem para análise da eficácia destes
métodos no diagnóstico da DA. Tendo em conta as melhorias expectáveis,
estas poderam ser consideradas abordagens promissoras e de acordo com o
atual estado da arte.





Keywords Alzheimer’s disease, FDG-PET neuroimaging, ADNI dataset, convolutional
neural networks, transfer learning, custom deep learning

Abstract Neurodegenerative disease is the term used for a range of incurable and de-
bilitating conditions affecting the human’s nervous system. Amongst these
conditions, Alzheimer’s Disease (AD) is responsible for the greatest burden
both for the number of people affected and for the high costs in medical
care. The challenges of the disease are related to the subtle symptoms,
the increasing pace of disability and the long period of time over which pa-
tients will require special care. Recent research efforts have been dedicated
to the development of computational tools that can be integrated into the
workflow of doctors as a complement to support early diagnosis and tar-
geted treatments. This dissertation aims to study the application of Deep
Learning (DL) techniques for the automated classification of AD. The study
focuses on the role of PET neuroimaging as a biomarker of neurodegenera-
tive diseases, namely in classifying healthy versus AD patients. PET images
of the cerebral metabolism of glucose with fluorine 18 (18F) fluorodeoxyglu-
cose (18F FGD) were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. The pre-processed dataset is used to train two
Convolutional Neural Networks (CNNs). The first CNN architecture aims
to explore transfer learning as a promising solution to the data challenge by
using a 2D Inception V3 model, from Google, previously trained on a large
dataset. This approach requires a preprocessing step in which the PET
volumetric data is converted into a two-dimensional input image which is
the input to the pre-trained model. The second approach involves a custom
3D-CNN to take advantage of spatial patterns on the full PET volumes by
using 3D filters and 3D pooling layers. The comparative study highlights
the performance and robustness of these two models in dealing with the
limited availability of the labelled data. The performance of the estimators
is evaluated through a cross-validation procedure, giving a score of 83.62%
for the 2D-CNN and 86.80% for the 3D-CNN. The results achieved con-
tribute to the understanding of the effectiveness of these methods in the
diagnosis of AD. Given the expected margin for improvements, they can be
considered promising and in line with the current state of the art.
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Chapter 1

Introduction

Neurodegenerative disease is the term used for a range of incurable and debilitating con-
ditions affecting the neurons of the human’s nervous system, being strongly linked to age.
Amongst these conditions, Alzheimer’s Disease (AD) is responsible for the greatest burden
both for the number of people affected, over 7 million people in Europe and an estimated 47
million worldwide, and for the high costs in medical care [1]. The challenges of AD are due to
its subtle onset, the ever-increasing pace of disability and the long period of time over which
patients will require special care. Living longer means that more people may be affected in
coming decades, resulting in increased efforts for both doctors, caregivers and families.

In order to support AD specialists throughout the diagnosis process, several studies have
been performed aiming to significantly increase the chances for an earlier detection of the
disease, so that it would be possible to promptly tackle it. Over the last years, Machine
Learning (ML) has made important contributions in this line of investigation. It provides
an effective framework for the automatic diagnosis of brain disorders through the use of
computational algorithms able to adapt to a given dataset and correlate it to its corresponding
medical attributes.

The study of Artificial Neural Networks (ANNs) originates from the ambition to build
computational models based on the human brain’s anatomy and behaviour. They comprise
a high number of interconnected computational nodes (referred to as neurons), working in
a distributed way to collectively self-optimise through learning. Convolutional Neural Net-
works (CNNs) are a subcategory of ANNs specially effective when dealing with images or
video datasets. The recent successes of convolutional networks have made them the preva-
lent architecture for dealing with classification, detection, and segmentation tasks in various
application areas of medical imaging.

Currently, some of the most popular applications of deep CNNs, besides medical imaging,
include time series predictions (e.g., weather forecasting, traffic flow) using 1-dimensional
CNN implementations [2, 3], object detection using image recognition [4, 5, 2], biometric
identification through print, facial or writing recognition [6, 5, 2], handwriting character
recognition [6, 5], and style transferring which involves learning from a specific artistic style
and trying to reassemble another image in order to fit that same style [6]. A whole new realm
of possibilities is opening up to these investigations with the ever growing ability to gather
the labelled data required to create robust high-quality datasets. At the same time, looking
at the advances made in terms of calculation capacity, it seems to be only a matter of time
before these technologies enter the routine of medical care.
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1.1 Motivation

Nowadays, there is a broad consensus that AD appears decades before its first manifes-
tation, advances to the prodromal phase in which the patient starts to experience the early
symptoms and evolves to the terminal stage with the progressive loss of basic cognitive skills.
Apart from the search for a cure for AD, the most recent efforts are aimed at developing new
computational tools that can be integrated into the workflow of doctors as an useful com-
plement to support a decision. In this context, two developments are contributing to meet
the clinical need of early detection and treatment monitoring. First, there have been, over
the last few years, permanent advances in neuroimaging modalities and AD bio-markers [7].
There are a wide variety of neuroimaging modalities associated to the AD diagnosis, being
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) the most
common ones.

PET is a modality that begins to play a key role in the current realm of AD diagnosis
methods. In particular, fluorodeoxyglucose (FDG)-PET is a procedure showing a huge po-
tential to assess the risk or presence of the disease in a very early stage. PET images of
the cerebral metabolism of glucose with fluorine 18 (18F) fluorodeoxyglucose (FDG) provide
representations of neuronal activity closely linked to the initial manifestations of AD [8]. This
is the essential aspect to give medical professionals the possibility of an early diagnosis, when
it is more effective [9]. Preferably, the treatment should be initiated before any sort of major
mental damage has taken place [10].

The second development to highlight is related to the various successes of deep learning
techniques in multiple medical imaging problems [11]. These results show the potential of
these techniques to transform preventive healthcare and computerized diagnosis. The rise of
DL has prompted the search for solutions to improve the AD diagnosis based on neuroimaging
data. Accordingly, several studies have highlighted the importance of DL-based diagnostic
systems using either MRI or PET scans [12, 13], while others address the integration of multi-
modality information, such as FDG-PET and T1-weighted MRI images [14, 15, 16]. One of
the main challenges to be faced when applying DL for AD classification is the reduced number
of annotated samples available in public datasets, mainly when it comes to 18F-FDG PET
scans.

1.2 Objectives

This dissertation aims to study the applicability of deep learning techniques in the context
of AD diagnosis with 18F-FDG PET images. The proposed study focuses on how to leverage
deep convolutional architectures for classifying healthy versus AD patients, even with a limited
dataset collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In line with
this, the main objectives to be achieved are the following:

• Volumetric CNNs: To study different CNN-based techniques able to process 3D PET
image data.

• Transfer Learning vs. Custom Deep Learning: To provide a comparative study be-
tween the usage of transfer learning versus training a network from scratch for binary
classification of Alzheimer’s disease.
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• Techniques to Prevent Overfitting: To evaluate the impact of different techniques,
such as cross-validation, dropout and transfer learning, when dealing with overfitting
due to a limited amount of labeled data available for training.

For this purpose, the intention is to understand the role of deep architectures for handling
PET data, by comparing two CNN models in terms of predictive performance. The first CNN
architecture explores transfer learning as a promising solution to the data challenge using a
pre-trained model. The second architecture involves a custom developed 3D-CNN to take
advantage of spatial patterns on the full PET volumes by using 3D filters and 3D pooling
layers. At the same time, the study addresses the role of different techniques to prevent the
occurrence of overfitting and its impact in terms of predictive performance.

1.3 Dissertation Outline

The following chapters will work as the framework for this dissertation:

• Chapter 2 - State-of-the-Art - is dedicated to the analysis of the current advance-
ments related to the research fields pertinent to this dissertation’s development, such as
neurodegenerative diseases, medical imaging modalities, and literature review on deep
learning and its possible applications for AD diagnosis.

• Chapter 3 - Materials and Methods - provides the work context, overviews the deep
learning techniques and its principles, especially regarding two dimensional and three
dimensional CNNs.

• Chapter 4 - Experiments and Results - is the core of this dissertation. It includes
an analysis of the neuroimaging dataset and covers all of the results obtained throughout
the main study, describing every adjustment made and its corresponding performance
impact.

• Chapter 5 - Conclusions - presents final remarks, key takeaways, and directions for
future work.

3



4



Chapter 2

State-of-the-Art

This chapter provides an overview of the topics and concepts related to the work to be
carried out within the scope of this dissertation, including a literature review on deep learning
techniques for diagnosis of Alzheimer’s disease. Section 2.1 briefly describes aspects related
to neurodegenerative diseases and, in particular, the challenges posed by AD. Section 2.2
is dedicated to describing medical imaging technologies commonly used in the diagnosis of
AD. Section 2.3 reviews the literature of some related works in order to provide a better
understanding of current achievements, limitations and opportunities associated with the
application of deep learning techniques in the diagnosis of AD. The focus is placed on the
literature demonstrating the added-value of FDG-PET imaging.

2.1 Neurodegeneration and Alzheimer’s Disease

Neurodegenerative diseases are a spectrum of medical disorders that are characterized by
neurodegeneration, a biological process that causes a progressive loss of neurological function
and structure. In practice, neurodegenerative diseases arise for unknown reasons and they
reach a point of irreversible and progressive degeneration and/or death of nerve cells [17].
Despite the origins of these neural anomalies still being far from completely understood,
there is a considerable increase in the incidence rate with the subject’s age. Over the past few
years, there has been a significant effort aimed at tackling the challenges of neurodegenerative
diseases, namely a better understanding of the disease, novel tools for early detection, and
improvements in patient care.

Among the hundreds of different neurodegenerative disorders, only a handful have gained
the attention of the international community due to their highly disabling effects and as-
sociated costs, including Alzheimer’s disease, Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS). Each brain disorder gives rise to different man-
ifestations according to the type of neurons affected, from difficulties with walking, balance
and coordination in PD [18] to loss of cognitive functions in dementia [19]. In this context,
Alzheimer’s disease is documented as the most common cause of dementia worldwide (respon-
sible for 60 to 80% of cases), affecting roughly 30% of people over the age of 85[20]. Dementia
is the term used to refer to a set of symptoms marked by decline in memory, reasoning or
other cognitive functions.
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According to the EU Joint Programme for Neurodegenerative Diseases [1], dementia cases
currently stand as one of neurodegenerative diseases’ greatest burden, representing annual
healthcare costs of approximately 130 billion euros. It is estimated that Alzheimer’s disease
affects over 7 million people in Europe alone (worldwide the estimate reaches 47 million
people). The challenge facing the European society is even greater because the disease is
strongly linked to age. Currently, 15% of the population is over 65, being expected to reach
25% by 2030. In the same line of thought, estimates from the Alzheimer’s Association and
the World Health Organization (WHO) [21] suggest that there are currently over 35 million
people in the world with AD and that this number might increase to more than 100 million
people by the year 2050. AD is particularly expensive due to its subtle onset, the gradual
levels of debilitation and the average duration between 2 and 10 years over which the condition
can extend.

As previously mentioned, the manifestation of AD is generally greater in the elderly
population, but there are some rare cases in which the disease has family roots. Between 5%
to 10% of all documented AD cases, the patient is subject to specific genetically dominant
traits that lead to the inheritance of the disorder and, consequently, to the early development
of symptoms, sometimes as early as the age of 50. It is also worth noting that AD cases usually
have higher rates in women than in men [22]. In any case, dementia is the first symptom to
manifest itself, followed by mood and behavioral deviations, and lastly, severe memory loss,
disorientation and aphasia, the inability to understand or produce speech.

Existing treatments for neurodegenerative diseases are limited, addressing the symptoms
rather than the cause [23]. Consequently, there is a generalized agreement that early and
differential diagnosis of dementia are the key factors to promptly provide patients with the
appropriate treatment [24]. Technological advances in recent years have contributed to en-
hance clinical diagnosis, rather than excluding other causes of cognitive deterioration. These
developments include both improvements in neuroimaging techniques and analysis methods.
The innovations with respect to neuroimaging technologies are reflected in better image qual-
ity and both higher spatial and temporal resolutions. These advances allow the quantitative
assessment of the brain’s morphology, perfusion (i.e., fluid passage through the circulatory
system), metabolism and function [25]. Figure 2.1 illustrates the physical changes between
the brain of an healthy individual and the brain of an individual with Alzheimer’s disease.

Figure 2.1: Illustration of a healthy brain (left) vs. an Alzheimer’s disease brain (right) [26]
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In addition to the chemical changes that may occur, the brain of an Alzheimer’s disease
patient is considerably smaller since the brain shrinks down significantly. Furthermore, when
looking at a healthy patient, their brain folds are very full and closely packed together. In
contrast, an Alzheimer’s disease brain presents much less depth in its folds and a much wider
separation between them. Anatomically speaking, the cerebral structures most affected by AD
are the hippocampus and the cerebral cortex [27]. The former is an intricate brain structure,
situated in the temporal lobe, mainly responsible for learning and memory related functions.
The latter is a layer of neural tissue associated with the cerebrum and has various different
sensory related functions as well as controlling some other tasks relating to speech, thinking
and memory.

Machine learning is another example of an advanced technology that has had a major
impact in the diagnosis of dementia [28]. Instead of a subjective visual interpretation, the
integration of these methods in computer-aided diagnosis systems aims to provide a quantita-
tive, reproducible and unbiased evaluation (i.e., unaffected by expert knowledge). A reference
study published by Kloppel et al. in Brain [29] showed the role of computerized diagnostic
methods to provide a more standardised level of diagnostic accuracy for MRI scan-based de-
mentia diagnosis. This study compared the results achieved using support vector machines
(SVMs) to those obtained by radiologists when discriminating sporadic Alzheimer’s disease
from normal ageing and from fronto-temporal lobar degeneration (FTLD). On average, the
results indicated that automated computer-based diagnosis were equal to, or superior to, that
achieved by six radiologists with different levels of experience, making them a useful support
tool to help reach an appropriate decision.

More recently, deep learning models appear to be particularly effective for classifying brain
images [30], such as those acquired from structural MRI, functional MRI, and PET scans.
The main advantage of deep learning models is that they do not need the complex process
of feature extraction required over traditional machine learning. Deep neural networks allow
training a complete target system represented by a single model, bypassing the traditional
pipeline design, through a concept commonly called end-to-end learning [31]. Nevertheless,
training deep neural networks is a challenge since algorithms require extensive supervision,
exhaustive manual labelling of data and considerable computational resources. In this con-
text, the combined efforts from the academia and industry have been important to convert the
amount of available data into useful datasets for research purposes. One of the most impor-
tant initiatives is the Alzheimer’s Disease Neuroimaging Initiative (ADNI) whose repository
includes MRI, PET, genetics, cognitive test, cerebrospinal fluid (CSF) and blood biomarker
data [32].

2.2 Brain Imaging in the Diagnosis of AD

Medical imaging is a technique designed to generate visual representations of the internal
anatomy and function of some organs and tissues of the patient. This allows the specialist to
complete a thorough examination without needing to perform any type of invasive or poten-
tially dangerous procedure. Modern medicine has at its disposal a set of imaging modalities
whose benefits differ according to the specific region of interest (e.g., brain, heart, lungs,
etc). The comparison between modalities takes, normally, into account two fundamental as-
pects: the image quality in terms of spatial resolution and contrast, and the effects of ionizing
radiation on the patient’s body (depending on the energy of the radiated particles).

7



The use of imaging for diagnosis is associated with some form of electromagnetic radiation
such as, for example, visible light in endoscopy, X-rays in mammography and computed
tomography (CT), radio waves in magnetic resonance, and gamma rays in nuclear medicine.
Every form of energy used in these previously mentioned procedures requires not only the
ability to penetrate tissues, but also the ability to interact with those same tissues in order
to be able to create some type of visual reproduction of the desired internal structure. In
nuclear medicine, a radioactive substance is administered to the subject (injected or ingested)
which will originate physiological reactions recorded from within the body. A trade-off must
be achieved such that the amount of energy used in the acquisition process provides high
image quality to reach a clear verdict, but without jeopardizing the patient’s safety.

The current diagnosis of AD relies largely on neuropsychological tests and neuroimaging
biomarkers [33]. Ideally, the test must comply with a set of criteria such as being non-invasive,
reproducible, and inexpensive. A promising approach is the use of biochemical markers that
are present in the cerebrospinal fluid [34]. CSF biomarkers that come closest to fulfilling
the above requirements are β-amyloid protein of 42 amino acids (Aβ1-42), total tau protein
(T-tau) and hyper-phosphorylated tau (P-tau) in CSF [35]. However, assessment of these
biomarkers still means obtaining CSF through a lumbar puncture, which is an unpleasant,
invasive, and time-consuming procedure.

Recently, the diagnostics can be performed in an early stage, even in the prodromal
stage of the disease also referred to as mild cognitive impairment (MCI), in a non-invasive
and reproducible way. The biomarkers for early AD diagnosis that are currently in use
reflect the deposition of amyloid (CSF Aβ1-42 or PET with amyloid ligands), formation of
neurofibrillary tangles (CSF P-tau), neuronal degeneration (CSF T-tau), changes in brain
metabolism (FDG-PET), as well as neuronal loss and volumetric changes in brain structures
that cause the disease’s symptoms, such as the hippocampus through magnetic resonance
imaging of the brain [36].

Next is a brief description of the two most used imaging techniques in the diagnosis of AD,
now widely available. On the one hand, magnetic resonance imaging can answer the most
relevant questions related to morphology and physiology of the disease. The introduction
of high-field MR scanners (3T) into clinical practice has opened new possibilities in brain
imaging, allowing to detect small vessels, small brain structures, brain fibres and lesions that
measure only a few millimetres in size [37]. On the other hand, a PET scan captures the
activity of the brain after a radioactive “tracer” is absorbed into the blood stream [38].

2.2.1 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is a non-invasive technique used for disease diagnosis by
producing detailed 3D pictures of the anatomy and the physiology of the body [39]. MRI
scanners (Figure 2.2) produce a magnetic field used to force the alignment of the atomic nuclei
(usually hydrogen protons) within the body tissues with that same field. Then, a radio signal
is used to disturb the axis of rotation of these protons against the magnetic field. The MRI
sensors detect the amount of energy released as the protons realign with the magnetic field
whenever the radiofrequency signal is turned off. This signal is processed to form an image of
the body reflecting the density of the atomic nuclei in a specific region. The speed at which
protons realign with the magnetic field allows to obtain the contrast among tissues. Unlike
CT and PET-scans, MRI does not involve the use of ionizing radiation, although the body is
exposed to powerful magnetic fields and fluctuating radio signals.
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Figure 2.2: Patient positioned for a MR study of the brain [40]

The diagnostic criteria for patients with AD include loss of brain volume on anatomical
MRI. The image on the left of Figure 2.3 illustrates the neuronal loss observed in patients
with AD when compared with healthy subjects by measuring the volume of the grey matter
(neurons) and the white matter (axons). Usually, the volume loss is more significant in
specific brain regions, such as the hippocampus [41]. This brain structure is associated with
memory functions and it can be affected even in early stages of the disease. According to
Wang et al., 2006 [42], the reduction of the hippocampal volume can predict conversion from
prodromal stages to AD with about 80% accuracy. The image on the right side compares
the hippocampi of a patient with that of a healthy patient, showing a volume loss associated
with atrophy in AD. The cortical thickness measurement of the entire brain mantle is an
alternative volumetric method of interest for AD. Lerch et al., 2008 [43] have demonstrated
an accuracy of more than 90% in distinguishing AD patients from healthy controls.

Figure 2.3: MRI scans showing: Left image - the increase in ventricular size of a patient with
AD (bottom) compared with a healthy subject (top) using axial and sagittal projections;
Right image - the volume loss of grey matter associated with hippocampal atrophy using
coronal and sagittal projections. Adapted from [44]
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2.2.2 Positron Emission Tomography (PET)

Positron Emission Tomography is a medical imaging modality that consists of conduct-
ing measurements of physiological functions, offering quantitative analyses which in its turn
provides the ability to monitor a disease’s progression over time. These quantitative analyses
are generated by examining the data obtained from blood flow, metabolism, neurotransmit-
ters or radiolabeled drugs. The speciality of nuclear medicine involves the application of a
radioactive substance, called a radioactive tracer, into the body and the posterior observation
of the emitted radiation in the organ or tissue being examined. In particular, the PET system
detects gamma radiation emitted through a reaction by a positron-emitting radioactive iso-
tope (e.g., oxygen-18, fluorine-18, carbon-11), which is introduced into the body on a carrier
biomolecule. This biomolecule corresponds to a chemical substance commonly used by the
organ or tissue during its operating process.

Fluorine-18 is one of the most commonly used tracers in positron emission tomography.
This radioactive tracer is attached to compounds like glucose as is the case with 2-18F-
fluoro-2-deoxyglucose (18F-FDG) for the measurement of brain metabolism [45]. Medical
imaging with 18F-FDG allows the diagnostic of several neurological dysfunctions, including
dementia, epilepsy, and movement disorders [46, 47, 48]. The quality of FDG-PET raw images
depends on a set of factors such as the patient preparation, the correct acquisition, and the
reconstruction parameters [49]. Patients should be fasting and they are required to stay in
quiet conditions prior (a few minutes) and after the injection (30-45 minutes).

Next, the patient is carefully positioned in the scanner and the acquisition of images begins,
which can last between 10 to 30 minutes. Afterwards, a computer analyses the gamma rays
and uses the information to create a three-dimensional image of the tracer concentrations,
representing the metabolic activity of a particular organ or tissue. The final volumetric
image is compiled from the frames acquired through an iterative technique which combines
information about the geometric features of the scanner and about the dispersion of the
radioactive isotope. An attenuation correction is applied to consider properties of the tissues
through which the photon passes. Once reconstructed, the PET images can also be co-
registered with CT or MR for anatomical localisation and structural comparisons.

There are several commercial software packages available to help medical specialists quan-
tify the information related to neurodegenerative disorders, like CortexID (General Electrics),
Scenium (Siemens), BRASS (Hermes), Vista (MIM), among others. These software packages
provide a co-registration step to standard anatomical templates allowing statistical compar-
isons against normal patients, being performed using regions of interest (ROIs) or in voxel-
by-voxel basis.

Decreased brain glucose consumption, known as hypometabolism, is seen as one of the
earliest signs of neural degeneration, being associated with AD progression [50]. However,
there is a substantial overlap between the regions of the brain where 18F-FDG PET scans
show hypometabolism, making the task of recognising patterns and regularities by nuclear
medicine specialists difficult. Patients with both MCI and AD show hypometabolism in the
regions of the posterior cingulate and the parietotemporal cortices, with variable frontal lobe
involvement (more frequent in advanced stages). As opposed to this, glucose consumption is
usually preserved in the primary visual cortices, striatum, thalamus, and primary sensorimo-
tor cortices. Additionally, the asymmetric involvement of these areas is a classical pattern of
AD in FDG-PET, being an important aspect in a visual evaluation [51].
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FDG-PET represents a valuable and unique tool able to estimate local cerebral rate of
glucose consumption. Thereby, PET may point out biochemical changes that underlie the
onset of a disease before anatomical changes can be detected by other modalities such as
CT or MRI. The presence of hypometabolism patterns precede the typical pattern of brain
atrophy estimated from MRI. According to some authors [52], the added value of FDG-PET,
over other AD biomarkers, is more associated with the follow-up of the disease’s progression
than its diagnosis. However, PET scans have a disadvantage which is its cost of operation.
Single-photon emission computed tomography (SPECT) is a less expensive imaging process
with similarities in what concerns the use of gamma rays and radioligands.

Modern PET scanners are combined with CT or MRI to provide, in the same machine
and session, both anatomic and metabolic information. Simultaneous PET-MRI scanner
technology allows a better understanding of the brain function/dysfunction as reported in [53,
54]. MRI represents a gold-standard imaging modality for numerous indications, while a great
number of specific PET tracers are available today to assess functional and molecular processes
in the brain.

2.3 Literature Review on Deep Learning for AD

This section provides an overview of current knowledge and achievements on the applica-
tion of ML techniques for medical care. It includes a description of the most common deep
learning models for medical imaging, mainly those case studies which are related to the di-
agnosis of AD rooted on convolutional neural networks. At the same time, the main aspects
of the field will be summarised in order to put into perspective the directions to explore in
upcoming chapters, as well as the works published to date who laid the groundwork for this
dissertation work.

2.3.1 CNNs in Medical Imaging

There is an increasing number of examples showing the effectiveness of machine learning
(ML) methods for medical care, even if their deployment in real-world environments may
require some more time. The special issue published in the IEEE Transactions on Medical
Imaging by Greenspan and colleagues [55] drew attention to the impact of DL techniques in
the domain of medical imaging. Meantime, the surveys by Hu et al., (2018) [56] and Litjens et
al. (2017) [11] contribute to a clear understanding of the principles and methods of artificial
neural networks and deep learning, as well as on how these models are applied in different
tasks using a wide variety of image modalities.

Nowadays, convolutional networks has become an important tool when it comes to finding
increasingly efficient solutions to various problems. Its popularity can be observed by the rate
of growth in scientific publications over the last years. Table 2.1 provides a list of research
studies organised by their corresponding category, task, medical imaging modality and the
publication pertaining to their respective entries. These studies address the problems of
detection, segmentation and classification using different diagnostic images.
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Category Task Modality Reference

Abdomen and pelvis Prostate cancer identifica-
tion

MRI Wang et al., 2017 [57]

Abdomen and pelvis Bladder cancer treatment
response assessment

CT Cha et al., 2017 [58]

Abdomen and pelvis Liver lesions classification CT Yasaka et al., 2018 [59]

Breast Breast lesions classification MG/US Kooi et al., 2017 [60],
Han et al., 2017 [61]

Chest Mediastinal lymph nodes
classification

PET/CT Wang et al., 2017 [62]

Chest Tuberculosis identification Rad. Lakhani et al.,
2017 [63], Lopes et
al., 2017 [64]

Chest Lung nodules classification CT Wang et al., 2018 [65],
Ciompi et al., 2017 [66],
Song et al., 2017 [67]

Musculoskeletal
system

Fracture identification
(wrist/hand/ankle)

Rad. Olczak et al., 2017 [68]

Musculoskeletal
system

Hip osteoarthritis identifi-
cation

Rad. Xue et al., 2017 [69]

Musculoskeletal
system

Bone age assessment Rad. Larson et al., 2018 [70],
Lee et al., 2017 [71],
Spampinato et al.,
2017 [72]

Skin Skin cancer classification PHO Esteva et al., 2017 [73]

Note: CT = Computed Tomography, MG = Mammography

MRI = Magnetic Resonance Imaging, PET = Positron Emission Tomography

PHO = Photography, Rad. = Radiography, US = Ultrasound

Table 2.1: CNN applications in medical imaging

Machine learning and deep learning have also been extensively used in neuroimaging
studies to devise diagnostic and classification for a number of diseases and disorders, such as
neurodegenerative diseases, strokes, epilepsy, schizophrenia and its prodromal stages, autism,
abnormal brain development and aging, among others. Table 2.2 provide several examples of
these undertakings, being possible to verify the predominance of MRI-base approaches. It is
worth note that the information list in these tables has been compiled based on the readings
of the following articles [74, 75, 76, 77]. Litjens et al. [11] provides a more extensive analysis
on applications of deep learning in the context of medical imaging.
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Task Modality Reference

Tissue necrosis after CVA prediction MRI Stier et al., 2015 [78]

PD identification SPECT Choi et al., 2017 [79]

Brain tumor segmentation MRI Havaei et al., 2017 [80]

Brain lesion segmentation MRI Kamnitsas et al., 2017 [81]

Brain age prediction MRI Cole et al., 2017 [82]

Alcoholism detection MRI Wang et al., 2018 [83]

Note: CVA = Cerebrovascular Accident

MRI = Magnetic Resonance Imaging, PD = Parkinson’s Disease

SPECT = Single-Photon Emission Computed Tomography

Table 2.2: CNN applications in medical imaging (neurological system)

2.3.2 CNNs for Classification and Diagnosis of AD

A systematic review of the cutting edge in AD classification using deep learning can
be found in [84]. Authors emphasize some important aspects for understanding the whole
scenario of AD diagnosis. First, they state that approximately 73% of neuroimaging studies
were performed using single-modality data, leaving the multi-modality category with 27% of
the total cases, which can probably be attributed to the significant increase in complexity. As
illustrated in Figure 2.4, around 83% of the studies pertain to MRI, 9% refer to fMRI and the
last 8% to PET scans. The difference in the number of studies is understandable considering
that MRI scans are the most available out of those three modalities mentioned above.

Recently, there have been important advances in the development of PET radiotracers for
AD biomarkers, aiming at the diagnosis in the early stages of the disease. For example, the
work of Sala et al. [85] demonstrated that patterns of brain hypometabolism represent relevant
markers with highly supportive diagnostic and prognostic role. At the same time, there is
a growth trend of multimodal solutions that can be explained by the greater availability of
computing resources and the emergence of new hybrid technologies combining MRI and PET.
These modern scanners take advantage of the strengths of both modalities to produce highly
detailed images of the inside of the brain.

Figure 2.4: Single-modality vs. multi-modality (left) and imaging modalities (right). Taken
from [84].
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Another aspect to be highlighted is the diversity of deep architectures found in the lit-
erature. Nevertheless, it can be said that CNNs are, currently, the state-of-the-art in AD
diagnosis. A common approach is to convert the volumetric data into an image to be applied
at the input of a 2D convolutional network. Most of the studies transfer the weights from
pre-trained networks on the ImageNet database to the target task. This process, known as
transfer learning, speeds up training and reduces costs by leveraging previous knowledge.
However, dealing with individual slices may discard the depth information. Therefore, many
other studies aim to leverage the full information by exploring 3D CNN for learning repre-
sentations for volumetric data.

As illustrated in Figure 2.5, the use of 2D CNNs is still the most frequent architecture
found in the reviewed literature, while its 3D counterpart currently stands at a close second,
mainly due to the increasing availability of computational power. The classification process
is usually performed in order to assign to a subject one of several classes. A significant part
of the reported studies address the binary classification problem, i.e., they consider normal
cognitive (NC) against AD. A more challenging task occurs when the discriminative power of
deep networks needs to includes early and late stages of mild cognitive impairment. MCI is
sometimes subdivided into sMCI (Stable Mild Cognitive Impairment) and pMCI (Progressive
Mild Cognitive Impairment) which will eventually develop into AD. Table 2.3 presents some
relevant studies performed in this field during the most recent years based on the following
works [84, 86, 87, 88].

A third aspect that should be mentioned is the difficulty to compare and/or reproduce
results given the heterogeneity of datasets (some of which are not public), pre-processing
steps, deep models and performance metrics employed. Although it can be considered that the
application of DL techniques in AD diagnosis is still in their initial stages, recent works [12, 29]
demonstrate that deep neural networks can outperform radiologist abilities. The coming years
may determine the feasibility of these models as a support tool to help clinicians reach an
appropriate decision in real clinical environments.

Figure 2.5: Prevalence of each deep model used in AD detection from neuroimaging data [84]
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Modality Classes Score Reference

MRI AD vs CN 98% Wang et al., 2018 [89]

MRI AD vs CN 100% Taqi et al., 2018 [90]

MRI MCI vs CN 83%* Qiu et al., 2018 [91]

MRI Multi-class1 57% Valliani et al., 2017 [92]

MRI AD vs CN 91% Liu et al., 2018 [93]

MRI MCI vs CN 74%* Li et al., 2018 [94]

MRI sMCI vs pMCI 74% Liu et al., 2018 [15]

MRI sMCI vs pMCI 80%* Lian et al., 2020 [95]

MRI AD vs CN 91% Aderghal et al., 2017 [96]

MRI AD vs MCI 70% Aderghal et al., 2017 [96]

MRI MCI vs CN 66% Aderghal et al., 2017 [96]

MRI sMCI vs pMCI 73% Lin et al., 2018 [97]

MRI AD vs CN 90% Bäckström et al., 2018 [98]

MRI AD vs CN 99% Asl et al., 2018 [99]

MRI AD vs MCI 76% Senanayake et al., 2018 [100]

MRI AD vs MCI 100% Asl et al., 2018 [99]

MRI MCI vs CN 75% Senanayake et al., 2018 [100]

MRI MCI vs CN 94% Asl et al., 2018 [99]

MRI sMCI vs pMCI 62% Shmulev et al., 2018 [101]

MRI Multi-class1 95% Asl et al., 2018 [99]

AV-45 PET AD vs CN 85% Punjabi et al., 2019 [87]

AV-45 PET + MRI AD vs CN 92% Punjabi et al., 2019 [87]

AV-45 + FDG PET AD vs CN 96% Choi et al., 2018 [86]

AV-45 + FDG PET sMCI vs pMCI 84% Choi et al., 2018 [86]

Note: CN = Cognitively Normal, AD = Alzheimer’s Disease

MCI = Mild Cognitive Impairment, sMCI = Stable MCI, pMCI = Progressive MCI

* = Severely Imbalanced Dataset, 1 = AD vs MCI vs CN

Table 2.3: CNNs for AD classification
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Wen et al. [88] provided an overview and reproducibility evaluation concerning the clas-
sification of AD using CNNs. Although the study is limited to magnetic resonance data,
it helps to understand the limitations and opportunities of different approaches, namely in
what concerns the selection of 2D or 3D convolutional models. The reproducibility evalua-
tion is focused on the use of three public datasets: the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study, the Australian Imaging, Biomarkers and Lifestyle (AIBL) study and
the Open Access Series of Imaging Studies (OASIS). Overall, the different 3D approaches
achieved similar performances, while the 2D slice approach was lower. Authors also showed
that accuracy scores obtained from severely imbalanced datasets tend to be overly optimistic
when compared to those from balanced ones. Furthermore, they noted that some of studies
presenting higher performances might have suffered from data leakage which also inflate the
corresponding accuracy scores.

Although fewer and more recent, studies involving PET data have shown promising results,
particularly in the early stages where the diagnosis is more challenging for clinicians [102].
Choi and colleagues [86] developed an automatic system based on a deep CNN to predict cog-
nitive decline in MCI patients using flurodeoxyglucose (FDG) and florbetapir (AV-45) PET.
Authors used images from 139 patients with AD, 171 with MCI and 182 normal subjects ob-
tained from the ADNI database. The CNN was trained using 3-dimensional PET volumes as
inputs and it used minimally processed images without spatial normalization. The prediction
accuracy of the conversion of mild cognitive impairment to AD was compared with a SVM
classifier based on PCA features of FDG and AV-45 PET images. Accuracy of prediction
(84.2 %) for conversion to AD in MCI patients outperformed the conventional feature-based
quantification approach.

Punjabi et al. [87] also performed a rather interesting study that compared the perfor-
mance ratings between MRI- and PET-based systems. Initially, authors obtained an 87%
accuracy score with a full MRI dataset (missing value from Table 2.3), slightly higher than
the 85% obtained with the PET dataset. However, MRI datasets are, generally, larger than
the PET ones due to the previously mentioned wider availability of scans. Accordingly, Pun-
jabi and colleagues proceeded to reduce the MRI dataset to the same amount of samples as
the ones in the PET dataset. On this second trial, the performance decreased significantly as
shown by the 74% accuracy value obtained on the same task. These results are promising in
showing the usefulness of PET data, even when compared to those obtained using magnetic
resonance.

Another reference study published in Radiology by Ding et al. [12] shows that pre-trained
models is a promising strategy to obtain a more standardised level of diagnostic accuracy,
even when compared to human experts. However, the most significant result of this study
is the fact that it has demonstrated the usefulness of FDG-PET to successfully detect AD
about six years before the final medical diagnosis was given [103]. This is a remarkable result
as it allows patients to start the required treatments before a substantial manifestation of the
disease occurs.
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Chapter 3

Materials and Methods

This chapter clarifies the objectives of this dissertation and the methodologies adopted
to face the challenges of the proposed study. Section 3.1 provides the context of the work to
be carried out, helping to understand its delimiting boundaries. Section 3.2 introduces basic
concepts of artificial neural networks and deep learning with relevance for this work. Section
3.3 encompasses the main characteristics of convolutional networks operating on 2D images,
as well as how they can be used in problems involving volumetric data. Finally, Section
3.4 presents different strategies previously used to leverage the depth information based on
3D-CNN architectures.

3.1 Work Context

As stated before, deep learning techniques, such as convolutional neural networks, are very
data-hungry. In practical terms, DL-based methods require a large amount of training data
for generalization, namely for discriminating highly complex patterns such as those occurring
in the various stages of AD. However, annotated medical datasets are generally not very
extensive, as is the case with a neuroimaging modality like 18F-FDG PET scans. Due to
this fact, the occurrence of some level of overfitting will certainly be a reality that will have
to be dealt with appropriately. Overfitting occurs when the model adapts excessively to the
training samples to the extent that it negatively harms the performance on new data. This
could seriously jeopardize the final outcome of the project. Here, the data scarcity problem
is considered as the main limiting factor for the AD classification.

Given the limited availability of labelled data, conventional AI techniques, like Support-
Vector Machines (SVMs), are frequently used models that could have been considered here.
However, this dissertation is solely focused on the applicability of DL-based techniques for
the automatic classification of AD using FDG-PET images. More specifically, the main
goal is to understand how to leverage deep convolutional architectures for classifying healthy
versus AD patients by exploring their representation learning capabilities (instead of careful
feature extraction). For that purpose, a comparative study will be carried out centred on
two distinct deep models: a pre-trained 2D-CNN model against a custom developed 3D-CNN
trained from scratch. Still from a methodological point of view, this study will address the
impact of techniques and strategies aiming to diminish the existence of overfitting.

The first CNN architecture aims to explore transfer learning as a promising solution to
the data challenge by using a 2D Inception V3 model, from Google, previously trained on a
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large dataset. On the one hand, the objective is to explore a pre-trained model adapted to
the problem at hand and, then, fine-tuning it based on the target dataset. The idea is to take
advantage of the fact that the pre-trained model used a large and general training dataset,
while the feature maps learned previously remain relevant and can be re-purposed [104]. On
the other hand, this approach requires a pre-processing step in which the PET volumetric data
is converted into a two-dimensional image which is the input to the pretrained model. The 2D-
CNN deliberately discards the depth information which can result in lower performance. The
second approach involves a custom developed 3D-CNN to take advantage of spatial patterns
on the full PET volumes by using 3D filters and 3D pooling layers. A custom developed
model may help to reduce the complexity both in terms of number of parameters and depth.

Additionally, this study will adopt some other strategies during the development of the
two architectures in comparison, including the following:

• Cross-validation: The implementation of a k-fold cross-validation procedure would be
a logical first option when dealing with a low quantity of data since it allows the network
to eventually train on the full dataset (further description on subsection 4.2.2) [105].

• Dropout: Implementing dropout layers will make the model neglect a certain quantity
of the network’s units (see the example in Figure 3.1), based on a chosen probability,
which will also lead to a reduction in overfitting. Nevertheless, it will require the model
to perform more epochs in order to properly converge [106].

• Model complexity reduction: An overly complex model will also contribute to the
occurrence of overfitting. A common solution to this problem is the reduction of train-
able parameters, while maintaining a solid balance between overfitting and underfitting
[106].

Data augmentation is another prominent method to improve the generalization perfor-
mance when dealing with a significant lack of data. It aims to enrich the diversity of training
samples what could be essential in medical classification tasks. However, most data aug-
mentation techniques are hand-crafted and sub-optimal in 3D image processing. The nature
of the data used would require a custom data augmentation strategy that was outside the
scope of the work. Although they have not been implemented, the use of ensemble methods
deserves mention. The motivation behind ensemble models is to combine multiple predictions
obtained from different models in order to provide a more robust output decision.

Figure 3.1: Dropout application example [106]
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In what concerns the software and hardware resources, the study employed the Keras deep
learning API built on the Tensorflow platform, while the training of the models was carried
out on a remote server supported by a NVIDIA GeForce RTX 2080 Ti graphics card. The
FDG-PET dataset was obtained from the ADNI platform whose main goals are in line with
those of this work, which facilitated the data access request.

3.2 Neural Network Architectures and Deep Learning

Belonging to the artificial intelligence (AI) research field, the end goal of machine learning
is the conception and development of autonomous mathematical algorithms that maintain
a constant state of self-improvement in order to maximize its accuracy performance when
executing a given task. In supervised learning, this evolution is achievable by feeding repre-
sentative input-output pairs to the algorithm relating to the specified task. This will then
allow the machine learning model to ”learn” from that same data by analysing certain patterns
and features (e.g., glucose levels throughout different areas of the brain) that can possibly
establish a direct correlation between the input data and the correct result at the output.

Figure 3.2: Artificial intelligence vs. machine learning vs. deep learning [107]

This preprocessing operation on the data is implemented so that all of the information
being handled by the model possesses the same format and general standardization. This
dataset is then subdivided into smaller datasets, distributing the information for specified
purposes, namely training (generally the largest one), validation and testing.

Maximizing the model’s performance will also be directly dependable on the type of task
and the data being used. Optimal results can be obtained by changing the type of learning
algorithm, loss functions, activation functions, and various hyperparameters associated with
the training process. These will then greatly increase the number of possible parameter
combinations, which will consequently generate the possibility for a positive progression in
the quality of the results.
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3.2.1 Components of an Artificial Neural Network

Deep learning, a subsection of the machine learning field, while maintaining the same
key objectives as previously mentioned, aims to do so by basing its model’s architecture in a
structure identical to the ones observed in human biology, more specifically the human brain.
These attempts to mimic the human brain’s internal framework led to the creation of what
is now called artificial neural networks.

Artificial neural networks are composed by numerous node layers, also called neurons
or perceptrons. Typically, the main structure of a neural network consists of an input and
output layers, where the data will be fed into and subsequently retrieved from, after the
training process, and a number of hidden layers in between these two. It is through these
hidden layers that the input data will be subjected to varying weighted connections and
transfer functions corresponding to each node. The behaviour of a regular neural network
and its neurons or nodes can be described by the following equation:

f(x) = σ(
n∑
i

xiωi + b) (3.1)

Generally, x stands for the input data being processed, ω is the corresponding connection
weight (usually random at first), b is the added bias and σ is the chosen activation function.
During the training process, these values will progressively adjust themselves by comparing
the output results with the desired ones, gradually increasing the accuracy performance.

Figure 3.3: Basic elements of a deep neural network [108]
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3.2.2 Loss Function

When working with any type of optimization algorithms, there is usually some sort of
maximization or minimization being performed on a function somewhere along the process,
with that function generally being labeled as objective function (or criterion). With neural
networks, that objective function is commonly used for error minimization, being also known
by the term: loss function (or cost function). A loss function is a tool that seeks to compile
every important parameter that causes a meaningful impact on the algorithm’s performance
and reduces it down to a scalar value representing the system’s error, also known as loss.

The choice for the best loss function to use in a certain problem depends on the type of
problem being solved, as well as the corresponding type of activation function and network’s
output layer structure. In this case, since this project’s main task is centred around a binary
classification problem, the selected loss function to employ is the binary cross-entropy (or log
loss).

3.2.3 Activation Function

Activation functions, also called transfer functions, are responsible for determining how
the output value of a neuron connection, on a given network layer, is obtained through the
input data and corresponding weights. The main purpose of the activation function may
differ depending on where it is applied in the network’s structure. An activation function
implemented on a hidden layer will be accountable for how adequately the network will learn
over time, while on the other hand, if implemented on the output layer, it will establish what
type of predictions the model will make. Starting with activation functions for hidden layers,
there are three types that are prominently used:

• Rectified Linear Activation (ReLU)

• Logistic (Sigmoid)

• Hyperbolic Tangent (Tanh)

The ReLU activation function is perhaps the most frequently used out of the three al-
ternatives mentioned above and its behaviour can be described by the following expression:
max(0.0, x). This means that whatever the input value is, as long as it is a positive number,
it will be returned as the output, otherwise the returned value will be 0.

When it comes to the Sigmoid and Tanh activation functions, the approach is actually
quite similar in both cases, although differing a little to the previously described ReLU. With
the Sigmoid function the received input values will be returned within a 0 to 1 range, with
the lower values approaching 0 and the higher values getting closer to 1. Identically, the Tanh
activation function follows a similar route but with the output value range being from -1 to 1.
The Sigmoid and Tanh function can be respectively calculated by the following expressions:

1.0

1.0 + e−x
;
ex − e−x
ex + e−x

(3.2)

It is also important to note that it is recommended to perform some type of normalization
process on the input data before starting the training stage in order to achieve the intended
results with all of these cases.
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Figure 3.4: ReLU Function Figure 3.5: Sigmoid Function Figure 3.6: Tanh Function

Figures 3.4 to 3.6 represent the ”input vs. output” shapes for each one of the three cases
examined in this section (taken from [109]). The choice for the type of hidden layer activation
function to use, typically the same for all of the hidden layers on that same model, should be
selected according to the neural network’s structure in order to best suit the model’s purpose
(Figure 3.7).

Figure 3.7: Best hidden layer activation function for each structure [109]

By following this guide, it is easily determinable that the best option for this work’s hidden
layer activation function is the ReLU activation function since the approaches will be using
CNN-based techniques. Regarding output layer activation functions, the most commonly
used types are the following:

• Linear

• Logistic (Sigmoid)

• Softmax
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The linear activation function is essentially just a direct return of the value obtained from
the weighted sum of the connections, without transforming the values in any way. Skipping
the sigmoid function, as it was already explained during the hidden layer segment, there is the
softmax function. The softmax function returns a vector of values at the output corresponding
to the respective probabilities for each class belonging to the task’s possible predictions and
can be calculated as follows:

ezi∑K
j=1 e

zj
(3.3)

where ezi being the input data vector, ezj being the output data vector, and K being the
number of possible classes in the classifier.

As mentioned previously, the choice for the best output layer activation function to go
with should be based on the type of predictions being made with the corresponding model.
A helpful visual guide to help choose the best fit for a certain problem can be examined
below (Figure 3.8). Once again, based on this information and since the main task will be to
perform a binary classification between the two classes of AD and CN, the preferable option
for the output layer activation function would be the sigmoid activation function.

Figure 3.8: Best output layer activation function for each type of problem [109]
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3.2.4 Optimization Algorithm

An optimization algorithm, or simply optimizer, is a tool whose main purpose is to select
the best suited set of input data in order to maximize/minimize a model’s loss function (or
objective function). An optimizer can be either differentiable or not differentiable, depending
on whether or not a derivative can be determined for any specific input data point. As it is
well known, a first-order derivative allows an analysis on the objective function’s slope at a
certain point. However, when it comes to the derivative of an objective function with multiple
input variables, the correct term to use is gradient. Being able to calculate the gradient of an
objective function is a major factor when it comes to the optimization process, allowing the
implementation of first-order algorithms, which make use of this element in order to utilize
it as a sort of guideline to finding the optimal loss. By ”following” the decreasing gradient,
and choosing an appropriate learning rate value, which defines the ”step size” at which the
system will move in that search space, a minimum loss value will eventually be found.

This learning rate is yet another hyperparameter whose impact is quite significant when
it comes to achieving an optimal model performance. If it is set to too low of a value it will
become really time consuming and it might even get stuck on a local optima. On the other
hand, if the value is too high, even though that would significantly decrease the amount of
time needed, it could miss the global optima due to its larger step size (Figure 3.9).

Figure 3.9: Local optima vs. global optimum [110]

Some of the most common first-order algorithms include:

• GD (Gradient Descent): Low computational demands, easy implementation and low
complexity but it might get stuck at a local optima and requires a large amount of
memory.

• SGD (Stochastic Gradient Descent): Variant of gradient descent. Convergence achieved
in less time, with lower memory requirements but it comes with a high variance in the
model’s parameters and it may not stop after finding global optima.

• Momentum: Solves the variance problem found with SGD while keeping the faster
convergence but it comes with one extra hyperparameter that requires a manual and
accurate selection.
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• Adagrad: Automatically adapts learning rate value during process and is able to train
with less data, but has heavy computational demands and the training process is sig-
nificantly slower due to the continuous learning rate adjustment.

• Adadelta: Extension of Adagrad that looks to solve the decaying learning rate issue.
Maintains high computational demands.

• Adam (Adaptive Moment Estimation): Solves decaying learning rate problem and has
really fast training and convergence. Also computationally expensive.

Most of these algorithms will be evaluated throughout the work and, depending on the
results obtained, the one with the best performance will be selected.

3.3 Two-Dimensional CNNs

Although the final objective of this dissertation will be centered around three-dimensional
medical scans, there are some useful employments of 2D-CNNs within the medical imaging
realm. The main purpose of this section is to provide a brief introduction into the convo-
lutional models, as well as their associated structure and parameters. The objective was to
create a base knowledge on this type of neural network before investing the efforts purely into
3D CNNs. It is also worth restating that this project was implemented by using the Keras
deep learning API. Given the simplicity and flexibility of use, this machine learning platform
allows to focus on the parts of the problem that really matter.

3.3.1 The Architecture of CNNs

Among neural network models, one of the most prominent variations is the convolutional
neural network. A Convolutional Neural Network, or CNN, is a deep learning technique that
was inspired by the biological processes that were observed when studying animal brains,
more specifically, and as the name suggests, the neurons and their connection structures.
This technique is especially relevant when performing image (or video) related recognition,
classification, analysis and other similar tasks, since it does not need any manual feature
selection and requires a relatively low amount of preprocessing. This technique has been
proved to be a very effective system but it is important to note that, when overused, it may
lead to an overfitting problem.

A CNN is a neural network that applies convolutional processes in at least one of its
layers. When talking about its architecture, a CNN generally consists of an input layer, an
output layer, and a variety of different hidden layers in between them. It is in this input layer
that the corresponding data is collected in a tensor object, a format where the dimensions are
defined by the images’ resolution (height and width), the number of images, and the depth
of these images (i.e. an RGB image has a depth of three layers due to its Red, Green and
Blue levels). The hidden layers can pose various different forms: convolutional layers, pooling
layers, fully connected layers, and normalization layers (Figure 3.10).
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Figure 3.10: A CNN consisting of convolutional, pooling, and fully-connected layers [111]

Figure 3.11: Detecting patterns and features through a filter application in a convolutional
layer [112]

The first share of hidden layers are also responsible for detecting simple image features,
consisting mainly of various different shapes, curves and edges, and progressively establish
higher complexity patterns based on those same elements, on the following set of layers.
Starting off with the convolutional layers, these are layers that basically apply a specifically
sized filter (or kernel) on the input data it receives by preforming a multiplication between
both set of values. These are used in order to identify several different basic features present
on the input images and from then on evolve into more complex feature combinations, as it
was previously mentioned. In this particular case, it is usually visualized as a sliding weighted
filter that slowly shifts throughout the full extent of the image (Figure 3.11).
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Figure 3.12: Downsampling by taking the maximum value on a given patch of data through
a 2x2 max-pooling layer [113]

The pooling layers main purpose is the downsizing of the input image dimensions. This
feat is commonly achieved by reducing a specific number of values to the maximum or min-
imum value of that corresponding selection. These methods are called max-pooling and
min-pooling, respectively (Figure 3.12).

The fully connected layers which are simply basic multilayer perceptrons (when each in-
dividual neuron found in a particular layer connects to every single neuron found on the
following layer), and are usually found more towards the end of the CNN (Figure 3.13). In
short, convolutional neural networks aim to develop a deep learning algorithm by attempting
to define a consistent correlation between certain features and patterns observed on the input
data and its corresponding results at the output. While most of the research and advance-
ments made with CNN-based techniques are related to two-dimensional data, a demand for its
three-dimensional counterpart has been steadily growing, raising some difficulties relating to
the spatial aspects of the network’s operations. As a result, a number of different approaches
have been tested in order to achieve the most efficient three-dimensional CNN system, which
may vary depending on the type of problem that is being handled in each occasion.

Figure 3.13: Fully connected layer placement on a basic CNN architecture [114]
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3.3.2 An Example of a CNN for Binary Classification

As a preliminary study on the use of convolutional networks, it was implemented a deep
model for the cats and dogs classification problem based on the Kaggle’s dataset titled ”Dogs
vs. Cats” [115]. This dataset contains roughly 25,000 equally balanced images of cats and
dogs (24,946 total images where 12,476 are cat pictures and 12,470 are dog pictures, which
corresponds to approximately 50.01% and 49.99%, respectively). These images, although well
balanced between both classes, lack consistency when it comes to their dimensions, which
became one of the main issues to be tackled on this project since it would also be a problem
when dealing with actual medical imaging data.

This particular dataset was comprised of two directories, each one containing various
pictures of cats and dogs, separately. As can be observed in Figure 3.14 and Figure 3.15,
these pictures vary immensely when it comes to their dimensions, lighting, background or main
focus/number of entities present (either additional cats/dogs or some extra unrelated figures
like humans or other animals). The script starts by importing all the necessary modules, such
as ”ImageDataGenerator”, which is needed for the dataset preprocessing, and other essential
neural network elements like the type of model that’s going to be implemented and the
different types of neural network layers. Following the imports, some variables were created
to define the image’s dimensions after preprocessing, which were established as 150 pixels
for both height and width, the required dataset directories’ paths, and the neural network’s
parameters.

Regarding the directories, the dataset was split into three separate sections, those being
”training”, ”validation” and ”testing”. The first step of this distribution was obtained by
taking 20% of the full dataset and allocating it to the testing directory, which corresponded
to a total of 4,989 images (2,494 dog images and 2,495 cat images). From the remaining
19,957 images, 20% were once again set aside, but this time for the validation directory,
corresponding to 3,991 images (1,995 dogs and 1,996 cats). All of the remaining images were
assigned to the training directory, corresponding to 15,966 images (7,981 of those being dogs
and the remaining 7,985 being cats).

Figure 3.14: Kaggle’s dogs vs. cats dataset - Cat pictures [115]
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Figure 3.15: Kaggle’s dogs vs. cats dataset - Dog pictures [115]

These total numbers of samples per directory were also defined in the script’s initial
variables alongside the desired number of epochs and number of samples per batch of data
which, for this project, were decided to be 50 and 128 respectively. It was also in this section
that the network’s input format was specified by employing a Keras utility that detects if the
RGB channels of the input image are located at the beginning or at the end of the format.

The architecture of the neural network (see Figure 3.16) was implemented into a Keras’
sequential model, being comprised of three convolutional layers followed by their respective
ReLU activation and Max-Pooling layers. The first two convolutional layers consist of 32
output filters and a 3 by 3 kernel size, while the third convolutional layer had 64 output
filters, maintaining the same kernel dimensions. Following that, the data was flattened and
submitted to a dense layer (or fully connected layer) of size 64 based on a ReLU activation
layer. The final section of the network consisted of a dropout layer, aiming to reduce potential
overfitting of the algorithm. The final dense and activation layers based on the sigmoid
function.

Figure 3.16: Schematics of the CNN model used during the Kaggle’s dataset exercise
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The model’s configuration was also decided in this section of the program. Right after
establishing the architecture, the network’s compilation is completed by deciding on which
optimizer, loss function and evaluation metrics should be used to produce the best accuracy
results possible with these settings. After some experimentation with various different opti-
mizers and loss functions, the chosen combination was determined to be an Adam optimizer
and a binary cross entropy loss function with the accuracy metrics.

Regarding data preparation, the first algorithm runs were performed with an unaltered
dataset, in other words, without using any sort of data augmentation. With that being said,
the only data preparation done was a resize to the previously mentioned dimensions (150px
by 150px) and a 1/255 rescale of the images in order to transform a potential 0 to 255 pixel
value, into a 0 to 1 range. It was also here that the corresponding training, validation and
testing directories were assigned.

The results obtained from this first test are represented in Figure 3.17. As can be observed,
the 50 epochs that were used on this first experiment were clearly more than necessary for
the algorithm to reach its peak validation accuracy. Seeing as the dataset does not suffer any
improvement in size or alterations during the training process, it only took around 10 epochs
for the program to achieve its maximum potential. For these settings, the maximum validation
accuracy obtained was 84.73% while the testing accuracy, obtained from independent data
never used in the training process, resulted in a 83.10% score.

Figure 3.17: Kaggle’s dogs vs. cats dataset - Training and validation accuracy results per
epoch (no dataset augmentation)
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Taking into account the results obtained, an offline dataset augmentation process was
considered. This augmentation doubled the size of the training and validation dataset by uti-
lizing an image augmentation library called Augmentor. This library provided the possibility
to perform various image transformations at specific rates specified by the user. For this case,
the referred datasets were submitted to semi-random slight rotations, zooms, and horizontal
flips. After the modifications, the training dataset now had a total of 31,932 images (15,962
dogs and 15,970 cats) and the validation dataset a total of 7,982 images (3,990 dogs and
3,992 cats). The testing directory was not submitted to any changes in order to maintain
trustworthy results. The results obtained are depicted in Figure 3.18.

Figure 3.18: Kaggle’s dogs vs. cats dataset - Training and validation accuracy results per
epoch (offline dataset augmentation)

Even though the dataset suffered a major improvement in size, the number of epochs
needed for the program to reach its peak values was still relatively low, not changing much
over the previous test run on the base dataset. On the other hand, the accuracy scores
did actually sustain a slight improvement over the previous ones: the maximum validation
accuracy obtained improved 1.15% (85.88%) and the testing accuracy improved a significant
2.93% (86.03%). Despite the improvements seen from the first to the second trial, the biggest
upgrade in results came with this third set of modifications. For this iteration, rather than
submitting the base dataset to an offline augmentation process, it was decided to implement
an online augmentation operation into the training process.
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The type of alterations performed remained the same, but this time they were executed
during the training procedure. As result, the training data is unique through each iteration,
while not increasing the dataset size itself seeing as though the changes were not permanent.
This type of augmentation of course, came with a significant increase in processing and
training requirements. The results for this procedure, in terms of learning curves, can be
observed in Figure 3.19.

In this case, the increase in the number of epochs needed to achieve peak performance is
immediately visible. It can actually be argued that the 50 epochs used might have been slightly
less than needed for this achievement. Even with that in mind, the improvement in accuracy
results was clear: the maximum validation accuracy obtained was 90.34% (a significant 4.46%
improvement from the offline augmentation variation) and the testing accuracy obtained was
89.76% (a 3.73% increase).

The two augmentation variations were then combined in order to assess any potential
further enhancements of the accuracy results. Results can be seen below (Figure 3.20). Again,
only a small development can be observed on both accuracy scores: 90.68% on validation
accuracy (0.3% improvement) and 90.18% testing accuracy score (0.42% improvement).

The knowledge acquired with the implementation of this binary classification problem
proved to be useful later during the medical imaging data pre-processing and splitting, as
well as in the different development stages of the deep models for classification of Alzheimer’s
disease.

Figure 3.19: Kaggle’s dogs vs. cats dataset - Training and validation accuracy results per
epoch (online dataset augmentation)
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Figure 3.20: Kaggle’s dogs vs. cats dataset - Training and validation accuracy results per
epoch (offline + online dataset augmentation)

3.3.3 Application of 2D CNNs for Volumetric Data

The approach followed in this study to convert the 3D PET volume into a 2D image is
commonly known as 2D slice-level CNN. It consists of a regular two-dimensional convolutional
neural network whose input consists of 2D slices extracted from the 3D data (Figure 3.21). The
main advantage of this implementation reside in the possibility of using pre-trained models
and transfer learning. Since it is a regular 2D CNN, other previously proven successful image
classification algorithms can be used in order to improve the model’s performance quickly and
efficiently.

Figure 3.21: 2D slice-level approach of 3D volume processing [116]
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This approach also provides the possibility for a significant increase in training data,
considering that a large number of 2D slices can be obtained from a single 3D sample. In
turn, this increase in the size of the dataset could have positive consequences in the algorithm’s
robustness. Despite this positive aspects, it also presents some downsides, mainly pertaining
to data leakage and the lack of depth in the convolutional operations.

Data leakage occurs when somehow, during the network’s training process, the system
takes advantage of some information that under regular circumstances would not be available.
This may lead to overly promising results if the necessary preventive measures are not correctly
applied. For example, this may occur due whether slices provided by the same 3D sample
(i.e., the same individual) end up on both the training and the testing dataset. The problem
regarding the lack of depth can be understood when considering that by removing the third
dimension element, the capability to correlate spatial features and patterns between the three
dimensions to the corresponding results is lost in the process.

3.4 Three-Dimensional CNNs

While the main focus of this dissertation is centered around PET scans, there are many
other modalities like CT, Ultrasound and MRI using deep learning. In this context, a typical
3D-CNN is very similar to a 2D-CNN in terms of architecture. It takes input data in a
3D format and are based on 3D convolution feature extractors. At the same time, it is
important to note that training 3D CNNs may require a rather large labeled dataset in
order to accomplish the expected training results. In addition to this difficulty, the complex
training may also require a high computational resources that would amount to another
possible obstacle to the completion of that task.

When it comes to 3D medical imaging, there are several methods that leverage the 3D
information. By following the data gathered by Ebrahimighahnavieh et al. [84], it is possible
to analyze the distribution of the different methods being employed in present-day researches
in order to process volumetric data with CNN-based architectures (Figure 3.22). The slice-
based techniques, referred in Subsection 3.3.3, have been used in 27% of these studies. The
next subsections will further detail the patch-based, ROI-based and voxel-based techniques.
This methods use the intensity value associated to each 3D data point, or voxel, present in
the neuroimaging scan.

Figure 3.22: Prevalence of each approach to 3D input data management [84]
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3.4.1 3D Patch-level CNN

Similar to the 2D slice-level method, the 3D patch-level approach also implements a form of
data segmentation. With this technique, instead of relinquishing three-dimensional properties
by dividing the 3D volume into 2D slices, the data is partitioned into smaller 3D patches and
processed from there. This method would also have the potential to increase the quantity of
training data, following the same logic of dividing each 3D sample into smaller ones.

On a case-by-case scenario, the architectural structure may vary depending on the size
chosen for each patch and the type of study being tackled. When handling larger patches,
there have been cases where multiple CNNs were used, each one corresponding to a certain
patch position, and later assembled into a larger CNN. On the other hand, there has also been
instances where a combination of both CNNs and clustering techniques were implemented in
order to process patches of smaller sizes.

In addition to the training data increase, this method can also be advantageous due to its
lower memory usage and the possibility for a lower number of parameters being considered
when dealing with only one CNN. Considering that some of the spatial features and patterns
can now be taken into consideration with this system, this is still not a foolproof procedure
seeing as some of the spatial characteristics would be separated along with the sample’s patch
divisions.

Figure 3.23: 3D patch-level approach to dealing with volumetric input data [117]

3.4.2 ROI-based CNN

While the 3D patch-level CNN method takes the whole 3D sample and subdivides it into
smaller 3D patches, a ROI-based CNN only takes into account a given region of interest
that vary according the problem to tackle. The main objective of this technique is the
removal of any unnecessary information and the exclusive focus on the key data sections of
the sample (the specific region of interest). Therefore, it simplifies the process without losing
any important data.
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Figure 3.24: Region of interest selection in a ROI-based approach to dealing with volumetric
input data [118]

When dealing with brain disorders, this feat is commonly achieved by determining the ex-
act brain region where this condition mainly takes place. Being a seemingly positive evolution
of the 3D patch-level alternative, a ROI-based model will only be an appropriate approach to
adopt when the respective exercise’s key data can be precisely pinpointed to a well defined
area of the sample. This would be a difficult feat to achieve when dealing with AD diagnosis.

3.4.3 3D Subject-level CNN

The approach taken in this study, referred as to 3D subject-level CNN model, considers a
CNN model that processes all of the available information. Within the scope of this work, the
selection of this approach will involve the development of a custom 3D-CNN to take advantage
of spatial patterns on the full PET volumes by using 3D filters and 3D pooling layers. The
main difficulty that should be considered is the necessity for a high processing power machine
in order to be able to run such complex data structures and procedures. Additionally, a major
concern will the reduction of training samples since the process is reduced to a sample per
subject instead of multiple subdivisions (as it was the case in previous methods).

Figure 3.25: 3D subject-level approach to dealing with volumetric input data [119]
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Chapter 4

Experiments and Results

This chapter presents the implementation details and the performance evaluation of two
CNN-based models for the automatic diagnosis of AD using the ADNI database. Section
4.1 provides an overview of the PET dataset. Section 4.2 focuses on the transfer learning
approach based on a pre-trained 2D-CNN model. Section 4.3 addresses the custom 3D-CNN
model trained from scratch. The two approaches are compared in a binary classification
framework including two classes: Cognitively Normal (CN) and Alzheimer’s Disease (AD).

4.1 Dataset Overview

The ADNI dataset consists of PET scans saved in the the most commonly used file for-
mats for neuroimaging data. This includes the NII file format (or NIfTI) which stands for
Neuroimaging Informatics Technology Initiative. The images were, subsequently, extracted
using the python library NiBabel to facilitates the reading procedure. Since this work is
focused only in the CN and AD classes, the final dataset distribution ended being as follows
(see Figures 4.1 and 4.2): 866 CN samples (63.91%) to 489 AD samples (36.09%) and 796
male patients (58.75%) to 559 female ones (41.25%). A detailed age distribution is presented
in Figure 4.3.

Figure 4.1: Dataset’s class distribution Figure 4.2: Dataset’s gender distribution
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Figure 4.3: Dataset’s age distribution

During this task, two different dataset splits were used (A and B). Dataset A was obtained
by splitting the 1355 total samples into ten folds, each one consisting of approximately 48
to 49 AD samples and 86 to 87 CN samples. Dataset A was used during the initial model
training by implementing a 10-fold cross-validation procedure (method further explained in
Subsection 4.2.2).

Dataset B was obtained from the same type of dataset division, but instead of splitting
the 10 folds from the initial 1355 total samples, it was done after separating 105 samples
out of that total sum (66 from the CN class and 39 from the AD class). The remaining
1250 samples were then subdivided into the 10 folds consisting of 80 CN samples and 45 AD
samples for each one. The 105 samples left apart served as a test sub-set independent of the
cross-validation performance metrics.

4.2 Transfer Learning Approach (2D Model)

This section organised into several sub-sections detailing the data pre-processing, the CNN
model, the trials that were made in order to reach a final model configuration, the final tests
and results, and an additional dropout-oriented study. For the data pre-processing, it will first
detail how the script finds and converts every NII file into readable numpy arrays. It will then
check its dimensions, normalize its values, and extract 16 specific frames in order to assemble
a 4 by 4 JPEG collage for each subject. The 2D slice-level model subsection describes the
data samples’ formats, the cross-validation method, the chosen network architecture and how
the dataset was used over the trials. The last two subsections are dedicated to observing
and interpreting the final results. The most efficient model configuration was defined and the
impact that each studied parameter has on the model’s performance was properly examined.

4.2.1 Data Pre-Processing

In the 2D approach every NII file was isolated in the downloaded dataset’s directories.
This was achieved through the python module ”glob” which allows for dynamic manipulation
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of directory paths, using pre-determined patterns, in order to retrieve every desired file that
fulfills those specified requirements (every averaged NII file in this case).

After locating every file and its corresponding path, these are then saved in an array, and
its size (or length) is saved as the number of samples found. Next, a for loop is initiated,
which will go through each entry of that same path array and load the NII file using the
NiBabel python library and its tools.

With the respective data sample loaded into a numpy array, the script proceeds to print
its original shape, normalize its values into a 0-255 interval, and save the number of frames
of that specific sample into a new count variable. This is necessary seeing as this dataset has
PET scans from various different machines, which consequently leads to a constant variation
of resolution in terms of number of frames taken from the base to the top of the subject’s
brain.

At each for loop step, 16 frames that approximately correspond to the same brain sections
are selected. These scans can have varying resolutions. The selected frames are then assembled
(JPEG format) in a 4 by 4 collage (the first frame being at the top left location, and the last
one at the bottom right) with the aid of OpenCV packages (see Figure 4.4).

Figure 4.4: Collage of 2D slices extracted from volumetric PET scans

4.2.2 2D Slice-level Model

This approach was inspired by Yiming Ding’s [12] 2D collage of a 4 by 4 collection of FDG-
PET scan slices. The major challenge of this approach is related to the different formats that
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the scans possessed. Starting at 128x128x35 voxels and going up to 400x400x144 voxels, with
the average values being around 150x150x70 voxels, it was clear that a consistent format for
these collages would be a difficult task to achieve.

After the necessary data pre-processing, the images were divided into the two classes, CN
and AD. The K-fold cross-validation (CV) method was applied, where data was divided into
K=10 folds (Figure 4.5). For each repetition, 9 folds were used for training and 1 fold for
validation. The final validation performance is then quantified as the average of the validation
metrics over the K runs.

Figure 4.5: Cross-validation method [120]

The python implementation starts with the configuration of the desired GPUs/CPUs,
through Keras and TensorFlow tools, in order to customize the hardware where the program
will run, the training speed and the memory usage. After the hardware configuration, some
variables are initiated such as the desired image height and width for the 4 by 4 input collage
(both at 512 pixels in this case), the number of training and testing samples, the number of
epochs and batch size.

Google’s Inception V3 was chosen as the pre-trained CNN architecture. This widely used
model is rather well known around the CNN community due to its impressive accuracy results
on the ImageNet dataset, which contains 1000 different classes and around 1.3 million data
samples. Another useful trait that this model possesses is its usage of building blocks, and
its easy customization (Figure 4.6), which allows the user to fully adapt this architecture to
whatever demands the problem requests. The inception blocks are also called ”mixed” blocks.

Different Inception V3 architectures were trained, consisting of a different number of sub-
networks, trying to optimise the classification accuracy while using a minimal number of
parameters. These sub-networks were built by taking the output of the last considered incep-
tion block and directly connecting it to the fully connected layers at the end of the network.
Figure 4.7 summarizes the Inception V3 models that were studied and their corresponding
number of parameters.

Building customized sub-networks allows for a wider range of experimentation with dif-
ferent hyper-parameters, such as the varying input shape. After successfully accessing the
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output of the desired ”mixed” block, it is then redirected to a Global Max Pooling 2D layer.
Then it goes to a fully connected layer with 1024 neurons and a ReLU activation function,
followed by a Batch Normalization layer, a 50% dropout layer and ending with a Sigmoid
activation function, which is the most suitable output layer activation function when dealing
with binary classification. Binary cross-entropy loss function and the accuracy metrics are
the arguments for this compilation step.

Figure 4.6: Inception V3 architecture and corresponding modules [121]
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Figure 4.7: Number of parameters per Inception V3’s sub-networks [121]

The training and testing dataset were defined by making use of the ImageDataGenerator
tool from the Keras Image Pre-Processing package. This allows for the user to easily build
up these datasets directly from their directories, while simultaneously normalizing, resizing,
and encoding their respective labels (in a binary class mode for this specific model).

In this first set of experiments, only a portion of the full dataset was used in order to
maintain a balanced amount of samples for both classes (Dataset A-Balanced). In the subse-
quent trials the full dataset was used (Dataset A-Imbalanced). Table 4.1 summarises the CV
average accuracy and standard deviation over the 10 experiments for 4 different Inception V3
models and 4 different optimizers. The results show that the ”mixed8” Inception V3 variation
outperforms the other models. Further to that, the SGD (Stochastic Gradient Descent) opti-
mizer maintained consistently better results when compared to the other optimizer options.
Note that, the results presented in Table 4.1 were obtained after having initialized the Incep-
tion V3 models with pre-trained weights using the ImageNet dataset. Though the ImageNet
dataset has nothing to do with medical scans, using a pre-trained model was favourable as a
starting point for fine tuning only the final (custom) layer.

As previously mentioned, an imbalanced dataset was used from this point forward, in-
cluding Table 4.2 and its corresponding results, in order to increase the already significantly
limited amount of available data. Here, only the ”mixed8” Inception V3 model was used, be-
ing the most favourable model from the previous set of experiments. The optimizer and the
number of training epochs were the hyper-parameters to be analyzed. The top 3 optimizers
from the previous set of experiments were compared: SGD, Adadelta and Adamax (a variant
of the Adam optimizer). As expected, the performance of the models, fine tuned on more
even unbalanced data, is still overall better than the results in Table 4.1.
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Architecture Trainable
Parameters

Epochs Optimizer Cross-Validation
Average Accuracy

Standard
Deviation

InceptionV3
(mixed7)

9,746,977 15 Adamax 75.16% 6.35%

InceptionV3
(mixed7)

9,746,977 15 Adadelta 77.11% 11.30%

InceptionV3
(mixed7)

9,746,977 15 SGD 77.52% 7.85%

InceptionV3
(mixed8)

11,968,289 15 Adamax 78.20% 10.41%

InceptionV3
(mixed8)

11,968,289 15 Adadelta 77.68% 9.98%

InceptionV3
(mixed8)

11,968,289 15 SGD 81.50% 7.61%

InceptionV3
(mixed8)

11,968,289 15 Adam 75.89% 11.69%

InceptionV3
(mixed9)

17,796,065 15 Adamax 71.27% 8.32%

InceptionV3
(mixed9)

17,796,065 15 SGD 76.69% 4.37%

InceptionV3
(mixed10)

23,869,601 15 SGD 74.75% 7.36%

Note: Dataset A-Balanced, 978 total samples (489 for each AD and CN)

512x512 pixels per input collage (128x128 pixels per each of the 16 frames)

Table 4.1: 2D Binary Classification - Balanced Dataset
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Architecture Trainable
Parameters

Epochs Optimizer Cross-Validation
Average Accuracy

Standard
Deviation

InceptionV3
(mixed8)

11,968,289 10 SGD 67.87% 15.34%

InceptionV3
(mixed8)

11,968,289 15 SGD 83.62% 2.18%

InceptionV3
(mixed8)

11,968,289 20 SGD 81.40% 7.39%

InceptionV3
(mixed8)

11,968,289 10 Adamax 76.19% 15.00%

InceptionV3
(mixed8)

11,968,289 15 Adamax 80.60% 6.61%

InceptionV3
(mixed8)

11,968,289 20 Adamax 77.12% 6.17%

InceptionV3
(mixed8)

11,968,289 10 Adadelta 77.81% 9.58%

InceptionV3
(mixed8)

11,968,289 15 Adadelta 78.60% 12.38%

InceptionV3
(mixed8)

11,968,289 20 Adadelta 78.21% 11.44%

Note: Dataset A-Imbalanced, 1355 total samples (489 for AD and 866 for CN)

512x512 pixels per input collage (128x128 pixels per each of the 16 frames)

Table 4.2: 2D Binary Classification - Imbalanced Dataset

The ”mixed8” Inception V3 model, proposed in this work. was compared with other
common CNN architectures, namely LeNet5 model (Figure 4.8) and two variations of the
ResNet50 architecture. The results are summarized in Table 4.3. These trials were also exe-
cuted without ImageNet weight initialization, since the Keras API does not possess LeNet5 as
an available pre-trained model, and therefore the option to load the corresponding ImageNet
weights was not available. Since LeNet5 is a simpler deep neural network (DNN), higher batch
size was possible to implement, such as 32. In contrast, ResNet50 is a more complex DNN so,
in order to make the training feasible, the batch size was reduced to 8. The Inception model
outperformed the ResNet50, however, LeNet5 achieved competitive performance. This result
can be explained with the relatively small data set, for which simpler architectures are more
favourable.
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Figure 4.8: LeNet5 architecture [122]

Architecture Trainable
Parameters

Epochs Batch Size Cross-Validation
Average Accuracy

Standard
Deviation

InceptionV3
(mixed8)

11,968,289 20 16 72.78% 8.92%

InceptionV3
(mixed8)

11,968,289 30 16 78.32% 5.83%

InceptionV3
(mixed8)

11,968,289 40 16 74.48% 14.83%

LeNet5 30,493,337 20 16 75.51% 4.98%

LeNet5 30,493,337 25 16 78.53% 3.89%

LeNet5 30,493,337 30 16 76.33% 5.31%

LeNet5 30,493,337 35 16 77.43% 3.84%

LeNet5 30,493,337 35 32 78.02% 5.60%

LeNet5 30,493,337 40 32 74.47% 4.16%

LeNet5 30,493,337 45 32 77.35% 3.71%

ResNet50
(bn5c)

23,536,641 10 8 72.17% 10.83%

ResNet50
(bn4f)

8,559,617 10 8 72.79% 14.50%

Note: Dataset A-Imbalanced, 1355 total samples (489 for AD and 866 for CN)

512x512 pixels per input collage (128x128 pixels per each of the 16 frames)

No ImageNet weights initialization

Table 4.3: 2D Binary Classification - Imbalanced Dataset (LeNet5 & ResNet50)
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4.2.3 Train-CV-Test Results

This section presents, in detail, the results of the training, cross validation (CV) and
testing stages of the compared DNN models. Note that, the testing accuracy is obtained
by evaluating the model, after loading the weights from the best performing cross-validation
fold. The test data are 105 independent samples never seen during the training or CV process.
With the exception of the LeNet5 model, the other alternatives were initially pre-trained on
ImageNet data.

After having determined what was generally the best framework combination for this
approach, it was now time to assess the impact that each one of the adjustments had on this
model’s optimization process.

The following conclusions can be taken from Figure 4.9:
• All models suffer from overfitting issues, which is certainly related to the small dataset.

The training accuracy in all models is significantly higher when compared to the CV
and testing accuracy. Further to that, better testing accuracy than CV accuracy can
be also explained due to the very small CV and test sub sets.

• The Inception V3 (mixed 8 sub-network) model exhibits the best performance with
respect to new (test) data.

• The LeNet5 model was trained from scratch without the advantage of the pre-trained
weights initialization like the other three models. It can be speculated that the LeNet5
model may outperform the other alternatives if it has been previously trained on a large
database such as ImageNet.

Figure 4.9: 2D binary classification - Network model comparison (Dataset B: 125 samples
per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; SGD
optimizer; pre-trained ImageNet weights initialization, with the exception of LeNet5)
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Figure 4.10: 2D binary classification - Inception V3 sub-networks comparison (Dataset B:
125 samples per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39
AD]; SGD optimizer; pre-trained ImageNet weights initialization)

The results with respect to the Inception V3 sub-networks comparison are summarized in
Figure 4.10. Similarly to the previous conclusions, the models suffer from overfitting problems.
Both, in CV and test stages, the mixed 8 DNN model exhibits the best performance. More
complex models means more trainable parameters which is not suitable for this particular case
study. The outcome of the study with respect to which is the most favourable optimization
method is presented in Figure 4.11. Experiments were conducted with seven optimizers,
Adadelta, Adamax and SGD were elected as the best options.

Figure 4.11: 2D binary classification - Optimizer comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; Inception
V3 [mixed8]; pre-trained ImageNet weights initialization)
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Figure 4.12: 2D binary classification - Weights initialization impact (Dataset B: 125 samples
per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; Inception
V3 [mixed8]; SGD optimizer)

The last study was to analyse the impact of training the models with random weights
initialization vs. pre-trained weights initialization with ImageNet. The results depicted in
Figure 4.12 clearly show the positive impact of pre-trained weights initialization.

Finally, the best DNN model for the present 2D binary classification problem was the
Inception V3 architecture (mixed8 sub-network, Figure 4.9 and Figure 4.10). This model was
trained with the full dataset available, with the SGD optimizer (Figure 4.11), with pre-trained
ImageNet weights initialization instead of a random weights initialization (Figure 4.12). The
model reached a 10-fold CV average accuracy of around 83.62% (Dataset A-Imbalanced) and
a testing accuracy of 91.43% (Dataset B).

4.2.4 Dropout Analysis

The overfitting problem was tackled by adding a dropout layer. Figure 4.13 provides direct
performance comparison between different dropout rates. Note that the 50% dropout value
provided the best outcome. Figure 4.14 and Figure 4.15 show the evolution of the training
accuracy and loss (cost) function respectively, during the training epochs.

These graphs provide a smooth and simple direct visualization of the effects that a given
dropout layer percentage causes on a model’s training and performance. The smaller the
dropout percentage is, the more susceptible it is to overfitting, and the less time it will take
for the system to converge. On the other hand, if the percentage is too high, it will take a lot
more time for the convergence to take place, and the system will become a lot more unstable.

48



Figure 4.13: 2D binary classification - Dropout rates comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; Inception
V3 [mixed8]; pre-trained ImageNet weights initialization; SGD optimizer)

Figure 4.14: 2D binary classification - Training accuracy per epoch (Dropout trial - Dataset
B: 125 samples per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39
AD]; Inception V3 [mixed8]; pre-trained ImageNet weights initialization; SGD optimizer)

49



Figure 4.15: 2D binary classification - Loss per epoch during training (Dropout trial - Dataset
B: 125 samples per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39
AD]; Inception V3 [mixed8]; pre-trained ImageNet weights initialization; SGD optimizer)

4.3 Custom Architecture Approach (3D Model)

Similar to Section 4.2, this section will also go over the same concepts: data pre-processing,
CNN model configurations and fitting, final results and dropout study. In contrast to the
previous transformation of the raw data into 2D image dimension, here the original data has
to be first pre-processed into 3D tensors and then loaded into the network. How to define
the best DNN configuration, the learning rate adjustment and multiple sample resolutions
are the topics discussed in the second subsection. The last two subsections are focused into
comparison of train-CV-test stages of performance and dropout analysis.

4.3.1 Data Pre-Processing

When dealing with 3D data, there are different techniques that need to be implemented
when compared to its 2D counterpart. The base script is essentially the same from the
creation of the files’ location path array to the for loop and its data normalization process
after loading the respective NII file.

From that point, new procedures were implemented, starting with an interpolation tool
named ”zoom”, from the ”Multidimensional Image Processing” SciPy package. This tool
allows 3D data to be ”reshaped” into certain dimensions pre-defined by the user. Similar to
a resolution change in 2D imaging as it reduces, or increases, the total amount of pixels on
a certain image while still ”preserving” the original picture. After being reshaped into the
desired dimensions (Figure 4.16), the samples are then appended into a numpy array and
subsequently saved into a numpy file (.npy) in order to be more easily loaded in the future.
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Figure 4.16: 3D binary classification - 3D pre-processing terminal output example

4.3.2 3D Subject-level Model

When it comes to the three-dimensional approach to this problem, the python script in
itself has a very similar beginning to the two-dimensional one. Starting off by also configuring
the computing hardware, this variation also needs to load the 3D samples that were saved
into numpy files during the pre-processing procedure. These numpy files have to be loaded
into their own separate arrays in 100 sample batches due to their high memory demands, and
subsequently concatenated into a single joint array. This process is repeated for both classes
and their corresponding shapes are printed afterwards so that to indicate a successful loading
process. After that, each class array is completely shuffled.

With the data properly prepared, the cross-validation testing/training dataset division is
carried out and their shapes printed. This process is done separately for each class and, once
again, concatenated afterwards. Binary label arrays are also created in order to correctly
assign the corresponding classes to their data samples. Afterwards, the zip tool is used so
that to ”connect” each sample position to its corresponding label and subsequently shuffled,
that way maintaining each correct class pairing even after the randomization process (Figure
4.17).

The next point that deserves attention is the development of the network’s architecture.
Unlike the 2D approach where there are pre-trained models, when dealing with 3D data there
are no previous architectures available. Therefore, the architecture used for this experiment
was designed from scratch and progressively optimized. The base structure of this proto-
type consisted of two groups of two 3D Conv layers, a 3D max-pooling layer followed by a
Batch Normalization and Flatten layer. At the end of these block, three progressively neu-
ron decreasing fully-connected layers, interchanged with dropout layers in between them, are
considered. The model was trained with the binary cross-entropy loss function (log loss) and
the SGD (Stochastic Gradient Descent) optimizer.
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Figure 4.17: 3D binary classification - 3D data preparation terminal output example

As in the previous section, the first set of experiments were with the balanced dataset.
As expected, the accuracy results increased significantly when changing into the imbalanced
dataset, once again. CV average accuracy of 79.78% was obtained.

Next, the impact of the learning rate, the batch size and the training epochs were studied.
The intuition behind the reduction of the default value 0.01 of the learning rate to the lower
value of 0.001 was made after the observation that the lowest scoring iterations from the
previous k-fold experiments seemed to get stuck on local optimas. Some of the more relevant
results obtained from this trial can be observed in Table 4.4. As seen in the table, decreasing
the learning rate had a very positive impact on the standard deviation. The reduction of the
standard deviation means less variation in the CV accuracy and subsequently improved the
average CV accuracy from 79.78% (for learning rate of 0.01) to around 82.43% (for earning
rate of 0.001).

Until this point, all experiments were performed with 100x100x40 voxels resized data, ob-
tained through the 3D pre-processing mentioned in the previous section. The next important
hyper parameter to vary was the 3D image resolution. We have tested smaller (75x75x30 vox-
els) and larger (125x125x50 voxels) resolutions. After successfully generating the new sized
datasets, the model was trained and its performance assessed with the corresponding results
being compared to the ones produced by the previous 100x100x40 voxels resolution. Table
4.5 displays the results.
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Architecture Learning
Rate

Epochs Batch Size Cross-Validation
Average Accuracy

Standard
Deviation

Custom 0 0.01 (Default) 30 4 78.62% 7.07%

Custom 0 0.01 (Default) 25 8 79.78% 3.80%

Custom 0 0.01 (Default) 25 16 78.34% 5.72%

Custom 1 0.001 25 4 81.98% 2.30%

Custom 1 0.001 30 8 82.43% 3.01%

Custom 1 0.001 35 4 82.39% 4.55%

Note: Dataset A-Imbalanced, 1355 total samples (489 for AD and 866 for CN)

100x100x40 voxels, SGD optimizer

Table 4.4: 3D Binary Classification - Learning Rate Comparison

Data Resolution
(Voxels)

Trainable
Parameters

Epochs Batch Size Cross-Validation
Average Accuracy

Standard
Deviation

75x75x30 3,763,569 30 2 84.44% 3.92%

75x75x30 3,763,569 35 2 85.01% 3.53%

75x75x30 3,763,569 35 4 84.29% 2.75%

100x100x40 13,954,417 25 4 81.98% 2.30%

100x100x40 13,954,417 30 8 82.43% 3.01%

100x100x40 13,954,417 35 4 82.39% 4.55%

125x125x50 28,978,545 20 8 79.11% 4.71%

125x125x50 28,978,545 25 2 78.54% 3.42%

125x125x50 28,978,545 25 4 79.85% 2.99%

Note: Dataset A-Imbalanced, 1355 total samples (489 for AD and 866 for CN)

SGD optimizer, 0.001 learning rate

Table 4.5: 3D Binary Classification - Resolution Comparison
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By analyzing these results, it is clear that the 75x75x30 voxels variation outperformed its
larger counterparts. It seems a bit surprising that the resolution that brings more information
is in fact less favourable for the classification task. However, it seems that the important
information can still be correctly discerned in the smaller variations while the irrelevant data
is significantly diminished, giving more emphasis to the more essential data sections. Reducing
the resolution to 50x50x20 voxels did not bring improvements, therefore this option was not
further explored. Since the 75x75x30 voxels resolution improved the average CV accuracy
from 82.43% to approximately 85.01%, it was considered as the most efficient and was used
in the next experiments.

After performed adjustments to the dataset balance, learning rate and data shape, now
the 3D architecture will be optimised from scratch. Up until this point, the base custom
architecture (coined Custom 1) consists of: 2 pairs of 3D Conv layers (each pair with 16
filters on the first one and 8 filters on the second one) and a 3x3x3 kernel size, two 3D
max-pooling layers with 2x2x2 pool size after each Conv layer pair, one batch normalization
layer, one flattening layer, 3 Fully Connected (FC) layers with 2 dropout layers in between
them with a 40% dropout rate. The first FC layer consists of 512 neurons, the second has
128 neurons and the last one has one neuron with sigmoid activation function, to reflect the
binary classification problem. The code used to implement the Custom 1 model can be seen
in Figure 4.18.

Figure 4.18: 3D binary classification - Base custom 3D-CNN architecture
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Table 4.6 shows the results obtained from 3 additional custom architectures and compares
them to the Custom 1 model. The variations basically consist in changing the number of Conv
filters (8 or 16 filters in the first or second pair of Conv layers). After analyzing these results,
it is possible to verify that some improvements have been achieved, although the number of
trainable parameters increased significantly (almost doubled in some cases). The maximum
cross-validation average accuracy score obtained had now gone from the previous 85.01%,
with the Custom 1 architecture, to 86.80% with the custom 4 architecture.

Architecture Trainable
Parameters

Epochs Batch Size Cross-Validation
Average Accuracy

Standard
Deviation

Custom 1
(16/8/16/8)

3,763,569 30 2 84.44% 3.92%

Custom 1
(16/8/16/8)

3,763,569 35 2 85.01% 3.53%

Custom 1
(16/8/16/8)

3,763,569 35 4 84.29% 2.75%

Custom 2
(8/16/8/16)

7,449,769 35 2 85.91% 1.48%

Custom 2
(8/16/8/16)

7,449,769 40 4 85.67% 2.63%

Custom 2
(8/16/8/16)

7,449,769 40 8 84.65% 3.18%

Custom 3
(16/16/8/8)

3,765,297 35 2 86.18% 3.93%

Custom 3
(16/16/8/8)

3,765,297 40 2 85.08% 2.85%

Custom 3
(16/16/8/8)

3,765,297 40 4 84.81% 3.98%

Custom 4
(8/8/16/16)

7,451,497 25 2 84.87% 2.71%

Custom 4
(8/8/16/16)

7,451,497 35 2 86.80% 4.70%

Custom 4
(8/8/16/16)

7,451,497 40 4 85.98% 3.32%

Note: Dataset A-Imbalanced, 1355 total samples (489 for AD and 866 for CN)

75x75x30 voxels, SGD optimizer, 0.001 learning rate

Table 4.6: 3D Binary Classification - Custom Architecture Comparison
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4.3.3 Train-CV-Test Results

In order to create a viable comparison between the 2D and 3D approaches, the train-CV-
test performance was evaluated again with the same 105 independent testing samples as in
the 2D approach. The dropout rate was also adjusted from 40% to 50%, as this value was the
most efficient one during the 2D architecture study. The four Custom 3D architectures are
compared in Figure 4.19. As seen in the figure, the Custom 4 model outperforms the other
models and it will be used in the next experiments.

Figure 4.19: 3D binary classification - Custom variations comparison (Dataset B: 125 samples
per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; 75x75x30
voxels; SGD optimizer; 0.001 learning rate; 50% dropout rate; batch size = 2)

Figure 4.20 depicts the train-CV-test accuracy results for varying learning rates with
respect to the Custom 4 model. The results obtained confirmed that the 0.001 learning rate
provided the best scores out of the four options tested, even though the 0.0005 option had
basically the same level of results.

The performance of the Custom 4 model when the resolution of the input 3D image
varies is plotted in Figure 4.21. Reducing the sample’s dimension can be interpreted as noise
reduction and therefore the performance has improved.

Besides these studies, an experiment was also conducted in order to assess the impact that
the batch size might incur on the classification accuracy (Figure 4.22). The results obtained
seem to go along with the majority of the top results that were previously achieved, with the
most effective being a batch size of 2, even though the change in the cross-validation average
accuracy is not that significantly increased.

In conclusion, the best results obtained with the 3D binary classification model were
provided by a custom architecture built from scratch. The model was trained on the full
dataset that was available (Figure 4.19), with the SGD optimizer, learning rate of 0.001
(Figure 4.20) and 75x75x30 voxels sample (Figure 4.21). The model achieved CV average
accuracy of around 86.80% (Dataset A-Imbalanced) and a testing accuracy of 91.43% (Dataset
B).
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Figure 4.20: 3D binary classification - Learning rate comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; 75x75x30
voxels; SGD optimizer; custom 4 architecture; 50% dropout rate; batch size = 2)

Figure 4.21: 3D binary classification - Resolution comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; SGD opti-
mizer; 0.001 learning rate; custom 4 architecture; 50% dropout rate; batch size = 2)
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Figure 4.22: 3D binary classification - Batch size comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; 75x75x30
voxels; SGD optimizer; 0.001 learning rate; custom 4 architecture; 50% dropout rate)

4.3.4 Dropout Analysis

The overfitting issue was tackled through the variation of the dropout rate. As with the 2D
approach, the 50% dropout rate provided better overall results. It did not make substantial
impact on the CV average accuracy metric but the testing accuracy score had a significantly
greater peak (Figure 4.23).

Figure 4.23: 3D binary classification - Dropout rates comparison (Dataset B: 125 samples per
cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39 AD]; 75x75x30
voxels; SGD optimizer; 0.001 learning rate; custom 4 architecture; batch size = 2)
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The data processed by this 3D approach was more complex in terms of its structure,
compared to the images that were processed by the 2D slice-level model. Due to this reason,
the convergence of the training accuracy and the loss function are less stable as shown in
Figure 4.24 and Figure 4.25.

It is also possible to observe that for higher dropout rates, the model had a really hard
time converging. In some cases, like the 70% dropout rate, it still did not converge after 90
epochs. This might be due to the fact that this network’s architecture was assembled from
scratch, and therefore was not fully optimized for the particular problem.

Figure 4.24: 3D binary classification - Training accuracy per epoch (Dropout trial - Dataset
B: 125 samples per cross-validation fold [80 CN/45 AD] and 105 samples for testing [66 CN/39
AD]; 75x75x30 voxels; SGD optimizer; 0.001 learning rate; custom 4 architecture; batch size
= 2)

Figure 4.25: 3D binary classification - Loss per epoch during training (Dropout trial - Dropout
trial - Dataset B: 125 samples per cross-validation fold [80 CN/45 AD] and 105 samples
for testing [66 CN/39 AD]; 75x75x30 voxels; SGD optimizer; 0.001 learning rate; custom 4
architecture; batch size = 2)
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Chapter 5

Conclusions

This dissertation addressed the problem of diagnosing the Alzheimer’s disease based on
deep learning techniques. The primary objective was to study the potential of 18F-FDG PET
neuroimaging as a AD biomarker for classifying healthy versus AD patients. The comparison
between a 2D model based on transfer learning and a custom developed 3D-CNN trained
from scratch has become the central focus of this work. In addition, the study evaluates
the effectiveness of different techniques implemented in order to prevent the occurrence of
overfitting.

A custom Inception V3 model was evaluated by making use of the 2D Inception V3
model and a 2D PET scan slice collage technique. In this case, for a neural network with
approximately 12 million trainable parameters, the best cross-validation average accuracy
obtained was around 83.62%, and 91.43% for the best testing accuracy (105 subjects). This
approach confirmed that the transfer learning drastically increases the model’s performance,
even when the dataset differs in many aspects from the original one. The final results still
benefited form other factors, such as the implementation of dropout and the reduction on the
model’s complexity through the use of the Inception V3’s sub-networks. Together, these were
the aspects allowing a considerable decrease in the model’s overfitting.

For the 3D alternative, a custom 3D-CNN architecture was developed in the context of a
subject-level approach. This approach reached a maximum cross-validation average accuracy
of 86.80% (a 3.18% increase over the 2D version) and the same 91.43% best testing accuracy.
This means that on both best-case scenarios, the models predicted correctly 96 cases, out of
those 105 total, which led to the same 91.43%. From a comparative point of view, it is relevant
to highlight the 7.5 million trainable parameters of the 3D, which is a significant decrease
when compared to the 12 million used in the 2D approach. Furthermore, it is worth mention
that other custom variant models reached similar results (86.18% - custom 3), while only
using around 3.75 million trainable parameters. Techniques such as dropout and complexity
reduction were also used in order to reduce the effects of overfitting. Additionally, complexity
reduction was achieved through the modification of the samples’ resolution.

Overall, this thesis has allowed for a considerable analysis of CNN performance through a
comparison between 2D and 3D models. The results are promising and show the usefulness of
using 18F-FDG PET scans as a viable medical imaging modality in the realm of deep learning
applications. Despite the fact that the data available for this experiment was quite limited,
which inevitably leads to some amount of overfitting, the 3D-CNN presented slightly higher
results on the same dataset.
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Listed below are some possible future endeavors that could serve as a continuation of this
dissertation’s work:

• Other three-dimensional approaches: As was previously detailed on chapter 2,
there are several different approaches that could have been implemented instead of
the three-dimensional subject-level or the two-dimensional slice-level approach taken
during this project. Maybe something like a ROI-based approach would provide some
interesting results provided a reasonably efficient region of interest could be delineated
on the corresponding subject’s brain scans.

• Additional subject information: Some additional types of data could also be im-
plemented into the model in order to try and improve the network’s performance. In-
formation like the subject’s age, gender, previous medical records, and so on, could turn
out to be useful tools when it comes to improving the classifier’s accuracy.

• Different classification: Although an AD vs CN binary classification might seem
like the most clear cut classification option for this problem, there are some other class
pairs that would provide extremely valuable information if they could be successfully
predicted. For example, classifying subjects between sMCI (Stable Mild Cognitive Im-
pairment) and pMCI (Progressive Mild Cognitive Impairment), the latter which would
eventually develop into AD, would be a great medical support tool if properly devel-
oped. Following that same logic, there is also the option to create a multi-class classifier
instead of a binary one. CN vs MCI (Mild Cognitive Impairment) vs AD could be a
useful variation for instance.

• Ensemble model: CNN ensemble methods could also be applied to this problem. Simply
put, ensemble methods allow the user to combine multiple CNNs, and its correspond-
ing outputs, in order to improve the prediction’s accuracy [123]. So, for example, an
ensemble model that combines the predictions from both models developed during this
thesis would theoretically increase the accuracy of the prediction when compared to the
ones obtained from just a single one of those models. An ensemble model could also be
implemented in order to combine two types of the same model, but with the input being
two different medical imaging modalities (e.g., an 18F-FDG PET scan on one model,
and a MRI scan on the other).
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André Stark, Olof Sköldenberg, and Max Gordon. Artificial intelligence for analyz-
ing orthopedic trauma radiographs: Deep learning algorithms—are they on par with
humans for diagnosing fractures? Acta Orthopaedica, 2017.

[69] Yanping Xue, Rongguo Zhang, Yufeng Deng, Kuan Chen, and Tao Jiang. A preliminary
examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS ONE,
2017.

[70] David B. Larson, Matthew C. Chen, Matthew P. Lungren, Safwan S. Halabi, Nicholas V.
Stence, and Curtis P. Langlotz. Performance of a deep-learning neural network model
in assessing skeletal maturity on pediatric hand radiographs. Radiology, 2018.

[71] Hyunkwang Lee, Shahein Tajmir, Jenny Lee, Maurice Zissen, Bethel Ayele Yeshiwas,
Tarik K. Alkasab, Garry Choy, and Synho Do. Fully Automated Deep Learning System
for Bone Age Assessment. Journal of Digital Imaging, 2017.

[72] C. Spampinato, S. Palazzo, D. Giordano, M. Aldinucci, and R. Leonardi. Deep learning
for automated skeletal bone age assessment in X-ray images. Medical Image Analysis,
2017.

[73] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M.
Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.

[74] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep Learning Applications in
Medical Image Analysis. IEEE Access, 2017.

[75] Dinggang Shen, Guorong Wu, and Heung Il Suk. Deep Learning in Medical Image
Analysis. Annual Review of Biomedical Engineering, 2017.

[76] Shelly Soffer, Avi Ben-Cohen, Orit Shimon, Michal Marianne Amitai, Hayit Greenspan,
and Eyal Klang. Convolutional Neural Networks for Radiologic Images: A Radiologist’s
Guide, 2019.

[77] Kenji Suzuki. Overview of deep learning in medical imaging, 2017.

[78] Noah Stier, Nicholas Vincent, David Liebeskind, and Fabien Scalzo. Deep learning of
tissue fate features in acute ischemic stroke. In Proceedings - 2015 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2015, 2015.

68



[79] Hongyoon Choi, Seunggyun Ha, Hyung Jun Im, Sun Ha Paek, and Dong Soo Lee.
Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of
dopamine transporter imaging. NeuroImage: Clinical, 2017.

[80] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre Marc Jodoin, and Hugo Larochelle. Brain tumor
segmentation with Deep Neural Networks. Medical Image Analysis, 2017.

[81] Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson,
Andrew D. Kane, David K. Menon, Daniel Rueckert, and Ben Glocker. Efficient multi-
scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical
Image Analysis, 2017.

[82] James H. Cole, Rudra P.K. Poudel, Dimosthenis Tsagkrasoulis, Matthan W.A. Caan,
Claire Steves, Tim D. Spector, and Giovanni Montana. Predicting brain age with
deep learning from raw imaging data results in a reliable and heritable biomarker.
NeuroImage, 2017.

[83] Shui Hua Wang, Yi Ding Lv, Yuxiu Sui, Shuai Liu, Su Jing Wang, and Yu Dong Zhang.
Alcoholism Detection by Data Augmentation and Convolutional Neural Network with
Stochastic Pooling. Journal of Medical Systems, 2018.

[84] Mr Amir Ebrahimighahnavieh, Suhuai Luo, and Raymond Chiong. Deep learning to de-
tect Alzheimer’s disease from neuroimaging: A systematic literature review. Computer
Methods and Programs in Biomedicine, 2020.

[85] Arianna Sala, Camilla Caprioglio, Roberto Santangelo, Emilia Giovanna Vanoli, Sandro
Iannaccone, Giuseppe Magnani, and Daniela Perani. Brain metabolic signatures across
the Alzheimer’s disease spectrum. European Journal of Nuclear Medicine and Molecular
Imaging, 2020.

[86] Hongyoon Choi and Kyong Hwan Jin. Predicting cognitive decline with deep learning
of brain metabolism and amyloid imaging. Behavioural Brain Research, 2018.

[87] Arjun Punjabi, Adam Martersteck, Yanran Wang, Todd B. Parrish, and Aggelos K.
Katsaggelos. Neuroimaging modality fusion in Alzheimer’s classification using convolu-
tional neural networks. PLoS ONE, 2019.

[88] Junhao Wen, Elina Thibeau-Sutre, Mauricio Diaz-Melo, Jorge Samper-González,
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[116] Esmitt Ramirez and Fernando Álvarez. Vicot: Virtual collaboration tool to render
images on the web. Acta cient́ıfica venezolana, 67:26–43, 10 2016.

[117] Qihang Yu, Yingda Xia, Lingxi Xie, Elliot K. Fishman, and Alan L. Yuille. Thickened
2d networks for efficient 3d medical image segmentation, 2019.

[118] Juan Sandino, Geoff Pegg, Felipe Gonzalez, and Grant Smith. Aerial mapping of forests
affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence.
Sensors (Switzerland), 2018.

71

https://www.universityofcalifornia.edu/news/artificial-intelligence-can-detect-alzheimer-s-disease-brain-scans-6-years-diagnosis
https://www.universityofcalifornia.edu/news/artificial-intelligence-can-detect-alzheimer-s-disease-brain-scans-6-years-diagnosis
https://www.universityofcalifornia.edu/news/artificial-intelligence-can-detect-alzheimer-s-disease-brain-scans-6-years-diagnosis
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://datasciencegyan.com/artificial-intelligence-vs-machine-learning-vs-deep-learning/
https://datasciencegyan.com/artificial-intelligence-vs-machine-learning-vs-deep-learning/
https://laptrinhx.com/deep-learning-the-basics-and-more-847480669/
https://laptrinhx.com/deep-learning-the-basics-and-more-847480669/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/
https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/
https://brilliant.org/wiki/convolutional-neural-network/
https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://www.kaggle.com/c/dogs-vs-cats/
https://www.kaggle.com/c/dogs-vs-cats/


[119] Satya P. Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli, Parasuraman Padmanabhan,
and Balázs Gulyás. 3d deep learning on medical images: A review, 2020.

[120] Kurtis Pykes. Cross-Validation: Validating your Machine Learning Model Performance.
https://towardsdatascience.com/cross-validation-c4fae714f1c5, 2020.

[121] Qingge Ji, Jie Huang, Wenjie He, and Yankui Sun. Optimized deep convolutional
neural networks for identification of macular diseases from optical coherence tomography
images. Algorithms, 2019.

[122] Viet Tra, Jaeyoung Kim, Sheraz Ali Khan, and Jong Myon Kim. Bearing fault diagnosis
under variable speed using convolutional neural networks and the stochastic diagonal
levenberg-marquardt algorithm. Sensors (Switzerland), 2017.

[123] Jason Brownlee. Ensemble Learning Methods for Deep Learning Neural
Networks. https://machinelearningmastery.com/ensemble-methods-for-deep-

learning-neural-networks/, 2018.

72

https://towardsdatascience.com/cross-validation-c4fae714f1c5
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	State-of-the-Art
	Neurodegeneration and Alzheimer's Disease
	Brain Imaging in the Diagnosis of AD
	Magnetic Resonance Imaging (MRI)
	Positron Emission Tomography (PET)

	Literature Review on Deep Learning for AD
	CNNs in Medical Imaging
	CNNs for Classification and Diagnosis of AD


	Materials and Methods
	Work Context
	Neural Network Architectures and Deep Learning
	Components of an Artificial Neural Network
	Loss Function
	Activation Function
	Optimization Algorithm

	Two-Dimensional CNNs
	The Architecture of CNNs
	An Example of a CNN for Binary Classification
	Application of 2D CNNs for Volumetric Data

	Three-Dimensional CNNs
	3D Patch-level CNN
	ROI-based CNN
	3D Subject-level CNN


	Experiments and Results
	Dataset Overview
	Transfer Learning Approach (2D Model)
	Data Pre-Processing
	2D Slice-level Model
	Train-CV-Test Results
	Dropout Analysis

	Custom Architecture Approach (3D Model)
	Data Pre-Processing
	3D Subject-level Model
	Train-CV-Test Results
	Dropout Analysis


	Conclusions
	References

