

Universidade de Aveiro

2022

Tiago Davi
Oliveira de Araújo

Um modelo para suporte automatizado ao
reconhecimento,extração, personalização e
reconstrução de gráficos estáticos

Universidade de Aveiro

2022

Tiago Davi Oliveira de
Araújo

Um modelo para suporte automatizado ao
reconhecimento,extração, personalização e
reconstrução de gráficos estáticos

A model for automated support for recognition,
extraction, customization and reconstruction of
static charts

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Informática,
realizada sob a orientação científica da Doutora Maria Beatriz Alvez de Sousa
Santos, Professora Associada do Departamento de Electrónica,
Telecomunicações e Informáticada Universidade de Aveiro e do Doutor Bianchi
Serique Meiguins, Professor Associado da Universidade Federal do Pará

Dedico este trabalho à minha família e amigos.

o júri

Presidente

Prof. Doutor Óscar Emanuel Chaves Mealha
professor catedrático da Universidade de Aveiro

Vogais Profª. Doutora Maria Beatriz Alvez de Sousa Santos
professora associada com agregação da Universidade de Aveiro

 Prof. Doutor Daniel Jorge Viegas Gonçalves
professor associado da Universidade de Lisboa - Instituto Superior Técnico

 Prof. Doutor Bianchi Serique Meiguins
professor associado da Universidade Federal do Pará

 Prof. Doutor Marcelo de Paiva Guimarães
professor associado da Universidade Federal de Sao Paulo

 Profª. Doutora Maria Beatriz Duarte Pereira do Carmo
professora auxiliar da Universidade de Lisboa

Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
professor auxiliar da Universidade de Aveiro

 Prof. Doutor José Gustavo de Souza Paiva
professor adjunto da Universidade Federal de Uberlândia

agradecimentos

Agradeço a todos os que de uma forma ou de outra contribuíram para a
conclusão desta dissertação. Em primeiro lugar, dou graças a Deus pela
protecção e capacidade de trabalhar.
Sou extremamente grato aos meus supervisores, Prof. Bianchi Meiguins e
Profª. Beatriz Sousa Santos pelos seus conselhos, apoio e paciência durante o
meu estudo de doutoramento. Os seus conhecimentos e experiência
encorajaram-me em todo o tempo da minha investigação académica e da
minha vida quotidiana. Os seus conselhos amigáveis permanecerão comigo
durante toda a minha vida.
Agradeço ao Programa de Pós-Graduação em Informática da UFPA, ao
Departamento de Electrónica, Telecomunicações e Informática da UA, e à
agência de financiamento CAPES por me terem tornado possível terminar esta
tese, financiando-a de muitas formas diferentes e ajudando-me a vencer uma
montanha de obstáculos burocráticos.
Agradeço aos meus grupos de investigação no Brasil e em Portugal, sem os
quais o desenvolvimento deste trabalho seria impossível. Os nomes dos que
permitiram este trabalho com ideias, inspirações e revisões seriam suficientes
para preencher esta página sozinha, temendo depois omitir qualquer pessoa,
por todos os colegas e Professores, ofereço a minha gratidão.
Gostaria de agradecer à minha família e amigos que apoiaram ao longo destes
anos. Os meus pais, Manoel Araújo e Leila Araújo, e o irmão, Manoel Araújo
Júnior, são sempre um porto seguro, mantendo-me equilibrado para os
desafios deste trabalho. Uma amiga, como uma irmã para mim, Priscila
Ferreira, ajudou-me prontamente sempre que a pedia, aliviando muitas
complicações. Finalmente, a minha esposa Izabella Silva, ofereceu mais do
que eu poderia pedir em conforto e paciência, acreditando sempre mesmo
quando eu vacilava, nunca perdendo a esperança. Obrigado, meu amor.

palavras-chave

reconhecimento de gráficos, reconstrução de gráficos, aprendizagem profunda,
visualização de informação, correcção de perspectiva, realidade aumentada,
visualização em tempo real, interação

resumo

Os gráficos de dados são amplamente utilizados na nossa vida diária, estando
presentes nos meios de comunicação regulares, tais como jornais, revistas,
páginas web, livros, e muitos outros. Um gráfico bem construído leva a uma
compreensão intuitiva dos seus dados inerentes e da mesma forma, quando
os gráficos de dados têm escolhas de concepção erradas, poderá ser
necessário um redesenho destas representações. Contudo, na maioria dos
casos, estes gráficos são mostrados como uma imagem estática, o que
significa que os dados originais não estão normalmente disponíveis. Portanto,
poderiam ser aplicados métodos automáticos para extrair os dados inerentes
das imagens dos gráficos, a fim de permitir estas alterações. A tarefa de
reconhecer os gráficos e extrair dados dos mesmos é complexa, em grande
parte devido à variedade de tipos de gráficos e às suas características visuais.
As técnicas de Visão Computacional para classificação de imagens e detecção
de objectos são amplamente utilizadas para o problema de reconhecimento de
gráficos, mas apenas em imagens sem qualquer ruído. Outras características
das imagens do mundo real que podem dificultar esta tarefa não estão
presentes na maioria das obras literárias, como distorções fotográficas, ruído,
alinhamento, etc. Duas técnicas de visão computacional que podem ajudar
nesta tarefa e que têm sido pouco exploradas neste contexto são a detecção e
correcção da perspectiva. Estes métodos transformam um gráfico distorcido e
ruidoso em um gráfico limpo, com o seu tipo pronto para extracção de dados
ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que
os dados estejam disponíveis a visualização pode ser reconstruída, mas o
cenário de reconstrução no mesmo contexto é complexo.
A utilização de uma Gramática de Visualização para este cenário é um
componente chave, uma vez que estas gramáticas têm normalmente
extensões para interacção, camadas de gráficos, e visões múltiplas sem exigir
um esforço extra de desenvolvimento.
Este trabalho apresenta um modelo de suporte automatizado para o
reconhecimento personalizado, e reconstrução de gráficos em imagens
estáticas. O modelo executa automaticamente as etapas do processo, tais
como engenharia inversa, transformando um gráfico estático novamente na
sua tabela de dados para posterior reconstrução, ao mesmo tempo que
permite ao utilizador fazer modificações em caso de incertezas. Este trabalho
também apresenta uma arquitectura baseada em modelos, juntamente com
protótipos para vários casos de utilização. A validação é efetuada passo a
passo, com métodos inspirados na literatura. Este trabalho apresenta três
casos de uso, fornecendo prova de conceito e validação do modelo.
O primeiro caso de uso apresenta a utilização de métodos de reconhecimento
de gráficos focando em documentos no mundo real, o segundo caso de uso
centra-se na vocalização de gráficos, utilizando uma gramática de visualização
para reconstruir um gráfico em formato áudio, e o terceiro caso de uso
apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói
gráficos no mesmo contexto (um pedaço de papel) sobrepondo os novos
gráficos e widgets de interação. Os resultados mostraram que com pequenas
alterações, os métodos de reconhecimento e reconstrução dos gráficos estão
agora prontos para os gráficos do mundo real, tendo em consideração o
tempo, a acurácia e a precisão.

keywords

chart recognition, chart reconstruction, deep learning, information visualization,
perspective correction, augmented reality, real-time visualization, interaction

abstract

Data charts are widely used in our daily lives, being present in regular media,
such as newspapers, magazines, web pages, books, and many others. A well-
constructed data chart leads to an intuitive understanding of its underlying data
and in the same way, when data charts have wrong design choices, a redesign
of these representations might be needed. However, in most cases, these
charts are shown as a static image, which means that the original data are not
usually available. Therefore, automatic methods could be applied to extract the
underlying data from the chart images to allow these changes. The task of
recognizing charts and extracting data from them is complex, largely due to the
variety of chart types and their visual characteristics.
Computer Vision techniques for image classification and object detection are
widely used for the problem of recognizing charts, but only in images without
any disturbance. Other features in real-world images that can make this task
difficult are not present in most literature works, like photo distortions, noise,
alignment, etc. Two computer vision techniques that can assist this task and
have been little explored in this context are perspective detection and
correction. These methods transform a distorted and noisy chart in a clear
chart, with its type ready for data extraction or other uses. The task of
reconstructing data is straightforward, as long the data is available the
visualization can be reconstructed, but the scenario of reconstructing it on the
same context is complex.
Using a Visualization Grammar for this scenario is a key component, as these
grammars usually have extensions for interaction, chart layers, and multiple
views without requiring extra development effort.
This work presents a model for automated support for custom recognition, and
reconstruction of charts in images. The model automatically performs the
process steps,such as reverse engineering, turning a static chart back into its
data table for later reconstruction, while allowing the user to make modifications
in case of uncertainties. This work also features a model-based architecture
along with prototypes for various use cases. Validation is performed step by
step, with methods inspired by the literature. This work features three use
cases providing proof of concept and validation of the model.
The first use case features usage of chart recognition methods focused on
documents in the real-world, the second use case focus on vocalization of
charts, using a visualization grammar to reconstruct a chart in audio format,
and the third use case presents an Augmented Reality application that
recognizes and reconstructs charts in the same context (a piece of paper)
overlaying the new chart and interaction widgets. The results showed that with
slight changes, chart recognition and reconstruction methods are now ready for
real-world charts, when taking time, accuracy and precision into consideration.

Essentially, all models are wrong, but some are useful.
(George Box, 1987)

Abstract
Data charts are widely used in our daily lives, being present in regular media, such as
newspapers, magazines, web pages, books, and many others. A well-constructed data
chart leads to an intuitive understanding of its underlying data and in the same way,
when data charts have wrong design choices, a redesign of these representations might be
needed. However, in most cases, these charts are shown as a static image, which means
that the original data are not usually available. Therefore, automatic methods could be
applied to extract the underlying data from the chart images to allow these changes. The
task of recognizing charts and extracting data from them is complex, largely due to the
variety of chart types and their visual characteristics. Computer Vision techniques for
image classification and object detection are widely used for the problem of recognizing
charts, but only in images without any disturbance. Other features in real-world images
that can make this task difficult are not present in most literature works, like photo
distortions, noise, alignment, etc. Two computer vision techniques that can assist this task
and have been little explored in this context are perspective detection and correction. These
methods transform a distorted and noisy chart in a clear chart, with its type ready for data
extraction or other uses. The task of reconstructing data is straightforward, as long the
data is available the visualization can be reconstructed, but the scenario of reconstructing
it on the same context is complex. Using a Visualization Grammar for this scenario is a
key component, as these grammars usually have extensions for interaction, chart layers,
and multiple views without requiring extra development effort. This work presents a model
for automated support for custom recognition, and reconstruction of charts in images.
The model automatically performs the process steps,such as reverse engineering, turning
a static chart back into its data table for later reconstruction, while allowing the user
to make modifications in case of uncertainties. This work also features a model-based
architecture along with prototypes for various use cases. Validation is performed step by
step, with methods inspired by the literature. This work features three use cases providing
proof of concept and validation of the model. The first use case features usage of chart
recognition methods focused on documents in the real-world, the second use case focus
on vocalization of charts, using a visualization grammar to reconstruct a chart in audio
format, and the third use case presents an Augmented Reality application that recognizes
and reconstructs charts in the same context (a piece of paper) overlaying the new chart
and interaction widgets. The results showed that with slight changes, chart recognition and
reconstruction methods are now ready for real-world charts, when taking time, accuracy
and precision into consideration.

Keywords: chart recognition, chart reconstruction, deep learning, information visualiza-
tion, perspective correction, augmented reality, real-time visualization, interaction

Resumo
Os gráficos de dados são amplamente utilizados na nossa vida diária, estando presentes
nos meios de comunicação regulares, tais como jornais, revistas, páginas web, livros, e
muitos outros. Um gráfico bem construído leva a uma compreensão intuitiva dos seus
dados inerentes e da mesma forma, quando os gráficos de dados têm escolhas de concepção
erradas, poderá ser necessário um redesenho destas representações. Contudo, na maioria
dos casos, estes gráficos são mostrados como uma imagem estática, o que significa que
os dados originais não estão normalmente disponíveis. Portanto, poderiam ser aplicados
métodos automáticos para extrair os dados inerentes das imagens dos gráficos, a fim de
permitir estas alterações. A tarefa de reconhecer os gráficos e extrair dados dos mesmos é
complexa, em grande parte devido à variedade de tipos de gráficos e às suas características
visuais. As técnicas de Visão Computacional para classificação de imagens e detecção
de objectos são amplamente utilizadas para o problema de reconhecimento de gráficos,
mas apenas em imagens sem qualquer ruído. Outras características das imagens do
mundo real que podem dificultar esta tarefa não estão presentes na maioria dos trabalhos
publicados, como distorções fotográficas, ruído, alinhamento, etc. Duas técnicas de visão
computacional que podem ajudar nesta tarefa e que têm sido pouco exploradas neste
contexto são a detecção e correcção da perspectiva. Estes métodos transformam um gráfico
distorcido e ruidoso em um gráfico limpo, com o seu tipo pronto para extracção de dados
ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que os dados
estejam disponíveis a visualização pode ser reconstruída, mas o cenário de reconstrução
no mesmo contexto é complexo. A utilização de uma Gramática de Visualização para
este cenário é um componente chave, uma vez que estas gramáticas têm normalmente
extensões para interacção, camadas de gráficos, e visões múltiplas sem exigir um esforço
extra de desenvolvimento. Este trabalho apresenta um modelo de suporte automatizado
para o reconhecimento personalizado, e reconstrução de gráficos em imagens estáticas. O
modelo executa automaticamente as etapas do processo, tais como engenharia inversa,
transformando um gráfico estático novamente na sua tabela de dados para posterior
reconstrução, ao mesmo tempo que permite ao utilizador fazer modificações em caso
de incertezas. Este trabalho também apresenta uma arquitectura baseada em modelos,
juntamente com protótipos para vários casos de utilização. A validação é efetuada passo a
passo, com métodos inspirados na literatura. Este trabalho apresenta três casos de uso,
fornecendo prova de conceito e validação do modelo. O primeiro caso de uso apresenta a
utilização de métodos de reconhecimento de gráficos focando em documentos no mundo
real, o segundo caso de uso centra-se na vocalização de gráficos, utilizando uma gramática
de visualização para reconstruir um gráfico em formato áudio e o terceiro caso de uso
apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói gráficos no
mesmo contexto (um pedaço de papel) sobrepondo os novos gráficos e widgets de interação.

Os resultados mostraram que, com pequenas alterações, os métodos de reconhecimento e
reconstrução dos gráficos estão agora prontos para serem usados com gráficos do mundo
real, tendo em consideração o tempo, a acurácia e a precisão.

Palavras-chave: reconhecimento de gráficos, reconstrução de gráficos, aprendizagem
profunda, visualização de informação, correcção de perspectiva, realidade aumentada,
visualização em tempo real, interação

List of Figures

Figure 1. Changes on Visual encoding channels may lead to better perception of
the phenomena behind the data. From (KNAFLIC, 2015). 19

Figure 2. Process of chart recognition and reconstruction as usually addressed in
the literature. Techniques are usually mixed on the reconstruction step,
and without any parser for data and metadata in the reconstruction
step. The two main steps rarely intersect on many works. 20

Figure 3. A generic Machine Learning process. It starts with a data preparation
step, followed by training and evaluation, ending with deployment. The
steps can be adapted depending on the task. 24

Figure 4. Image Classification applying two methods. Above: the classical ap-
proach, with the extraction of features and traditional classifiers. Below:
the representation learning approach, with training to learn features. . 26

Figure 5. An Artificial Neural Network and its components side by side. On the
left side, the neuron and its formal description. On the right side, the
complete network, where each neuron (circle) follows the shape on the
left. Adapted from (KARPATHY, 2017). 27

Figure 6. Activation maps of the first and last two layers of a CNN, showing
hierarchical learning. From (CHOLLET, 2017a) 28

Figure 7. LeNet Architecture, first published CNN. Some indications on the
image points to Convolutions, Pooling and Fully Connected Layers.
From (LECUN et al., 1998) . 29

Figure 8. Diagram of visualization reference model based on (CARD; MACKIN-
LAY; SHNEIDERMAN, 1999). The diagram presents the main steps
for Information Visualization and human interaction in the process. . . 34

Figure 9. Human vision concepts. 36
Figure 10. Ranking of Visual Encoding Channels by data type, from (MACKIN-

LAY, 1986) . 36
Figure 11. Examples of grammars to draw small multiples on ggplot2 and Vega-Lite. 38
Figure 12. Diagram of chart recognition and reconstruction model. 48
Figure 13. A sample of related works represented using the model notation. 50
Figure 14. Image Correction Module Diagram. It features the main image transfor-

mations as a way to ease further processing in the model. 51
Figure 15. High Level Inference Model Diagram. It presents the application of

intelligent model of Computer Vision. 52
Figure 16. Data Extraction Module Diagram. This diagram features the target

chart components for extraction. 53

Figure 17. Reconstruction Module Diagram. The final module of the model renders
the representation for the display based on the grammar. 54

Figure 18. Visual summary of the methods and their relationships. 55
Figure 19. Three datasets samples for the chart tasks (from left to right): chart

classification, with added chart images; chart detection, with chart
overlaying document images; and, perspective correction, with distorted
images. 58

Figure 20. Dataset samples for data extraction. 59
Figure 21. Diagram of the Bar Chart Data Extraction Process. 62
Figure 22. Masks obtained by floodfill on bar charts. 63
Figure 23. Example of position inference. The blue rules shows the correct base of

the bars. 64
Figure 24. Decimal point verification process in case of OCR failure in its detection. 64
Figure 25. Final result of bar chart data extraction, with the values duly recognized. 65
Figure 26. Beeswarm plot of the average absolute error relative to the OCR recog-

nition groups. 69
Figure 27. Beeswarm plot of average absolute error grouped by decimal point

detection methods. 70
Figure 28. Bar chart photographs taken from a book (BISHOP, 2006) and trans-

formed for evaluation. (a,d) present two bar charts, (b) shows one
bar chart, and (c,e) present three bar charts. All of them have text
around the charts. These images undergo transformations to generate
the task dataset. For this evaluation, the detector considers only the
most accurate detection. 72

Figure 29. Diagram and flow of the detecting charts in documents case. 73
Figure 30. Input image for the Detecting Charts in Documents use case. The bar

chart must be located and extracted. 74
Figure 31. Illustrative example: (a) tilted input image, following the (b) perspective

correction, (c) that eased the chart detection (d) resulting in a clean-cut
bar chart. 74

Figure 32. Use case model notation. The input image is a bar chart, then its data is
extracted. The reconstruction step converts the data in a valid Vega-Lite
grammar and then uses the template to generate vocalization of the chart. 76

Figure 33. Images of the vertical and grouped bar charts used in the scenarios. . . 77
Figure 34. Chart with the proportions of participants’ responses by relevance range

and chart item. 78
Figure 35. Accuracy obtained by the participants for questions of the scenarios. . 80
Figure 36. Amount of questions answered correctly by the participants. 81
Figure 37. Boxplot of the amount of questions answered correctly by scenario. . . 82

Figure 38. Diagram and flow of the third use case using the model notation. . . . 87
Figure 39. The prototype architecture starts with input, followed by data extraction

and reconstruction. The final rendering is done on the client using
Augmented Reality. 88

Figure 40. The main User Interface for visualization interaction and its components:
(A) – Reconstructed Chart, (B) – Visual Mark Selection Dropdown, (C)
– Value Filter Slider, (D) – Category Filter Buttons. 89

Figure 41. Recognized chart changing only the color from the static chart at the
top, and Reconstructed Chart with different visual marks and filters
applied at the bottom. 90

List of Tables

Table 1. Related Works relationships with model’s modules. The high Level
Inference column highlights methods used of each work for this step.
The Data Extraction column features how chart data is inferred. The
Reconstruction column presents the method used to change and present
the chart. The text on this section describes the cell values. 44

Table 2. Internet downloaded dataset summary. This dataset is used throughout
all steps, with modifications pertinent to each one of them. Train and
test split by chart type and also used depending on the task. 57

Table 3. Comparison of premises about bar chart features for data extraction. . . 59
Table 4. Results of Chart Classification. Highlight to Xception network with best

accuracy results. 66
Table 5. Results of Chart Classification Confusion Matrix of the best model.

Blue cells indicate the right predictions and orange ones indicate high
error rate. 67

Table 6. Results of AP , AP IoU=.5, and AP IoU=.75 inference values and time. Reti-
naNet has the best results for any AP value and inference time. 67

Table 7. AP values for each class in RetinaNet and Faster R-CNN. RetinaNet has
the best class AP for all class besides arc and wordcloud. 68

Table 8. Results for chart recognition applied on the images of the book based
on two approaches: normal and rectified, for full and partial detection.
Each image has 15 other versions, varying by slight rotations. Charts (a)
and (d) (the same in Figure 28) got no detection in any mode. Rectified
images got better detection results for other cases. 72

Table 9. Templates for vocalization of bar chart data proposed and evaluated. . . 79
Table 10. Normality for Tests 1 and 2. 82
Table 11. Descriptive statistics for tests 1 and 2. 83
Table 12. Normality test for test 3. 83
Table 13. Descriptive analysis for test 3. 84

List of abbreviations and acronyms

AR Augmented Reality

CNN Convolutional Neural Networks

DNN Deep Neural Network

ILSVRC ImageNet Large Scale Visual Recognition Competition

MAE Mean Average Error

ML Machine Learning

OCR Optical Character Recognition

UX User Experience

Contents

1 INTRODUCTION . 18

2 THEORETICAL BACKGROUND & RELATED WORKS 23
2.1 Computer Vision Concepts . 23
2.1.1 Machine Learning . 23
2.1.2 Feature Learning . 25
2.1.3 Neural Networks . 25
2.1.4 Convolutional Neural Networks . 27
2.1.5 Computer Vision Tasks . 30
2.1.5.1 Object Detection . 30
2.1.5.2 Perspective Correction . 32
2.2 Information Visualization Concepts 33
2.2.1 Reference Model . 34
2.2.2 Visual Encoding Channels . 35
2.2.3 Interaction . 37
2.2.4 Grammar of Graphics . 37
2.3 Related Works . 39
2.3.1 Chart Recognition . 39
2.3.2 Chart Reconstruction . 42
2.3.3 Literature Discussion . 44

3 MODEL AND DISCUSSION . 47
3.1 Model Description . 47
3.1.1 Image Correction . 50
3.1.2 High Level Inference . 51
3.1.3 Data Extraction . 53
3.1.4 Reconstruction . 53
3.2 Methods and Evaluation . 55
3.2.1 Datasets . 56
3.2.2 Training and Techniques Regime . 59
3.2.2.1 Classification . 60
3.2.2.2 Detection . 61
3.2.2.3 Perspective Correction . 61
3.2.2.4 Data Extraction . 62
3.2.3 Evaluation and Results . 66
3.2.3.1 Classification . 66

3.2.3.2 Detection . 67
3.2.3.3 Perspective Correction . 68
3.2.3.4 Data Extraction . 68

4 USE CASES . 71
4.1 Detecting Charts in Real-World Documents 71
4.2 Chart Vocalization . 75
4.2.1 Proposed Methodology of Template Evaluation 76
4.2.1.1 Images and Templates . 77
4.2.1.2 Test Procedure . 78
4.2.2 Results of Templates Evaluation . 80
4.2.2.1 Quantitative Analysis . 80
4.2.2.2 Statistical Tests . 81
4.2.2.3 Qualitative Analysis . 84
4.3 Augmented Reality Chart Reconstruction 86
4.3.1 Implementation . 87
4.3.2 User Interface . 88
4.3.3 Evaluation . 91
4.3.4 Results and Discussion . 92
4.3.4.1 Process . 92
4.3.4.2 Visualization . 92
4.3.4.3 Augmented Reality . 93
4.3.4.4 Comments . 93
4.3.4.5 Discussion . 93

5 CONCLUSION AND FUTURE WORKS 95

REFERENCES . 98

18

1 Introduction

The advance of print media in the last century has established it as a standard for
presenting documents and news with newspapers, reports, and books (EDGE, 2019). In
addition to the advancement in the communication of information, it also allowed the use
of visual representations, as illustrations or drawings. The use of visual representations
based on data, became feasible, as well as their usage to confirm the information and
aid the understanding of complex topics. More recently, the dawn of the digital age with
personal computers and smartphones has brought a new aspect on these charts, which
previously were static, can now be dynamic and interactive. Data processing and charting
tools are common in many sections of society, and several media outlets are blending charts
and interactive visualizations into their essays, enabling readers to make assumptions
on various subjects (CHYI; TENENBOIM, 2017) (YOUNG; HERMIDA; FULDA, 2018).
Besides, the availability of data sources by companies and government agencies facilitates
the direct access of users interested in information without the need for a mediator.

Nevertheless, even with the growth of digital data sources and support for the
creation of visualizations, much information disseminated in chart format is still static,
whether printed or digital. With the use of web crawling tools, it is possible to find more
than 100,000 images of static charts (DAI et al., 2018). They do not display any interaction
and present themselves as if printed. Also, many government and scientific documents are
available in text formats with static visualizations.

This type of display that does not allow modification or interaction, whether in
printed or digital media, will be called a static chart in the remainder of this manuscript.
These static charts are subject to errors that cannot be corrected, as well as unique
perspectives that cannot be changed. A chart has a set of components that are necessary
for its understanding: information about the axes, scales, titles, legends, lines trend, color
scheme, and of course, the selection of visual encoding channels (WARE, 2019) (SPENCE,
2007). Figure 1 shows charts corresponding to different visual encoding of the data.

19

Figure 1. Changes on Visual encoding channels may lead to better perception of the
phenomena behind the data. From (KNAFLIC, 2015).

Some of the common problems using these components can be easily corrected
on the chart design using a charting tool: insufficient character sizes, misused colors,
non-adjusted or non-existent scales, and poorly selected visual encoding channels. These
problems may compromise a correct understanding of the data and the phenomena they
represent, hindering potential insights, as well as the user experience.

With access to the data that produced these charts it should be possible to recreate
them in a visualization tool that allows configuration. Yet the time, effort, and the exchange
of context of the document to acquire this data, open another tool and produce the new
charts can make this task difficult (SPENCE, 2007), and it gets worse if it is a printed
document. In the worst-case scenario, where data access is impossible, the only source of
data for a given chart is the chart itself. Even with data, reconstruction on the fly could
help in scenarios where human vision is impaired or non-existent, opening data interaction
for people with these disabilities.

A solution to this problem is an automated process, which in several steps is
capable of recognizing a chart in an image, performing processing for adjustments, and
retrieving information to allow user interaction (DAI et al., 2018). This process can be
used completely or partially in various scenarios, such as a real-time configuration of static
charts in documents, vocalization of charts for screen readers, usage in real-time with
augmented reality to increase the perception of printed charts and semantic searches of
charts on a document corpus. This process is not trivial, given the diversity of various
types of charts. Even if some charts share the same visual structure, it is not simple to
define rules to differentiate them. Subtypes of the same type of chart, such as bar charts,
grouped bar charts and stacked bar charts also present significant visual differences among
them.

20

Many steps compose this chart recognition and reconstruction process, and due
to its complexity, it implies using methods from several sub-fields of Computing. The
process usually starts with the classification of types and localization of charts, Optical
Character Recognition (OCR) for context recovering, and the visual encoding channel
values extraction over raster images. These tasks use methods of Computer Vision, Image
Processing, and Machine Learning. As the automatic methods recover the data and context,
it is time to reconstruct the chart properly. Information Visualization methods can describe
the data and information recovered and use it to reconstruct and customize new charts. In
the end, the user’s device displays these charts. The streamline simplified process of chart
recognition and reconstruction as usually addressed in the literature is shown in Figure 2.

Figure 2. Process of chart recognition and reconstruction as usually addressed in the
literature. Techniques are usually mixed on the reconstruction step, and without
any parser for data and metadata in the reconstruction step. The two main steps
rarely intersect on many works.

Several works address methods for recognizing and reconstructing charts, but many
of these works focus only on one step in the process. Chart type recognition is the starting
point for some works (BATTLE et al., 2018; MISHCHENKO; VASSILIEVA, 2011), as
well as applications, DataThief 1, followed by data extraction. When they perform all the
steps, the complete process is not automatic, requiring user assistance with tasks such as
marking scale areas, identifying encoding marks, and indicating the type of charts (SAVVA
et al., 2011; JUNG et al., 2017).

There is a lack of a general automatic model of chart recognition and reconstruction.
Most of the works need the user to act as mediator to recognition. Works reported in
literature also do not present an abstract mental process to generalization of these processes.
Most of them lack a Document Analysis perspective, in the form of transformation like
perspective correction or brightness adjustment. In the end, they also do not feature a
simple language or set of rules to define the extracted chart in a standard way.
1 <https://datathief.org/>, Date of access: 08/21/2020

https://datathief.org/

21

This work presents a model for automated support for custom recognition, and
reconstruction of charts in images. The model automatically performs the process steps, as
reverse engineering, turning a static chart back into its data table for later reconstruction,
while allowing the user to make modifications in case of uncertainties. This work also
features a model-based architecture along with prototypes for various use cases. Validation
is performed step by step, with methods inspired by the literature. Several use cases
provide proof of concept and validate the model.

The model by itself presents some advances over the common process of chart
recognition reported in literature as it provides a fully automated process for recognition
and reconstruction of static charts, which allows reuse of the same modules in different
scenarios. The model also supports automated choice of solutions to extract data from
graphic images according to the nature or complexity of the image, mainly based on the
input image type, e. g., the input comes from the real world, and the model uses document
analysis techniques to clean and adjust the image.

This work features state of the art engines for Deep Learning usage of literature
acclaimed architectures. The use of Tensorflow 2 (ABADI et al., 2015) and Detectron2 2

guarantees that trained models can be used both by industry and academy for classification
or detection. Usage of OpenCV (BRADSKI; KAEHLER, 2008) for image processing
maintains a high standard on the data extraction. For reconstruction, the rich environment
of web through the Vega-Lite grammar (SATYANARAYAN et al., 2017) allows using the
most recent visualization techniques.

The three selected use cases reflect the use of the model in literature scenarios and
the full usage of all stages of the model. In the first use case, a real-time application of this
model shows the capabilities and possible exchanges between different steps in real world
scenarios. The second use case uses the initial stages of the model reconstructing charts in
text and audio form, an application already seen in other works but not in a recognition
process. It features a non-conventional display integration for a visualization application.
The last use case features a Mobile Augmented Reality application, that features real-world
and real-time interaction through a mobile device. The charts are recognized and the data
extracted through a service and reconstructed in the same camera stream that is captured.
The evaluation of this use case is done by information visualization experts.

The literature works usually cover the recognition and reconstruction segments.
The model encompasses it in four modules: Image Correction, High-Level Inference, Data
Extraction and Reconstruction. This document follows this logic: chapter 2 works over
the concepts of various literature segments and presents related works, and the reasoning
to break them in modules. Chapter 3 shows how the modules are connected, followed by
the necessary setting for implementation, usage and evaluation of use cases in chapter 4.
2 <https://github.com/facebookresearch/detectron2>, Date of Access: 03/10/2021

https://github.com/facebookresearch/detectron2

22

Chapter 5 draws conclusions and proposes ideas for future work.

23

2 Theoretical Background & Related Works

The two main Computing fields of research for chart recognition and reconstruction
are Computer Vision and Information Visualization. While Computer Vision techniques are
used for image recognition and Information Visualization methods for chart reconstruction
after data extraction, most of the time they are used interchangeably together. Throughout
the years, state-of-the-art works of both fields pushed forward the bounds using new
techniques and methods to recognize and reconstruct charts. This chapter discuss the
main concepts of both fields, alongside a body of works that outlines important advances
for chart recognition and reconstruction.

2.1 Computer Vision Concepts
Traditionally, the process for chart recognition is done by classification of chart

types, followed by data extraction. Image classification is common in literature, but other
chart recognition scenarios can be used if other computer vision tasks are aggregated.
Chart Detection and perspective correction used together can make chart recognition more
accurate and usable in new real-world scenarios such as Augmented Reality applications.

Some Computer Vision tasks are complex, demanding a high level of abstraction
and speed, like classification, tracking, and object detection (PARKER, 2010). A natural
way to deal with these problems is to use a technique that admits grid-like data as input and
does not need a specific feature extractor (LECUN; BENGIO; HINTON, 2015), learning
representations with a dataset. Convolutional Neural Network (CNN) specializes in these
traits, and has achieved excellent results on image classification and other vision tasks
(RUSSAKOVSKY et al., 2015), as well human cognition levels. The next sections briefly
introduce some fundamental Machine Learning (ML) concepts necessary to understand
Convolutional Neural Networks, relevant to the work presented in this dissertation.

2.1.1 Machine Learning

Machine learning is the set of techniques used to perform tasks automatically
without explicit instructions, learning through experience (GOODFELLOW; BENGIO;
COURVILLE, 2016). It is an area of Artificial Intelligence where a y(x) function is learned
implicitly, through experience, evaluated by a metric that a learning algorithm must use
to adjust the function (MITCHELL et al., 1997).

A dataset X contains the input (experience) for a particular task. The step in
which the algorithm adjusts a function based on the input according to a metric is called

24

training (BISHOP, 2006). During training, an algorithm can view the dataset X dozens
or hundreds of times to adjust the parameters of the function. The mapping y(x), also
expressed as y(x, w), where w are the parameters of the function learned in training, is
called a model, which from here onwards will be called intelligent model, as to not confuse
with the model proposed in this dissertation.

One of the main goals in machine learning is to train intelligent models that can
correctly categorize new entries, which were not present in training, like a human being
who can identify several categories from little information. This characteristic is called
generalization, and for many cognitive tasks, state-of-the-art intelligent models already
surpass human performance 1.

Before training, it is necessary to perform manipulation of the input data for some
problems and algorithms, to extract features, generate characteristics, or for normalization
to enter the training phase. This phase is called pre-processing, and it is crucial to reduce
the variability of input, making the training step easier, preventing unwanted features
from being generalized. It is also used as a way to speed up computation, using some
aspects of the data for processing, and discard the ones with little importance. Additionally,
transformations can be made to the data to extract features relevant to the problem,
instead of processing the complete input. Figure 3 presents a generic process for a machine
learning solution, comprising all the phases described so far.

Data Preparation Model Training Evaluation Deployment

Figure 3. A generic Machine Learning process. It starts with a data preparation step,
followed by training and evaluation, ending with deployment. The steps can be
adapted depending on the task.

Chart Recognition methods use supervised learning algorithms, where the entry
(X, Y) contains chart images as the entry x and chart type y. The amount of data
and methods available makes this approach efficient for the problem (GOODFELLOW;
BENGIO; COURVILLE, 2016) despite the complexity.

In supervised learning, the metrics of the algorithms used are expressed through
an objective function, L(y′, y), also known as the loss function. The loss guides the y(x, w)
function to the learning of the parameters w, by computing the distance or difference of
the classes y′ in relation to the prediction y. The objective function is essential for the
development of algorithms and its minimization in relation to y(x, w) is a central part of
the machine learning study (WANG et al., 2020).
1 <http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

>, Date of Access: 02/17/2019

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

25

2.1.2 Feature Learning

Usually, strategies to supervised learning depend on a careful selection of features
given a problem. A feature extractor generates a feature vector, and intelligent models use
these attributes, removing the ordeal of processing raw data. On the other hand, building
these feature extractors requires a lot of knowledge of the problem domain, usually acquired
through an expert, in addition to the work of creating the computation that translates
this knowledge into digital media. This step creates an extra workload of choosing not
only the intelligent model but the features for the task. Representation learning is an
alternative to bypass feature extraction, as it is a group of techniques to learn the features
of a particular dataset and automatically discover features that are suitable for the task
(BENGIO; COURVILLE; VINCENT, 2013).

With a large volume of data, intelligent models can learn not only the intrinsic
relationship between the features of a dataset set but also how to extract those features.
From this scenario, Deep Learning presents the most remarkable advancements ever seen
in machine learning, overcoming old challenges of the AI community (LECUN; BENGIO;
HINTON, 2015). Deep learning techniques are methods for learning representations, em-
ploying simple non-linear modules that transform a representation at one level (starting
with the input) into another representation at a higher, more abstract level. The compo-
sition of these transformations allows a function y(x) to learn complex representations
(GOODFELLOW; BENGIO; COURVILLE, 2016). Results obtained in the last years for
Computer Vision tasks show the efficiency of learning representations through deep learn-
ing as compared to classical methods. Figure 4 presents a comparison of these approaches
for image recognition.

Classical methods of image classification use feature extractors jointly with a
classifier. These feature extractors look for many attributes on the image, like textures,
gradient orientation, corners, and nonlinear diffusions (NIXON; AGUADO, 2019) (DALAL;
TRIGGS, 2005). In the end, they generate an array of these features. When using these
classical methods, the intelligent model does not have any access to the original input
image, only its representation. It is possible to lose intrinsic information about the image
and spatial domain if they are not explicitly extracted even with the robustness of these
feature extractors.

2.1.3 Neural Networks

The basic building block of a deep learning model is a neural network. A neural
network is a type of intelligent model loosely based on the animal brain, with connected
units (like neurons) that perform nonlinear processing through an activation function (like
synapses), with connections based on weighted parameters, called weights. These neurons
form a network organized in layers, each one processes an input and feeds it forward to

26

Machine Learning

Deep Learning

Data Feature
Extraction

Model Training Output

Data
Feature Extraction

+
Model Training

Output

Figure 4. Image Classification applying two methods. Above: the classical approach, with
the extraction of features and traditional classifiers. Below: the representation
learning approach, with training to learn features.

the next, and from it produces an inference about class or value. These intermediate layers
of neurons are known as hidden layers. The result of the optimization of the function
L(y′, y) is y(x, w), which comprises all weights by layers. These layers are responsible
for distorting the function’s search space and supporting separation in hyperplanes. The
function y(x, w) encompasses the layers of the networks, for example, in a three-layer
network y(x, w) = f (3)(f (2)(f (1)(x, w(1)), w(2)), w(3)), with the division of the weights in
their respective layers. Figure 5 presents the architecture of this network.

A neural network must use a large volume of parameters to learn sufficiently
complex representations for a problem, and state-of-the-art architectures get to have
millions of them (VINYALS et al., 2019) (HE et al., 2016) (VINYALS et al., 2016). A
Deep Neural Network (DNN) arranges the parameters in two or more layers, and it is
deeper as the number of layers increases. DNNs adjust the parameters with an efficient
error minimization method, the backpropagation algorithm (LECUN; BENGIO; HINTON,
2015).

This algorithm is based on the chain rule and uses gradient descent to propagate
the changes from the network head (the final layers) to the beginning. Backpropagation
considers the outputs of the L(y′, y) function as a multidimensional search space, then
refines predictions based on the errors. The input x flows through the entire network, and
the cost L(y′, y) is used to calculate the gradient g, updating the weight of neurons in the
error function during training. The weights of the network adjust according to the input
and its errors.

27

Figure 5. An Artificial Neural Network and its components side by side. On the left
side, the neuron and its formal description. On the right side, the complete
network, where each neuron (circle) follows the shape on the left. Adapted from
(KARPATHY, 2017).

Finally, as the neurons are updated automatically, it remains to choose the hy-
perparameters, showing how the network should behave during training. For example,
the learning rate indicates the magnitude of the gradient update. Model smoothing, ac-
celeration, and speed are other hyperparameters. The adjustment and selection of these
hyperparameters is an active area of research, with several recommendations and analyses
addressed as this work progress.

2.1.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning technique that uses
filters in convolution operations with parameters learned through a dataset (LECUN et al.,
1998). These filters have a layer-based structure: the intelligent model learns more abstract
representations as it progresses through the network. In the example of the Figure 6, a
CNN first learned edge and corner filters, followed by textures, and at the end already
identifies parts of the objects. It also presents an important feature of CNN usage, the
downscale the image, saving information processing. While it uses 7x7 filters at the start,
the image scales down and the filters usually stays at 3x3. At the end, a 224x224 image
downscales to up 10 times less, and Figure 6 presents that feature too.

The use of CNNs is state of the art for tasks involving images and audio, where
the spatial relationship is significant in the problem. This type of solution takes advantage
of the convolution operation to create learned representations and must have at least
one on the network. Convolution uses filters to create spatial representations or feature
maps that are placed hierarchically in the layers. CNNs were the first type of DNN that
performed results beyond state of the art in a classical Computer Vision challenge, the

28

Figure 6. Activation maps of the first and last two layers of a CNN, showing hierarchical
learning. From (CHOLLET, 2017a)

.

ILRVSC (RUSSAKOVSKY et al., 2015).

Convolution is an operation in two functions f(x) and g(x) generating a third
function h(x) that expresses the form of f(x) in g(x), and is defined in the context of
DNNs in the same way as in signal processing. These functions are the audio signal or
image (f(x)), and the learned filters (g(x)). This operation has three major advantages,
two concerning the representation, maintaining the spatiality of the features and making
them invariant to translation, and to the sharing of parameters, since the connectivity
of the filters concerning the images and intermediate features is less than the complete
connectivity of the weights between one layer and another (GOODFELLOW; BENGIO;
COURVILLE, 2016).

In addition to convolution, the pooling operation scales the feature maps between
layers to improve computing performance. At the end of the network, fully connected layers
adjust the parameters for the objective function. Figure 7 presents a famous architecture,
the first CNN in the literature, introduced by LeCun et al. (LECUN et al., 1998) as a way
of illustrating the concepts.

29

Figure 7. LeNet Architecture, first published CNN. Some indications on the image points
to Convolutions, Pooling and Fully Connected Layers. From (LECUN et al.,
1998)

.

A CNN groups the filters into hierarchical layers, learning complex and abstract
representations from the dataset (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), and
orders the filters as layers. State-of-the-art architectures have been used on recent works
for chart recognition (DAI et al., 2018; CHAGAS et al., 2018; JUNG et al., 2017; CHAGAS
et al., 2017), focusing on the ones that won the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) challenge (RUSSAKOVSKY et al., 2015). The main architectures,
which are present in most deep learning textbooks, software libraries and courses, are: VGG
(SIMONYAN; ZISSERMAN, 2015), ResNet (HE et al., 2016), MobileNet (SANDLER et
al., 2018) and Inception (SZEGEDY et al., 2017). Below follows a brief description of some
of them:

• VGG (SIMONYAN; ZISSERMAN, 2015) is the architecture that started the usage of
small filters on convolution layers with fewer parameters without losing the receptive
field, allowing training of deeper models, with 16 or 19 layers.

• ResNet (HE et al., 2016) architectures use residual blocks that join non-contiguous
layers by "jumping" the computation of some layers, skipping some connections while
maintaining the usual flow of the network.

• MobileNet (SANDLER et al., 2018) is an architecture that uses separable convolutions
and residual blocks to hasten training and inference time.

• Inception (SZEGEDY et al., 2017) architectures presented the Inception modules.
These modules lessen the vanishing gradient problem while allowing deeper net-
works and different receptive fields using various filter sizes for convolution inside
the modules, concatenating them at the end. Xception (CHOLLET, 2017b) is an
adaptation of this architecture that uses separable convolutions instead of traditional
convolutions.

The evaluation of these architectures usually follows traditional classification
accuracy metric, while using the inference results and comparing with the ground truth

30

labels. In more detail, top 1 accuracy uses the best class of the inference and compares
with the ground truth, and the top 5 accuracy uses the range of the best five class labels
to compare with the target label (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

2.1.5 Computer Vision Tasks

The organization of a computer vision system depends on the application. The
particular implementation of such a system also depends on its functionality, like if needs
learning or uses heuristics and rules. In the context of chart image recognition, there
has been a focus on the task of image classification, which consists of categorizing a
static input image based on a chart image dataset of chart images. Throughout the years,
computer vision methods followed the classical methods until the advent of deep learning
(SAVVA et al., 2011; DAI et al., 2018). In the context of Computer Vision tasks for charts,
chart recognition is the area that covers any chart related computer vision tasks, chart
classification focus on recovering the chart type and chart detection recovers the type of
chart alongside a bounding box referring to its size and location in the image. This task is
suited when a chart is embedded in a document image or report.

2.1.5.1 Object Detection

Object detection is one of the most challenging problems on Computer Vision,
comprehending both classification and localization of objects in an image (GIRSHICK et
al., 2015). In this task, the classification is extended with the regression of objects bounding
boxes on the image, as the identified objects must match their respectively ground-truth
position. A straightforward solution for this task is to slide windows of predefined sizes in
all areas of the image and classify each patch, using the window size and position as the
position and location bounding box. However, this is computationally expensive, making
it very hard its use on real-world applications. CNN-based solutions can tackle this issue,
extending grid-like data processing to object location.

Detection frameworks that are grounded in CNN methods have been presenting
outstanding results on various object detection domains (RUSSAKOVSKY et al., 2015;
VINYALS et al., 2016; EVERINGHAM et al., 2010), as they can learn localization
information along with object feature information. These frameworks have a neural
network backbone that works as a CNN feature extractor for classification. This backbone
can be any CNN model (e.g., Inception, ResNet, or VGG), and its computation can be
shared with the bounding box regression depending on the implementation. There are two
main types of these frameworks: two stage detectors and one stage detectors.

• Two stages detectors: In this case, the framework includes two stages for detection:
a proposal stage and a classification stage. First, the number of candidate proposals

31

is computed using some specific techniques, such as Selective Search (UIJLINGS et
al., 2013), FPN (LIN et al., 2017a), SPP (HE et al., 2015). Then, each candidate
proposal is classified in one of the foreground or background objects. Depending
on the implementation, the two stages can share some computation to speed up
the training process (REN et al., 2015). Examples of these frameworks are Faster
R-CNN (REN et al., 2015), SPPNet (HE et al., 2015), and Light Head R-CNN (LI
et al., 2017).

• One stage detectors: For one stage detectors, all the computation is done in a single
forward pass, covering class probabilities predictions and bounding box prediction.
In this setting, the region proposal is not necessary, as the framework reuses its
backbone’s results for location inference. So, this approach can excel the inference
time speed, but can not always offer precise results like two-stage detectors (LIU et
al., 2016) (LIN et al., 2017b). Examples of these methods are RetinaNet (LIN et al.,
2017b), and YOLO (REDMON; FARHADI, 2018).

One stage detectors are fast enough to use in some real-time scenarios, as it speeds
up computation without hurting accuracy, like RetinaNet (LIN et al., 2017b). As an
example, RetinaNet is a single unified network composed of a backbone network and
two task-specific subnetworks (LIN et al., 2017b). The backbone computes the feature
maps used for the subnets, and while one subnet performs classification, the other one
computes the bounding box regression. The state-of-art results of this simple method
occur due to the Focal Loss used in training. Focal Loss improves the precision of the
detector, preventing a strong influence of easy background detection gradient on training.
Closely, the Faster R-CNN framework (REN et al., 2015) is a two-stage detector that
uses Fast R-CNN (GIRSHICK, 2015) for region classification and the Region Proposal
Network (RPN) for region proposals. The RPN accepts an image as input and returns
the proposals, each with its objectness (probability of having an object). As the RPN is a
Fully Convolutional Network, it uses and shares the convolutional body of the selected
backbone with the classification step, improving training time.

The evaluation of object detection frameworks is usually done while using the
same metrics of the MS-COCO Recognition Challenge (VINYALS et al., 2016), which are
the Average Precision (AP) and the Average Recall (AR), both with different scales and
thresholds. The AP metric is a relation between precision and recall, and it is separately
computed for each class and then averaged. The metric calculation, which uses the true
positives and the false positives (for precision and recall), consider two criteria: the
predicted class; and the Intersection over Union (IoU) ratio, which measures the overlap
of the predicted bounding box and the ground truth bounding box in a certain threshold.
If a certain object has its class predicted correctly, and the bounding box predicted IoU is
over the threshold, then it is a true positive; otherwise, it is a false positive. The AP is also

32

known as mean Average Precision (mAP), and, in this work, they are equivalent. The
equations for AP and IoU are exposed on (2.1) and (2.2), respectively, with the variables:
Cr the total of classes, c a class, Pb the predicted bounding box, and Tb is the ground
truth bounding box.

AP = 1
Cr

∑
Cr

∑
c

precision(c)×∆recall(c) (2.1)

IoU = Area(Pb ∩ Tb)
Area(Pb ∪ Tb)

(2.2)

The COCO challenge defines different average precision notations for different IoU
thresholds, notably for an average of 10 values of IoU threshold values ranging from 0.5
to 0.95 with a step of 0.05 (notated as [0.5 : 0.05 : 0.95] from here onward); the 0.50
threshold; and, the 0.75 threshold. These metrics are notated, respectively, as AP (for
IoU = [0.5 : 0.05 : 0.95]), AP IoU=.5 and AP IoU=.75.

2.1.5.2 Perspective Correction

Perspective correction has been applied in many computer vision tasks, such as
automobile license plate recognition, non-Latin characters OCR, and document rectifica-
tion (JAGANNATHAN; JAWAHAR, 2005). These corrections are applied to perspective
distortions that can be found in real-world photography, as digital cameras follow a pinhole
camera model that generates it (LI et al., 2020 (b))(b). Real-world chart recognition is
subject to these perspective distortions and also of its corrections.

Chart detection models frameworks could benefit from a rectified document image
before performing object detection, as the image comes from a digital camera. Techniques
for perspective correction have been widely used in real-world situations in the scenario of
planar document rectification, where a distorted document is corrected for future processing,
mostly OCR. It is possible to use some approaches directly of image rectification over
generic photos and business documents to chart document rectification.

Image rectification is the projection of image planes onto a common plane. This
common plane must be parallel to the line between camera centers. Formally, given two
images, image rectification determines a transformation of each image plane, such that
pairs of conjugate epipolar lines become collinear and parallel to one of the image axes
(FUSIELLO; TRUCCO; VERRI, 2000). A way of achieving this is through homography
transformations.

Homography is a transformation that defines a relationship of two images on the
same plane, usually expressed through a matrix of known exponents. This transformation
can be used to rectify an image, given relationship directions of the distorted image with

33

its rectified version. One way of achieving this is discovering the vanishing points of an
image and using these points to estimate the homography between the images.

While usage of vanishing points for homography estimation have been present
in many methods of image rectification, the method for finding these vanishing points
can vary from simple methods to more robust ones. An example of a simple method is
matching epipolar lines directly (FUSIELLO; TRUCCO; VERRI, 2000) or finding parallel
lines (JAGANNATHAN; JAWAHAR, 2005). Additionally, robust method examples are
searching edgelets (CHAUDHURY; DIVERDI; IOFFE, 2014), using RANSAC on radon
transformed images (TAKEZAWA; HASEGAWA; TABBONE, 2017) or even training a
neural network (SHESHKUS et al., 2019).

Usually, the evaluation is done by comparing images or counting correctly recognized
words by OCR software (SHESHKUS et al., 2019; ARLAZAROV et al., 2019; ABED;
WENYIN; MARGNER, 2011). In cases where one has the homography matrices that
distorted the images, an evaluation of the errors can be obtained with an error metric,
like Mean Absolute Error (MAE), since it can be used to measure an estimator.

These tasks and concepts creates intuition and presents technical framework to work
with chart recognition and reconstruction. This section shows the process of automatizing
chart recognition, with the state-of-the-art methods and the next section presents the
concepts for chart reconstruction, focusing on Information Visualization.

2.2 Information Visualization Concepts
There are many ways to perform a dataset analysis. Statistical analysis can uncover

data patterns, trends, and estimates, but one disadvantage of this analysis is that very
different datasets can have the same features. Anscombe’s quartet properly illustrates this
problem (ANSCOMBE, 1973). In machine learning, an intelligent model learns from the
data, learning new data relationships. However, these intelligent models do not usually
have a simple way to reveal these relationships. Moreover, the process of data analysis is
fuzzy: people in different positions want different answers from the same dataset, data can
be interpreted differently depending on the situation, and attributes and presentation only
make sense from the stakeholder perspective. For example, in a weather event, a journalist
informs people, a weather center forecasts the effects of the event, a politician makes
decisions, and the population wants guidance. Objective criteria for abstract questions
guide the search for answers to various scenarios according to the user’s profile. This
process is called operationalization (FISHER; MEYER, 2017) and is a fundamental part
of data analysis. One way to support the operationalization is through visual analytics,
encoding datasets to visual elements. Using the human visual system, we have access to
some natural advantages used to facilitate this process.

34

Information visualization is the area that studies abstract data representations in
graphic representations and software interfaces that allow the user to manipulate visual data
items (PLAISANT, 2004) (CARD; MACKINLAY; SHNEIDERMAN, 1999) (MUNZNER,
2014). Studies and applications of InfoVis have gained attention from researchers, large
companies, media, and the general population. Millionaire investments have been made in
the last years in software, research, and InfoVis solutions2, showing the impact it can have
in the coming years. The processes of data science, visual data mining, business intelligence,
and data analysis use InfoVis as a critical step of decision making. This chapter will define
key concepts about the area and point out how they are relevant to the work presented in
this dissertation.

2.2.1 Reference Model

Using vision as a medium, we can help the operationalization of data analysis
by presenting them through charts, guiding the decision making process. The use of a
reference model facilitates the steps sharing between different situations, as well as the
comparison between charts.

Information visualization is an extraordinarily wide area of study, ranging from
algorithms for screen design to the design of visual languages to mass software evaluation
by users. A reference model should be abstract enough to cover several steps. Even if it
focuses on only one of them, it should also be able to show an overview.

The reference model proposed by Card, Shneiderman and Mackinlay (CARD;
MACKINLAY; SHNEIDERMAN, 1999) is a classic pipeline, covering several steps accord-
ing to the requirements already mentioned. Figure 8 presents this model, with its stages,
operations, and results.

ViewsRaw Data Data Table

Data
Transformations

Visual
Mappings

View
Transformations

Task

Visual Structures

Figure 8. Diagram of visualization reference model based on (CARD; MACKINLAY;
SHNEIDERMAN, 1999). The diagram presents the main steps for Information
Visualization and human interaction in the process.

The first step of the reference model is the acquisition of the raw data, which
are commonly in formats that are not suitable for direct use in visualization. The data
2 <https://solutionsreview.com/business-intelligence/top-big-data-and-analytics-funding-rounds-of-2020-so-far/

>, Date of Access: 06/25/2021

https://solutionsreview.com/business-intelligence/top-big-data-and-analytics-funding-rounds-of-2020-so-far/
https://solutionsreview.com/business-intelligence/top-big-data-and-analytics-funding-rounds-of-2020-so-far/

35

transformation operation converts the datasets to formats that can be displayed. This
operation comprises the cleaning of the data, conversion of types, aggregations, filters,
among several others. In the second step, with the data already transformed, the data
table follows the correct format to perform the encoding. The visual encoding operation
applies scales to adjust the data values for the on-screen view, followed by encoding these
values in the visual encoding channels.

Finally, in the view step, the drawing is done on screen through the view trans-
formation operation, using the data already mapped in the visual encoding channels.
This operation generates a view for each users’ change, such as zoom, pan, and selection
of an area. User interaction permeates all operations and steps, allowing control of the
entire reference model to create the views. When creating a chart, visual encoding is vital
for data communication. The graphical representations generated by the model are the
result of decisions focused mainly on Visual Encoding Channels which should take into
consideration the human vision characteristics.

2.2.2 Visual Encoding Channels

Visual representations allow the user to make discoveries and decisions; build
presentations about patterns (trends, groups, intervals, outliers), groups, and individual
items. The use of computational support to visualize and interact with abstract data
amplifies or reinforces human cognition, enabling the user to gain knowledge about the
data and its relationships (KARD; MACKINLAY; SCHEIDERMAN, 1999), facilitating
tasks of research, analysis, communication, comparison, and exploration to extend the
discovery of patterns, outliers, and trends (MUNZNER, 2014).

The human being receives more information through vision than through all the
other senses combined. Vision is a sense that goes beyond its sensory function, as it has a
genuine cognitive function (CAVANAGH, 2011). There is a close connection between what
a human being sees and what they think, and it is associated with the human mechanism
of pattern discovery, critical for cognitive function. Vision triggers visualization, an internal
process characterized by the formation of a mental image (WARE, 2019). The value of
visualization is the gain of understanding and comprehension (SPENCE, 2007) and is
independent of computers. It is a natural process for human beings.

In addition to the advantages already noticed, graphic displays also make parallel
processing possible. Vision allows us to have access to the whole, a general view, different
from the audio, which has a temporal-linear nature. Besides that, vision has preattentive
processing, allowing humans to take notice of visual features before the conscious perception
(SPENCE, 2014), bridging the gap between what is in the visual field and the cognition.
Visualizations also serve as an extension of the working memory, so it is not necessary
to remember everything. A display is easy to probe since it is in the field of vision, thus

36

increasing the cognitive power. Another significant advantage is the impact a well-built
visualization creates, generating memorability (BORKIN et al., 2015).

The concept of visualization refers to an internal process, but Ware (WARE,
2019) imposes an overload of the term: Visualization is a graphical representation of
data or concepts which function as a cognitive tool. It has as main objectives: discovery,
decision making, and knowledge. Computers generate visualizations and can adapt it to
human needs, better exploiting the flexible pattern detector, and the flexible decision-
making mechanism (WARE, 2019). The union of human perception and the computational
systems by Information Visualization tools increase communication and decision-making
capabilities, as illustrated by Figure 9. These concepts are used to efficiently encode visual
channels with dimensions of data to allow visual analytics.

Charts Human Vision Preattetion Decision
Cognition &
Knowledge

Figure 9. Human vision concepts.

The central point of the design of a visual encoding is the combination of two
aspects: visual marks and visual channels (MUNZNER, 2014) (SPENCE, 2014). A visual
mark is a geometric primitive, like a point, area, or rectangle. A visual channel is a graphic
aspect of a mark, like position or color.

The selection of visual channels depends of the type of data. Numerical data are
different from categorical data, which are different from ordinals. Each data type has a
set of operations to which they are subject, which the visual channels can encode. These
channels must aim at efficiency: speed in interpretation, convey more differences or achieve
fewer errors than others (MACKINLAY, 1986). Figure 10 contains the encoding sorted by
efficiency based on the types of data.

Figure 10. Ranking of Visual Encoding Channels by data type, from (MACKINLAY, 1986)

The selection of these visual channels is merged in a visual mark, creating a data

37

mapping that should be appropriate for each problem. Once the encoding is selected,
generating context for visualization is as critical as visual encoding. Indicating what the
visual marks are representing makes the graphic useful for the audience, presenting appro-
priate axis and scale values when needed. And a strong point in building a visualization
in digital media is the interaction, which allows changes in real-time and the use of a
dynamic process of data analysis.

2.2.3 Interaction

Computer systems have an advantage over visualizations created on static media:
the view is not final. A visualization software iteratively builds a visualization that updates
with the analysis progress using interaction, which is where user actions cause the views
to change (MUNZNER, 2014).

Interaction in digital form for humans needs some stages that are mapped by
Norman’s action cycle (NORMAN, 2013). It has two sections: execution and evaluation.
The execution starts with the intention, followed by the formulation of an action plan
(the steps for executing the plan), then the action sequence execution. Evaluation begins
at the feedback perception of what happened, what changed based on the action, the
interpretation of that change (if it makes sense on the context), finished by the evaluation
of the action.

According to (SHNEIDERMAN; PLAISANT, 2006), an information visualization
tool must provide the user with at least the following functionalities: data overview, filter,
zoom, details on-demand, action history, and extraction of a subset of the data. Other
researchers (MUNZNER, 2014) (SPENCE, 2007) point out other essential tasks, such
as configuring the visualization design, visual encoding, visual item classification, value
location, value recovery (for example, maximum and minimum), and correlations between
data items.

2.2.4 Grammar of Graphics

As much as we have a conceptual model defined, it is possible to create a set of
rules that allow the use of this model in an organized way. A set of rules allows you to
automate the steps of the reference model, reducing the time spent on repetitive tasks.
For the analyst perspective, it allows development of robust applications, as it behaves
following a structured guideline. This set of rules can be defined in a generic way through
grammar, that is a formal system of rules to generate legitimate sentences in a language
(CHOMSKY, 1956).

Applied to the context of charts, a grammar must generate legitimate charts using
graphic primitives, following a conceptual model. A grammar also supports a simplified

38

specification, with type and scale inference made automatically, allowing the user to focus
cognitive effort on high-level tasks for visualization. Other advantages include assembly
and display (WILKINSON, 2012). Assembly deals with the general assembly of the
visualization, the arrangement, and positioning of the visual elements on the screen. The
display step takes care of rendering, using common system functions to generalize common
steps such as zoom, color change, and on-screen view refresh.

Some grammar of graphics focus on very singular contexts, such as trees (LI et
al., 2020 (a))(a), units (PARK et al., 2017), and genomes (YIN; COOK; LAWRENCE,
2012), but those of general-purpose are useful in generic contexts. Wilkinson’s grammar
of graphics (WILKINSON, 2012) contains an extensive description of the set of rules for
generic data manipulation, scene and object creation, and rendering. Pioneer, this grammar
served as the basis for the creation of a famous R language package, ggplot2 (WICKHAM,
2016), which also serves as the inspiration for other applications and software.

The Vega grammar (SATYANARAYAN et al., 2015) is a grammar of graphics
that, in addition to the points already mentioned, supports another significant element:
interaction. This grammar has a declarative form and handles interactions as if it were
a primary data fountain, as well as data and scene elements. A subset of this grammar,
Vega-Lite (SATYANARAYAN et al., 2017) supports interaction too and is much simpler
to use for the creation of already known charts. Figure 11 shows two examples of the same
chart declared in ggplot2 and Vega-Lite API.

Figure 11. Examples of grammars to draw small multiples on ggplot2 and Vega-Lite.

A grammar definition of a chart in a non-interactive environment can be easily
converted to an interactive environment using a grammar that supports interaction. In
a chart recognition application, interaction augments chart features through interaction
without extra loading of cognitive ability.

Chart recognition and reconstruction employ Information Visualization concepts to
identify and build visual representations. Using vision as medium, it allows efficient visual

39

encodings, as well it helps identify static image components for recognition. Application of
grammars allows customization and addition of new features, like interaction.

2.3 Related Works
Recognition and reconstruction of static charts is not a new area of research, but it

is still a current theme of research (HE et al., 2017) (DAI et al., 2018), and more recent
work (CHAGAS et al., 2018) (DAVILA et al., 2020) propose chart image classification
and recognition models. In many works one can see several stages of development that
are similar to each other, and can be compared, such as the stage of classification of the
type of graph, which presents applications of traditional methods of recognition (HUANG;
TAN, 2007) until more modern methods (ZHOU et al., 2020).

2.3.1 Chart Recognition

Several works originated on the topic of data chart image classification and de-
tection in the last years. These tasks have gained community attention, mainly due to
its importance in the automatic chart analysis process. Following the traditional image
classification pipeline, Savva et al. (SAVVA et al., 2011) present Revision, a system that
classifies and extracts data to recreate charts. The dataset used has 2.500 images collected
from the internet, and it is composed of 10 classes—area charts, bar charts, curve plots,
maps, Pareto charts, pie charts, radar plots, scatter plots, tables, and Venn diagrams. A
set of low-level image features and text-level image features serve as the input for an SVM
classifier, with an average accuracy of 80%. Our work and many others follow this concept
of collecting datasets from the internet.

Jung et al. (JUNG et al., 2017) proposed the ChartSense, an interactive system for
chart analysis, including the chart classification and data extraction steps. They also used
CNNs for chart type classification, comparing three well-known models from the literature:
LeNet-1, AlexNet, and GoogLeNet. The models used the Revision dataset for training
and testing. For final classification, more images were collected and added to the Revision
dataset, achieving the best accuracy of 91.3% while using GoogLeNet.

Chagas et al. (CHAGAS et al., 2018) proposed an evaluation of more robust CNN
models for chart image classification. Unlike the previously cited works, the proposed
methodology has two main tasks: training an image classification model with synthetically
generated images only, comparing the CNN models with conventional classifiers, such as
decision trees and support vector machines. The authors approach aimed to evaluate the
behaviour of models when training with "clean" generated images and testing on noisy
internet images. The authors used a 10-class dataset (arc diagram, area chart, bar chart,
line chart, parallel coordinate, pie chart, reorderable Matrix, scatter plot, sunburst, and

40

treemaps) with 12,059 images for training (approximately 1.200 instances for class) and
2683 images from the test. This work evaluated three state-of-art CNN models: VGG-19,
Inception-V3, and Resnet-50. The best result was the accuracy of 77.76% while using
Resnet-50.

The work of Dai et al. (DAI et al., 2018) uses few classes (Bar, Pie, Line Scatter,
and Radar) than ChartSense, Revision, and the work of Chagas et al., but with accuracy
around 99% for all CNNs evaluated. The dataset is also from the internet, it has 11,174
images with semi-balanced instances for classes, and the work follows the classification with
data extraction. In this context, CNNs showed state-of-the-art results throughout the years
for the problem of chart image classification, and this work extends the classes of charts
used (10 for 13), followed by a straightforward parameter selection for the state-of-the-art
architectures.

Although some works have addressed the chart analysis problem, most of them
focused on the chart classification and data extraction tasks, while only a few approached
the chart detection issue. Kavasidis et al. (KAVASIDIS et al., 2019) introduced a method for
automatic multi-class chart detection in document images using a deep-learning approach.
Their approach used a trained CNN to detect salient regions of the following object classes:
bar charts, line charts, pie charts, and tables. Furthermore, the authors implement a custom
loss function based on the saliency maps, and a fully-connected Conditional Random Field
(CRF) was applied at the end to improve the final predictions. The proposed model used
the standard ICDAR 2013 dataset (tables only) (GÖBEL et al., 2013) for evaluation, and
on an extended version with new annotations of other chart types. Their best results
achieved an average F1-measure of 93.35% and 97.8% on the extended and standard
datasets, respectively.

Following a similar path to chart detection, some works have been tackling the
table recognition task on document images. Gatos et al. (GATOS et al., 2005) proposed a
technique for table detection in document images, including horizontal and vertical line
detection. Their approach is only based on image preprocessing and line detection, not
requiring any training or heuristics. Schreiber et al. (SCHREIBER et al., 2017) developed
the DeepDeSRT, a system for detecting and understanding tables in document images.
Their work used the Faster R-CNN architecture, which is a state-of-art CNN model for
object detection. The proposed model uses the ICDAR 2013 table competition dataset
(GÖBEL et al., 2013) for evaluation as well as a dataset containing documents from a
major European aviation company.

The primary goal of chart detection is finding the localization of the chart image on
the input image, which is usually a document page. Huang and Tan (HUANG; TAN, 2007)
proposed a method for locating charts from scanned document pages. The strategy of their
work is finding figure blocks from an input image and then to classify this figure as a chart

41

or not. The figure localization used an analysis of logical layout and bounding box, and
the image classification employs statistical features from charts and non-chart elements.
Even though their method does not return a specific chart type, the proposed approach
achieved promising results, obtaining 90.5% of accuracy on figure location (but not used
the AP metric as used for object detection problems). For figure classification, the results
were 91.7% and 94.9% of precision for chart and non-chart classification, respectively.
Their work focused on finding charts (not specific types) and does not fall on the direct
definition of multi-class object detection used in this work.

Multi-class chart detection in document images is still an active field of research
and one major challenge in this field is to define relevant features for classifying different
chart classes, which may vary depending on specialist skills or chart types. This way,
deep-learning methods have the advantage of not relying on hand-crafted features or
domain-based approaches (LECUN; BENGIO; HINTON, 2015).

Davila’s survey (DAVILA et al., 2020) presents works on chart recognition and
data extraction, describing a pipeline with several works. This process covers several steps
that the model proposed in this dissertation also covers: automated extraction of charts
from documents, automatic image classifiers to collect chart images at scale, automated
extraction of data from the chart image.

The work of Zhou (ZHOU et al., 2020) proposes an end to end recognition neural
network to both detection of visual marks and contextual data extraction of bar charts.
The authors’ dataset is of 30,300 synthetic bar charts and 180 real world charts, achieving
78% accuracy on the task of detection and extraction. The method is based on two main
components, the first component uses object detection model for textual information
extraction and the second component uses an encoder-decoder framework with attention
mechanism to extract numeric information.

These works cover specific steps of chart recognition, while allied with some other
stages from the central process of chart recognition, extraction, and reconstruction. A
dataset of document images is used in our work to build a chart detection dataset with chart
overlay. Recent papers have used deep-learning-based architectures for chart classification;
in this way, this dissertation uses more classes (13) and more images (approx. 21.000)
as well as chart detection and perspective correction. Chart recognition is influenced on
many aspects of these works, like the dataset collection, the class division, and the chart
document overlay approach. Despite that, different from the previous literature, regarding
chart recognition, this work covers all of the steps from the chart recognition, filling a
gap of a complete process to compute static chart image into information. Besides, it also
introduces a real-world example of chart recognition of charts on a book.

42

2.3.2 Chart Reconstruction

The reconstruction of a chart depends on the dataset and its scenario. In this work,
the chart scenario is the chart display to the user, e. g., the real word if printed, the web
page on the website, or the pages of a PDF file. Some papers found in literature work on
this directly, from the chart’s scenario, with data manipulation and the result in the users’
perspective itself. Further works have examined more aesthetic issues, without necessarily
recreating the data table. In a real environment, where you have to do the recognition and
extraction first, some work on the same display, using augmented reality, and others do it
by saving the data and using an alternative presentation later.

It is also important to highlight some works that are not directly linked to the
chart recognition and reconstruction scenario but can be merged straight to the end of the
model, expanding the possibilities of customization. The use of a grammar is also essential
in this context since if we can define a chart according to a grammar, we can expand its
usage from a set of rules already defined.

The works of Kong and Agrawala (KONG; AGRAWALA, 2012) (KONG, 2013)
present studies on overlaps in graphic brands, changing visual variables, or creating new
brands. These changes also include annotations and adding redundancy automatically.
The authors’ system loads a static chart and extracts the information needed to make the
overlaps, either with user interaction or automatically.

Still related to underlying chart features, the work of Poco and Heer (POCO;
HEER, 2017) describes a text analysis pipeline for static charts. It detects and classifies
text elements in a chart image, their role (e.g., chart title, x-axis label, y-axis title, etc.),
and extracts the text content using optical character recognition. A CNN classifies the
visual mark, and the method uses the identified elements along the type of visual mark to
infer the encoding specification of the static chart.

Siegel’s technical report (SIEGEL, 2015) describes a use case for the recognition
and extraction of line chart data in scientific articles. It uses computer vision and machine
learning techniques to parser the recognized graphics in a computer-readable representation.
The paper by Nair et al.’ (NAIR et al., 2015) follows the same scenario, using other image
processing methods. Both works try to reconstruct the line in the charts after they apply
their techniques, but don’t generate any interaction, and this is not done directly on the
document. Besides, it is user supported.

The Al-Zaidy method (AL-ZAIDY; CHOUDHURY; GILES, 2016) creates a de-
scription of bar charts from a static chart. This description uses the chart elements to
ensure factual accuracy while creating a relevant summary. In this use case, the recognized
characteristics in the chart generate a graph. The graph generates a protoform, and then
uses it to generate a summary. The generated summary is quite bland, and it generates in

43

a separate tool, not in the context of the document reading.

The iVolVER system (MÉNDEZ; NACENTA; VANDENHESTE, 2016) allows
users to create visualization without explicit programming. It has a visual mark data
extraction function and provides a series of creative and flexible manipulation of the data
extraction step to guide the chart reconstruction. It is heavily user dependent, as it a is a
visualization tool, even if in a creative way.

Savva et al. present ReVision (SAVVA et al., 2011), a system that processes static
charts to automatically redraw them in order to improve user perception. Revision’s
pipeline has chart classification and data extraction as well but with the additional step
of redesign the chart at the end. ReVision uses a list of guidelines to provide alternate
designs and it also supports stylistic redesign: users can change mark types, colors, or
fonts to adhere to a specific visual aesthetic or brand.

The ShotVis prototype (ZHU et al., 2015) takes images of text captured from
mobile devices and extracts data for visualization. It uses a range of mobile sensors and
OCR techniques to a chart recognition process with perspective correction and data
extraction. With the data table in hand, the prototype allows interaction to encode data
in a chart. It is a document analysis application, not a chart recognition application per se.
It is worth to mention it, even not recognizing charts, as it uses the input as a document
analysis problem, applying image correction by aligning the tables before processing.

The interaction model of Satyanarayan et al. (SATYANARAYAN; WONGSUPHA-
SAWAT; HEER, 2014) models a declarative interaction design for data visualizations.
This model takes inspiration from reactive programming, as it models low-level events as
composable data streams from which it forms higher-level semantic signals. These signals
encode the output display with the data domain, so the production rules use these queries
to manipulate the visual encoding.

The paper by Kim and Heer describes Gemini (KIM; HEER, 2021), a declarative
grammar and recommendation system for animated transitions between single-view statis-
tical graphics. Gemini specifications define transition “steps” like keyframes on traditional
animation pipelines, in terms of high-level visual components (marks, axes, legends). This
high-level declarative format of the Gemini grammar provides a representation that can
generate and explore animated transition designs.

Following the recommendations based on a grammar, CompassQL (WONGSUPHA-
SAWAT et al., 2016) is a framework for facilitating the development of visualization
recommender systems in the form of a specification language for querying over the space
of visualizations. It uses the Vega-Lite as base grammar, extending it with specifications,
grouping definition, ranking, and configurations.

It is critical that the reconstruction of a chart should be in a high-level description,

44

Table 1. Related Works relationships with model’s modules. The high Level Inference
column highlights methods used of each work for this step. The Data Extraction
column features how chart data is inferred. The Reconstruction column presents
the method used to change and present the chart. The text on this section
describes the cell values.

Works High Level
Inference

Data
Extraction Reconstruction

(HUANG; TAN, 2007) Detection and
Features Vector + J48 Grammar + Visual

(SAVVA et al., 2011) Bag of Words + SVM Semantic
(KONG; AGRAWALA, 2012) (SAVVA et al., 2011) Only Visual Visual
(KARTHIKEYANI; NAGARAJAN, 2012) GLCM + SVM
(KONG, 2013) (SAVVA et al., 2011) Semantic Grammar + Visual
(NAIR et al., 2015) Semantic Visual

(SIEGEL, 2015) Detection with
(SAVVA et al., 2011) Semantic Visual

(SVENDSEN, 2015) Detection and Heuristics Semantic Grammar + Visual
(AL-ZAIDY; CHOUDHURY; GILES, 2016) Semantic Grammar
(TANG et al., 2016) CNN

(AL-ZAIDY; GILES, 2017) Features Vector
+ C4.5 e RF Semantic Grammar

(JUNG et al., 2017) CNN Assisted
(POCO; HEER, 2017) CNN Semantic Grammar

(HE et al., 2017)
Detection with
Natural PDF

markers
Semantic

(DAI et al., 2018) CNN Semantic Grammar
(CHAGAS et al., 2018) CNN

it can not be bound by the low level data and encode specification. This should be made
in a form of a grammar, that generates valid charts by simple building blocks. A grammar
also offers easy exchange of mark types and visual encoding channels, and the grammar’s
environment becomes a natural extension of the reconstructed chart.

2.3.3 Literature Discussion

Individual works have some common features, and the table 1 shows some works
that influence the the construction of the proposed model. It does not include surveys, like
the work of Davila et al (DAVILA et al., 2020), that has a comprehensive survey about
many aspects of the chart recognition problem.

The high level inference is the step with the largest amount of work found. Two
approaches are found for chart image classification: feature vector construction for a tradi-
tional method of classification and CNNs. Of the works with feature vector construction,
(SAVVA et al., 2011) was the most influential, both in use and in terms of comparing
results, which proposes classification methods, data extraction from some types of charts
(bars and pie) and its reconstruction after data extraction. The use of CNNs for object
recognition has been shown to be a technique with good results in chart recognition (TANG
et al., 2016), (JUNG et al., 2017), (CHAGAS et al., 2017) and (POCO; HEER, 2017)

45

instead of classical methods. A PDF document format has markers of the figures and the
detection is performed to extract only the images of charts in a stage of classification or
pre-processing.

The data extraction step uses methods that vary according to the chart. And even
for the same type of chart, several methods can be used to perform the separation of
the visual features for the visual encoding of the data, such as floodfill to find connected
elements (SAVVA et al., 2011), CNNs for classification and localization of the features of
the chart (HE et al., 2017). The data extraction that is performed in order to retrieve the
data is classified as semantics, with calculation of the values based on the scales retrieved
from the context of the chart. The visual extraction is performed without relation with
the data, only with the visual structures, and the assisted requires help of the application
user to mark areas with characteristics and visual structures. It is still possible to extract
only the visual characteristics without necessarily needing the data to use in future steps
in a process (POCO; HEER, 2017).

Most customization and reconstruction works perform a customization in terms of
defining the chart in a grammar. It can be a pre-defined visualization grammar (POCO;
HEER, 2017), a formal grammar (KONG, 2013), and even a protoform (AL-ZAIDY;
CHOUDHURY; GILES, 2016). The reconstruction techniques are related to InfoVis
techniques, since they involve control and configuration of the recognized chart, so that
in possession of a grammar it is possible to perform the tasks of visualization of the
information. Another approach to customization is strictly visual, with direct modification
of the chart image without requiring the original data, only the visual structures. This
approach is used in the works of (NAIR et al., 2015) and (SIEGEL, 2015) to reconstruct
and custom line charts. The works of Kong (KONG; AGRAWALA, 2012) and (KONG,
2013) overlay visual structures on graphs to aid in reading and understanding them, and
define taxonomies for this. The work of (SAVVA et al., 2011) applies the customization to
realize reconstruction of the color scheme of the recognized charts.

The analysis of these works shown that there is a lack of a general automatic model
of chart recognition and reconstruction. These works do not describe a clear abstract
mental process to generalization of these processes. Without proper abstraction, it is hard
to generalize some contributions. It is also important to highlight that most of them lack a
document analysis perspective, even simple ones like perspective correction or brightness
adjustment (it was not even featured in the table 1 due this reason). Some of them feature
a simple language or set of rules to define the extracted chart in a standard way, but fail
to organize it in a reusable way.

The proposed model of this work covers automated support for custom recognition,
and reconstruction of charts in images. The model can automatically perform the process
steps, such as reverse engineering, turning a static chart back into its data table for later

46

reconstruction, while allowing the user to make modifications in case of uncertainties.

The model by itself presents some advances on the literature common process
of chart recognition. A fully automated process for recognition and reconstruction of
static charts, that allows reuse of the same modules in different scenarios. The model also
supports automated choice of solutions to extract data from graphic images according
to the nature or complexity of the image, mainly based on the input image type, e. g.,
the input of the model comes from the real world, the model uses document analysis
techniques to clean and adjust the image. These image processing steps are rather new
compared to the recent literature works. For reconstruction, the rich environment of web
through the Vega-Lite grammar allows using the most recent visualization techniques.

The three selected use cases reflect the use of the model in literature scenarios
and the full usage of all stages of the model separately. In the first use case, a real-time
application of this model shows the capabilities and possible exchanges between different
steps in real world scenarios. The second use case uses the initial stages of the model
reconstructing charts in text and audio form, an application already seen in other works
but not in a recognition process. It features a non conventional display integration for
a visualization application. The last use case features an Mobile Augmented Reality
application, that features real-world and real-time interaction through a mobile device.
The vocalization and Mobile AR use cases evaluation are done by information visualization
experts.

The literature works usually cover the recognition and reconstruction segments.
This model encompasses them in four modules: Image Correction, High-Level Inference,
Data Extraction and Reconstruction. These modules and the relationships of each one are
described in the next section.

47

3 Model and Discussion

The main contribution of this dissertation is a model of recognition and reconstruc-
tion of charts, which contemplates abstractly the steps that are necessary to transform a
static chart into a dynamic version. The model considers these steps, covering the two
central bodies of literature work: recognition, and reconstruction. The modules of the
model are self-sufficient in their tasks, but are connected, generating a process from an
input image to display. The modules are not bounded to the techniques; these techniques
could be seamlessly exchanged for others, as long the input and outputs are the same. For
example, a chart classification method based on Bag of words and SVM could be easily
replaced by a CNN, as the input is an image and the output is the chart type.

3.1 Model Description
The process of chart recognition can be used in many scenarios, such as indexing,

storage of data, and real time overlay of information. While many works (DAI et al.,
2018; CHAGAS et al., 2018; JUNG et al., 2017) focused on chart classification, only
a few addressed the chart detection problem on documents (KAVASIDIS et al., 2019;
SVENDSEN, 2015). The chart detection in documents can use general approaches of other
computer vision tasks for its context, and it can be amplified enough to use techniques
of the document analysis research field, mainly applying the techniques of real-world
photography, like perspective correction and brightness correction.

In the same way, techniques of chart reconstruction are common place in various
software packages and development libraries. Using a grammar of graphics, functions
can be easily added to charts, as long the translation for it is properly done. Together,
recognition and reconstruction can leverage the transformation of a static chart into a
dynamic one. Applications of this model can be but are not limited to improving large
scale usage of data charts on web pages and PDF files, both by adding visual information
and in its redesign; enabling self-explanation of charts in text or audio; assisting in the
more accurate search of web chart images as a function of more precise metadata extracted
from the images; creating new types of charts from the original chart, including merging
several charts.

The literature does not present works with an end to end process. An abstract
model is more suitable than a fixed process, as it can cover several use cases. Thus, a chart
recognition model has to be flexible, but without losing the power of representation. The
main diagram of the model is in Figure 12, which presents the flow of the static chart and
its transformations through the model, with its relationships with other modules and its

48

Transformation

Classification

Detection

Grammar

Render

Data

Scales

ABC

Text

Input

Image Correction High Level Inference

Data Extraction Reconstruction

Display

Figure 12. Diagram of chart recognition and reconstruction model.

inner workings.

The model has four modules, which make up the two major sections of the literature
on recognition and reconstruction of charts. The first module deals with Image Processing,
the second with Computer Vision methods to infer types so that the third can extract
information, ending in the last module reconstructing the graph.

The Chart Recognition and Reconstruction Model (CRRM) proposed in this
dissertation includes three main contributions:

• A fully automated process for recognition and reconstruction of static charts

• Automated choice of solutions to extract data from graphic images according to the
nature or complexity of the image

• Evaluate new and more robust technologies for the process of recognizing and
reconstructing chart image data

These contributions are confirmed by the high number of papers that focus only
on one of the stages of the process (ZHU et al., 2015) (CHAGAS et al., 2018) (DAVILA

49

et al., 2020) or on a subset of steps (AL-ZAIDY; CHOUDHURY; GILES, 2016) (KONG;
AGRAWALA, 2012). The works that cover the whole process, in general, ask the human
to assist in some steps. For example, identifying the region of the image where the chart is
or specific features of the chart (JUNG et al., 2017) (SAVVA et al., 2011).

The proposed model of this dissertation assumes that every step is automatic, but
leaves an opening to semi-automatize steps if necessary. It is also worth noting that every
module is detachable, not every module needs to be executed or even exist in a given
application. This way, the same notation, and diagrams can be used to describe other
works. Figure 13 shows four works ((SAVVA et al., 2011)) (JUNG et al., 2017) (DAI et
al., 2018) (HE et al., 2017)) using the notation and diagrams of the model. It fits in the
context of these works, and can be used to compare and link them. Next, each module of
the model is presented in more detail.

50

Metadata

Classification

Grammar

Render

Data

Scales

ABC

Text

Input High Level Inference

Data Extraction Reconstruction

Display

ReVision: Automated Classification, Analysis and Redesign of Chart Images

ChartSense: Interactive Data Extraction from Chart Images

Chart decoder: Generating textual and numeric information from chart images automatically

Bar charts detection and analysis in biomedical literature of PubMed Central

Classification

Detection

High Level Inference

Grammar

Data

Scales

ABC

Text

Input

Data Extraction Reconstruction

Metadata

Classification Grammar

Data

Scales

ABC

Text

Input High Level Inference

Data Extraction Reconstruction

Classification

Grammar

Render

Data

Scales

ABC

Text

Input High Level Inference

Data Extraction Reconstruction

Display

Figure 13. A sample of related works represented using the model notation.

3.1.1 Image Correction

The model has an image correction module that receives a static graphic image and
applies transformations for use in the other stages of the process. Image format conversion
techniques can be present at this stage. Some possible and foreseen input types in this
step can be image files with standard formats (png, jpeg), URLs, documents such as PDF,
which is the default in information sharing, and a camera feed for application of the model
in real-time.

The transformations used in this step are from image processing, such as noise

51

removal, filters, and contrast adjustment. It is worth highlighting the techniques of
document analysis for correcting images in non-digital environments, such as perspective
correction and brightness correction. Adding the technical framework of a method-rich
area is a crucial advance for chart recognition.

Figure 14 shows the image flow diagram within the module. An interface connects
an abstract input type with one or more transformations. All this information should be
carried forward to the next modules for proper processing.

Transformation

Input

Image Correction

High Level
Inference

Figure 14. Image Correction Module Diagram. It features the main image transformations
as a way to ease further processing in the model.

The techniques of these modules are inherited from the document analysis field.
Charts and diagrams are an important component of documents, and the techniques used
to process documents can be easily ported for the chart recognition field. It is safe to
assume these techniques are even necessary on the context of real-world chart recognition.
The use cases of the section 4 and the technical result of section 3.2.3.3 presents the
techniques chosen to evaluate this module.

3.1.2 High Level Inference

This module makes the inference of the type and location of the chart on the image.
As it is a cognitive task, if properly trained, an intelligent computer vision model can solve
it. In case the image does not have only the chart (like a document page), the location of
the chart in the image is vital for the next steps, as the methods of the next stages expect
information about the location and type of chart on the image.

The diversity of InfoVis techniques makes the process of recognizing and extracting
data from static charts challenging. In general, most visualization taxonomies classify
visualizations by type of data they use, such as the number of independent variables,

52

the number of dependent variables, hierarchy relationships, type of each data attribute:
scale, vector (1D, 2D, 3D), tensor, discrete, continuous, nominal. Besides the differences
in data types, there is a myriad of different styles, groupings, organization, layouts. These
combinations build a complex search space, impossible to define within a closed set of
rules. This way, an intelligent model alongside using a dataset with variation are the core
of this module.

The data extraction module needs to know what type of chart is in an image since
each type of chart implies different methods to do the extraction. In terms of Computer
Vision tasks, two of them can be instantiated for this problem: classification and detection.
Figure 15 shows the flow chart of this module.

Classification

Detection

Image
Correction

High Level Inference

Data
Extraction

Figure 15. High Level Inference Model Diagram. It presents the application of intelligent
model of Computer Vision.

53

3.1.3 Data Extraction

The data extraction module takes care of the image and type of chart and applies the
corresponding method for mining the data. Each type of chart has its visual features, and
the extraction step in the process must be able to identify and extract these characteristics
from the static chart. In order to extract each type of chart distinct extraction methods
should be used; however, some methods, such as axis recognition, scale configurations and
OCR are possible to use to recognition. Image processing techniques and machine learning
can be applied at this stage to highlight the visual characteristics and extract the data.
The main elements extracted are:

• Visual Marks: The relationship between the original data and its visual representation
(bars on the bar chart, lines on the line chart, and slices on the pie chart).

• Context: The reference of the values with the visual encoding, such as the axes.

• Domain characteristics: Context on the data, such as the title and the categories.

Figure 16 presents the module diagram, highlighting the three points of the list.

Data

Scales

ABC

Text

High Level
Inference

Data Extraction

Reconstruction

Figure 16. Data Extraction Module Diagram. This diagram features the target chart
components for extraction.

3.1.4 Reconstruction

The last module, reconstruction, is responsible for the transformation of the chart
image, either into a new chart or a change in the chart on the user’s context. This step is
directly related to the way the model will be displaying the data since the reconstruction
has to be done based on the display mode.

54

Grammar

Render

Data
Extraction

Reconstruction

Display

Figure 17. Reconstruction Module Diagram. The final module of the model renders the
representation for the display based on the grammar.

The data is standardized in a format that should be simple to transmit over the
network, between applications, save to disk and keep and manipulate in memory (JSON,
XML). In this step, the model merges the extracted visual marks and the context. Figure
17 shows the reconstruction flow diagram.

It is worth noting another addition to the literature processes, which consists of
actively formatting the recognized data in the form of a visualization grammar. Even
Vega-Lite, a high-level grammar, has enough functions to encode the common types of
charts (SATYANARAYAN et al., 2017). As a grammar, it is an excellent candidate,
as it has extensions for interaction, layers, and multiple views without requiring extra
development effort. When we refer to the grammar of graphics of this module, we are
referring to Vega-Lite.

This module must take into account the performance of the device used so that the
rendering and interactions with the charts are not impaired. Some examples of environments
for displaying data charts:

• Desktop: Graphs and overlays arranged in 2 dimensions, with common means of
interaction, such as sliders and buttons based on access to mouse and keyboard.

• Virtual Reality: 3D graphics, with immersion levels defined by the computational
power of the environment. The interaction depends on the available equipment.

• Augmented Reality: 3D information overlaid in the real scene, with interaction
appropriate to the environment and depending on the equipment.

• Web: Charts and superimposition arranged in two dimensions rendered in Web
pages, with common means of interaction, such as sliders and buttons based on

55

access to mouse and keyboard.

• Mobile Device: Graphics and overlay arranged in two or three dimensions rendered
in specific applications for mobile devices, with common means of interaction, such
as sliders and buttons with access to gesture or voice commands.

While in general, the original image may serve as a reference for rendering the
overlay, the data can serve another environment for the overlay. Moreover, the model can
also export the data to a display form that does not require a relationship with the image,
such as in a AR application, where a server could process a chart image and the overlay is
done in the display that captured it.

3.2 Methods and Evaluation
Some of the choices for the methods used in this work are based on the challenges

that emerged from the following tasks: ImageNet for classification (RUSSAKOVSKY
et al., 2015), MS-COCO for detection (VINYALS et al., 2016), and ICDAR dewarping
for perspective correction (GÖBEL et al., 2013). These are hard challenges that proved
empirically the efficacy of these models, placing them as state of the art methods for its
respective tasks.

For the extraction algorithm, this work adapts some diretives from (SAVVA et al.,
2011) and (AL-ZAIDY; CHOUDHURY; GILES, 2016) and evaluates over synthetic images,
as explained below. The methods that are used to train the models, hyperparameter
selection, dataset collection, and evaluation are described in the next sections. A visual
summary of the methods is shown in Figure 18. The classification, detection and perspective
correction tasks use and modify the same Internet dataset , but the detection task uses a
synthetic one composed of only of bar charts. This also covers the usage of the use cases
on the next section (Use Cases - 4), where the usage is limited to bar charts where used in
all of three use cases, as proof of concept.

Internet Chart
Images Dataset

Synthetic Bar Chart
Images Dataset

Document Overlay

DetectionClassification Perspective Correction

Image Distortion

Extraction
ABC

Figure 18. Visual summary of the methods and their relationships.

56

3.2.1 Datasets

A chart dataset must cover significant differences of each chart type. Data aggrega-
tion, background, annotations, and visual marks placement are visual components that
vary from chart to chart, even within the same class. Some authors (SAVVA et al., 2011;
DAI et al., 2018; JUNG et al., 2017) (POCO; HEER, 2017; TANG et al., 2016) address
this variability on the collection step, searching the images from the internet, where chart
designers publish their work in various styles. While some datasets are fit for training
and evaluation of these techniques, as the ReVision dataset (SAVVA et al., 2011) or the
MASSVIS dataset (BYLINSKII; BORKIN, 2015), we choose to collect data from the
internet to use a large number of images to train the methods.

The dataset collection step of the classification, detection and perspective correction
follows the approach of (DAI et al., 2018) downloading the images from six web indexers:
AOL, Baidu, Bing, Google, Sogou and Yahoo. The chart types used are: arc, area, bar, force-
directed graph, line, parallel coordinates, pie, reorderable matrix, scatterplot, scatterplot
matrix, sunburst, treemap and wordcloud with the following keywords (and its automatic
Chinese translations): arc chart, area chart, bar chart, bars chart, donut chart, force-
directed graph, line chart, parallel coordinates, pie chart, reorderable matrix, scatterplot,
scatterplot matrix, sunburst chart, treemap, word cloud, and wordcloud. More than 150, 000
images were collected using these queries, and we kept only the visualizations that fall on
the following requirements: two-dimensional (2D) charts, not hand-drawn, and without
repetitions. The total number of images downloaded that meet the criteria is 21, 099, and
the summary of the dataset is presented in table 2, with its respective train/test split. The
split process is automatic, it runs a script over the image files, and the training split ranges
from 85% to 90% (originally set to 90%, but randomness create range differences on small
samples), depending on the number of instances of the class. Classification, detection, and
perspective correction experiments use the 13 chart types.

57

Table 2. Internet downloaded dataset summary. This dataset is used throughout all steps,
with modifications pertinent to each one of them. Train and test split by chart
type and also used depending on the task.

Chart Types Instances
Train Test Train + Test

Arc 129 26 155
Area 494 87 581
Bar 3883 761 4644
Force Directed Graph 1137 228 1365
Line 2618 529 3147
Parallel Coordinates 702 168 870
Pie 2415 481 2896
Reorderable Matrix 242 42 284
Scatterplot 1797 228 2025
Scatterplot Matrix 837 158 995
Sunburst 540 65 605
Treemap 626 73 699
Wordcloud 2557 276 2833
Total 17,977 3122 21,099

The selected types cover most usages of chart types, starting with the bar chart,
line chart, scatterplot, pie chart, and word cloud, as they are massively popular (BATTLE
et al., 2018). Sunburst and treemap are hierarchical visualizations, reorderable matrix,
and scatterplot matrix are a multi-facet visualization type. Area and parallel coordinates
are multi-dimension visualizations, and arc and force-directed graphs are graph-based
visualizations. The selection of these types covers most users’ needs, following Munzner
(MUNZNER, 2014) levels of design. Some classes have few images, as they are not as
popular.

The classification experiment uses the downloaded images, ratio scaled and padded
to (100 × 100) pixels, randomly received augmentation on shear, and zoom by a factor of
0.2 and a 0.5 chance of horizontal flipping, and the pixel values are normalized to be in the
−1 and 1 range, as recommended by many Deep Learning practioners (KARPATHY, 2017)
(CHOLLET, 2017a). For the detection dataset, the experiment uses context insertion
to create a scenario for chart detection close to a real document page. In this step, the
generated charts overlaid real document images. Some works used similar approaches,
showing results that were at par with the traditional methods (BARTH et al., 2019;
SHATNAWI; ABDALLAH, 2015; EGGERT; WINSCHEL; LIENHART, 2015).

The charts are uniformly placed entirely in the document image. In some documents,
scale transformation is used, by 1/2 or 1/4 of the size of charts. The size of the document
images is scaled to 1068 × 800, where the charts have dimensions that vary from 32

58

Figure 19. Three datasets samples for the chart tasks (from left to right): chart classification,
with added chart images; chart detection, with chart overlaying document
images; and, perspective correction, with distorted images.

× 32 to 267 × 200. The document images used in this work are from the Document
Visual Question Answering challenge in the context of CVPR 2020 Workshop on Text and
Documents in the Deep Learning Era 1, which features document images for high-level
tasks.

The perspective correction experiment uses a distorted image test dataset of the
detection experiment. A simple method of perturbation generates homography matrices,
then applies them to the image to generate the distortions. A factor of 2 moves each corner
of the document image, and these new positions generate a homography matrix. Figure 19
shows samples of the three datasets.

The data extraction method does not need a training dataset, as it does not use any
intelligent model, but needs one for evaluation. Akiyama’s tool (AKIYAMA et al., 2018)
generated 2000 bar chart images along with its data, the latter required for evaluation. The
lack of a benchmark dataset within our premises (presented on table 3 below) motivated
the use of a synthetic dataset. Besides, the creation of synthetic chart images allows the
control of characteristics such as the presence of axes in the charts, the colors used, and
the grid lines used and the access to the ground truth.

Table 3 presents the simplified premises assumed in this work on the bar chart in
comparison with the assumptions of (SAVVA et al., 2011) and (AL-ZAIDY; CHOUDHURY;
GILES, 2016):
1 <https://cvpr2020text.wordpress.com/>, Date of Access: 02/12/2021

https://cvpr2020text.wordpress.com/

59

Table 3. Comparison of premises about bar chart features for data extraction.

PREMISE (SAVVA et al., 2011) (AL-ZAIDY; CHOUDHURY; GILES, 2016) Proposed
Bar charts must be bidimensional without
tridimensional effects X X X

Bar charts must encode two values (one nominal and
one quantitative). X X X

Bar charts must not contain stacked bars. X X X
The background of the chart and the guide lines
should be of a solid color, with low contrast between
them and high contrast with the bar colors.

X

Each bar must be without contrasts or gradients. X X
The Y axis must follow a linear scale
(not logarithmic, etc.). X X X

Bar charts should always be vertical. X X
Charts should not contain subtitles, inside or outside. X
The axes of the charts must be in the lower left corner. X X

The charts that make up the database are represented in RGB color space, have
a numbered and named Y-axis that can be on the right or left of the chart with its
description always adjacent to the axis line. The bars category names have their position
below the X-axis line. The chart must have a centralized title that can be at the top or
bottom. The bars should not be stacked and keep the representation in 2D. A sample of
the extraction dataset are in Figure 20:

Figure 20. Dataset samples for data extraction.

3.2.2 Training and Techniques Regime

The most common training approach for deep-learning applications uses a pre-
trained model and then uses it on a new domain dataset, to generate a new model based
on the first one. This strategy also applies to many CNN scenarios, mainly classification
and detection problems, aiming to exploit features learned on a source domain, leading

60

to a faster and better generalization on a target domain (GOODFELLOW; BENGIO;
COURVILLE, 2016). For this work, the models were pre-trained on the ImageNet dataset
(RUSSAKOVSKY et al., 2015) for classification and MS COCO (VINYALS et al., 2016)
for detection. This retraining step is known as transfer learning, using fine-tuning (in
many places in the literature these terms are seamlessly interchangeable). Fine-tuning is a
technique where some (or all) layers must be retrained, adapting the pre-trained model to
the chart detection domain. We chose the transfer-learning approach based on fine-tuning
the entire network on the target domain. For object detection, there are two ways: with a
pre-trained backbone only or with the whole network pre-trained, including the object
boxes subnetworks. We chose the pre-trained backbone on ImageNet, because it allows
results that reflect some common use cases in the literature.

The backbone is fine-tuned from a large-scale image classification dataset, in this
work is the ImageNet. The features can be easily transferred to the new domain, since
the backbone is a set of convolutional layers that can identify features, just like in the
classification domain. The subnetworks for box prediction are fine-tuned similarly, but
using the knowledge of the region proposal stage (for two-stage detectors) or using the
last layers of the convolutional body (for one-stage detectors) to improve box location
precision.

For both classification and detection experiments, no mid training changes were used
(early stopping, schedule for learning rate changes). They followed the default parameters
of the engines unless explicitly stated. The models were trained and evaluated in two
different machines, classification and perspective correction on a computer with a GTX
1660 graphics card with 6 GB of memory, and the detection experiment ran on a computer
with a Titan V video card with 12 GB memory. The engines used for training (Tensorflow
(ABADI et al., 2015) and PyTorch (PASZKE et al., 2019)) allow training the models
in one machine and running on others with different configurations, given some engine
restrictions. This is not decisive for the following sections after these tasks training.

3.2.2.1 Classification

The classification experiment evaluated four different CNN architectures: Xception
(CHOLLET, 2017b), VGG19 (SIMONYAN; ZISSERMAN, 2015), ResNet152 (HE et al.,
2016), and Mobilenet (SANDLER et al., 2018). These architectures have been chosen,
as they are considered to be classic in the literature and they are available in most deep
learning frameworks (ABADI et al., 2015; PASZKE et al., 2019; CHEN et al., 2015).

Their weights were pre-trained on the ImageNet dataset (RUSSAKOVSKY et al.,
2015), with Hyperparameter selection using a random search, tunning learning rate and
weight decay with values [10−4, 10−5, 10−6] and [10−6, 10−7], respectively, for 30 epochs in
batches of 32 images each. Classification evaluation measures accuracy on the test set,

61

picking the best prediction of the CNN. The evaluation was done over all classes, and
separately on four classes: bar, pie, line, and scatterplot. These chart types are popular
and work as an estimate to compare with other works (DAI et al., 2018; SAVVA et al.,
2011; TANG et al., 2016). All models use top-1 accuracy for evaluation.

Tensorflow 2 (ABADI et al., 2015) was the selected Deep Learning engine for training
and evaluation. Datasets were loaded and augmented while using native Tensorflow 2
generators. This experiment ran on a GTX 1660 6 GB video card on an 8 GB memory
computer.

3.2.2.2 Detection

The detection experiment evaluated two different object detectors: RetinaNet (LIN
et al., 2017b) and Faster R-CNN (REN et al., 2015). The backbone CNNs are ResNets
pre-trained on the ImageNet dataset, and the weights of the whole models were pre-trained
on the COCO dataset (VINYALS et al., 2016), following the work of the original authors.
We chose two one-stage detectors that present state-of-the-art results on COCO and Pascal
VOC datasets (LIU et al., 2020), following our premise of using fast methods for detection
inference, to enable real-time applications. Hyperparameters of the two detectors are used,
as defined by the original authors, only changing the batch size to four images and the
iterations to 90,000 (approximately 20 epochs).

The evaluation of these detectors is done while using the COCO challenge metrics
alongside inference time. The inference time is a critical metric for object detection, since
real-time applications can use fast detection (even with poor accuracy) in various tasks. It
can be computed as the time in seconds, as well milliseconds, that the framework process
the input image and predicts the class and the bounding box of the objects on the image.
Hence, the frameworks process the input image returning the class and the bounding box
of the objects on the image. For this work, the frameworks are evaluated while using the
AP , AP IoU=0.5, AP IoU=0.75, and the inference time.

We used the original authors’ recommended engine for the implementation of the
selected detectors. RetinaNet and Faster R-CNN frameworks are implemented in the
Detectron2 (WU et al., 2019) platform, its implementation is publicly available, runs
on the Python language, and it is powered by the PyTorch deep-learning framework.
Detectron2 is maintained by the original authors of RetinaNet and Faster R-CNN. This
experiment ran on a Titan V 12GB video card on a 64 GB memory computer.

3.2.2.3 Perspective Correction

The method for perspective correction follows an image rectification approach. As
these methods are not publicly available, and they are not easy to implement from scratch,
this experiment will evaluate only one. Also, commercial approaches have data sharing and

62

Figure 21. Diagram of the Bar Chart Data Extraction Process.

usage restrictions. The chosen method is a slight variation of the work of (CHAUDHURY;
DIVERDI; IOFFE, 2014), and it is available online2. This method estimates the vanishing
points to compute a homography matrix to rectify the original image.

The evaluation applies MAE to measure the estimated homography between the
ground truth and the distorted image. The assessment considered three scenarios: raw
homography, no scaling, and no translation. Some real-time scenarios could benefit from
controlling the scaling and position at will without merging it on the transformation, as
these aspects could be infered by a real time device. The experiment ran on a 32 GB
memory Intel core i7 machine.

3.2.2.4 Data Extraction

The data extraction method of this dissertation is an adaptation of two other
methods, so it has quite some similarities. The extraction process of data and visual
features is illustrated in Figure 21. This method works for some types of bar charts
exclusively, and we will describe the steps of the method next.

Search for connected components: The method uses the floodfill algorithm to find
connected components in the image. This algorithm runs the image one pixel at a time,
avoiding detected pixels that are already part of some other connected component. This
2 <https://github.com/chsasank/Image-Rectification>, Date of Access: 17/01/2021

https://github.com/chsasank/Image-Rectification

63

Figure 22. Masks obtained by floodfill on bar charts.

method returns a list of masks where each mask describes one of the connected components
found. The low-contrast colors between the graphic background and the guide lines are
essential, as it ensures that their group is just one big connected component by not
exceeding the floodfill threshold. Figure 22 shows an example of the masks obtained by
floodfill on bar charts.

Extracting contours: Extracted contours correspond to bars in the list of connected
components using the defined heuristics. Sometimes each component returns more than
one contour, so this is dealt with by always choosing the contours that are not within any
other contour. Also, the method discards outlines with more than 50% of the total area of
the image because it is unlikely that half of the chart is just one bar, and that outline is
probably the background of the chart.

Inferring the position of the X-axis: In charts with only positive bars, the base of
each bar touches the X-axis, but in charts with negative bars, the top of the bars touches
the X-axis. The method builds a histogram of the top and bottom positions of each bar.
The mode of this histogram contains the position where most of the bars start or end, that
being the probable X-axis. The location of the X-axis alongside OCR derive the scaling
step. Figure 23 presents an example of position inference of the X-axis in a chart.

Detection of decimal points: A problem encountered with the use of OCR is the
possible failure to detect decimal points, which could cause, for example, the number 2.0
to be recognized as 20, causing errors in the calculation of the scale. The method uses a
supplementary technique of measuring the presence of decimal points to solve this issue.
This technique consists of segmenting the text region found by the OCR, increasing its scale

64

Figure 23. Example of position inference. The blue rules shows the correct base of the
bars.

Figure 24. Decimal point verification process in case of OCR failure in its detection.

by 10. Using the scaled image, applying a binary and searching, using the Hough-Circles
technique (YIP; TAM; LEUNG, 1992) for circular regions small enough to be a decimal
point, and that is black inside. Figure 24 presents this process in an OCR-recognized
image, but without identification of the point by the OCR, the application of the method
is necessary.

It is also considered that, if at least one number of the chart scale has a decimal

65

Figure 25. Final result of bar chart data extraction, with the values duly recognized.

point, all the others also have a decimal point. Thus, we search for at least one number
with a decimal point recognized by the OCR or at least one decimal point found by the
method described above, and then we correct the scale of the other recognized numbers
based on the position of the decimal point found.

Measuring scale and bar value: The OCR is applied to the image to locate and
identify vertically stacked numbers, where probably the Y-axis is located. The two closest
detected numbers are the range of the scale. The scale in pixels by data values uses the
above-estimated numbers and the distance in pixels between them, similarly done in
(AL-ZAIDY; CHOUDHURY; GILES, 2016) and (SAVVA et al., 2011). The ratio of scale
and its height in pixels allow calculating the numerical value that each bar encodes. Figure
25 presents the final result of the process, with the values duly recognized.

At the end of the process, the extracted data is parsed into a Vega Lite grammar.
The Vega-Lite visualization grammar uses a simple mapping of visual marks and visual
channels using a JSON structure. The parser from data extraction to Vega-Lite grammar
is direct, starting with the extracted data converted in a table-like JSON to generate the
’data’ field on the grammar. The axes titles and scales map to the attributes of each axis,
X and Y, defaulting the visual mark to bars.

66

Table 4. Results of Chart Classification. Highlight to Xception network with best accuracy
results.

Architecture Learning Rate Decay Accuracy–13 Classes Accuracy–4 classes

Xception 10−4 10−6 0.954 0.95
10−7 0.953 0.95

ResNet152 10−5 10−6 0.948 0.95
10−4 10−7 0.947 0.946

VGG19 10−5 10−7 0.945 0.953
10−6 0.944 0.945

MobileNet 10−4 10−6 0.926 0.94
10−5 10−7 0.922 0.923

3.2.3 Evaluation and Results

This section presents the results of the experiments corresponding to each step
using recent state of the art methods.

3.2.3.1 Classification

The classification experiment shows remarkable results in different conditions. The
best models present results for accuracy over 95% results corresponding to all classes (13)
and only four classes. The results for the four classes are overall slightly better than 13
classes, but it uses only chart types with a great number of samples. Table 4 shows the
best two models of each architecture. The best model is an Xception with a learning rate
of 10−4 and a decay of 10−6. The other architectures have an error margin of no more than
3.5% as compared to the best, showing that it is feasible to use modern architectures if
necessary. This result indicates that finetuning the models with little hyperparametrization
can deliver good results in classification task.

The confusion matrix presented in Table 5 shows the best Xception model perfor-
mance for each class and the most common errors over the test set. The scatterplot matrix
chart had the most errors than any chart class, with errors pointing to force-directed graph
and scatterplot. This mismatch shows that some characteristics of the layout organization
of the scatterplot matrix confuses the network with scatterplots. Arc charts recognition
presents no errors, as the sample size is small, it is not possible to imply that the results
are better than other chart type results. The mistake could be a clue of a distinct chart
type with little data.

The results of the classification indicate that given a robust architecture, the
problem reaches high accuracy. Other applications could use it for their own benefit.
For example, ResNets are backbones on many detection frameworks (WU et al., 2019).
The ImageNet trained Inception architecture is used on the base example of DeepDream

67

Table 5. Results of Chart Classification Confusion Matrix of the best model. Blue cells
indicate the right predictions and orange ones indicate high error rate.

Arc Area Bar
Force
Directed
Graph

Line Parallel
Coordinates Pie Reorderable

Matrix Scatterplot Scatterplot
Matrix Sunburst Treemap Wordcloud

Arc 26 0 0 0 0 0 0 0 0 0 0 0 0
Area 0 87 0 0 0 0 0 0 0 0 0 0 0
Bar 0 0 728 0 28 1 0 0 1 2 0 1 0
Force
Directed
Graph

0 0 0 222 1 1 1 0 0 0 0 1 2

Line 0 2 9 1 511 0 4 0 1 1 0 0 0
Parallel
Coordinates 0 0 1 0 0 151 0 0 0 6 0 0 0

Pie 0 0 1 0 1 1 164 0 0 1 0 0 0
Reorderable
Matrix 0 1 2 0 0 0 0 477 0 1 0 0 0

Scatterplot 0 0 0 0 0 1 1 0 40 0 0 0 0
Scatterplot
Matrix 0 0 2 10 16 10 2 0 1 184 0 0 3

Sunburst 0 0 0 2 0 0 0 10 0 1 50 0 2
Treemap 0 0 3 1 0 0 0 0 1 0 0 66 2
Wordcloud 0 0 1 2 0 0 0 1 0 1 0 0 271

(MORDVINTSEV; OLAH; TYKA, 2015) application. The MobileNet architectures (SAN-
DLER et al., 2018) are small and fast. The loss function of SRGAN is based on VGG19
feature maps (LEDIG et al., 2017). One could choose the best architecture and train a
chart classifier to bootstrap another task.

3.2.3.2 Detection

RetinaNet presented the best values for all APs, endorsing the use of Focal Loss for
precision improvement on detection. Furthermore, being a one-stage detector also brought
the best result for inference time. More training time could be necessary to achieve better
results, as Faster R-CNN is a two-stage detector. The inference time for both methods is
below 0.25 seconds per image. Given the high resolution of the images and the framework
used alongside the video card, it is acceptable for some applications. Table 6 shows the
overview results of the detection experiment.

Table 6. Results of AP , AP IoU=.5, and AP IoU=.75 inference values and time. RetinaNet
has the best results for any AP value and inference time.

Method AP AP IoU=0.5 AP IoU=0.75 Inference Evaluation Time (s/img)
RetinaNet 81.987 91.127 89.428 0.199285
Faster R-CNN 69.68 79.101 77.428 0.210505

The AP results for each class follow the total AP shown in Table 7, except for the
arc chart and wordcloud classes. This discrepancy of the values for Faster R-CNN and
RetinaNet does not comply with results from the literature on other challenges, where
RetinaNet is faster, but Faster R-CNN has better AP (LIN et al., 2017b) overall. This
experiment presented RetinaNet with better results with both time and AP . We did not

68

make any hyperparametrization besides batch size and the number of epochs, and this
might produce outcomes that are more in line with the expected from the literature with
cautious hyperparameter search. However, this is beyond the focus of this work. It is
necessary to notice that this time is of the evaluation alone.

Table 7. AP values for each class in RetinaNet and Faster R-CNN. RetinaNet has the best
class AP for all class besides arc and wordcloud.

Class RetinaNet Faster R-CNN
Arc 86.513 88.52
Area 78.004 76.447
Bar 87.428 82.334
Force Directed Graph 79.746 45.519
Line 83.494 61.618
Scatterplot Matrix 81.072 70.266
Parallel Coordinates 81.669 61.582
Pie 88.26 83.063
Reorderable Matrix 67.69 61.392
Scatterplot 76.751 66.804
Sunburst 76.84 52.785
Treemap 89.843 73.419
Wordcloud 88.52 88.633

3.2.3.3 Perspective Correction

The rectification experiment for perspective correction presents three scenarios: the
estimation of the raw homography (no changes on any parameter), homography without
scale, and homography without translation. The MAE from the raw homography and
homography without scale had a similar average: 33.16.

We highlight the results that were obtained with homography without translation,
as the average value of 0.12 achieved by the method showed that document positioning
on the new rectified plane generates more errors because removing the translation from
the estimation removes most of the errors. It is essential to notice that the position is not
decisive for this entire chart recognition process, once it is only a preprocessing step for
chart detection, and in most cases can be safely skipped.

3.2.3.4 Data Extraction

The evaluation of the data extraction compares the correct values of the bars with
the ones inferred. The first step is to recognize the axes. Two results are possible at this
stage: No Axes and Complete. The first one is when there is no scale recognition (one
or no axis recognized), and the second one when two or more values are recognized. To
evaluate the bar recognition, the MAE is used to check the accuracy of the proposed

69

extraction method by comparing the recognized value with the actual value. This metric
is less sensitive to outliers regarding the average square error.

Different measures evaluate the images in the groups recognized by the OCR.
For the images of the No Axes group, the comparison is not made directly with the
values, but with the proportions (with min-max normalization). This is due to the lack of
associated scale values (absence of recognition of the axes). The Complete group has a
direct comparison between the values.

The images of the Complete group will also receive an extra evaluation, concerning
decimal point detection, divided into three subgroups. The OCR decimal group for when
the OCR detects decimal points on the scale, Additional group when the method of Figure
24 (Find decimal points on the image) detects the points, and No points when no method
finds decimal points.

The images with very discrepant results do not take part in this analysis (MAE >
10), with the new total of 1998 images. The Complete group got 1609 samples and the No
Axes group got 389 samples. Figure 26 presents the results in a beeswarm plot.

Figure 26. Beeswarm plot of the average absolute error relative to the OCR recognition
groups.

The extracted data are very close (MAE < 0.5) in 80% of the samples. For the
Complete group, 78% of the samples are very close to zero (1259/1609), while the No Axes
group has a percentage of 91% (356/389). The No Axes group also presents a better average
(0.28) than the Complete group (1.48), and the main reason for this is that it compares
only the relationship between the data, and not the values themselves, eliminating several
problems generated by the scaling (confusion of values, duplicate identification). For the

70

subgroups of the decimal point detection method, Figure 27 separates them into groups
concerning the MAE.

Figure 27. Beeswarm plot of average absolute error grouped by decimal point detection
methods.

The concentration of most of the samples of the No Axes subgroup near-zero
indicates that where there was no recognition of decimal points (80 from the Complete
group and 389 from the No Axes group). The mean remains small (0.37), indicating the
lack of relation of scale measurement problems. The Additional (947 samples) and Normal
(582 samples) subgroups have similar means (1.43 and 1.65) since they share the same
problems.

The extraction of the data presented satisfactory results, with 80% of the extracted
data very close to the original data. Even so, several images did not identify anything
related to scale for estimation, asking for further research. As a real-world application of
InfoVis, the context of a chart is textual, with the values of axis, titles, and categories, and
the non-recognition of these characteristics prevents more sophisticated uses of the model.
The accuracy for this stage of the model is satisfactory but lacks some other comparisons.
For now, for purposes of comparison and improvement of time, execution of the process
takes one to two seconds.

These methods are used together to cover many situations where the model can be
useful. The next section shows three use cases where these methods are applied to various
scenarios.

71

4 Use Cases

The use cases proposed to evaluate the model are three: First, the use case of
detecting real-world charts in documents using the models trained, and to the best of our
knowledge, there is not any annotated dataset for this task, second, the vocalization of a
static bar chart, and finally, real time reconstruction and interaction using an Augmented
Reality. Overall, these use cases share the same recognition module from the model, using
the Deep Learning models trained and presented in section 3.2. Reconstruction is different
for the vocalization and Augmented Reality application, but they also share the same
Vega-Lite grammar generator.

The model abstraction and intuition allowed these steps to be reused on the use
cases without the need to retrain or make new reconstruction methods for each of them.
This flexibility can help adoption of the model by future applications. Even using the same
modules, works that differ from each other can be evaluated freely of the chart recognition
context. In these three use cases each work is evaluated from a different perspective:
automatic recognition, usability experts and information visualization experts.

4.1 Detecting Charts in Real-World Documents
This use case uses a proposed task of detecting real-world charts in documents

using the models trained in the methods section (section 3.2). A simple evaluating metric
is used: full detection and partial detection of a chart image. The first one detects all of
the charts and no text outside of it, and the second one detects only part of the chart,
or if there is some text outside it. Results use only the highest score of the full detection.
We choose the Bishop’s book (BISHOP, 2006) as our physical document and manually
searched all of the bar charts with axes (most popular chart for several uses (BATTLE et
al., 2018)), and took photographs of them. The book was choosen due to the fact that it is
representative of a document having many charts, and it is a seminal book of the Machine
Learning field. Base images for this task are displayed in Figure 28.

72

Figure 28. Bar chart photographs taken from a book (BISHOP, 2006) and transformed
for evaluation. (a,d) present two bar charts, (b) shows one bar chart, and (c,e)
present three bar charts. All of them have text around the charts. These images
undergo transformations to generate the task dataset. For this evaluation, the
detector considers only the most accurate detection.

These photographs are transformed by rotations from −4 to 4 degrees with step 0.5,
while using the center as the pivot, summing 16 (original + 15 transformations) images
for each book page. These transformations follow the modern literature of perspective
correction (LI et al., 2019) (GÖBEL et al., 2013), modifying the rotation axis of the
transformation matrix. Two modes are evaluated: a normal mode, with no rectification,
and one with rectification, with a total of 160 images at the end. The results are shown on
Table 8.

Table 8. Results for chart recognition applied on the images of the book based on two
approaches: normal and rectified, for full and partial detection. Each image has
15 other versions, varying by slight rotations. Charts (a) and (d) (the same in
Figure 28) got no detection in any mode. Rectified images got better detection
results for other cases.

Mode Image Full Partial

Camera

Chart (a) - -
Chart (b) 9/16 -
Chart (c) 6/16 4/16
Chart (d) - -
Chart (e) - -

Rectified

Chart (a) - -
Chart (b) 12/16 -
Chart (c) 12/16 1/16
Chart (d) - -
Chart (e) - 6/16

Even with rectification, some charts are very hard to detect (Figure 28 (a,d)), which
implies that even using synthetic overlayed charts, the method needs more transformations.
Particularly, charts of the Figure 28 (a,d) have high influence of brightness. For example,
the pure white pages used do not reflect the reality of white from photographs that receive

73

heavy light influence, as well as more images resolutions to capture the quality of high-end
digital cameras. Even so, the rectification results showed that the image preprocessing
leads to better results. The elements of the model used in this case use are described in
Figure 29. This use case focus mainly on real world usage, so it is reasonable to evaluate
only the initial modules. To evaluate more then detection, more data would be necessary,
so stopping at detection we could even suggest a new evaluation approach (not seen in the
literature) to this use case..

Transformation

Classification

Detection

Input

Image Correction High Level Inference

Position and
Label

Figure 29. Diagram and flow of the detecting charts in documents case.

Illustrative Example

A single example of a user scenario can showcase the complete step by step chart
recognition process. The goal of this example is, given a real-world photograph with a bar
chart, to highlight the bar chart location, following the use case. This example computes
the perspective correction of a real-world photograph with a chart image and detects its
position. A single machine runs all steps of this process, with a GTX 1060 video card
with 6GB of RAM. It is not a high-end video card, but it compensates for its cost. When
considering real world usage, it is safe to assume that the process will not always have
access to the high-end video card specs all the time. The input image is shown in Figure
30.

The first step in this scenario is the perspective correction of the image, so the
image rectification method is used. After rectification of the image, the second step is to
use the chart detector to recover the chart location and isolate it. These two steps are
shown in Figure 31, with its located bar chart.

In total, these two steps took detection + correction = 0.25 + 0.62 = 0.87 sec to
compute, less time than some camera apps take to save a photography on mobile devices.
This time is not to real time frame by frame computation, as the application would need
to connect to a web server, adding some milliseconds to this time. However, expanding

74

Figure 30. Input image for the Detecting Charts in Documents use case. The bar chart
must be located and extracted.

Figure 31. Illustrative example: (a) tilted input image, following the (b) perspective
correction, (c) that eased the chart detection (d) resulting in a clean-cut bar
chart.

this example, as soon the computation is done, it is possible to use Augmented Reality
techniques to overlay these annotations on the input image directly from the camera
stream. Saving the position and using key points of the region makes it possible to track
the chart location much faster. In the end, with an extraction method, it is possible to
extract the data and highlight it on the image.

Adjustments can be made on the detection model training to recognize charts

75

more accurately, such as introducing different noise options on training and more training
time. However, the results of this use case show that, even with some modifications of
state-of-the-art trained models, it is possible to achieve real-time usage of these models.
The brightness of the images hinders proper recognition, making it more difficult, and it
suggests the need of another method of document analysis focusing on noise correction.
Some hints can be given to the users to position the camera to help the detector. The
detection worked without any correction in the more straightforward cases, but it failed to
detect the most tilted charts. When the detector used the perspective corrected image, it
showed a significant increase in the accuracy of results. In the case where it is easier to
detect, correction is not necessary, but all cases need to be robust to noise. Our intent
with this use case is not to show how well the intelligent models behave, but that it is
possible to use them on a real-world application of chart recognition chaining them.

4.2 Chart Vocalization
Despite the huge achievements and technological advancement with the use of these

software, there are still unresolved or evolving issues to improve the quality of inclusion of
visually impaired people such as the description of the information represented in the data
charts that is usually not available in these screen reading tools due to the complexity of
the task (MISHCHENKO; VASSILIEVA, 2011). Chart recognition is an important task
in the educational context, explaining various scenarios or describing facts and statistics.
In the professional setting it serves for understanding reports, for example. Thus, being
unable to access graphical information easily is a major obstacle for visually impaired
people to develop their skills in both educational and professional contexts.

The description of charts in textual form is not a trivial task. A chart presents
different visual characteristics for the information represented, which can be influenced
by several factors such as the technique selected, the experience of the visualization
designer, and the combination of visual elements (YANG; LI; ZHOU, 2014). While there
are crowdsourcing initiatives to create descriptions for graphics available on the Web
(MORASH et al., 2015), not only this type of procedure does not create large-scale
descriptions, as it depends on the voluntary participation of people, but also is prone to
errors in descriptions, as they arise from a personal interpretation of a figure or chart.
In contrast, methods to automatically extract data from chart images produce reliable
descriptions for use in this scenario (AL-ZAIDY; CHOUDHURY; GILES, 2016).

In this context, this use-case has as main objective to define textual description
templates that allow to verbalize the extracted data of a bar chart in an intelligible way.
The bar chart has been selected because it is one of the most widely used chart types
in scientific and technical documents (YANG; LI; ZHOU, 2014) and also on the internet

76

(BATTLE et al., 2018). The templates were created based on a questionnaire that collected
information about the relevance of the chart elements. Then, evaluations were performed
with users to verify the ease of understanding textual descriptions. In these evaluation
sessions, users listened to audios with a synthetic voice of textual descriptions of predefined
charts and performed some tasks, such as drawing the chart and answering questions
about what was vocalized.

The elements of the model this use case applies are in Figure 32. As the use case
specifies the chart type, it does not need a classification step. It also skips the Image
Correction module, as the image is already ready for use. The data extraction step extracts
the chart data and formats it on a Vega-Lite grammar. Then the reconstruction step
generates a Vega-Lite grammar. The template generator uses this grammar to create a
compliant vocalization, rendering it in audio format using UFPAT2S, a Text-to-Speech
API to Brazilian Portuguese (COSTA; NETO, 2018).

Grammar

Description

Data

Scales

ABC

Text

Input

Data Extraction Reconstruction

Vocalization

Figure 32. Use case model notation. The input image is a bar chart, then its data is
extracted. The reconstruction step converts the data in a valid Vega-Lite
grammar and then uses the template to generate vocalization of the chart.

4.2.1 Proposed Methodology of Template Evaluation

The test procedure was designed to measure the ease of understanding the templates,
verbalizing the content of the charts. The evaluation was performed in three stages called:
Test 1, Test 2 and Test 3. Each stage contained scenarios with bar charts and the audios
with the description of their content, according to the pre-established models. Therefore,
during the tests, participants answered questions about the charts to verify if the content
was actually understood.

77

4.2.1.1 Images and Templates

Seven images were artificially generated, one for each scenario evaluated. The
figures are enclosed with vertical bars and bars grouped according to Figure 33.

Figure 33. Images of the vertical and grouped bar charts used in the scenarios.

To establish the initial templates, an online questionnaire was applied to volunteers
with knowledge about the use of data charts, raising questions about the elements they
considered most relevant to understanding a bar chart. The items evaluated were: chart
title, individual values of the bars, number of bars, order of position of the bars, labels of
the x and y axis, mean, standard deviation and trend line.

A total of 94 volunteers answered the questionnaire, they have practical usage
of bar charts, between 18 and 42 years. The volunteers assigned a degree of relevance
from 0 to 10 for each item. In order to determine which items were most significant,
the participants’ responses were categorized into ranges of relevance: low (0,1, 2 and 3),
medium (4, 5, 6 and 7) and high (8, 9 and 10). The chart of the Figure 34 shows the
proportion of participants’ answers by relevance range and chart item.

78

Figure 34. Chart with the proportions of participants’ responses by relevance range and
chart item.

The elements chosen to compose the initial templates were the three elements,
pointed out by the volunteers, with greater relevance: labels of the x and y axes, title of
the chart and individual values of the bars. In this regard, four templates were proposed
as presented in the Table 9. For Tests 1 and 2, scenarios with four vertical bar charts and
variation between the number of bars were used. Scenarios were A, B, C and D with 3,
5, 7 and 9 bars, respectively. For Test 3, each of the three scenarios (E, F and G) had a
specific template.

4.2.1.2 Test Procedure

The test procedure to evaluate the templates had the participation of 15 volunteers
per Test, without repetition between the groups for each test or the online questionnaire.
The selection criterion required the participant to have knowledge about bar charts. The
age group of the volunteers was between 18 and 42 years, they were teachers or students
from exact sciences area. During Tests 1 and 2, four audios were played, with the same
model of description of vertical bar charts, with one set for each audio (A, B, C and D).

In Test 1, a participant’s task was to draw the simple bar chart equivalent to the
audio being listened to. In Test 2, a task consisted in listening to the audio, without the
possibility of drawing. In Test 3 there was a training stage, where the participant listened
to the audio of a scenario describing a grouped bar chart. Then, four chart options with
grouped bars were displayed on the screen of a computer and the participant had to choose
which of the chart was equivalent to the chart of the reproduced audio.

79

Table 9. Templates for vocalization of bar chart data proposed and evaluated.
Tests Scenario Template

1 and 2

A This is a vertical bar chart. It’s title is {title}. The y-axis legend is named {y-axis label}.
The x-axis legend is named {x-axis label}. The first bar is named {name of the first bar} and
presents the value {value of the first bar}. (. . .) The nth bar is named {name of the nth

bar} and presents the value {name of the nth bar}.

B
C
D

3
E

This is a grouped vertical bar chart. It’s title is {title}.
The y-axis legend is named {y-axis label}. The x-axis legend is named {x-axis label}.
The chart is made up of groups of bars {name of the first bar set (. . .) name of the nth bar set}.
Each set contains {number of bars} bars named: {name of the first bar, (. . .), name of the nth bar},
which will be presented in that order. The first set of bars is named {name of the first bar set} and
has values {value of the first bar, (. . .), value of the nth bar}. The second set of bars is named
{name of the second bar set} and has values {value of the first bar, (. . .), value of the nth

bar}.(. . .). The nth set of bars is named {name of the nth bar set} and has
value {value of the first bar, (. . .), value of the nth bar}.

F

This is a grouped vertical bar chart. It’s title is {title}.
The y-axis legend is named {y-axis label}. The x-axis legend is named {x-axis label}.
The chart is made up of groups of bars {name of the first bar group (. . .) name of the nth bar group}.
Each group contains {number of bars} bars named: {name of the first bar, (. . .), name of the nth bar}, in that order.
The serie {name of the first bar of the first group} has values {value of the first bar of the first group} in the
group {name of the first group}, (. . .) and {value of the first bar of the nth group} in the group {name of
the nth group}. (. . .). The serie {name of the nth bar of the first group} has values {value of the nth bar
of the first group} in the group {name of the first group}, (. . .) and {value of the nth bar of the nth group}
in the group {name of the nth group}.

G

This is a vertical bar chart. It’s title is {title}. The y-axis legend is named {y-axis label}.
The x-axis legend is named {name of the first group}. The first bar is named {name of the first bar}
and presents the values {value of the first bar}. (. . .). The nth bar is named {name of the nth

bar} and presents the value {value of the nth bar}. (. . .) This is a vertical bar chart.
His title is {title}. The y-axis legend is named {y-axis label}. The x-axis legend is
named {name of the nth group}. The first bar is named {name of the first bar} and
presents value {value of the nth bar}. (. . .). The nth bar is named {name of the nth bar}
and presents value {value of the nth bar}.

The objective of the training was to make the participant listen to the audio and
become familiar with the process of understanding the elements of the chart, without
interfering in the performance of the test itself. During Test 3, three audios were played
with different bar chart description templates grouped together and one scenario for each
audio (E, F, and G). The order of reproduction of the audios was random, aiming at
minimizing learning effects among templates. The participant was instructed to draw the
bar chart corresponding to the audio.

In all tests, participants were able to listen to the audio - describing each chart -
up to two times. After each scenario, participants answered six questions about the chart
whose audio was heard. The first three questions were: “what is the title of the chart?”
(Q1), “what is the x-axis title?” (Q2) and “what is the y-axis title?” (Q3). The fourth
question (Q4) in Test 1 and 2, with vertical bar scenarios, was “What is the number of
bars?” And in Test 3, with grouped bar scenarios, was “What are the group names?” (Q5
and Q6) were specific to the scenario, such as maximum, minimum and bar values.

In addition, some open questions were asked for a qualitative evaluation. The
participant had the opportunity to openly discuss whether they had any difficulty or
had any comments about the scenario. In Test 3, the volunteers looked at three different
templates on the same chart shape, so they were asked questions to understand their
opinion about what would be the most appropriate form of vocalization.

80

4.2.2 Results of Templates Evaluation

The results were divided according to the type of evaluation: quantitative and
qualitative. The quantitative analysis will address the amount of questions answered
correctly and wrongly by the participants, as well as the statistical relevance between
Tests 1 and 2 and the differences between the templates in Test 3. The qualitative analysis
was carried out from the opinions of the volunteers about the executed scenarios, where
it found categories of meanings which highlight important aspects about the templates
characteristics.

4.2.2.1 Quantitative Analysis

The mosaic chart on Figure 35 presents an overview of the accuracy obtained by the
participants in answering the questions regarding the scenarios of each test. The accuracy
was divided in three categories: 0.0 (in red) when the participant gets a question wrong
completely; 0.5 (in yellow) when the participant answers a question partially correctly (for
example, answers only half of the chart’s title); and 1.0 (in green) when the participant
answers a question fully correctly.

Figure 35. Accuracy obtained by the participants for questions of the scenarios.

By analyzing Figure 35 it is noticed that the participants made more mistakes
during Test 2, especially the questions Q5 and Q6 related to the context of the chart. This
was probably because in Test 2 participants had a greater cognitive effort to answer the
questions, since they could not draw or make any kind of annotation, different from Tests
1 and 3. Another point to highlight was the amount of incomplete answers to the question

81

Q1 (“What is the title of the chart?”). This situation can be justified by the fact that in
some scenarios the title of the chart was extensive.

Figure 36 shows the amount of questions answered correctly by the participants in
each scenario of Tests 1 and 2. Comparing the scenarios, regardless of the test performed,
it can be observed that the majority of the participants had difficulties answering the
questions of scenarios A, C and D.

Figure 36. Amount of questions answered correctly by the participants.

In scenario A the smallest number of correct answers may have been due to the
lack of training of the participants before the tests. This hypothesis is reinforced, because
in scenario B the participants presented a superior performance seeing that they were
better prepared since they performed Test A. In case of scenario C, the imprecision of the
results was probably caused by the fact that in this scenario the values of the bars were
continuous and in inverted order.

4.2.2.2 Statistical Tests

This section presents the statistical tests applied to the data collected during the
tests. The statistical analysis of Tests 1 and 2 had the purpose to verify if the type of test
applied exerted some influence on the amount of correct answers of the participants for
each scenario. First, the outliers of each scenario were identified from the boxplot shown
in Figure 37. After identification, the outliers were removed from the samples to avoid
skewed interpretations of the results.

82

Table 10. Normality for Tests 1 and 2.

Scenario Kolmogorov-Smirnov ShapiroWilk
Statistic df Sig. Statistic df Sig.

A .187 30 .009 .882 30 .003
B .513 25 .000 .392 25 .000
C .206 30 .002 .869 30 .002
D .248 30 .000 .800 30 .000

Figure 37. Boxplot of the amount of questions answered correctly by scenario.

Immediately after the removal of outliers, two statistical tests of normality (LAZAR;
FENG; HOCHHEISER, 2017) were applied to the samples in order to decide what type of
statistical test would be appropriate.

The Kolmogorov-Smirnov and Shapiro Wilk tests were applied with a 95% confi-
dence interval on the data of each scenario, in order to verify if the samples were normally
distributed. Both normality tests assume that the samples have a normal distribution as
a null hypothesis (H0). The results of the normality tests are presented in the Table 10.
For all scenarios of Tests 1 and 2, the result (p-value) was less than 0.05, that is, the null
hypothesis was refuted. Therefore, the alternative hypothesis (H1) was accepted, that is,
the samples do not have a normal distribution.

Since the samples are not normally distributed, it was necessary to use a non-
parametric test to verify if the type of test applied influences the amount of correct answers.

83

Table 11. Descriptive statistics for tests 1 and 2.

Test Scenario N Mean Median Std. Deviation

1

A 15 5.4 5.5 0.71
B 15 6 6 0
C 15 5.53 6 0.64
D 15 5.73 6 0.46

2

A 15 4.06 4.5 1.27
B 10 5.8 6 0.35
C 15 4.23 4 0.82
D 15 4.7 4.5 1.08

Table 12. Normality test for test 3.

Scenario Kolmogorov-Smirnov Shapiro Wilk
Statistic df Sig. Statistic df Sig.

E .488 15 .000 .358 15 .000
F .275 15 .003 .687 15 .000
G .367 15 .000 .713 15 .000

For this, the Mann-Whitney (LAZAR; FENG; HOCHHEISER, 2017) test was conducted,
a non-parametric test that aims to compare medians from two independent samples. As
a null hypothesis, the test assumes that the medians of the two samples do not differ
significantly from each other. The Mann-Whitney test was applied with a confidence
interval of 95% for the dependent variable of Tests 1 and 2, with the null hypothesis
that the type of test applied does not influence the amount of correct answers of the
participants. The descriptive statistics of the test are presented in Table 11.

The Mann-Whitney test showed that the type of test applied (Test 1 and 2) has
an effect on the number of correct answers for scenario A (U = 38.5; p = 0.02 < 0.05), for
scenario B (U = 52.5; p = 0.27 < 0.05), for scenario C (U = 27.5; p = 0.00 < 0.05) and for
scenario D (U = 43.5; p = 0.03 < 0.05). And for all scenarios participants who performed
Test 1 tended to have more correct answers than participants who participated in Test 2.

For the analysis of Test 3 using scenarios E, F and G, the samples normality for
each scenario was also checked using the Kolmogorov-Smirnov and Shapiro Wilk tests in
order to apply the statistical test most appropriate for this particular case. As can be seen
in Table 12, in both normality tests, no sample had a normal distribution.

Since the samples are not normally distributed, it was necessary to apply a non-

84

Table 13. Descriptive analysis for test 3.

Scenario N Mean Std. Deviation Variance
E 15 5.8 0.65 0.42
F 15 5.4 0.95 0.9
G 15 5.8 0.32 0.1

parametric test to verify if the type of scenario has an influence on the number of hits.
In this case, we used the Friedman test, a non-parametric test that aims to compare the
variances of k related samples (for k ≥ 3) by performing an analysis of variances through
the ranks instead of the raw data. As a null hypothesis, the test assumes that the variances
of k samples do not differ significantly from each other. The Friedman test was applied
with a confidence interval of 95% in the samples of scenarios E, F and G with the null
hypothesis that the type of scenario has no influence on the number of correct answers of
the participants. The descriptive statistics from Test 3 are shown in Table 13.

The Friedman test showed that the amount of correct answers does not have a
significant difference between the types of scenarios (X2(2) = 5.25; p = 0.072 > 0.05),
this means that regardless of the type of scenario, the participant tends to have the same
amount of hits.

4.2.2.3 Qualitative Analysis

For the qualitative analysis, the comments of the participants were considered
when discussing each scenario at the end of its execution in Tests 1, 2 and 3. Participants’
statements will be referenced by PxTy, where x is the identifier of the participant and y is
the identifier of the Test.

1. Chart Usability Issues: Many participants (40%) questioned the size of chart titles
and axes. P3T1 argues that “I start to believe that for the described chart it has
to be kind of pretty primary presentations, (...) like ’victories by team’, would be
better than an extremely explained title and taking all the space in my mind instead
of thinking of information”. Scenario C contained continuous and close values in
the bars that allowed the participants to verify the difficulty of understanding the
audio in these cases. P3T1 said: “(...) values with a fraction or that are not very
distinguishable. (...) very close bars are bars that do not help, it is easier for me to
look at the value”. As well as the values of the bars, the textual part of the chart
are only template variables, so we have no control over this since the proposal is to
perform an automatic extraction of the data. However, with the extracted data it is

85

possible to reconstruct the chart and adjust the names according to the needs of the
users.

2. Shape and elements of the chart: two participants said they would like to have heard
the maximum and minimum values of the bars as well as the number of bars on the
chart, which would help gain a broader view of the representation. P6T3 said that “(.
. .)it should be said at least the minimum and maximum to have a reference of the
height of the bars” and P12T1 reported his desire for the template to describe the
number of bars “It should say how many bars are there to then go listing them. Not
knowing the amount of bars get in my way.” These two elements were in sequence in
order of relevance among the chart elements that were made available in the template
(Fig. 33), when only the first three elements were chosen. This fact reinforces the
proposal to insert these elements in the template since they were elements classified
as relevant and the participants confirmed their need during the tests.

3. Sorting information: many participants (24%) commented on the vocalization order
of the chart and requested that the vocalization is ordered. P6T1 said: “If he it had an
order it would be much easier” by referring to the chart of scenario C. However, the
values of the bars were disordered because the order was on the x-axis, representing
the days of the week. So the order is relative, depends on what is expected to be
ordered in the chart and when an order makes sense. The order does not depend on
how the template is vocalized, but it could be an input parameter when choosing
the template from which the data chart is available.

4. Grouped bar chart template: in Test 3, each scenario has a specific template. The
template of scenario E presents the information of each set of bars and their respective
values. The template of scenario F describes the series and its value on each group.
In the template of scenario G the simple bar chart template was used, as if the
grouped bar chart was divided into several simple bar charts. The mean accuracy of
the questions of scenarios E and G were the same. When they answered what was the
best scenario, 53% of the participants chose the template of scenario E, 26% chose
the template of scenario F and 20% chose scenario G as the best template. P6T3
was not able to choose only one template and suggested a merge of the templates in
scenarios E and G. In spite of choosing other templates, three participants praised
the template of scenario F. P5T3 comments on the template of scenario E “(...) it
was the most succinct, it was faster, I found it less tiring”. The qualitative analysis
indicates that the best template for grouped bar charts is the template used in
scenario E.

Four participants drew the charts of scenarios (E, F and G) grouping the bar in the
opposite way to what was expected. For example, participant P5T3 should have grouped

86

the cities (Belem, Capanema and Santarém) and not the temperatures (Minimum, mean
and maximum). We can observe that the template of scenario G caused problems in
the understanding. Since in this template the grouped bar chart was read as if it were
three simple bar charts, the participants drew or annotated the information of the charts
separately and then did the final assembly of the grouped bar chart. The lack of detail
in the template in respect to groups caused this error in the interpretation, although the
answers to the questions were correct because the information remained.

4.3 Augmented Reality Chart Reconstruction
A chart reconstruction method must be responsible for transforming the chart

image, either into a new chart or a change in the chart in the user’s context. The recognized
data should be standardized in a format that should be simple to transmit over the network,
between applications, save to disk and keep and manipulate in memory (JSON, XML). It
also merges the extracted visual marks and the context.

This use case’s main contribution is a method for the recognition and reconstruction
of charts in the real world in the same context of the recognized chart, which contemplates
abstractly the steps necessary to transform a static chart into a dynamic version. This
dynamic version allows interaction through filter usage and mark . Data transforms from
its static nature to virtual interactive version using different chart types.

It is worth noting another addition to the literature processes, which consists
of actively formatting the recognized data in a visualization grammar. Even Vega-Lite,
a high-level grammar, has enough functions to encode the common types of charts
(SATYANARAYAN et al., 2017). As a grammar, it is an excellent candidate, as it has
extensions for interaction, layers, and multiple views without requiring extra development
effort.

This is possible by recognizing charts in the real world and making changes in the
same environment in which the charts are captured using augmented reality. We show a
simple proposal for an interactive interface through a prototype while using a service for
real-world chart recognition.

87

Grammar

Render

Data

Scales

ABC

Text

Input

Data Extraction Reconstruction

Display

Figure 38. Diagram and flow of the third use case using the model notation.

Figure 38 presents the process that compose the service using the model notation.
The chart recognition and reconstruction model, it can be easily adapted to serve chart
images with robust filtering and interaction.

4.3.1 Implementation

The prototype of our method is composed of two web services: one for chart
recognition focusing on bar charts and one for chart reconstruction using chart grammar
to ease further interaction. Figure 39 presents its architecture and relationships.

An extraction method based on the works by Savva et al. (SAVVA et al., 2011) and
Al-Zaidy et al. The work of (AL-ZAIDY; CHOUDHURY; GILES, 2016) is implemented in
a web service based on Python and OpenCV (BRADSKI; KAEHLER, 2008), taking care
of the image and type of chart and applying the corresponding method for mining the
data. This extraction method works for some types of bar charts exclusively (following
(SAVVA et al., 2011) heuristics, basically simple charts), and the web service complies
with the main flow of the prototype, extracting semi-formatted data and communicating
with the visualization service.

The VizGen web service 1 offers a system that generates charts based on simple
HTTP GET requests. It parses the request to a visualization grammar. Then it maps the
data attributes, type of visualization, applies visual mapping and filters.

The service was developed using Node.js to create a REST API to generate
visualizations through Vega-Lite (SATYANARAYAN et al., 2017). Besides, it can store
the datasets that will be used and process the clients’ requests. Such requests are made
through the HTTP protocol and include the necessary information to generate the desired
visualization.
1 <https://github.com/tiagodavi70/VizGen>

https://github.com/tiagodavi70/VizGen

88

Figure 39. The prototype architecture starts with input, followed by data extraction and
reconstruction. The final rendering is done on the client using Augmented
Reality.

The server also accepts requests to retrieve metadata or just specific values for some
parameters. After transformations to Vega-Lite compatible grammars, the visualizations
are processed to a rasterized format (png) and sent back to the client application.

4.3.2 User Interface

The main user interface for visualizations and interactions uses some components.
The main component is the reconstructed chart, followed by an area of interaction. This
area features common interaction widgets: dropdown menus to change chart type, slider to
filter continuous value and radio buttons to filter categorical values. Figure 40 presents the
main user interface of the prototype, highlighting the elements for interaction, supporting
continuous and categorical filters, alongside changes on the visual marks.

This service can generate up to seven different visualizations types: bar chart, area

89

Figure 40. The main User Interface for visualization interaction and its components: (A)
– Reconstructed Chart, (B) – Visual Mark Selection Dropdown, (C) – Value
Filter Slider, (D) – Category Filter Buttons.

chart, line chart, pie chart, scatterplot, heatmap, and parallel coordinates. With Vega-Lite
having a descriptive grammar, it is possible to extend the visualization types beyond the
current ones to others where the mapping is simple, without needing many changes in the
source code.

The client interface is created using the Unity 3D game engine 2. This engine was
chosen because of the easy portability to different platforms and its native resources, which
offer several solutions for the components most commonly found in games and mobile
applications.

Allied to this, we use the AR Foundation framework, based on the ARCore
implementation for Android. The client can recognize the charts (real objects) and activate
the triggers that can perform actions when the charts enter and leave the scene in the
2 <https://unity.com/pt/products/unity-platform>

https://unity.com/pt/products/unity-platform

90

virtual scenario.

It is worth noting that, given the internals of ARCore, any chart can be recognized
at any time during an application session. Thus, it is easy to change visual marks and
change the representation using the service, as in Figure 41.

Figure 41. Recognized chart changing only the color from the static chart at the top,
and Reconstructed Chart with different visual marks and filters applied at the
bottom.

It is also worth noting that ARCore’s keypoint detection algorithm cannot accurately
detect charts in isolation. An image of a bar chart does not have enough unique features
to generate a valid marker, so we add a marker next to the chart for testing purposes to
avoid marker errors and focus on evaluating the solution. While this limits direct usage
for practical applications, this is not the main objetive

91

4.3.3 Evaluation

Prototype evaluation is done through an interview with experts, using a roadmap
with questions that serve as a guide for the conversation. In the first evaluation method, we
selected three specialists as evaluators, all of them with more than six years of experience
in information visualization, either in teaching or creating practical projects or both. The
evaluators also have an affinity with Augmented Reality through applications. The questions
that guide the conversation are based on the heuristics of the works of Guimarães and
Martins (GUIMARÃES; MARTINS, 2014) for AR, and Forsell and Johansson (FORSELL;
JOHANSSON, 2010) for Information Visualization. In the end, we ask two other open
questions for suggestions regarding user guidance and comments. The list below presents
this roadmap.

• Process

– Do you know what is going on during all of the interactions and steps? (System
status)

– Does the application achieve and present the goal? (Satisfaction)

– Is the loading time of virtual charts in the scene satisfactory? (System status)

• Visualization

– Is the generated chart legible (labels, title, axis)? (Spatial organization)

– Is the filter easy to use on this application? (Dataset reduction)

• Augmented Reality

– Are you satisfied with the freedom to move around during interactions? (Satis-
faction)

– Is the virtual chart merged correctly with the real world? (Match system and
real world)

• Comments

– How can the user be instructed about what to do during the interaction?
(Orientation and help)

– Open question about Suggestions to improve and Comments; best and worst
aspects.

Because of restrictive measures due to the COVID-19 and the Augmented Reality
engine ARCore only working on compatible devices, we conducted online interviews as

92

evaluations. At the interview, the interviewer presents the prototype and displays a 2-
minute video covering all functions. From that point on, the interviewer shares the screen
of a mobile device so that the evaluator can see the prototype in real-time and also make
interaction requests.

For each question, the interviewer presents the function, and the evaluator can ask
the interviewer to perform any interaction. We believe that usage of this method was only
possible because of the experts’ experience with all aspects of the process (Augmented
Reality and Information Visualization) allied with the communication skills of all involved
(TORY; MOLLER, 2005). We took note of all comments and responses for later analysis.

4.3.4 Results and Discussion

The evaluation interviews lasted about half an hour, and each evaluator answered
all the questions and commented. We have compiled the most relevant commentaries in
this section, based on the blocks of questions, and at the end, we discuss the evaluators’
feedback.

4.3.4.1 Process

The evaluators found the process intuitive and straightforward as a whole, with
the 1st evaluator observing a similarity of the application with Web buttons and controls,
which would help the user due to the interface familiarity. In general, the evaluators judged
that users would achieve their goals when using a tool due to the interface and command
intuitiveness.

The evaluators also noticed the application loading time and commented that the
time is within the normal range, and the user would not think that the application crashed
or stopped working. Finally, they commented that the charts’ changes were all noticeable
and that the camera movement could cause users unintentionally touching (click) the
wrong element of the screen.

4.3.4.2 Visualization

The evaluators commented that the charts, legends, and labels are all legible and
understandable but that a zoom or even a semantic zoom would help in the users’ analysis
activities. They commented that it is possible to zoom in by leading the phone closer to
the target, but the application could have a zoom option in the application interface to
avoid tiring the user.

All evaluators found the filter task easy to perform. However, evaluator 2 emphasized
that freedom of movement and shaking hands can make this task difficult.

93

Evaluator 3 pointed out that (1) a selection task by tapping on the screen would
assist the user in the activities of details-on-demand, (2) more graphics could be added in
the application, (3) the possibility of adding multiple coordinated views could be made
available simultaneously. The evaluator also highlighted that the color change in the visual
mark is essential.

4.3.4.3 Augmented Reality

The evaluators noticed some common problems concerning the context of Aug-
mented Reality. The biggest one is the continuous use of the device for the analysis. If
the analysis is lengthy, it can cause tiredness or discomfort, generate natural vibrations,
and produce instability in the marker’s recognition, causing rendering problems in virtual
objects due to the sensors’ movement. This instability can also cause inaccuracy in filter
controls since they are in visual widgets on the screen.

All evaluators highlighted the need for a function to freeze the screen so that even
if the static chart is not in the camera’s view, the interaction with the recognized data
should continue. This function of freezing the screen would solve problems concerning
natural vibrations after a long usage time and facilitate more robust analyses on the mobile
device. It seems paradoxical that an AR solution does not use AR all the time, but a
hybrid approach seems more suitable to cover more time extensive scenarios.

4.3.4.4 Comments

Regarding help and guidance, the evaluators made suggestions in two ways: ease
of use of widgets in AR and direct help methods. All evaluators highlighted the need for
contextual help in the first use, in a tutorial format, either step by step or on mobile devices
or in a textual form accompanied by images. One evaluator highlighted interaction through
voice and gestures to not add new buttons in the user’s view, leaving the screen free only
for interactions with the graphics. Therefore, we must evaluate a way of presenting help
that covers all the interactions used, which does not interfere with the user interface.

In the end, the evaluators made some comments about the general impressions of
the prototype and the method. Two evaluators highlighted the method as innovative, and
that is why some users who do not know AR or InfoVis could feel overwhelmed by the first
contact with a future tool. One evaluator pointed out that interacting with the real-world
graph without changing context has some practical applications in various contexts, but it
must be applied carefully in scenarios.

4.3.4.5 Discussion

The process was considered efficient and straightforward concerning time and stages
of recognition and reconstruction being transparent to the user. Even in the initial version

94

of the user interface, all its components are affordable from other contexts, such as web
applications. These two points make the method simple to use, as commented on filter
interaction, even for inexperienced users.

The evaluators highlighted the need for a function to freeze the screen to make
more precise analyses and reduce movements’ inaccuracy. The freeze implies more robust
vision control methods and a greater focus on the data analysis stage after recognition.
Even with the simple process, help is needed to reach as many users as possible and
provide a kind of guide for all components.

All evaluators requested a kind of zoom, item selection, and multiple coordinated
visualizations but did not comment on other types of information visualization tasks,
such as sorting, correlation, and details-on-demand. This absence of comments may have
occurred due to the simplicity of the tasks. Therefore, future work could explore more
complex data analysis tasks to test the visualization tasks thoroughly.

The use of dashboards based on the static chart can visually allow a more pro-
found analysis without overloading the recognition process and adjusting the grammar
components to allow multiple views. The dashboard usage expands the set of interactions
needed, as the connections between the charts also need to be configured. In this case, the
application must have the component selection to coordinate the views.

Finally, all evaluators found the visualization readable in all its components. When
testing legibility, the maximum distance used to certify the components was one meter,
and all evaluators found it satisfactory.

While the results suggest that the method can be beneficial to users in several real
situations, there is still room for improvement. This use case shows that interaction in
the same context of the static chart is possible, and brings the benefits of not changing
contexts, reducing the cognitive load of manually changing the real-world context from a
data analysis one.

95

5 Conclusion and Future Works

This dissertation presents a model for automated support for the recognition and
reconstruction of static charts. Several works approach steps of this process but do not
produce a generalized solution for all steps. They also do not perform natural image
processing, such as on photos of documents, books, and newspapers. The proposed model
seeks to frame and solve these problems in various scenarios. One of them presents methods
for locating a chart in a document image while performing the entire recognition process. In
another, the vocalization of a static chart through user evaluation, and finally, a augmented
reality application. All the steps of the model are evaluated in this phase of the work:
image correction, high-level inference, data extraction, and reconstruction.

The model covers little-explored steps of chart recognition in the literature, like
detecting the static chart in the image and document analysis based pre-processing. This
step is important if other elements, such as text or other kind of pictures, are present in
the image that contains the chart, which is quite common in books, newspapers, andz
magazines. Along with chart detection, image rectification could be applied to correct
the perspective of documents that contain charts, as a way to prepare the image for
further processing. The experiments presented that, for some scenarios, chart recognition
already has the technical toolbox available, but it was not organized on an established
abstract process. The experiments on chart recognition of this dissertation covers this
gap, showing that classification, detection, and perspective correction are ready to be used
for initial steps of chart recognition, focusing on accuracy or time. Adding to that, the
usage of a established visualization grammar makes it easy to export these visualizations
to environments that are not even visual.

The image correction is evaluated with perspective correction, using image recti-
fication algorithms. In the high-level inference, classification and detection tasks obtain
excellent results using CNNs. Regarding detection, the method based on the literature
can undergo improvements, especially regarding character recognition.

Despite the difficulties encountered, the model proved to be technically feasible,
with all stages implemented and usable. The main contribution of this work is the model
and how it extends applications and use cases. The model is an abstraction of this complex
problem, so it shows module by module how to apply its methods. This dissertation also
presented non-conventional use cases for this model, showing how the model behaves in
these situations.

Other contributions are made through each module, adding document analysis
methods to the recognition process and the translator of the extracted data directly to a

96

visualization grammar. Each module is detachable, so internal changes on it should not
affect the general outcome in non-expected ways.

One application of the model is a real-time usage of it. While using a Titan V video
card, it is possible to detect charts in almost real-time, so for most high-end specs cards,
it is possible to use this process on these time-intensive applications (FENG et al., 2019).
In mid to low end cards it is not as fast, but it also works. Even if it is not acceptable
for frame-by-frame real-time use in time-intensive applications (RAAEN; KJELLMO,
2015), some shortcuts can be used, such as frame skipping, resolution scaling, and object
tracking to minimize the perceived latency for the users. For an augmented reality mobile
application, a high-end video card could be part of a cloud service that does the heavy
computation, allowing for the mobile device to position the results correctly.

The model presented some weaknesses. The main one is the focus on the bar chart
for the use cases, mainly because it is popular. It works as a proof of concept, but it
hinders the usage by other charts, as it do not show any other examples. The classification
method do not include a hierarchy of chart types, and the usage of the grammar was
subject mostly to non-web environments, where it lacks interaction.

Future works include additions on the model and the steps. The model should
have more visualization types for classification, data extraction algorithms on the process,
alongside more image corrections. Data collection is hard, but even among a chart type
that are several other subtypes unexplored. Lightning and noise are important aspects of
real-world interactions, and there is a wide array of solutions on the document analysis
field. They should be added in further application of the model.

The evaluation of more Document Analysis methods and how to use them have
also be considered. A real-world annotated dataset could help with the assessment of more
sophisticated methods, as we proposed in the use case, but lacked the data to make it
more robust.

A useful feature in the future is the addition of a recommendation step, to use the
extracted data and show it with better visual encoding. Some studies on visualization
cover this problem, and adding it to the model can help the end users. It also lacks user
study specific for real-time mobile device usage. This scenario is important as mobile
devices grow in computational power, bandwidth and sensors capabilities.

The model itself can be extended in the aspect of collaboration. Right now, it does
not support collaborative interactions, but it is an important aspect of visualization usage.
While it can support collaboration through the visualization grammar, the other modules
need some guidelines to implement the collaboration.

The next generation of mobile devices, paired with high bandwidth of 5G, can
launch chart recognition and reconstruction in the real world. This novel model of chart

97

recognition and reconstruction covers the literature and expands it to fill some gaps
in individual steps and scenarios, mainly in real-world applications. For instance, it is
possible to create augmented reality applications with a model of chart recognition and
reconstruction to be used on scenarios, creating new research opportunities and challenges.

98

References

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org. Available from Internet:
<https://www.tensorflow.org/>. Cited 3 times on pages 21, 60, and 61.

ABED, H. E.; WENYIN, L.; MARGNER, V. International conference on document
analysis and recognition (icdar 2011) - competitions overview. In: IEEE. 2011 International
Conference on Document Analysis and Recognition. [S.l.]: IEEE, 2011. p. 1437–1443.
Cited on page 33.

AKIYAMA, R. D. et al. Synthetic chart image generator: An application for generating
chart image datasets. In: IEEE. 2018 22nd International Conference Information
Visualisation (IV). [S.l.], 2018. p. 128–132. Cited on page 58.

AL-ZAIDY, R. A.; CHOUDHURY, S. R.; GILES, C. L. Automatic summary generation
for scientific data charts. In: Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence. [S.l.: s.n.], 2016. Cited 10 times on pages 42, 44, 45, 49, 55, 58, 59, 65, 75,
and 87.

AL-ZAIDY, R. A.; GILES, C. L. A machine learning approach for semantic structuring of
scientific charts in scholarly documents. In: AAAI. [S.l.: s.n.], 2017. p. 4644–4649. Cited
on page 44.

ANSCOMBE, F. J. Graphs in statistical analysis. The American Statistician, Taylor &
Francis Group, v. 27, n. 1, p. 17–21, 1973. Cited on page 33.

ARLAZAROV, V. V. et al. Midv-500: a dataset for identity document analysis and
recognition on mobile devices in video stream. Computer Optics, Samara State National
Research University, v. 43, n. 5, 2019. Cited on page 33.

BARTH, R. et al. Synthetic bootstrapping of convolutional neural networks for semantic
plant part segmentation. Computers and Electronics in Agriculture, Elsevier, v. 161, p.
291–304, 2019. Cited on page 57.

BATTLE, L. et al. Beagle: Automated extraction and interpretation of visualizations from
the web. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. [S.l.: s.n.], 2018. p. 1–8. Cited 4 times on pages 20, 57, 71, and 76.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE, v. 35, n. 8, p. 1798–1828, 2013. Cited on page 25.

BISHOP, C. M. Pattern Recognition and Machine Learning. [S.l.]: Springer, 2006. Cited
4 times on pages 12, 24, 71, and 72.

BORKIN, M. A. et al. Beyond memorability: Visualization recognition and recall. IEEE
Transactions on Visualization and Computer Graphics, IEEE, v. 22, n. 1, p. 519–528,
2015. Cited on page 36.

https://www.tensorflow.org/

99

BRADSKI, G.; KAEHLER, A. Learning OpenCV: Computer vision with the OpenCV
library. [S.l.]: " O’Reilly Media, Inc.", 2008. Cited 2 times on pages 21 and 87.

BYLINSKII, Z.; BORKIN, M. Eye fixation metrics for large scale analysis of information
visualizations. etvis work. Eye Track. Vis, 2015. Cited on page 56.

CARD, S. K.; MACKINLAY, J.; SHNEIDERMAN, B. Readings in information
visualization: using vision to think. 1999. San Francisco: Morgan Kauffman, 1999. Cited
2 times on pages 11 and 34.

CAVANAGH, P. Visual cognition. Vision research, Elsevier, v. 51, n. 13, p. 1538–1551,
2011. Cited on page 35.

CHAGAS, P. et al. Evaluation of convolutional neural network architectures for chart
image classification. In: IEEE. 2018 International Joint Conference on Neural Networks
(IJCNN). [S.l.], 2018. p. 1–8. Cited 5 times on pages 29, 39, 44, 47, and 48.

CHAGAS, P. et al. Architecture proposal for data extraction of chart images using
convolutional neural network. In: 2017 21st International Conference Information
Visualisation (IV). [S.l.]: IEEE, 2017. p. 318–323. Cited 2 times on pages 29 and 44.

CHAUDHURY, K.; DIVERDI, S.; IOFFE, S. Auto-rectification of user photos. In:
IEEE. 2014 IEEE International Conference on Image Processing (ICIP). [S.l.], 2014. p.
3479–3483. Cited 2 times on pages 33 and 62.

CHEN, T. et al. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015. Cited on page 60.

CHOLLET, F. Deep learning with Python. [S.l.]: Manning Publications Company, 2017.
Cited 3 times on pages 11, 28, and 57.

CHOLLET, F. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.:
s.n.], 2017. p. 1251–1258. Cited 2 times on pages 29 and 60.

CHOMSKY, N. Three models for the description of language. IRE Transactions on
information theory, IEEE, v. 2, n. 3, p. 113–124, 1956. Cited on page 37.

CHYI, H. I.; TENENBOIM, O. Reality check: Multiplatform newspaper readership in the
united states, 2007–2015. Journalism Practice, Taylor & Francis, v. 11, n. 7, p. 798–819,
2017. Cited on page 18.

COSTA, E.; NETO, N. Free tools and resources for hmm-based brazilian portuguese
speech synthesis. In: SPRINGER. Ibero-American Conference on Artificial Intelligence.
[S.l.], 2018. p. 367–379. Cited on page 76.

DAI, W. et al. Chart decoder: Generating textual and numeric information from chart
images automatically. Journal of Visual Languages & Computing, Elsevier, v. 48, p.
101–109, 2018. Cited 11 times on pages 18, 19, 29, 30, 39, 40, 44, 47, 49, 56, and 61.

DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human detection. In: IEEE.
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). [S.l.], 2005. v. 1, p. 886–893. Cited on page 25.

100

DAVILA, K. et al. Chart mining: A survey of methods for automated chart analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2020. Cited 4
times on pages 39, 41, 44, and 49.

EDGE, M. Are uk newspapers really dying? a financial analysis of newspaper publishing
companies. Journal of Media Business Studies, Taylor & Francis, v. 16, n. 1, p. 19–39,
2019. Cited on page 18.

EGGERT, C.; WINSCHEL, A.; LIENHART, R. On the benefit of synthetic data for
company logo detection. In: Proceedings of the 23rd ACM International Conference on
Multimedia. [S.l.: s.n.], 2015. p. 1283–1286. Cited on page 57.

EVERINGHAM, M. et al. The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, Springer, v. 88, n. 2, p. 303–338, 2010. Cited on page 30.

FENG, X. et al. Computer vision algorithms and hardware implementations: A survey.
Integration, Elsevier, 2019. Cited on page 96.

FISHER, D.; MEYER, M. Making data visual: a practical guide to using visualization for
insight. [S.l.]: O’Reilly Media, Inc., 2017. Cited on page 33.

FORSELL, C.; JOHANSSON, J. An heuristic set for evaluation in information
visualization. In: Proceedings of the International Conference on Advanced Visual
Interfaces. [S.l.: s.n.], 2010. p. 199–206. Cited on page 91.

FUSIELLO, A.; TRUCCO, E.; VERRI, A. A compact algorithm for rectification of stereo
pairs. Machine Vision and Applications, Springer, v. 12, n. 1, p. 16–22, 2000. Cited 2
times on pages 32 and 33.

GATOS, B. et al. Automatic table detection in document images. In: SPRINGER.
International Conference on Pattern Recognition and Image Analysis. [S.l.], 2005. p.
609–618. Cited on page 40.

GIRSHICK, R. Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. [S.l.: s.n.], 2015. p. 1440–1448. Cited on page 31.

GIRSHICK, R. et al. Region-based convolutional networks for accurate object detection
and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE, v. 38, n. 1, p. 142–158, 2015. Cited on page 30.

GÖBEL, M. et al. Icdar 2013 table competition. In: IEEE. 2013 12th International
Conference on Document Analysis and Recognition. [S.l.], 2013. p. 1449–1453. Cited 3
times on pages 40, 55, and 72.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016. Cited 5 times on pages 23, 24, 25, 28, and 60.

GUIMARÃES, M. de P.; MARTINS, V. F. A checklist to evaluate augmented reality
applications. In: IEEE. 2014 XVI Symposium on Virtual and Augmented Reality. [S.l.],
2014. p. 45–52. Cited on page 91.

HE, K. et al. Spatial pyramid pooling in deep convolutional networks for visual recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 37, n. 9, p.
1904–1916, 2015. Cited on page 31.

101

HE, K. et al. Identity mappings in deep residual networks. In: SPRINGER. European
Conference on Computer Vision. [S.l.], 2016. p. 630–645. Cited 3 times on pages 26, 29,
and 60.

HE, Y. et al. Bar charts detection and analysis in biomedical literature of pubmed central.
In: AMERICAN MEDICAL INFORMATICS ASSOCIATION. AMIA Annual Symposium
Proceedings. [S.l.], 2017. v. 2017, p. 859. Cited 4 times on pages 39, 44, 45, and 49.

HUANG, W.; TAN, C.-L. Locating charts from scanned document pages. In: IEEE. Ninth
International Conference on Document Analysis and Recognition (ICDAR 2007). [S.l.],
2007. v. 1, p. 307–311. Cited 3 times on pages 39, 40, and 44.

JAGANNATHAN, L.; JAWAHAR, C. Perspective correction methods for camera based
document analysis. In: Proc. First Int. Workshop on Camera-based Document Analysis
and Recognition. [S.l.: s.n.], 2005. p. 148–154. Cited 2 times on pages 32 and 33.

JUNG, D. et al. Chartsense: Interactive data extraction from chart images. In: Proceedings
of the 2017 CHI conference on Human Factors in Computing Systems. [S.l.: s.n.], 2017. p.
6706–6717. Cited 7 times on pages 20, 29, 39, 44, 47, 49, and 56.

KARD, S. T.; MACKINLAY, J. D.; SCHEIDERMAN, B. Readings in Information
Visualization, using vision to think. [S.l.]: San Francisco: Morgan Kaufmann, 1999. Cited
on page 35.

KARPATHY, A. Convolutional Neural Networks (CNNs/ConvNets). CS231n:
Convolutional Neural Networks for Visual Recognition. 2017; Course notes. [S.l.]: Stanford
University. Available from: cs231n. github. io/convolutional-networks, 2017. Cited 3
times on pages 11, 27, and 57.

KARTHIKEYANI, V.; NAGARAJAN, S. Machine learning classification algorithms to
recognize chart types in portable document format (pdf) files. International Journal of
Computer Applications, Citeseer, v. 39, n. 2, p. 1–5, 2012. Cited on page 44.

KAVASIDIS, I. et al. A saliency-based convolutional neural network for table and chart
detection in digitized documents. In: International Conference on Image Analysis and
Processing. [S.l.]: Springer, 2019. p. 292–302. Cited 2 times on pages 40 and 47.

KIM, Y.; HEER, J. Gemini: A grammar and recommender system for animated transitions
in statistical graphics. IEEE Transactions on Visualization and Computer Graphics, 2021.
Cited on page 43.

KNAFLIC, C. N. Storytelling with data: A data visualization guide for business
professionals. [S.l.]: John Wiley & Sons, 2015. Cited 2 times on pages 11 and 19.

KONG, N. Techniques for Modifying and Augmenting Existing Charts for Improved
Usability. Dissertation (PhD) — UC Berkeley, 2013. Cited 3 times on pages 42, 44,
and 45.

KONG, N.; AGRAWALA, M. Graphical overlays: Using layered elements to aid chart
reading. IEEE Transactions on Visualization and Computer Graphics, IEEE, v. 18, n. 12,
p. 2631–2638, 2012. Cited 4 times on pages 42, 44, 45, and 49.

102

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in Neural Information Processing Systems.
[S.l.: s.n.], 2012. p. 1097–1105. Cited 2 times on pages 29 and 30.

LAZAR, J.; FENG, J. H.; HOCHHEISER, H. Research methods in human-computer
interaction. [S.l.]: Morgan Kaufmann, 2017. Cited 2 times on pages 82 and 83.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Publishing Group,
v. 521, n. 7553, p. 436–444, 2015. Cited 4 times on pages 23, 25, 26, and 41.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, Ieee, v. 86, n. 11, p. 2278–2324, 1998. Cited 4 times on pages 11, 27, 28,
and 29.

LEDIG, C. et al. Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2017. p. 4681–4690. Cited on page 67.

LI, G. et al. Gotree: A grammar of tree visualizations. In: Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. [S.l.: s.n.], 2020 (a). p. 1–13. Cited
on page 38.

LI, X. et al. Blind geometric distortion correction on images through deep learning. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.:
s.n.], 2019. p. 4855–4864. Cited on page 72.

LI, X. et al. Camera model and parameter calibration. E&ES, v. 440, n. 4, p. 042099,
2020 (b). Cited on page 32.

LI, Z. et al. Light-head r-cnn: In defense of two-stage object detector. arXiv preprint
arXiv:1711.07264, 2017. Cited on page 31.

LIN, T.-Y. et al. Feature pyramid networks for object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2017. p.
2117–2125. Cited on page 31.

LIN, T.-Y. et al. Focal loss for dense object detection. In: Proceedings of the IEEE
international Conference on Computer Vision. [S.l.: s.n.], 2017. p. 2980–2988. Cited 3
times on pages 31, 61, and 67.

LIU, L. et al. Deep learning for generic object detection: A survey. International Journal
of Computer Vision, Springer, v. 128, n. 2, p. 261–318, 2020. Cited on page 61.

LIU, W. et al. Ssd: Single shot multibox detector. In: SPRINGER. European Conference
on Computer Vision. [S.l.], 2016. p. 21–37. Cited on page 31.

MACKINLAY, J. Automating the design of graphical presentations of relational
information. Acm Transactions On Graphics (Tog), Acm New York, NY, USA, v. 5, n. 2,
p. 110–141, 1986. Cited 2 times on pages 11 and 36.

MÉNDEZ, G. G.; NACENTA, M. A.; VANDENHESTE, S. ivolver: Interactive visual
language for visualization extraction and reconstruction. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. [S.l.: s.n.], 2016. p. 4073–4085.
Cited on page 43.

103

MISHCHENKO, A.; VASSILIEVA, N. Chart image understanding and numerical data
extraction. In: IEEE. 2011 Sixth International Conference on Digital Information
Management. [S.l.], 2011. p. 115–120. Cited 2 times on pages 20 and 75.

MITCHELL, T. M. et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, v. 45,
n. 37, p. 870–877, 1997. Cited on page 23.

MORASH, V. S. et al. Guiding novice web workers in making image descriptions using
templates. ACM Transactions on Accessible Computing (TACCESS), ACM New York,
NY, USA, v. 7, n. 4, p. 1–21, 2015. Cited on page 75.

MORDVINTSEV, A.; OLAH, C.; TYKA, M. Deepdream-a code example for visualizing
neural networks. Google Research, v. 2, n. 5, 2015. Cited on page 67.

MUNZNER, T. Visualization analysis and design. [S.l.]: CRC press, 2014. Cited 5 times
on pages 34, 35, 36, 37, and 57.

NAIR, R. R. et al. Automated analysis of line plots in documents. In: IEEE. 2015 13th
International Conference on Document Analysis and Recognition (ICDAR). [S.l.], 2015. p.
796–800. Cited 3 times on pages 42, 44, and 45.

NIXON, M.; AGUADO, A. Feature extraction and image processing for computer vision.
[S.l.]: Academic Press, 2019. Cited on page 25.

NORMAN, D. The design of everyday things: Revised and expanded edition. [S.l.]: Basic
books, 2013. Cited on page 37.

PARK, D. et al. Atom: A grammar for unit visualizations. IEEE transactions on
visualization and computer graphics, IEEE, v. 24, n. 12, p. 3032–3043, 2017. Cited on
page 38.

PARKER, J. R. Algorithms for image processing and computer vision. [S.l.]: John Wiley
& Sons, 2010. Cited on page 23.

PASZKE, A. et al. Pytorch: An imperative style, high-performance deep learning library. In:
WALLACH, H. et al. (Ed.). Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019. p. 8024–8035. Available from Internet: <http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf>.
Cited on page 60.

PLAISANT, C. The challenge of information visualization evaluation. In: Proceedings
of the Working Conference on Advanced visual Interfaces. [S.l.: s.n.], 2004. p. 109–116.
Cited on page 34.

POCO, J.; HEER, J. Reverse-engineering visualizations: Recovering visual encodings from
chart images. In: Computer Graphics Forum. [S.l.]: Wiley Online Library, 2017. v. 36, p.
353–363. Cited 4 times on pages 42, 44, 45, and 56.

RAAEN, K.; KJELLMO, I. Measuring latency in virtual reality systems. In: SPRINGER.
International Conference on Entertainment Computing. [S.l.], 2015. p. 457–462. Cited on
page 96.

REDMON, J.; FARHADI, A. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018. Cited on page 31.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

104

REN, S. et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2015. p.
91–99. Cited 2 times on pages 31 and 61.

RUSSAKOVSKY, O. et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, Springer, v. 115, n. 3, p. 211–252, 2015. Cited 6 times on
pages 23, 28, 29, 30, 55, and 60.

SANDLER, M. et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.:
s.n.], 2018. p. 4510–4520. Cited 3 times on pages 29, 60, and 67.

SATYANARAYAN, A. et al. Vega-lite: A grammar of interactive graphics. IEEE
Transactions on Visualization and Computer Graphics, 2017. Cited 5 times on pages 21,
38, 54, 86, and 87.

SATYANARAYAN, A. et al. Reactive vega: A streaming dataflow architecture for
declarative interactive visualization. IEEE Transactions on Visualization and Computer
Graphics, IEEE, v. 22, n. 1, p. 659–668, 2015. Cited on page 38.

SATYANARAYAN, A.; WONGSUPHASAWAT, K.; HEER, J. Declarative interaction
design for data visualization. In: Proceedings of the 27th Annual ACM Symposium on
User interface Software and Technology. [S.l.: s.n.], 2014. p. 669–678. Cited on page 43.

SAVVA, M. et al. Revision: Automated classification, analysis and redesign of chart
images. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology. [S.l.: s.n.], 2011. p. 393–402. Cited 14 times on pages 20, 30, 39, 43, 44,
45, 49, 55, 56, 58, 59, 61, 65, and 87.

SCHREIBER, S. et al. Deepdesrt: Deep learning for detection and structure recognition
of tables in document images. In: IEEE. 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR). [S.l.], 2017. v. 1, p. 1162–1167. Cited on
page 40.

SHATNAWI, M.; ABDALLAH, S. Improving handwritten arabic character recognition by
modeling human handwriting distortions. ACM Transactions on Asian and Low-Resource
Language Information Processing (TALLIP), ACM New York, NY, USA, v. 15, n. 1, p.
1–12, 2015. Cited on page 57.

SHESHKUS, A. et al. Houghnet: neural network architecture for vanishing points
detection. arXiv preprint arXiv:1909.03812, 2019. Cited on page 33.

SHNEIDERMAN, B.; PLAISANT, C. Strategies for evaluating information visualization
tools: multi-dimensional in-depth long-term case studies. In: Proceedings of the 2006
AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information
Visualization. [S.l.: s.n.], 2006. p. 1–7. Cited on page 37.

SIEGEL, N. Understanding charts in research papers: A learning approach. In: Technical
Report. [S.l.]: University of Washington, 2015. Cited 3 times on pages 42, 44, and 45.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations. [S.l.: s.n.], 2015.
Cited 2 times on pages 29 and 60.

105

SPENCE, R. Information visualization-design for interaction. UK Pearson Educ Ltd,
2007. Cited 4 times on pages 18, 19, 35, and 37.

SPENCE, R. Information Visualization: An Introduction. [S.l.]: Springer, 2014. Cited 2
times on pages 35 and 36.

SVENDSEN, J. P. Chart Detection and Recognition in Graphics Intensive Business
Documents. Dissertation (PhD) — University of Victoria, 2015. Cited 2 times on pages
44 and 47.

SZEGEDY, C. et al. Inception-v4, inception-resnet and the impact of residual connections
on learning. In: Thirty-first AAAI Conference on Artificial Intelligence. [S.l.: s.n.], 2017.
Cited on page 29.

TAKEZAWA, Y.; HASEGAWA, M.; TABBONE, S. Robust perspective rectification of
camera-captured document images. In: IEEE. 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR). [S.l.], 2017. v. 6, p. 27–32. Cited on
page 33.

TANG, B. et al. Deepchart: Combining deep convolutional networks and deep belief
networks in chart classification. Signal Processing, Elsevier, v. 124, p. 156–161, 2016.
Cited 3 times on pages 44, 56, and 61.

TORY, M.; MOLLER, T. Evaluating visualizations: do expert reviews work? IEEE
computer graphics and applications, IEEE, v. 25, n. 5, p. 8–11, 2005. Cited on page 92.

UIJLINGS, J. R. et al. Selective search for object recognition. International Journal of
Computer Vision, Springer, v. 104, n. 2, p. 154–171, 2013. Cited on page 31.

VINYALS, O. et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, Nature Publishing Group, v. 575, n. 7782, p. 350–354, 2019. Cited on
page 26.

VINYALS, O. et al. Show and tell: Lessons learned from the 2015 mscoco image captioning
challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 39,
n. 4, p. 652–663, 2016. Cited 6 times on pages 26, 30, 31, 55, 60, and 61.

WANG, Q. et al. A comprehensive survey of loss functions in machine learning. Annals of
Data Science, Springer, p. 1–26, 2020. Cited on page 24.

WARE, C. Information visualization: perception for design. [S.l.]: Morgan Kaufmann,
2019. Cited 3 times on pages 18, 35, and 36.

WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. [S.l.]: Springer-Verlag New
York, 2016. ISBN 978-3-319-24277-4. Cited on page 38.

WILKINSON, L. The grammar of graphics. In: Handbook of Computational Statistics.
[S.l.]: Springer, 2012. p. 375–414. Cited on page 38.

WONGSUPHASAWAT, K. et al. Towards a general-purpose query language for
visualization recommendation. In: Proceedings of the Workshop on Human-In-the-Loop
Data Analytics. [S.l.: s.n.], 2016. p. 1–6. Cited on page 43.

106

WU, Y. et al. Detectron2. 2019. <https://github.com/facebookresearch/detectron2>.
Cited 2 times on pages 61 and 66.

YANG, H.; LI, Y.; ZHOU, M. X. Understand users’ comprehension and preferences
for composing information visualizations. ACM Transactions on Computer-Human
Interaction (TOCHI), ACM New York, NY, USA, v. 21, n. 1, p. 1–30, 2014. Cited on
page 75.

YIN, T.; COOK, D.; LAWRENCE, M. ggbio: an r package for extending the grammar of
graphics for genomic data. Genome Biology, Springer, v. 13, n. 8, p. R77, 2012. Cited on
page 38.

YIP, R. K.; TAM, P. K.; LEUNG, D. N. Modification of hough transform for circles and
ellipses detection using a 2-dimensional array. Pattern Recognition, Elsevier, v. 25, n. 9, p.
1007–1022, 1992. Cited on page 64.

YOUNG, M. L.; HERMIDA, A.; FULDA, J. What makes for great data journalism?
a content analysis of data journalism awards finalists 2012–2015. Journalism Practice,
Taylor & Francis, v. 12, n. 1, p. 115–135, 2018. Cited on page 18.

ZHOU, F. et al. Reverse-engineering bar charts using neural networks. Journal of
Visualization, Springer, p. 1–17, 2020. Cited 2 times on pages 39 and 41.

ZHU, B. et al. Shotvis: Smartphone-based visualization of ocr information from images.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), ACM New York, NY, USA, v. 12, n. 1s, p. 1–17, 2015. Cited 2 times on pages
43 and 48.

https://github.com/facebookresearch/detectron2

	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Theoretical Background & Related Works
	Computer Vision Concepts
	Machine Learning
	Feature Learning
	Neural Networks
	Convolutional Neural Networks
	Computer Vision Tasks
	Object Detection
	Perspective Correction

	Information Visualization Concepts
	Reference Model
	Visual Encoding Channels
	Interaction
	Grammar of Graphics

	Related Works
	Chart Recognition
	Chart Reconstruction
	Literature Discussion

	Model and Discussion
	Model Description
	Image Correction
	High Level Inference
	Data Extraction
	Reconstruction

	Methods and Evaluation
	Datasets
	Training and Techniques Regime
	Classification
	Detection
	Perspective Correction
	Data Extraction

	Evaluation and Results
	Classification
	Detection
	Perspective Correction
	Data Extraction

	Use Cases
	Detecting Charts in Real-World Documents
	Chart Vocalization
	Proposed Methodology of Template Evaluation
	Images and Templates
	Test Procedure

	Results of Templates Evaluation
	Quantitative Analysis
	Statistical Tests
	Qualitative Analysis

	Augmented Reality Chart Reconstruction
	Implementation
	User Interface
	Evaluation
	Results and Discussion
	Process
	Visualization
	Augmented Reality
	Comments
	Discussion

	Conclusion and Future Works
	References

