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Palavras Chave Redes Definidas por Software de Próxima Geração, P4, Plano de Dados
Programável, Offloading, Zenoh

Resumo As redes móveis de quinta geração (5G) conseguem oferecer melhores
serviços que as suas anteriores gerações maioritariamente através do
uso de tecnologias como redes definidas por software (SDN) e virtua-
lização das funções da rede (NFV).

No entanto, após vários anos de implementações de soluções usando
OpenFlow, chegou-se à conclusão que este tem limitações relativa-
mente a protocolos desconhecidos, mesmo após vários anos da pri-
meira versão. Então, a comunidade juntou-se e criou o que hoje é o
ecossistema P4/P4Runtime. Sendo o P4 uma linguagem destinada à
programação do comportamento do plano de dados e o P4Runtime
o equivalente ao OpenFlow para equipamentos que suportam P4, no
entanto permite uma gestão do comportamento do plano de dados in-
dependente do dispositivo e do protocolo, uma vez que não assume que
os equipamentos de rede têm um comportamento fixo bem definido,
normalmente descrito pelo chip ASIC.

Neste trabalho, faz-se uso do ecosistema do P4 para implementação de
offloading de funções para os próprios equipamentos de rede e avalia-se
se esta solução traz benef́ıcios para a performance da rede. Devido à
pouca exploração em P4 de sistemas publish-subscribe, que dependem
tradicionalmente de brokers, foi decidido fazer offloading de funções
de um desses sistemas através do uso de P4, permitindo ainda que a
solução como um todo possa ser comparável com as oferecidas por
um broker distŕıbuido. No entanto, o P4 tem limitações ao ńıvel de
gestão de sessões TCP. O Zenoh, um protocol publish-subscribe ainda
em evolução e direcionado para IoT, permite também transporte sobre
UDP, e é por isso um grande candidato a ser implementado em P4 para
demonstrar as vantagens de fazer offloading de processamento para o
plano de dados.

O sistema conceptualizado e desenvolvido foi então comparado com
outros dois sistemas mais tradicionais que não fazem uso de offloa-
ding. Os resultados são animadores mostrando que existe benef́ıcio
em fazer offloading de certas funções para o plano de dados, visto que
certas operações podem ser feitas mais perto do utilizador final. No
entanto, comparando os resultados com os oferecidos pelo Zenoh puro,
os resultados são piores, sendo isto explicado pelo facto de os equipa-
mentos de rede utilizados serem switches em software que não estão
preparados para ambientes de produção e são muito penalizados por
diversos fatores do comportamento do plano de dados. É por isso ne-
cessário fazer testes em equipamentos de hardware para uma avaliação
mais profunda e consequente conclusão.





Keywords Next-Generation Software Defined Networks, P4, Programmable Data
Plane, Offloading, Zenoh

Abstract The fifth generation of mobile networks (5G) are able to offer better
services than its predecessors mainly through the usage of software
defined networks (SDN) and network functions virtualization (NFV)

However, after multiple solutions developed using OpenFlow, the con-
clusion was that the even after several years of the first version released,
OpenFlow fails to offer full flexibility and cannot handle unknown pro-
tocols.With that in mind, the community got together and created
what is known today as P4. P4 is a language designed to program the
data plane behaviour, that, with the help of P4Runtime, the alternative
of OpenFlow to P4 enabled devices, it allows the management of the
data plane behaviour regarding the target or the protocol. All of that
because, unlike OpenFlow, P4Runtime does not assume that network
devices have a fixed and well defined behaviour, usually described by
the ASIC chip.

In this work, P4 ecosystem is used to implement offloading of functions
to the network devices and evaluate whether that is impactful for the
network performance. Given the low amount of work developed with
P4 regarding publish-subscribe systems, that traditionally rely on bro-
kers, it was decided to offload several functions of such systems to the
dataplane with P4, leading that the overall solution can be comparable
to distributed broker ones. However P4 is limited regarding the mana-
gement of state related data, just like of TCP sessions, which many
publish-subscribe system rely on. Zenoh, a new publish-subscribe pro-
tocol that is still in early phases and directed to IoT, is also able to
run over UDP and therefore is a great candidate to be implemented in
P4 to overcome such issues. It is then used to show the advantages of
doing offloading of processing to the dataplane.

The conceptualized system was then compared to two more traditional
ones, that do not make use of offloading. The overall results achieved
are promising. Results show that there are benefits in the offloading of
certain tasks to the dataplane and therefore be closer to the end user
and with that improve latency. However, regarding the pure Zenoh,
the results achieved are poorer. That can be explained by the usage
of software switches that are not production grade ready and whose
performance is highly impacted by several data plane factors. That
makes it necessary to do more tests on expensive hardware equipment
for a more concrete conclusion.
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Chapter 1

Introduction

In the recent years, mainly due to the effort made by the 5G research community, there

was a shift from the traditional network to more scalable and programmable ones. Solu-

tions such as Software-Defined Networks (SDN) and Network Function Virtualisation

(NFV) emerged. However, those solutions still lack fundamentals such as hardware and

software independence, which essentially means that one is still stuck to specific hard-

ware manufacturers and proprietary software tools, making it not truly independent as

it was designed and conceptualized to be. This work aims to present a next generation

solution that aims to fill the gaps presented in the previous solutions. This chapter

starts to present the motivation behind the work done, followed by the statement of the

problem and the objective of the work here presented. It ends with the overall structure

of the document and the contributions of this work to the research community.

1.1 Motivation

In the early 60’s, some brilliant minds in the United States decided that they could

create a system to trade information on a real time basis, rather than using the widely

used but limited circuit switching systems. That system would be based on packet

switching which allowed to send more information. The experiments, led to the con-

clusion that computers sharing the same clock, could work together and even fetch

information from remote machines, something that the telephone lines did not allow

to do [1]. That system, whose main objective was to help engineers, was later named

what we call Internet [2].

Today’s Internet is much more than the original idea, however, the objective is the

same, to keep people connected. Studies show that by the years, more and more

equipments are being connected to the internet, in fact, in 2018 the number of devices

connected were more than the planet’s overall population [3]. By 2023 there are ex-

pected to be around 30 billion devices connected, with half of the connections being

Machine-to-Machine (M2M) mainly due to the emerging number of internet of things

(IoT) devices. The growth in the number of devices and connections will also bring

traffic to the internet. Services such as streaming, gaming, etc, everything that need to

transmit video across the network, are the most bandwidth usage services. The more
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quality the videos have, the more demanding it will be to the network. The Standard

Definition (SD) has a bit rate of 2 Mpbs, the High-Definition (HD) as a bit rate be-

tween 5 and 7 Mbps whereas Ultra-High-Definition (UHD) or 4K resolution has a bit

rate between 15 and 18 Mbps, which is 9 times bigger than SD and 3 times the HD. In

addition to that, 4K TV sets have a compound annual growth rate of 27% which means

that by 2023, 66% of the TV sets will be 4K [3]. In a world where not only TV’s but

also security cameras, computer monitors and all other equipments supporting video,

are starting to have 4K resolution, there is a need to improve the performance of the

current network solutions.

This document addresses a possible solution that can be used to improve networks per-

formance, which can be achieved through function offloading. It means that part or the

totality of the functionalities of systems, are to be transferred and therefore executed

on another equipment rather than the one where they are normally executed [4, 5].

This process is normally used to free limited resource devices, such as IoT devices,

from hard processing tasks, but it can also be used to transfer that task to dedicated

devices, as in this case. If tasks can be offloaded to network equipment, and therefore

closer to the end user, then network links can be freed from a good amount of traffic.

The current solutions started to free the network devices from heavy specific processing

workload tasks, having them performed on a Virtual Machine (VM) or by containers

in a cloud, which brings a lot of flexibility to scale the network components. However,

due to high demand it could be beneficial to bring that processing back to the network

devices, which can improve latency. Not to the same old and limited, but new, fast

and fully programmable devices.

Traditional SDN heavily rely on OpenFlow, which is limited and makes users con-

strained to a set of very strict rules. That essentially means that at the dataplane

level, programmable networks are forced to follow a strict set rules, not being able

to use the full potential and therefore not being 100% programmable [6, 7]. That is,

developers are only able to deploy what OpenFlow is able to process, which is not a

problem for well know and established protocols, but a limitations when one wants

to easily test new and custom protocols. This faulty behaviour can be overcame with

P4, a protocol and target-independent packet processing language, that emerged as

an alternative to OpenFlow to bring increased programmability and flexibility. The

overall P4 ecosystem is designed to free the network managers from the top to bottom

solutions offered by vendors, mainly relying on open source technologies. Such charac-

teristic allows the usage of the cloud computing features to offer fast scalability of the

network when it is demanded. However, such work is still in early stages and needs

validation. Nevertheless, P4 it’s continuously being improved to offer several other
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features that were not possible up to the time of its creation. For example, at the time

of writing, P4 allows the offloading of features to the dataplane. Such feature, with the

right equipment and solution design, can enhance the network performance, for multi-

ple parameters, such as network traffic releasing, lower latency, higher throughput, etc.

Having the possibility to implement P4 based solutions can ease the network managers

jobs while reducing the time to market of the developed solutions, which can lead to a

massive adoption of P4 [8].

At the time of writing, it is very hard to deal with state related information with

P4 and therefore hard to define publish-subscribe protocols that usually rely on TCP

for reliability purposes. No one can deny the benefits of TCP for publish-subscribe

protocols. While it eases the protocol definition, given the reliability purposes are the

responsibility of the transport protocol, it guarantees the deliver of all packets. How-

ever, that is not a problem if publish-subscribe protocols are able to run over stateless

transport protocols. Although still unspecified, Zenoh[9] is the protocol that ticks all

the needed boxes. It is an emerging un-specified publish-subscribe protocol mainly

targeted to IoT. It implements its own reliability measures and therefore it is designed

to run over stateful and stateless transport protocols. That is, it can run over UDP,

making it the perfect candidate to implement in P4, given its limitation regardless

stateful information.

The outcome of the work here presented is the study, validation and evaluation of

offloading features in publish-subscribe systems to the dataplane through the usage of

the P4 ecosystem. Such system can be used, among others options, for alert messaging,

that is, if a system failed or it is failing, triggering actions, or just collecting metrics.

One thing that those systems have in common is the need of faster message delivering.

The faster the message is delivered the less problems are likely to exist.

The key takeaway of this work is the suitability of P4 for such systems and how it

compares to traditional solutions.

1.2 Problem Statement

Solutions such as SDN and NFV brought lots of benefits. Reduced CAPEX and OPEX,

centralized control and fast scalability of the network are some of the examples. How-

ever, there are still limitations. For example, the tools used in SDN work very well

with known network technologies and protocols, yet, fail to work with the new and

emerging ones. That means network managers have their hands tied when it comes

to deploy and experiment new solutions. Therefore, the deployment of new solutions
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and/or new experiments will only be able to be done when the software and/or device

manufacturer starts to provide support for the used protocol. The outcome of this

behavior is reduced innovation, something that goes against the principles of SDN and

NFV.

1.3 Objectives

The overall purpose of this work is to experiment and evaluate how offloading publish-

subscribe features to the dataplane will influence the network performance. More

specifically, study the value and benefits of publish-subscribe function offloading, from

software to hardware, using the P4 system. The network devices are fully programmable

and must be able to reduce the network traffic while speeding up the processing time,

due to their dedicated hardware.

With an IoT publish-subscribe scenario in mind the overall goal can be divided into

several minor objectives. The first one is to study the emerging Next-Generation

Software Defined Networks (NG-SDN), its underlying technologies and how it differs

from current solutions. The second objective is the development of a proof-of-concept

ecosystem designed to validate the followed approach, that is, to experiment how such

technologies can interact with each other and how can that be used to solve a specific

problem. With that validated, a specific use case must be chosen, implemented using

the with the same P4 ecosystem developed before and conclusions must be drawn on

how such solution is compared to more traditional ones.

1.4 Document Structure

Chapter 2 starts to describe what is 5G, how it works and how it differs from the

previous generations of mobile networks. Given that explanation, it presents some of

the traditional tools used in order to fulfil the needs of 5G networks, such as NFV

and SDN. Such tools, even though heavily used in today’s networks suffer from several

faults that need to be addressed. The chapter then offers a new solution that aims

to fix the flaws and errors of the presently used technologies. It gives an overview on

what the software stack is and how it compares to others technologies available. At the

end of the chapter an overview of the developed work with this new technology stack
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is presented.

Chapter 3 defines the experimental setup that was created as a proof-of-concept. It

starts to describe the technologies used and the reason of its choice. It explains what

Docker and Mininet is and the benefits of testing state-of-the-art networks with those

two technologies. Then it essentially describes how it was designed and the blocks that

compose the system, as well as the reason of choice for the block technology and even

the version used. It explains how software principles, such as CI/CD, can be integrated

into P4 network based solutions and, in the end it presents a top to bottom approach

for a complete solution with a firewall use case, where the system is controlled by and

external app. Such app offers a GUI and is intended to ease the work of network man-

agers when deploying the routing behaviour to the network devices. It then details how

Zenoh can be implemented using the conceptualized system developed previously for

validation. It describes both the ingress and egress pipeline behaviours for the designed

solution, as well as the behaviour and implementation of the traditional solutions that

are used to evaluate the system against. At the end of the chapter the solution is

evaluated against the traditional solutions for several network metrics, such as latency,

jitter and lost packets. Lastly, it presents other evaluations that can help to explain

the obtained results and take conclusions.

Chapter 4 presents the conclusion inferred from the results obtained and offers a per-

sonal view on what must be the continuation of this work. That is, improve the

designed solution through the increment of features that can be offloaded and what

those features can be.

1.5 Contributions

The work here developed makes use of all the available technology stack to implement

the offered solutions and it is also the first to implement Zenoh with state of the art

technologies. Such work, given it is an unspecified protocol, can be a good starting

point for future and more production grade solutions. Also, this work is one of the few

that implement publish-subscribe systems using the P4 ecosystem.

It resulted in an accepted and presented poster to EuroP4’21

Alexandre Santos, José Quevedo and Daniel Corujo, “Realizing Zenoh with programmable

dataplanes”
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Chapter 2

State of the art and Background

The new generation of wireless broadband networks is a big upgrade from the previous

network generations. Even though it is build on top of the older generation it aims

to be faster while offering more bandwidth and lower latency. That way, services like

autonomous driving, which heavily rely on big data and low latency communications,

can really start to be the focus of car and AI companies, meaning an improvement to

both industrial and personal lives. It is then more software focused than all its prede-

cessors. However, there are already some known faults that can be corrected, especially

in software defined networks. This chapter starts by presenting the 5G objectives and

how SDN and NFV technologies were leveraged to further improve the operation of 5G

services. It is followed by the theoretical background for a new generation of software

defined networks with fully independence and even better service delivery in mind.

2.1 Fifth Generation of Mobile Networks (5G)

The Fifth Generation Networks is the new wireless broadband networks and they are

much more than just a new faster version of the previous generation. One thing, not

so common, is that it is built on top of the previous generation, meaning that several

resources are shared. One may ask, if it is built on top of the previous generation, i.e.

there is a shared infrastructure, how can it be different and be such a big improve-

ment. Well, unlike the previous generations, 5G must provide support for all of the

previous generations RATs whatever the generation they are used in, something that

4G networks did not have. Still, using the same infrastructure does not mean that no

new hardware will be added, in reality, 5G will have more cells deployed than any of

the previous generations [10]. In 4G, towers were big and high energy dependent, yet,

in 5G, towers can be smaller due to their energy efficiency, making them perfectly fit

for higher frequencies. However, the higher the frequency, the greater the attenuation

during signal propagation, meaning less range and more towers deployed. In fact, 5G

is targeting not only outdoor but also indoor cells, and although the latter is targeted

for really specific areas, the cells are so small that are often called femtocells and have

a range of about tens of meters [11].

4G was heavily characterized by the change from both packet and circuit to all IP
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packet switching and minor changes in the network from hardware to software. This

new generation however, aims to be more energy and cost efficient while providing less

latency and decoupling between network components, have higher data rates, faster

scalability and be based on a cloud native environment where services are deployed

using containers [12]. All of those features are sustained by technologies as SDN and

NFV, see Section 2.3.

Figure 2.1: 5G Mobile Network Services [13]

In Figure 2.1 are presented the three main services categories classified by the Inter-

national Telecommunication Unit (ITU).

• Enhanced Mobile Broadband (eMBB) aims to provide high data rates at

low latency while providing uniform connectivity throughout the whole coverage

area. That will translate in a better Quality of Experience (QoE) for the user,

where some of the use cases are virtual reality (VR) and augmented reality (AR).

It will also allow high user mobility, such as in cars or public transport.

• Massive Machine Type Communications (mMTC) aims to focus on ser-

vices that demand high connectivity, such as smart cities and smart agriculture.

• Ultra-reliable and Low-latency Communications (uRLLC) aims to be

the key enabler for Industry 4.0, since it is focused in latency-sensitive services

such as assisted and autonomous driving and remote management. One of the

innovative features of this service is the usage on mission critical services and

ultra reliable communication where it can be said that every second counts.

To summarise eMBB is focused on high bit rate services, mMTC on high connectivity

equipment and uRLLC on low latency services. Nevertheless, one should keep in mind
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that having three different categories does not mean that use cases cannot belong to

several services at the same time. For example, mobile voice services are one case that

can be inserted in all of the main categories, just like it is shown in Figure 2.1.

2.1.1 5G Architecture

One of the key features for the implementation success of such a complex solution

as 5G, is standardization. The Third Generation Partnership Project (3GPP), who

is actually a union of seven telecommunications standard development organizations,

such as ARIB, ATIS, CCSA, ETSI, TSDSI, TTA and TTC, is the industry group

responsible for such task, having set the first 5G specifications with its Release 15,

whose focus where 5G new radio and core network. Up to the date of writing, both

Releases 15 and 16 are under the frozen state, meaning that specifications are closed

and no more functions can be added to such release. Due to COVID-19, Release 17

was delayed and it is expected to be frozen by mid 2022.

In Figure 2.2 it is depicted the overall 5G system architecture for non-roaming scenarios,

i.e. for 3GPP accesses.

Figure 2.2: 5G System Architecture [14]

• User Equipment (UE) - a device connected to the network.

• Radio Access Network (RAN) - network infrastructure that acts as a con-

nection point for user equipments to access a network via radio signal, usually a

core network.

• Data Network (DN) - network which users want to access.
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• Access and Mobility Management Function (AMF) - it receives all user

related connection and session information, however, it is not responsible for

session information processing. It’s only responsibility is to handle events such

as registration, connection, reachability and mobility.

• Session Management Function (SMF) - responsible for UE’s session man-

agement and configuration of traffic steering at UPF.

• User Plane Function (UPF) - it is the gateway for traffic data from the Access

Network, traffic which is delivered through a GPRS Tunneling Protocol (GTP)

tunnel. Tasks performed by UPF can be packet routing and forwarding, policy

enforcement, interconnection to DN, etc.

• Policy Control Function (PCF) - it is used not only for QoS and charging

for sessions, i.e. it controls and monitors the usage of resources, but also for

controlling service access and authorization, meaning that PCF can verify the

right to access a specific service stored in a Unified Data Repository (UDR).

• Unified Data Repository (UDR) - it is the entity responsible for the storage

and retrieval of subscription data by the UDM, storage and retrieval of policy

data by the PCF and storage and retrieval of structured data for exposure.

• Authentication Server Function (AUSF) - as the name suggests, it is re-

sponsible for the authentication of UEs and the supply of key material to the

requester NFs.

• Unified Data Management (UDM) - since it is responsible for the genera-

tion of authentication credentials and handling of the user identification based

on subscription data and management, UDM offers services to the AMF, SMF,

SMSF, NEF, GMLC and AUSF. It can be either statefull or stateless, although in

the latter case it uses UDR to store information rather than using local memory.

• Application Function (AF) - interacts with core network in order to provide

services to support, for example, traffic routing influence, NEF access, PCF in-

teraction for policy control and IMS interaction with core network. Based on the

implementation, AFs considered to be trusted by the operator can be allowed to

interact directly with relevant Network Functions.

• Network Slice Selection Function (NSSF) - selects the set of Network Slice

instances serving the UE and determines the AMF Set to be used to serve the

UE, or, based on configuration, a list of candidate AMF(s).
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• Service Communication Proxy (SCP) - some of the functionalities offered

by SCP are indirect Communication, delegated Discovery, message forwarding

and routing to destination NF/NF service and message forwarding and routing

to a next hop SCP.

• Network Repository Function (NRF) - it is responsible for service discovery

function and for maintaining the health status of NFs and SCP.

• Network Exposure Function (NEF) - supports secure exposure of capabil-

ities and events to 3rd party, AFs, Edge Computing, etc and provides a means

for the Application Functions to securely provide information to 3GPP network

and the translation of internal-external information. It also exposes analytics for

external parties.

2.2 Network Functions Virtualization (NFV)

Network Functions Virtualization (NFV) is a technology that is designed to boost the

deployment of services in the network. It aims to implement Virtual Network Functions

(VNFs), which generic servers or cloud infrastructures can instantiate without the need

of specialized and dedicated hardware, decoupling the hardware from the software.

Some of the NFV benefits are reduced CAPEX and OPEX, increased time to market

while encouraging the development of open source software which improves innovation

[15].

Depicted in Figure 2.3 is the reference architecture for NFV, standardized by the

European Telecommunications Standards Institute (ETSI). The architecture is only

described at function level, making the implementation details open for everyone who

wants to deploy such model.
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Figure 2.3: NFV reference architectural framework [16]

Analysing the figure above it becomes clear that exist three main working domains

easily identified. The first, contains the virtualized network functions. The second,

at the bottom of the image, is the Network Functions Virtualisation Infrastructure

(NFVI), which is composed by all the hardware and software components needed for

the deployment, management and execution of VNFs. The last, presented at the right

part of the image, is the NFV Management and Orchestration that comprises four

internal components:

• NFV Orchestrator - is in charge of the orchestration and management of NFV

infrastructure and software resources.

• VNF Manager - it is responsible for VNF lifecycle management, i.e. for the

instantiation, update, query, scaling and termination.

• Virtualised Infrastructure Manager - it comprises the needed functionalities for

the control and management of the interaction of a VNF with computing, storage

and network resources. It performs resource management, being in charge of

the inventory of software and network resources, the allocation of virtualisation

enablers, etc, but is also responsible for operations like root cause analysis of

performance issues and the collection of fault information. Usually, multiple

instances of this component are deployed.
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• Service, VNF and Infrastructure Description - it is a dataset with information

regarding the VNF deployment template, VNF Forwarding Graph, service-related

information, and NFV infrastructure information models.

The architecture comprises another component, which is the Operations Support Sys-

tems and Business Support Systems (OSS/BSS), already present at the most of the

telecommunications service providers stack. However, there is a challenge if such sys-

tems are still legacy, making the update of such systems a priority in order to be able

to fulfill the 5G use cases [17].

2.3 Software Defined Networks (SDN)

Motivated by the advances in cloud computing and the need of CAPEX and OPEX

reduction, a new concept of networks have emerged. SDN is a new type of networks

that aims to make them more flexible and scalable through an architecture where

software is decoupled from hardware, unlike previous production networks where each

network equipment implemented the full stack. It does that by separating the control,

or “Network OS” [18], and data planes. The data plane is responsible for the forwarding

of packets, the reason why it is also called forwarding plane, while the control plane is

responsible for the forwarding decisions. One of the key aspects of the control plane its

the centralization it brings. Having a centralized control reduces memory usage since

network topology does not need to be stored in every network equipment but rather

on a single device, or multiple for redundancy and fault tolerance. It also improves

network agility since multiple network equipment can be updated concurrently and

therefore the network adapts faster to topology changes. Even though SDN was not

created to fulfil the needs of 5G, since it emerged way before, it is widely used by

network operators and providers due to the characteristics mentioned above.

2.3.1 Architecture

The overall architecture is depicted in Figure 2.4 and it can be separated in three

different layers.

• Infrastructure Layer - contains the network equipment managed by the con-

troller(s), typically hardware devices.

• Control Layer - contains one or more SDN controllers and acts as a middle-

ware between the Application and Infrastructure layers, abstracting the all of the
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hardware details from the software. The most used protocol for the interaction

with the Infrastructure layer is OpenFlow.

• Application Layer - contains software that interacts with the SDN controller

and whose function is to define the network behaviour. Applications can be as

simple as metric collectors to highly complex routing algorithm enforcers.

Figure 2.4: SDN Architecture

One key aspects of SDN is that, for the same network, different equipments can be

controlled by different controllers, as depicted in Figure 2.5. Different parts of the net-

work can even use different southbound technologies and network equipment software

without network malfunction, i.e. traffic still go through the network with the desired

behaviour.
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Figure 2.5: Multiple Controller Schema

While NFV and SDN are not required to one another, they are highly complementary,

one can even say that SDN can be described as one of the NFV enablers. In Figure 2.6

it is presented the possible solution, proposed by ETSI, where SDN resources can be

used in NFV architecture. In blue are presented the possible SDN resource locations,

where a) is a physical switch or router, b) a virtual switch or router, c) a software based

SDN enabled switch in a server NIC and d) a switch or router as a VNF. In purple

is presented the possible location of the SDN controller. In 1) the SDN controller

is merged with the virtualized Infrastructure Manager functionality and therefore the

two functions are not distinguishable, in 2) the SDN controller is virtualized as a VNF,

in 3) the SDN controller is part of the NFVI and is not a VNF and finally in 4) the

SDN controller is part of the OSS/BSS. There is another possible location where the

controller is a physical network function (PNF), but it was not studied and therefore

does not appear in Figure 2.6.
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Figure 2.6: Possible SDN Resource Locations in the NFV Architectural Framework
[19]

2.3.2 Protocols

OpenFlow is the standard for the interaction between the control and infrastructure

layers. First, one is going to present OpenFlow and how it gained advantage over all

its opponents and then present some of the other possible solution and how they differ

from OpenFlow.

• OpenFlow - this protocol was first proposed in 2008 as a communication protocol

to control the forwarding plane of a network or a device, however it was only in

December 2009 that the first version was released. In March 2011, there was a

critical event that would change OpenFlow forever. Open Networking Foundation

(ONF) was created with the specific purpose of accelerating the delivery and

commercialization of SDN, and it is today the entity responsible for the release

and management of new OpenFlow specifications. ONF leverage on OpenFlow

and its standardization was an important factor for it to become the most used

southbound protocol. Up to the time of writing, several other solution emerged as

OpenFlow alternatives but ONF still continue to base its solutions on this same

protocol [6]. OpenFlow is used to carry control messages from the centralized

controller to network equipment and started with a limitation of a single flow
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table with three components in a flow entry, that were Header Fields, Counters

and Actions. Throughout the years, it evolved to several fields, multiple tables,

meters and groups. Fields which are pre-defined and fixed [20, 21].

• Open vSwitch Database (OVSDB) - OVSDB appears as an alternative for

OpenFlow in multiple online searches, however, that is not the case. It is assumed

that only both are mutually exclusive, but that is not true. While OpenFlow is

designed to program flow rules, OVSDB main function is specifically to configure

the OVS1 itself, where OVS is a virtual switch that uses the OpenFlow protocol.

Therefore it is common to use OVSDB alongside OpenFlow [22].

• NETCONF - It provides the mechanism for the installation, manipulation, and

deletion of network devices configuration [23].

One could think that southbound protocols compete with each other for space in SDN

environments. However, in fact, several solutions use multiple southbound protocols in

parallel. OpenFlow is specialized in adding forwarding behaviour into network devices

whereas OVSDB and NETCONF are specialized into device configuration and therefore

often used alongside with OpenFlow. Many more examples exist but are not the focus

of this work.

2.3.3 Network Controllers

The network controller on a SDN is the critical point of its success [24], since it is

responsible for the control logic of the network.

There are multiple open-source controllers available which can be divided into two cate-

gories, physically centralized or distributed [24]. A centralized SDN control implies that

only a single controller manages the entire network, which can lead to scalability issues.

Examples of open-source centralized controllers are Ryu(Python) 2, POX(Python)3,

NOX(C++)4, FloodLight(Java)5 [25]. Distributed SDN control means that several

controllers can manage the network, and is known for mitigating the issues brought

about by centralized SDN architecture (poor scalability, Single Point of Failure(SPOF),

performance bottlenecks, etc). That can be achieved either through a flat or hierar-

chical architecture. In the flat architecture, each area of the network is assigned to a

1Open vSwitch website:https://www.openvswitch.org
2https://ryu-sdn.org/
3https://github.com/noxrepo/pox
4https://github.com/noxrepo/nox
5https://groups.io/g/floodlight
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specific controller. The hierarchical, on the other hand, the control plane is vertically

partitioned, that is, it uses multiple levels (layers) depending on the required services

[25]. Examples of open-source physically distributed controllers are ONOS(Java) 6 and

OpenDayLight(Java)7.

2.4 Next-Generation Software Defined Networks (NG-

SDN)

In the previous sections, the definition and tools of 5G networks were presented with

special focus on SDN and NFV. This section, however, aims to point out the flaws

in the current solutions and present possible alternatives that could be the next step

towards the new generation of networks, either through the update of 5G specifications

or the definition of Sixth Generation of Mobile Networks (6G).

2.4.1 Overview

The objective behind SDN and NFV was to give freedom, from proprietary hardware

and software, to network operators, while deploying more agile networks. Even though

network management got easier, with the network control led by applications, networks

are still not able to adapt as fast as desired. Operators are still stuck to proprietary

vertical stacks, i.e., equipment manufacturers are still the ones with power, deciding

when to release, for example, SDN updates, such as support for new OpenFlow versions.

In reality, OpenFlow is also one of the factors that boosted the arising of other solutions.

Given the close way of how OpenFlow is implemented, having pre-defined fields, it does

not scale well on protocol update or even new network protocols. New solutions aim

to provide freedom from equipment vendors while making the network more scalable

and agile even for unknown protocols.

The overall design and tools of NG-SDN are to change the control of the networks to

software developers. More and more networks are to be controlled solely by software,

where hardware is just a means to run that same software. One key factor that brings

network deployment and management towards software development, is the possible

usage of well known practices, such as continuous integration and continuous delivery,

to deploy and update networks.

6https://opennetworking.org/onos/
7https://www.opendaylight.org/
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2.4.2 Bare Metal Switching

Unlike traditional solutions, where network providers are stuck to a stack of a specific

vendor, i.e. the equipment has already pre-defined hardware and software, bare metal

solutions have a degree of freedom in the customization of the equipment hardware

while saving capital and operational costs using open source software. Such solutions

also grant faster innovation, greater control of the services and the change of the

device’s hardware and software, something not possible when dealing with off the shelf

products and proprietary software. However, if one is not interested in building the

equipment component to component, bare metal switch vendors such as EdgeCore,

Delta and others, already offer off the shelf hardware solutions, with the software still

up to the operator. With full vendor abstraction in mind, bare metal solutions are the

standard to have deployed in P4 architectures.

2.4.2.1 P4

P48 is a high-level language designed to data plane programming of network devices.

It enables developers to promptly and easily define, at a very fine level, the desired

forwarding pipeline, using a C like sintax and semantics. That pipeline defines the way

equipments process and forward packets, providing an easy way to deploy new and

custom protocols and services. One of the best examples to show how P4 is easily used

to deploy and test new protocols is the work of Kozlowski et al. [26]. The authors

used P4 to test a quantum network protocol, the Midpoint Heralding Protocol, on a

quantum simulated network. Through the use of P4 programs, the authors were able

to fully specify how the dataplane should process packets and the expected format of

packets and therefore able to address quantum principles such as entanglement. With

entanglement being a property of quantum systems which states that, when particles

are twisted together in such way, they form a single system and the observable value of

one is equal to the observable value of another, and therefore every operation applied

to one particle correlates to the others as well [27, 28].

Such work would not be possible without the protocol independence offered by P4. The

main objective of P4 is to be able to fully program high performance forwarding ASICs,

software switches, FPGAs, NICs or CPUs, without limitations, even after programs

are deployed into production. That way, equipments can dynamically adapt to network

configuration and topology changes. Currently, P4 as already passed through multiple

8P4 specification page: https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
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version revisions being P416 the final version implemented. Depicted in Figure 2.7 is

the overall architecture of P4.

Figure 2.7: P4 Architecture

2.4.2.2 P4 Compiler

The P4 compiler is a specific compiler for the P4 programming language whose function

is to transform the high-level pipeline definition into low level code readable by the

network equipment. The compiler essentially produces two files upon the compilation

of a P4 program. One, named target-specific configuration binary in Figure 2.7, is

different depending on the target. Target here represents a physical or software device.

That file is used by the target to process packets in a way that is consistent with

the pipeline defined in the P4 program. The other generated file, named P4Runtime

contract in Figure 2.7, is equal for every target and represents a schema of the P4

program in a Protobuf Text format.

For switches other than software, for example, switches with the barefoot tofino chip,

the compiler needs to be provided by the chip vendor. In the software switches case

(BMv2), the community offers an open-source baseline solution of a P4 compiler9 that

can be changed to offer more features accordingly to the user needs. The work of

Zanna et al. [29] is one of the examples. The authors developed an extension to the

P4 reference compiler, offered by the P4 community, to support the monitoring and

control of wireless network frames.

2.4.2.3 Forwarding Pipelines

It was already mentioned that P4 programs define the desired pipeline of a network

equipment. However, one has not defined what this pipeline or what its purpose is.

9P4 reference compiler GitHub page: https://github.com/p4lang/p4c
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The very first step of a network equipment on a packet arrival is the extraction of the

packet headers, whether they are Ethernet, IPv4 or IPv6, TCP, etc. The information

extracted on those headers is later used in order to know what to do next or where

to send a packet. High-speed switches like P4 ones, use a multi-stage pipeline to do

that. This way, even though there is a end-to-end latency in the order of nanoseconds,

multiple packets can be processed in a parallel way, i.e. at the same time. For instance,

while one packet is at stage 2 of header extraction, if there is at least one packet in

the waiting queue, then it can be processed on the stage 1 of that pipeline. Pipelines

have different implementations based on the freedom of the switching chips. Switching

chips like the ones provided by Barefoot Networks 10, where pipeline stages are pro-

grammable, have a different pipeline implementation than the switching chips provided

by Broadcom 11, where the stages are fixed function, i.e. the chips are limited to do the

operations already defined. While the former type of chips has the most freedom and

future scalability, the latter type of chips is the most common in the industry. Even

though fixed-function chips dominate the market at this point, the objective of this

work is to provide an overview of the programmability benefits . So, for the purpose

of the job one will only present the architecture of programmable pipelines and the

purpose of its different stages.

Every programmable pipeline follows the architecture depicted in Figure 2.8, which

gives an overall view of the Protocol Independent Switch Architecture (PISA). It is vis-

ible that it is composed by three main components, the Parser, Match-Action Pipeline

and finally, the Deparser.

Figure 2.8: Protocol Independent Switch Architecture (PISA)

The parser is responsible for packet header extraction, that is made by mapping the bits

into pre-defined structures. The match-action pipeline is responsible for performing ac-

tions on the packet, i.e., add or change headers, store metadata, etc. The deparser is

10Barefoot Networks Chips: https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch.html
11Broadcom Chips: https://www.broadcom.com/products/ethernet-connectivity/

switching/strataxgs
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responsible for gathering all of the packet valid information, build the packet and send

it to the desired egress port.

2.4.2.4 Pipeline Abstraction

Different targets implement the physical pipeline differently. It is the job of the P4

compiler to map the logical to the physical pipeline. To make this possible, there are

several logical architectures designed for different targets. Table 2.1 summarizes the

existing architectures and targets12.

Target Pipeline
BMv2 Simple Switch v1model.p4
BMv2 psa.p4
Tofino tna.p4 13

NIC pna.p4
eBPF ebpf model.p4
DPDK psa.p4

Table 2.1: Targets and available architectures

While tna.p4 is targeted for Tofino chips, pna.p4 for NICs, etc, psa.p4 is the ideal

logical pipeline intended to run on every single target.

Figure 2.9: Portable Switch Architecture (PSA)

Comparing Figures 2.8 and 2.9, the differences are very clear. First the PSA pipeline

gained a new component, the traffic manager, responsible for queuing, replicating, and

scheduling packets. Second, the pipeline is now clearly divided into Ingress processing

(left blocks) and Egress processing (right blocks).

PSA represents the ideal architecture, however, it is still a work in progress and there-

fore, developers must use the architecture that fits them the better.

12https://github.com/p4lang/p4c/tree/main/p4include
13tna.p4 must be provided by the chip vendor along with the compiler
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2.4.3 Switch Operating System

Just like a server or a personal computer, bare metal switches also need an operating

system running. The common foundation for this Switch OS is the Open Network

Linux (ONL), which is an open source project of the Open Compute Project (OCP).

Up to the time of writing there are several switch OS options available to run on top of

ONL. Examples of such options are Stratum14, SONiC15, which will be both described

in the next sections, FBOSS 16, DENT 17 and DANOS18.

2.4.3.1 Stratum

Stratum is an open source silicon independent switch operating system developed by

ONF for SDN, where silicon independence means that Stratum wants to be free from

proprietary silicon interfaces and software APIs. However, Stratum is more referred

as a thin switch operating system, meaning that Stratum alone is not able to process

and forward packets. In fact, Stratum is installed on top of ONL whose function is to

perform hardware abstraction. Stratum is then responsible for providing a set of inter-

faces capable of configuring the settings and behaviour of the device. That interfaces

are exposed on the Northbound side and the three most important are P4Runtime,

gNMI and gNOI. All of the mentioned are gRPC services. The overall architecture is

depicted at Figure 2.10.

Figure 2.10: Switch OS with Stratum

14https://opennetworking.org/stratum/
15https://azure.github.io/SONiC/
16https://github.com/facebook/fboss
17https://dent.dev/
18https://www.danosproject.org/
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P4Runtime

P4Runtime is an API defined by a program independent interface whose objective is

to control the forwarding behaviour of the equipment at runtime, based on the pipeline

described by a P4 program.

API Target Independent19 Protocol Independent20

P4 compiler auto-generated X -
BMv2 CLI - X
OpenFlow X -

SAI X -
P4Runtime X X

Table 2.2: Comparison between runtime control APIs

In Table 2.2 it is possible to see how the P4Runtime compares to other used APIs.

Analysing the table, it is clear that P4Runtime is the only providing target and pro-

tocol independence. The former, in the P4Runtime case, refers to the fact that for

different equipment, either software(BMv2) or hardware(ASICs, etc), the P4Info file,

or P4Runtime contract as in Figure 2.7, is the same. The latter means that P4Runtime

messages do not depend on the data plane packet headers. In other words, messages

are processed even for the new unspecified or proprietary protocols if they are described

in the P4 program pipeline. Therefore, to summarize, even when the P4 pipeline or

the hardware changes, the interface stays the same [30].

One of the key points for P4/P4Runtime is that it aims to be as fast as fixed protocols

such as OpenFlow, something that has been already proved [31]. It is an important

factor given that if an equipment cannot process packets in a short amount of time, it

could lead to buffer overflows and consequently packet losses.

It is also worth mentioning that most of OpenFlow research is heavily control focused

and P4 is purely data plane focused, therefore P4/P4Runtime is the perfect alterna-

tive to OpenFlow on the data plane. However, while OpenFlow is supported by many

devices, P4 and P4Runtime, which are still in early phases, have a limited number of

compatible devices.

19Target Independence: The contract is equal no matter the device, physical or software
20Protocol Independence: Control and data planes messages are not limited by packet headers
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Management Interfaces

gRPC Network Management Interface (gNMI) is a service used to manage networks

elements using gRPC, which make it way more efficient than others, such as NET-

CONF, RESTCONF or native REST, whereas gRPC Network Operations Interface

(gNOI) is a set of gRPC-based microservices that allow operations such as certificate

management, software upgrade, etc.

2.4.3.2 Software for Open Networking In the Cloud (SONiC)

Like Stratum, SONiC is an open-source switch operating system. While Stratum is

developed by ONF, SONiC is developed by Microsoft. SONiC differs from Stratum by

its ability to offer multiple services, such as BGP, DHCP Relay, SNMP, LLDP, etc,

as docker containers, ready to be used out of the box. However, the major difference

between these two switch OS is the interface used to interact with it. While Stratum

uses P4Runtime, SONiC uses SAI.

Switch Abstraction Interface (SAI)

SAI21 relies on the same objective of P4Runtime. It aims to keep the programming

interface consistent while allowing network hardware vendors to develop innovative

hardware architectures to achieve greater speeds. However, like Table 2.2 shows, SAI

is not protocol independent, given that it only allows to process what is possible by

the SAI pipeline, and therefore it does not offer the flexibility of P4Runtime.

P4 Integrated Network Stack (PINS)

With the benefits of P4Runtime and the tools that SONiC offer out of the box,

the PINS22 project was created. The project is not yet available as an open-source

one, but it is expected to be by the end of the year. It is being developed by ma-

jor companies such as Google, Alibaba Group, Intel, NVIDIA, etc, and incubated

at ONF. Such project aims to leverage the tools offered by SONiC with options as

P4/P4Runtime. That is achieved by the description of the SAI pipeline in P4 and

an optional P4Runtime server added to SONiC. This way the existing tools can be

leveraged but new tools can be also added and quickly tested due to the flexibility of

P4/P4Runtime.

21https://github.com/opencomputeproject/SAI
22https://opennetworking.org/pins/
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2.4.4 NG-SDN Network Controllers

In Section 2.3.3 were presented the most used OpenFlow SDN controllers. However, as

mentioned in the previous sections, NG-SDN uses P4Runtime and not OpenFlow. At

the time of writing there are very limited open-source network controllers that provide

P4Runtime support, being ONOS one of them.

2.4.4.1 Open Network Operating System (ONOS)

ONOS was traditionally designed to work with the OpenFlow protocol but it now

supports P4Runtime. However, ONOS has already a lot of apps developed for the

OpenFlow that should not be changed. One way that the developers found to fix this

issue, is to build a translator from OpenFlow to P4Runtime.

As depicted in Figure 2.11, which shows the overall process for flow operations, agnostic

and aware apps behave differently. Apps installed to ONOS that are pipeline aware,

have a clear definition of pipeline tables, actions, fields, etc, and can create direct flow

rules. However, traditional ONOS apps, which are agnostic to a specific P4 pipeline,

rely on the pipeliner to transform Flow Objectives into Flow Rules. Tat way, it allows

network equipment to interact with the controller the same way as in traditional SDN,

when equipment does not know how to process the packet, it is sent to the controller

where it is processed and rules can be installed in network devices.

2.4.4.2 Custom P4Runtime based controller

There is a lack of open-source P4Runtime network controllers. If one does not want

to use most of the ONOS features, there is no need to waist computational resources

on a heavy controller, since it can build their own. An example on how to build a

custom P4Runtime network controller can be found here 23. For that it must use the

specification available here 24.

23Library example:https://github.com/p4lang/p4runtime-shell/tree/master/p4runtime_sh
24P4Runtime Specification:https://p4.org/p4runtime/spec/v1.3.0/P4Runtime-Spec.html
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Figure 2.11: Flow Operations

2.5 ONF Solutions

One thing that P4 brought is the freedom of choice when it comes to build a complete

solution. One is not meant to be tied to solutions of specific vendor. ONF however is a

community driven entity and therefore its work is open source, with relevant products

to this work such as ONOS and Stratum. However ONOS is much more than it seems

to be. In fact, ONF ships with ONOS several ready to use apps, that can be turned on

to do some specific task. The one with most interest for this project is Trellis, which

is in fact a group of apps targeted to handle IPv4/IPv6 unicast/multicast, VLANs,

MPLS Segment Routing, among others. One of the most important apps of the Trellis

app stack is the Segment Routing app, which among the previous mentioned features

also allows to use tasks such as ARP and ICMP handling without changing the source

code. However that only works with a solution also developed by ONF that is a specific

27



pipeline, mainly targeted for datacenters, called fabric.p4. Such pipeline is designed to

use segment routing features to forward traffic on a leaf-spine architecture, but it can

also be used on any other topology.

2.6 Related Work

Along this chapter the P4 ecosystem was described. However, one has not mentioned

the possible applications of such technology and what are the targeted areas of re-

searchers. As already stated, P4 is designed to be as flexible as possible, which may be

the reason of its growing popularity, meaning that problems from multiple areas can

be tackled with P4. Depicted in Table 2.3 are the solutions that are currently being

actively studied. As one can see, there are plenty of areas where P4 can be used, and

with a tool that is yet to mature, one can only imagine what can be achieved in the

future.

Table 2.3: P4 research fields

Monitoring

Detection of Heavy Hitters
Flow Monitoring

In-Band Network Telemetry
DSL-based Monitoring Systems

Path Tracking

Traffic Management

Data Center Switching
Load Balancing

Congestion Notification
Traffic Scheduling

Traffic Aggregation
Traffic Offloading

Routing and Forwarding

Source Routing
Multicast

publish-subscribe Systems
Named Data Networks
Data Plane Resilience

Advanced Networking

Cellular Networks
Internet of Things

Industrial Networking
Time Sensitive Networking

Network Function Virtualization

Network Security

Firewalls
Port Knocking

DDoS Attack mitigation
Intrusion Detection Systems

Connection Security

This work aims to offer a different approach of the already implemented P4 approaches
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to publish-subscribe systems. While the majority of the research on P4 publish-

subscribe rely on custom protocols, which generally lack validation, this work aims

to present a P4 solution to publish-subscribe systems that rely in Zenoh, a rising

publish-subscribe protocol targeted to IoT. Through the usage of Zenoh one is able

to leverage P4 capabilities and offload some processing to the dataplane and therefore

closer to the end user. Also, such solution allows the reduction of packets that travel

through the network and so free links for other services.

2.7 Summary

This Chapter started by presenting 5G, what its architecture is and how it will change

the world. It then presented NFV and SDN and how are those technologies used by

5G to improve networks performance.

After the introductory concepts it started by presenting what is the new generation

of SDN, the overall ecosystem and how it compared to traditional SDN. The main

takeaway of the chapter is the presentation of P4, the P4 ecosystem and the available

technology stack that can be used for the implementation of specific solutions. The

chapter ended with an overview of the work that is currently being developed by

researchers with P4 related tools.

The next chapter will present a system that can be used as an entry point to a possible

solution of an overall top to bottom product, designed using the P4 ecosystem.
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Chapter 3

Scenarios Analysis and Evaluation

P4 is an innovative technology that heavily relies on open-source software. Unlike tra-

ditional solutions where vendors offer a top to bottom solution, with such ecosystem

developers need to find all the needed pieces and make them work together. This chap-

ter starts by providing an overview of which technologies can be used to build a top

to bottom solution and how can they be leveraged to offer a solution not yet available

for modern networks. Then, with all the validation done it presents a specific use

case which can be leveraged with P4, such as publish-subscribe systems. Traditional

publish-subscribe protocols use TCP as transport layer for reliability and security rea-

sons. However, with P4, it is difficult to express TCP due to its limitations regarding

managing large state related information, leaving such processing to the network con-

troller and the CPU. That is why most of the publish-subscribe protocols are not to be

described by P4, at least for now. Zenoh, on the other hand, implements its own relia-

bility and security mechanisms, making it possible to run over TCP, UDP and others.

Therefore, it is the perfect candidate to implement in P4.

Publish-subscribe protocols traditionally rely on a centralized entity for packet forward-

ing. With P4 such task can be offloaded to the dataplane, reducing end-to-end latency

and the number of packets in the network. This Chapter presents three different scenar-

ios to be compared and at the end it presents a comparison of metrics from the scenarios

with and without offloading, and also a pure Zenoh implementation with BMv2 as a L2

solution.

3.1 Overall Architecture Design

At the time of writing there is no such thing as a base model to implement P4 solutions.

However, given its open-source background, there are lots of building blocks available

for one to use. As described in the previous chapter, there are plenty of options to

choose from, either to the switch OS, network OS and even target equipment. Due

to monetary constraints it was decided to use as many open-source solutions as pos-

sible, mainly due to high price of the hardware equipment. In this case not only one

equipment is needed but several of them and therefore the cost would be substantial.

One way to reduce costs is to use pure free software approaches through the use of the
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available Docker images.

Docker is the most popular open-source approach for application oriented containers,

and its containerized software will always run the same, regardless of the underlying

infrastructure [32]. It emerged to fix the “It works on my computer” statement. One

key feature of Docker is that a lot of open-source software is made available through

Docker container images, such as Mininet.

One drawback of having all of the system components as independent modules, it’s

the way they interect with external systems and it’s dependencies, so a study of which

versions work among components needed to be conducted. After some experiments,

it was decided to choose Stratum and ONOS, given both are built by the same entity

and therefore the effort needed for things to work tends to be smaller. ONOS however,

has multiple docker container versions available, some stable, some pre-released and

others still in development phase, where each version can be highly different from the

previous. Up to the version 2.2.7, ONOS offered as part of Trellis Apps, the Segment

Routing App. For the newer versions of the controller it was not possible to discover

through which channels that behaviour is offered and therefore the version used was

ONOS 2.2.71, which is the last version to provide support for the Segment Routing app.

Depicted in 3.1 is the overall architecture conceptualized, in which due to monetary

constraints it was not possible to build the system with state of the art programmable

hardware switches. It was decided to developed the system using the available software

switch at the present date which is BMv2, even though the performance of such equip-

ment, that relies on the CPU, is no where near the offered by programmable ASICs

that the programmable hardware switches have.

1ONOS 2.2.7 GitHub: https://github.com/opennetworkinglab/onos/tree/2.2.7
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Figure 3.1: Overall system architecture

3.2 Setup Scenario

The experimental setup described in this section is meant to be used as a proof of

concept so that one makes sure the overall tech stack works well together and could be

used for several use cases rather than just a particular case. One way to initially test

the system is to build a simple use case around it. In this particular case a firewall.

That is, the developed system must replicate the behaviour of a firewall. The overall

idea is to use the developed pipeline to allow or drop packets that arrive on the network

equipment based on the packet fields, up to the transport layer. Such behaviour can

also be achieved with OpenFlow but the focus at this point is to use the technology

available in the P4 ecosystem and develop a top to bottom solution. At the Appendix

A there is a collection of files used that can be used as a entry point to replicate the

conducted experience.

All of the work developed settled on the premise that the wheel should not be rein-

vented. So, the overall pipeline derived from the fabric.p4 pipeline, mentioned in the

previous chapter, in order to use the behaviour of the Segmented Routing App offered
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by ONOS. That way, handling ICMP and ARP do not need any action from the devel-

oper. However, to make it work, one must guarantee that the added tables and actions

do not break the main pipeline.

3.2.1 Mininet

Mininet is an open-source network emulator [33], widely used by researchers and stu-

dents for SDN purposes [34]. It features a CLI, for network debugging or running

network-wide tests, and a Python API for network creation and experimentation.

While it was initially built for the OpenFlow protocol and OVS [35], it is possible

to use mininet with custom and more advanced features such as P4Runtime and Stra-

tum 2.

As it might have been notice through its description, mininet eases SDN experiments

within a controlled environment. Unlike traditional networks, P4 based networks,

are purely software controlled and prone to the errors that such environment brings.

Mininet’s ability to shut down the entire network and create new experiments, as well

as easily change the network topology and also to run multiple devices at the same

time was one of the key enablers of the development of such experimental setup and

the reason why it was chosen in the first place.

3.2.2 Continuous Integration and Deployment

Traditional networks did not have a tool that allowed to test the network functioning

before rules were applied into production. One thing that tools such as P4 brought,

is the possibility to integrate the development of networks in Continuous Integration

and Delivery cycles. While integration cycles must compile and validate pipelines,

compile and test controller apps, deployment cycles are designed to automate the app

installation, update processes and the network configuration and topology update. Up

to the time of writing, neither version of ONOS support hot pipeline swap, i.e. the

target device will stop working for a period of time and there must be at least one

other device that can handle requests while a device is updating its pipeline.

3.2.2.1 Gitlab CI/CD

GitLab was used as a code repository along the development process, mainly due to

2Mininet Stratum Example:https://github.com/stratum/stratum/tree/main/tools/mininet
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the possibility of using the built in feature of CI/CD pipelines.

With the possibility to test the developed pipeline each time a change was made, a

CI/CD pipeline, depicted in Figure 3.2, was developed. With the integration of the

developed pipeline with the GitLab repository, each time a commit is pushed to the

repository the CI/CD pipeline is triggered and everything is tested to check for broken

features.

Figure 3.2: Continuous Integration pipeline

The CI/CD pipeline works as follows. The first stage is designed to compile the P4

pipeline and in case of failure no other stage is meant to run. The second is targeted to

validate the P4 pipeline behaviour through the use a framework described in the next

section. The third stage fetches the result from the first stage and compiles the app

with the new pipeline. The final stage is targeted to pack the app and have it ready

to deploy into production. The pipeline description is available at Appendix A.5.

For the deployment part, even though not used, ONOS offers a REST API designed

for such purpose, where a single, multiple or all switches are to be updated.

CI/CD cycles aim to discover errors early in the development phase and with that,reduce

shipment times. In the P4 ecosystem that can be achieved with the integration of the

Packet Test Framework (PTF) into the pipeline test phase of the integration cycle.

3.2.2.2 Packet Test Framework (PTF)

The behaviour of the network is now described by software, therefore it is important to

test such behaviour before systems are deployed into production. The P4 community

offers a framework able to test P4 pipelines3. It is designed to simulate the switch

behaviour on packet arrivals, where packets are to be created by the user for the test

purpose.

In this specific case, the tests targeted the drop or not of packets based on the packet

fields and they may be source and/or destination IPs, source and/or destination ports,

transport protocol, etc. In Appendix A.7, it is presented an example of how a simple

drop or allow test is done.

3Example: https://github.com/opennetworkinglab/ngsdn-tutorial/tree/advanced/ptf
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3.2.3 External Control App

In order to control the desired behaviour of the data plane, one needs to be able to

control which rules are installed at each device at any moment, to install and remove

rules and collect metrics of the dataplane. However it is not feasible to have that in-

formation pushed through, for example, the command line interface offered by BMv2

or to check rules installed via a log file. So, using the available features of ONOS, a

REST API on the northbound side of the controller was exposed, such API would then

be used to control the data plane behaviour.

To interact with the API, an application was developed using React4.

Depicted in Figure 3.3 is the overall high-level architecture. The system behaviour

is the one that follows, on incoming HTTP requests to the exposed controller API,

the firewall module methods are called and rules are installed or deleted on the target

devices. One benefit of having the system divided as in Figure 3.3, is that software

components such as the controller are easily scalable. So, rules can be stored temporar-

ily or permanently in a database for external apps to access it, reducing the number of

calls to network devices and only interacting with network devices to install or delete

rules.

Figure 3.3: P4 Firewall architecture

4https://reactjs.org/
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In Figures 3.4 and 3.5 are depicted the UI used to control the devices and its pipeline.

Such fields must match the ones that are in table firewall filtering table in Appendix

A.8. With even simple user interfaces as the ones in Figures 3.4 and 3.5, network

Figure 3.4: Firewall Contro App - Add rules UI

managers can easily get access to all the of the dataplane information, on a human

readable way. For example, in this particular case, if one wants to delete a specific rule

it just needs to get to the line where that rule is presented and click the delete button,

which is simple and can reduce the number of errors when using a CLI. Also, one key

point is that different network devices controlled by the same entity can have different

pipelines. Having different external control apps connected to the controller can ease

the management of such devices through access groups.

To conclude, whenever the process of pushing rules to devices is not dynamically cal-

culated, as in the typical case of a firewall, it is worth to have a UI for users to control

the network behaviour. The next sections present a specific use case, not yet explored,

using the concepts validated with the experimental setup described up to this point.
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Figure 3.5: Firewall Contro App - Get/Delete Rules UI

3.3 Publish-Subscribe

Publish-Subscribe messaging is a type of asynchronous service-to-service communica-

tion. Asynchronous communications, as opposed to synchronous communications, do

not block the requester until the response of the required arrives. Such model can

be used to enable event-driven architectures, or to decouple applications in order to

increase performance, reliability and scalability. One key feature of such architecture

is that message exchange is decoupled and anonymous. That is, publishers neither

know subscribers’ identities nor whether any subscribers with matching interests exist

at all. They all rely on a centralized broker/queue manager to forward the messages as

depicted in Figure 3.6. Such systems can be divided into 3 major categories [36]. Topic-

based, depicted in Figure 3.6, where messages are associated with topics by the pub-

lishers and are selectively routed by the message broker to destinations with matching

topic interests expressed by the subscribers. Content-based, where subscribers define a

set of filters that specify its interests making reference to publication message content.

The messages are only delivered if the message content matches the constraints defined

by the subscriber. Finally, Type-based, where publications are instances of application-
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defined types and subscriptions express interest in receiving publications of a specified

type or sub-type. It provides guarantees such as type safety and encapsulation.

Figure 3.6: Publish-Subscribe Overall Architecture

Regarding P4 implementations of publish-subscribe, [37] presented a work that tar-

geted content-based publish-subscribe systems. The aim of the work is to reduce the

header overhead through its encoding. The work however, fails to compare the devel-

oped system to traditional systems and so conclusions cannot be taken.

3.4 Offloading

In Table 2.3 were mentioned all of the areas targeted by researchers to build with P4.

In this Section, one is going to dig deep into offloading related work, given its impor-

tance to the overall objective of this work.

Offloading, in computer systems, means that the responsible devices for heavy com-

putational tasks are changed to more powerful ones. They may be hardware accel-

erators (e.g., GPUs, FPGAs), servers, supercomputing resources or cloud computing

infrastructures [38]. That leads to a more efficient power management, fewer storage

requirements and higher application performance [39]. SDN is an example on function

offloading. While in traditional networks, network equipment were partially responsi-

ble for all the task in the network, with SDN, several jobs were migrated to software
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running on high performance servers.

P4 ecosystem, however, allows to bring back such functions to network devices without

losing software-only related features, such as DevOps. Several work as already been

done regarding offloading tasks to the dataplane.

Regarding Load Balancing, SilkRoad [40] implements stateful load balancing on P4

hardware switches. It leverages the increasing SRAM sizes and stores per-connection

states at ASICs. It inherits all the benefits of highspeed low-cost ASICs such as high

throughput, low latency and jitter, and better performance isolation, while ensuring

per-connection consistency during Dynamic IP(DIP) pool changes. The work however

did not provide any metric comparison to known software or OpenFlow load balancers.

[41] developed several load balancer mechanisms using P4, such as Connection Hash,

Round Robin, Weight Round Robin and Random Connection. The setup was evalu-

ated for each one of the different mechanisms and the authors plan in the future to

provide a comparison to both software and commercial hardware load balancers such

as Array and F5.

Publish-Subscribe systems, as mentioned before, typically rely on a centralized broker

for message forwarding. However P4 eliminates the need of such entity. [42] presented

a custom network protocol for publish-subscribe systems implemented in P4 and the

goal is to eliminate the need of a central unit, since the traffic is forwarded based

on distribution trees, which eliminates a potential bottleneck. The protocol is built

directly on top of the Ethernet header and aims to make all forwarding decisions on

the dataplane without the need of an application broker and without being bound to

specific network protocols of the TCP/IP stack. The authors use distribution trees

embedded in the packet for forwarding and were able to achieve an higher performance

than traditional forwarding mechanism such as unicast, application-layer multicast,

broadcast, among others. Their solution was able to reduce bytes and packets in the

network while decreasing the end-to-end delay. Even though the work claims that such

solution is better than existing ones, custom protocols lack of validation.

Most of the P4 implementations of firewalls rely on the same concept presented above,

that is, block or allow traffic based on packet fields. [43] however, implements an

efficient stateful firewall in P4. Stateful firewalls are known to fix the limitations of

stateless firewalls. While the former tracks all the network state, the latter uses packet

filtering based on header fields, although, the former is more likely to be error prone

and achieve poorer performance [44]. The developed system, however, achieved the

same performance for the both firewalls with the stateful firewall implementing state

recording, detection, and integration. Therefore enhancing the capabilities of P4.
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3.5 Zenoh

3.5.1 Overview

As described before, there are already a lot of work done with offloading tasks to the

dataplane, namely traffic offloading and firewalls. There are also work developed that

moves away from the TCP/IP stack at the dataplane, with a lot of work being devel-

oped in the NDN area, in which Zenoh is based. This work, on the other hand, aims

to merge these two features and offload tasks to the dataplane through an unspecified

protocol. It is accomplished through the description of the Zenoh protocol at the P4

pipeline. The main objective is to compare it to traditional solutions and conclude if

it is worth to implement publish-subscribe systems at the dataplane.

Zenoh5 [9] is a novel unspecified topic based publish-subscribe protocol mostly targeted

for IoT. It aims to blend traditional publish-subscribe with geo distributed storage,

queries and computations while offering low latency and high throughput, something

that could be leveraged even more using P4.

While traditional publish-subscribe protocols are designed to run over TCP, mainly

for reliability purposes, Zenoh is able to run over different transportation protocols of

the network stack. It gives more flexibility to the users since it can work over UDP,

TCP, QUIC or TLS. Due to the different transport link protocols, Zenoh is designed

to implement reliability on its own. It uses embedded sequence number in packets in a

way that message recipients can verify if the packet is expected or not, and inform the

sender of the last sequence number received if it uses reliable channels. Unlike tradi-

tional publish-subscribe protocols where a centralized broker must exist, Zenoh works

more like a decentralized broker, where every Zenoh Router is aware of the network

topology, computed through the Bellman Ford Algorithm, and forward packets based

on that.

Another major difference between Zenoh and other known protocols is the way it im-

plements numbers in the packets. While other protocols use length bytes for systems

to know how many bytes need to be parsed, Zenoh uses a special format to represent

numbers. Numbers are defined by a set of up to 10 bytes, stored in the little-endian

notation, with the last byte not bigger than 0x7F. For example a number represented

as 0x81 0x93 0xB8 0x40 in the packet, must be processed as 0x40 0xB8 0x93 0x81.

That way, the parsing of numbers of the Zenoh protocol is defined by a loop that it-

erates over several bytes, up to a maximum of 10, until it finds a byte with the most

significant bit equal to 0.

5https://zenoh.io/
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At the time of writing Zenoh is still a work in progress and the specification fol-

lowed is available at https://github.com/eclipse-zenoh/zenoh/blob/branch_0.

5.0-beta.8/zenoh/src/net/protocol/proto/msg.rs. However, not all of the Zenoh

features were implemented but only the simple publish-subscribe packet exchange.

Zenoh has a very straightforward description. Packet headers always start with a for-

mat like the one depicted in Figure 3.7 and there can be packet types inside another

packet types, for example, Data and Declare packets are embedded into Frame packets.

Not all flags are used at times.

Figure 3.7: Zenoh Header Format

Figure 3.8: Zenoh Session Message Exchange

Zenoh message exchanges can be divided into two categories, session and others.

Session message exchange depicted in Figure 3.8 assume that parties are aware of one
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another, that is, there is no need for scouting messages. Session establishment process

is equal for publishers and subscribers.

The message exchange starts with an Init message sent to the Zenoh Router. That

message has information about the type of the sender, Client in this case, and the peer

Id. The Zenoh Router should respond to that message with a Init Ack, which has the

same format as the Init message but with the acknowledgment flag set to 1. Up to

this point there is no stored information on the Zenoh Router, which is way to limit

the effect of DoS and DDoS attacks. The next step is to send an Open message to

the Zenoh Router, that message must contain a cookie that it is sent by the Zenoh

Router in the Init Ack message. Along with that, the sender must also indicate the

first sequence number to be used to send messages to the Zenoh Router. In response to

that the Zenoh Router sends an Open Ack message that is also the Open message with

the acknowledge flag set to 1. The router must also send the first sequence number

with which will start to send messages. A session can only be considered established

after the Open Ack response by the Zenoh Router is received. After the Open Ack,

the router sends all the know resources, publishers, subscribers, etc, in the form of

Declaration messages.

Figure 3.9: Zenoh Data Packet Exchange

Subscribers advertise they want to subscribe a given topic. If that topic is already de-

fined at the message received by the router in the session establishment, the subscriber
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declares that it wants to subscribe that topic, represented by an numeric ID. Other-

wise, the subscriber must first declare a resource, which is represented by the topic

name and should have the format /x/y/z, and then it must declare that it wants to

subscribe such resource. On new declarations, the router sends to all known publishers

and subscribers the new resources, subscribers, etc. Zenoh publishers never advertise

they want to send data to a specific topic. Instead, they wait for the Zenoh Routers,

the set of equipment that is the system broker, to advertise that there are subscribers

expecting data for a given topic. If they are designed to send data to that topic, then

they start to send such data. That process is depicted in Figure 3.9.

3.6 Scenarios

3.6.1 Solution Overview

The main objective of this work is to evaluate the benefits of offloading tasks to the

Figure 3.10: Network Topology

dataplane. The first step consisted of choosing what task should be or are feasible to

offload. As mentioned, Zenoh is a publish-subscribe protocol, therefore, the forwarding

of packets to subscribers is a perfect candidate task to offload. First it was decided

to test the system with one publisher and one subscriber on a given topology. Such

topology is depicted in Figure 3.10. Analysing the links connecting the switches, it is

clear that the shortest path between the publisher and the subscriber is composed of
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4 different equipment and 5 links.

Three scenarios then emerged. The first, with no offloading at all, where all packets

that reach the switches and have UDP source or destination port equal to 7447, must

be sent to the network controller. There the software modules in control of the net-

work behaviour handle the packets. On the other hand, it also exist a scenario with

offloading, only the first data packet is sent to the controller, for packet control and

flow rule management. All of the other data packets are processed at the dataplane

level. Finally, the last scenario, the entity that controls what happens in the network

is a pure Zenoh Router. In that case, BMv2 only acts as a L2 switch and it is up to

the Zenoh Router to process Zenoh packets.

The three scenarios have different implementation complexity. The scenario solely

based on the pure Zenoh Router requires the least amount of development. It makes

use of available Zenoh Python3 client libraries and the available Zenoh Router code

for binary compilation. The P4 pipeline is rather simple with a low number of parsing

stages, with parsing up to the IPv4 header, and a reduced number of actions. The sce-

nario without offloading makes use of the same Zenoh clients, but it requires a pipeline

with a parser that goes up to the UDP header. Also, the modules added to the net-

work controller are much more complex with tasks such as network link monitoring and

topology computation and a packet processor module responsible for handling Zenoh

packets that arrive at the CPU. Lastly, the offloading case, the most complex of all

three, has the deepest and more complex pipeline, given the fact that needs to parse

Zenoh Packets. The modules added to the network controller are similar to the ones

on the scenario without offloading, but simpler, given the fact that data forwarding is

offloaded to the dataplane.

Regarding the offloading and without offloading scenarios, the session exchange is the

same, as it is the network controller that process such messages. The process is de-

picted in Figure 3.11 and it is similar to the traditional Zenoh session establishment

depicted in Figure 3.8.
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Figure 3.11: Session establishment process

As expected, the overall message exchange other than session messages, will be similar

to the one depicted at Figure 3.9 but, in this case, different on both scenarios. While

one needs to send all the messages to the controller in order to be processed, the other

does that job directly on the dataplane. In Figure 3.12 is displayed the overall publish-

subscribe process for the offloading scenario and in Figure 3.13 is depicted the process

for the scenario without offloading.
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Figure 3.12: Pub sub process with offloading

The differences on those scenarios start with the data packets, which can be seen at

the bottom part of the Figures 3.12 and 3.13. In the offloading case, only the first

data packet, regarding a specific topic that arrives on the network equipment, is sent

to the controller. That is used for processing and installation of rules in the target

devices. All other data packets that arrive on the device with the same topic, even

from different publishers, are processed directly on the data plane. However, for the

case where no offloading exists, every single packet must be sent to the controller for

processing, where a specific module is responsible for processing and creation of all the

needed packets.
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Figure 3.13: Pub sub process with no offloading

Zenoh hosts, either publishers or subscribers, send and must receive KeepAlive mes-

sages. While KeepAlive sent by the hosts is automatic by the Zenoh Client library, the

KeepAlive sent to the hosts must be processed by the system. In order to do that, it

was also developed a module, that at every 3 seconds, checks which host are on, that

is, are sending KeepAlive messages within an interval of time. For every host that is

on, the module builds a KeepAlive message and sends it to that host.

3.6.2 Shortest Path Algorithm

The routing in Zenoh is implemented using the Bellman Ford Algorithm. However SDN

allows developers to implement their own algorithms to solve Single-Source Shortest

Path Problem (SSSPP). Multiple algorithms can be applied, such as Dijkstra’s Al-

gorithm (DA), Bellman Ford Algorithm (BFA), Prim’s Algorithm (PA), Depth-First
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Search (DFS) or Breadth-First Search (BFS). DFS and BFS should only be used when

no weights are assigned to the edges. Given the fact that network links most often

have weights attached, these two algorithms were immediately discarded. The other

three algorithms differ in various ways. PA and BFA can work with negative weighed

edges while DA cannot. Traditionally network links have positive weight values, over-

ruling the benefits brought by BFA. Also, DA and PA are greedy algorithms, with

time complexity O(E log V ), while BFA, which is not greedy, have a time complexity

of O(E.V ). At this point, both PA and DA are tied. However, it was decided to go

with DA due to the nature of PA. While DA aims to compute the shortest path from

one node to all other nodes, PA aims to create the Minimum Spanning Tree between

all nodes in the network, which is prone to failure when computing shortest paths.

Algorithm 1 Dijkstra’s algorithm

1: for Devices in AvailableDevices do
2: ProcessedNodeSet ← new Set();
3: QueueDevicesToProcess ← new Queue();
4: while QueueDevicesToProcess != Ø do
5: dev ← QueueDevicesToProcess.head();
6: for Link in dev.EgressLinks() do
7: if LinkDstDevice not in ProcessedNodeSet then
8: if DevPathCost + LinkCost < DstDevPathCost then
9: DstDevPathCost ← DevPathCost + LinkCost;

10: UpdatePathStored();
11: end if
12: end if
13: end for
14: ProcessNodeSet.add(dev);
15: end while
16: end for

It was already mentioned that internally, Zenoh uses the BFA to compute paths. How-

ever, with the use of SDN tools, one is not bounded to use that same algorithm, just

as in this case, other algorithms can be used and the system works the same way, or

even better. That also shows that developers have a degree of freedom when working

in the implementation of features using software.

3.6.3 Offloading Pipeline Description

Having the desired behaviour defined it is time to start building the pipeline for the

offloading scenario. Again, as in the experiment of the previous chapter, the overall

pipeline is based on the fabric.p4 offered by ONF. However in this case not only the
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ingress but also the egress pipeline needed to be extended.

Zenoh can work with reliable or best-effort channels. Reliable channels guarantee the

deliver of data while best-effort channels does not. Therefore packet losses can occur

depending on the traffic load. Consider to this case the best-effort channel.

Depicted in Figure 3.14 is the description of ingress pipeline.

Figure 3.14: Ingress Pipeline

All packets, other than data packets, need to be sent to the controller, however, some

may need tasks to be performed at the dataplane level before that occurs.

Init packets are sent straight away to the controller which is responsible for the creation

of the respective Init Ack packet.

Open packets, before being sent to the controller, must be processed for the storage

of the first sequence number. Even though a best-effort channel is used, all of the

incoming packets with sequence numbers must be compared to the stored ones, in case

it matches, processing proceeds, otherwise it is updated. If a reliable channel is to

be used in case of a miss match the packet can be sent to the controller. The packet

sequence number is stored using up to 10 registers. Such registers are bloomfilters with

a maximum of 216 − 1 entries where each entry allocates 1 byte only. The key used

to access the specific bloom filter position is computed through an hash of the source
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IPv4 and UDP source port. Only after that, the packet is available to be sent to the

controller.

Declare Packets are to be computed by the controller, for subscriber and resource man-

agement. However, before it is sent to the CPU it must update the sequence number

of the sender, stored in the registers.

Data packets are the task that is to be offloaded to the dataplane, so, on a packet

arrival two thing can occur. The topic is either configured or not. That information is

stored on a bloom filter whose key is the topic number and value is 1 bit, 1 if configured,

0 otherwise. If the topic is not configured it must be sent to the controller. There, the

controller will gather all the subscribers for that topic and fetch the available paths for

each one of them. After that, it will install rules on the target devices, based on the

fetched paths, so that subscribers can receive the desired packets. Finally the packet is

sent back to the dataplane as it was received. That will go through the same process

as before but this time the topic is considered as configured and therefore the packet

will be marked as a multicast packet and be sent to the egress pipeline. This time

however, the sequence number is not updated as it was already when it first arrived at

the switch.

Close packets are used to clear the sequence number of the sender. Register values,

pointed by the user key, are wiped and put to 0. After that, the packet is sent to the

controller for user deletion at the control plane.

In the case of Open and Data packets, the egress pipeline is complementary to the

ingress one. While every other packet sent by the controller is sent to the deparser

straight away, these packet types must be processed. In Figure 3.15 is depicted the

egress pipeline behaviour. After the Open packet is sent to the CPU, the controller

must respond with an Open Ack packet. That Open Ack packet has the first sequence

number to be used to connect to the end user, therefore it must be stored on the egress

pipeline. The data structure used to store it, is the same as the used for the storage of

sequence numbers in the ingress pipeline, however, in this case, the key used to accesss

the desired position is the destination IPv4 and UDP destination port, which in fact

will have the same value as the key used in the ingress pipeline. The packet is then

sent to the desired egress port.
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Figure 3.15: Egress Pipeline

Data packets are different from other packets due to the use of the replication engine,

i.e., one packet on the ingress can lead to n packets at the egress pipeline. Such

behaviour is managed by the control plane on declare subscriber packets arrival. The

controller must create or update the replication group of the desired device. Such

replication group will be used to replicate the input packet for n egress ports. Such

egress ports, which are the access point for a number of end hosts, along with the

multicast group, which is nothing but the topic number, will be used to filter through

a P4 table. In case it matches, the packet Ethernet, IPv4 and UDP is changed to meet

the target requirements, which can be either the next switch or a subscriber.

Close packets, not shown in the figure, are sent back to dataplane by the controller

after processing. That is used to also clear the sequence numbers used for that end

host. After the deletion of the sequence number, the packet is marked to drop.

3.7 Evaluation

The system was evaluated using the experimental setup described in the previous

chapter, however the Mininet’s base container6 used, developed by ONF, which was

chosen for its stratum support, had some limitations regarding Zenoh Python clients

and Zenoh itself. Zenoh makes available several clients, both in Python and Rust,

being the latter the base for the former. Since the chosen mininet container did not

6https://hub.docker.com/r/opennetworking/mn-stratum
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have Rust support, such container had to be changed and some additions needed to be

implemented, such as the installation of Rust and Python version 3.9. Dockerfile with

such additions is available at Appendix B.1. After all the requirements installed in the

container, Zenoh client libraries could be used and the system tested and evaluated.

All of the tests were made with an intel i5 quad-core 1.6GHz CPU and 8GB RAM

using the topology presented in Figure 3.10. The tests consisted of measuring packet

departure at the publisher, and packet arrival at the subscriber and collect measures

such as latency, jitter and the number of packets lost. The results for each one of

the scenarios are presented in Table 3.1. The results show that there is a benefit of

Table 3.1: Topology Results
Case Latency(s) Jitter(s) Packets Lost

Offloading 0,055 ± 0,0005 0,013 ± 0,0003 0
No Offloading 0,081 ± 0,0028 0,032 ± 0,0020 10,8 ± 2,16
Zenoh Router 0,024 ± 0,0001 0,003 ± 0,0002 0

offloading data forwarding to the dataplane regarding with and without offloading sce-

narios. However, the pure Zenoh Router achieved a much better performance both in

latency and jitter in comparison to the offloading case. Due to that, it was decided

to conduct more tests. Such tests consisted in the variation of the switches number

between publishers and subscribers and also the variation in the number of publishers

and subscribers to evaluate how a different number of data streams impact the system.

Given time constraints and limited computational resources the combinations of pub-

lishers and subscribers needed to be restricted to the ones presented in Table 3.2. Each

one of those combinations was tested with a different number of switches between end

hosts. The number of switches started at one and was increased one up to a maximum

of five.

Combination nº Publishers nº Subscribers
C1 1 1
C2 1 5
C3 5 1
C4 5 5

Table 3.2: Publisher Subscriber Combinations
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3.7.1 Latency

The overall latency results presented in Figure 3.16 follow the results obtained with the

given topology. The pure Zenoh Router scenario performance, is always better than

the other two scenarios. The offloading case still achieves better latency results than

without offloading in all the tests.

Figure 3.16: Latency Results

Analysing the previous figure, one conclusion comes to mind. All of the scenarios

perform better on cases with an higher number of publishers, which means that there

is no optimization when only 1 publisher exists.

3.7.2 Jitter

As expected the jitter results, presented at Figure 3.17 follow the results obtained for

latency. Again, the confidence intervals achieved with the scenario without offloading

are much less precise than of the other two. Although, in this case, the conclusions

taken in the analysis of the latency results are not so straightforward. While the

scenario without offloading still maintains the same pattern, in the other two scenarios
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the jitter is typically higher the more packets are flying in the network. However, one

thing is certain, the results achieved for 1 publisher and 5 subscribers are higher than

the results for 5 publishers and 1 subscriber.

Figure 3.17: Jitter Results

3.7.3 Packets Lost

Given the usage of best-effort channels, packet losses can occur. The scenario without

offloading is much more CPU intensive than the other two, which may be the reason

why so many packets are lost in this scenario, even for a simple topology with only

1 publisher and 1 subscriber. The more equipment exist the more packets will arrive

at the controller, even if the number of publisher and subscribers, stay the same.

The overall results are depicted in Figure 3.18. It is clear that both the offloading

and the pure Zenoh Router scenario did not have any packet losses. However, one

cannot guarantee that in a real world scenario packet losses will not occur, given all

the variables that influence it.
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Figure 3.18: Lost Packets Results

3.7.4 Discussion

Given the results obtained it is clear that when there is only one publisher results are

worser than with five publishers. That may be due to the usage of the multi-stage

pipeline. In the case where there is only one publisher there is not a full usage of the

benefits brought by the multi-stage, whereas with an higher number of publishers the

parsing stages are executed in parallel and therefore reduce the overall latency and all

of the metrics that derive from that.

Figure 3.19: Performance test architecture

Due to the known limitations of BMv2, some preliminary tests were made to evaluate
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how much the performance is affected by the number of parsing stages. It was carried

an experiment, with the topology depicted in Figure 3.19 where the number of parsing

stages varied from 3 to 7. Depicted in Figure 3.20 are the results obtained with the

mininet iperf command. The results validate the loss of BMv2 performance the more

parsing stages exist. In this case, from 3 to 7 parsing stages, the throughput dropped

from 30 Mb/s to almost 15 Mb/s.

Figure 3.20: Effect of the number of parsing stages in the bmv2 performance

The results presented in Figure 3.20 can help to explain the overall results obtained and

why the pure Zenoh scenario performed better than the offloading scenario. In Table

3.3 are summarized the number of parsing stages of each of the conducted scenarios.

The carried experience with offloading had an average of 19 parsing stages, given by

the average length of the Zenoh Clients sequence numbers of 4, in opposition to the

pure Zenoh case where the BMv2 had an average of 4 parsing stages. That alone could

be a reason why the scenario with offloading has worse performance than the pure

Zenoh scenario. Another reason that may complement the previous one is the fact

that, Zenoh is fully targeted for x86 architectures while BMv2 is only meant to be used

on x86 architectures to reproduce the behavior of a P4-programmable ASIC or NIC,

but it’s targeted for testing and debugging and it’s not a production grade switch.
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Scenario Parsing Stages
Offloading ≈ 19

No Offloading 5
Pure Zenoh Router 4

Table 3.3: Comparison between number of parsing stages in each scenario

3.8 Summary

This chapter presented the overall objective of a experimental setup and the technolo-

gies used to accomplish the development of such setup. It started by presenting what

docker is, why is it used and its benefits. It was followed by what mininet is and what

is mainly used for, specifically in this case and the benefits of using mininet to develop

using the P4 ecosystem. It also presented the version of the ONOS chosen and why

was that specific version elected, which was the support of the Segment Routing App,

that offers ICMP and ARP handling and routing through MPLS, out of the box.

This chapter also showed how CI/CD cycles can be integrated with programmable net-

works for behaviour testing, with open-source tools such as PTF. It finished with an

example of an app that was developed to control network device tables. Such solution

shows that network managers can create their own tools, connect it to open source

solutions and manage the network in an easy way through a GUI.

It was followed by how publish-subscribe systems work and what offloading is. Then,

it presented Zenoh, a novel publish-subscribe protocol, which was used to fulfill the

objective of this work, to show how offloading tasks to the dataplane can be beneficial

for a network. After the Zenoh presentation, the overall solution was described, how

was Zenoh used and the overall system behaviour. Lastly, the overall results achieved

were presented, with an extra section of discussion that presented preliminary tests

made to BMv2 that can be useful for the result analysis.

The next Chapter will present the overall conclusions and future directions.
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Chapter 4

Conclusions

This work consisted of a P4 implementation of a novel protocol called Zenoh. Such

work was used to evaluate the benefits of offloading task to the dataplane, compared

to traditional solutions. It started by presenting the traditional SDN solutions and a

theoretical approach to the state-of-the-art NG-SDN technologies. It was followed by

a conceptual approach to the problem, with the presentation of the architecture and

development tools chosen. It finished with the presentation of a specific use case and

the overall results obtained for the test scenarios. To conclude, this work contributes to

show the flexibility offered by P4 and how offloading tasks to the dataplane can affect

the network performance.

4.1 Conclusion

This work aimed to show if there are benefits of offloading tasks to the dataplane. For

that, it was decided to use state-of-the-art solutions such as P4. P4 allows developers

to deeply describe the network behaviour through a pipeline. It stands from other solu-

tions such as OpenFlow and SAI for being able to be target and protocol independent,

that is, it is not limited to the traditional TCP/IP stack and even custom or propri-

etary protocols can be described by the language and processed by the P4Runtime

protocol, the connection point between data and control planes.

Offloading tasks to the dataplane means that, the processing should happen in the

dataplane and not in the control plane. Many works have offloaded firewalls and sev-

eral other task to the dataplane, however, there is limited work with publish-subscribe

systems and the ones that exist do not make comparisons to traditional systems. So,

it was decided to explore such feature.

Traditional publish-subscribe protocols are only able to run over TCP. However, that

is a difficult task to accomplish with P4. P4 can easily process TCP packet but it is

hard to manage TCP sessions and everything that is related to it. Zenoh, on the other

hand, is designed to run over multiple transport protocols and be implemented with

best-effort channels. That makes the process simpler and easily achieved through P4.

The overall system consisted of topology with several switches connected and only 1

publisher and 1 subscriber. Zenoh traditionally uses the Bellman-Ford algorithm to
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compute paths, however, SDN tools allow that to be changed and therefore develop-

ers have a bigger degree of freedom. In this case, it was decided to use the Dijsktra

Algorithm, given there was no benefit of using the Bellman-Ford one. The developed

system, with offloading, was tested against 2 other systems. One without offloading

and other with a pure Zenoh Router. The pure Zenoh Router performed better in all

of the tests, but the offloading scenario outperformed the scenario without offloading,

in several cases it was 2x faster to deliver packets. Given the obtained results several

other tests were made, with a variation in the number of publishers, subscribers and

the switches between end-hosts. The achieved results confirmed the results obtained

before. Even though the pure Zenoh Router achieved better performance, that does

not mean that the offloading scenario is not better than the pure Zenoh Router but

that the chosen target device, which is BMv2, is not designed for production but rather

test environments. BMv2 is highly affected by factors such as, for example, the number

of parsing stages. In fact, during the tests, the number of parsing stages in the offload-

ing scenario was more than 4x the number of parsing stages of the pure Zenoh Router

scenario, which for an equipment so heavily affected by the number of parsing stages,

is a big deal. That influence is expected to be irrelevant or none if hardware equipment

or a production grade switch is used. However, up to the time of writing hardware

equipment is highly expensive and no P4 compatible production grade software switch

exist.

To conclude, the overall work showed the flexibility of P4 and how it can be used to of-

fload task to the dataplane. It analysed 3 different scenarios but tests with production-

grade targets need to be done in order to take the final conclusions.

4.2 Future Work

As mentioned, Zenoh can work with reliable or best-effort channels. This work was

based on best-effort channels, however, if one considers to use reliable channels, there

are more tasks that can be offloaded to the dataplane. Zenoh reliability is achieved by

sending Ack Nack packets when sequence numbers received are not the expected ones.

That packets must have the last packet sequence number received. If one thinks of

this task to be computed at the edge of the network, that is, closest to the end-user as

possible, that process can make the information about losses reach the end user much

faster, which also reduces the number of useless packets that fly through the network.

Also, depending on how Zenoh evolves, Init Ack and Close Ack packets can be created

directly in the dataplane, without the controller interference, at least directly. The
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controller will always have to process Init and Close packets, however, that does not

mean that it needs to be the controller to create the response. The dataplane can just

clone the packet to the control plane and at the same time create the response. The

control plane will then create or delete the required information in an asynchronous

way from the dataplane.

Other thing that can be implemented is the Firewall behaviour for a publish-subscribe

system. That is, block of packets from a specific host to a specific topic, or block a

host from receiving packets related to a topic. That can be made with an external app

connected to the controller northbound API and a few more tables in the pipeline.

This work was based on the results of the software switch BMv2. The obtained results

are not good in comparison to other software switches or hardware switches. Therefore,

one key step is to test the pipeline in some of the state of the art hardware to really

see how P4 can improve network metrics.
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[38] João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. Chapter 5

- source code transformations and optimizations. In João M.P. Cardoso, José
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Appendix A

P4 Firewall ecosystem

A.1 docker-compose.yml

version: "3.5"

services:

mininet:

image: opennetworking/mn-stratum

hostname: mininet

container_name: mininet

privileged: true

tty: true

stdin_open: true

restart: always

volumes:

- ./tmp:/tmp

- ./mininet:/mininet

ports:

- "50001:50001"

- "50002:50002"

- "50003:50003"

- "50004:50004"

entrypoint: "/mininet/basic.py"

onos:

image: onosproject/onos:2.2.7

hostname: onos

container_name: onos

ports:

- "8181:8181" # HTTP

- "8101:8101" # SSH (CLI)

volumes:

- ./tmp/onos:/root/onos/apache-karaf-4.2.8/data/tmp
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environment:

- ONOS_APPS=gui2,drivers.bmv2,hostprovider, lldpprovider, pipelines.fabric, segmentrouting

links:

- mininet

A.2 basic.py

#!/usr/bin/python

# Copyright 2019-present Open Networking Foundation

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

# http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

import argparse

from mininet.log import setLogLevel, info, debug

from mininet.net import Mininet

from mininet.node import Host

from mininet.topo import Topo

from mininet.cli import CLI

from stratum import StratumBmv2Switch

from time import sleep

import json

import os

import subprocess

import sys

from mininet.net import Mininet

from mininet.node import Controller, Host
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CPU_PORT = 255

class IPv4Host(Host):

"""Host that can be configured with an IPv4 gateway (default route).

"""

def config(self, mac=None, ip=None, defaultRoute=None, lo=’up’, gw=None,

**_params):

super(IPv4Host, self).config(mac, ip, defaultRoute, lo, **_params)

self.cmd(’ip -4 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -6 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -4 link set up %s’ % self.defaultIntf())

self.cmd(’ip -4 addr add %s dev %s’ % (ip, self.defaultIntf()))

if gw:

self.cmd(’ip -4 route add default via %s’ % gw)

# Disable offload

for attr in ["rx", "tx", "sg"]:

cmd = "/sbin/ethtool --offload %s %s off" % (

self.defaultIntf(), attr)

self.cmd(cmd)

def updateIP():

return ip.split(’/’)[0]

self.defaultIntf().updateIP = updateIP

class IPv6Host(Host):

"""Host that can be configured with an IPv6 gateway (default route).

"""

def config(self, ipv6, ipv6_gw=None, **params):

super(IPv6Host, self).config(**params)

self.cmd(’ip -4 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -6 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -6 addr add %s dev %s’ % (ipv6, self.defaultIntf()))

if ipv6_gw:

self.cmd(’ip -6 route add default via %s’ % ipv6_gw)

# Disable offload

for attr in ["rx", "tx", "sg"]:
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cmd = "/sbin/ethtool --offload %s %s off" % (self.defaultIntf(), attr)

self.cmd(cmd)

def updateIP():

return ipv6.split(’/’)[0]

self.defaultIntf().updateIP = updateIP

def terminate(self):

super(IPv6Host, self).terminate()

class TaggedIPv4Host(Host):

"""VLAN-tagged host that can be configured with an IPv4 gateway

(default route).

"""

vlanIntf = None

def config(self, mac=None, ip=None, defaultRoute=None, lo=’up’, gw=None,

vlan=None, **_params):

super(TaggedIPv4Host, self).config(mac, ip, defaultRoute, lo, **_params)

self.vlanIntf = "%s.%s" % (self.defaultIntf(), vlan)

# Replace default interface with a tagged one

self.cmd(’ip -4 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -6 addr flush dev %s’ % self.defaultIntf())

self.cmd(’ip -4 link add link %s name %s type vlan id %s’ % (

self.defaultIntf(), self.vlanIntf, vlan))

self.cmd(’ip -4 link set up %s’ % self.vlanIntf)

self.cmd(’ip -4 addr add %s dev %s’ % (ip, self.vlanIntf))

if gw:

self.cmd(’ip -4 route add default via %s’ % gw)

self.defaultIntf().name = self.vlanIntf

self.nameToIntf[self.vlanIntf] = self.defaultIntf()

# Disable offload

for attr in ["rx", "tx", "sg"]:

cmd = "/sbin/ethtool --offload %s %s off" % (

self.defaultIntf(), attr)

self.cmd(cmd)
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def updateIP():

return ip.split(’/’)[0]

self.defaultIntf().updateIP = updateIP

def terminate(self):

self.cmd(’ip -4 link remove link %s’ % self.vlanIntf)

super(TaggedIPv4Host, self).terminate()

class DemoTopo(Topo):

"""2x2 fabric topology with IPv6 hosts"""

def __init__(self, *args, **kwargs):

Topo.__init__(self, *args, **kwargs)

loglevel = "debug"

topo_file = json.load(open(os.path.join(sys.path[0], ’topology/topologyLinear1.json’)))

equipments = {}

for sw_name in topo_file[’switches’]:

sw_info = topo_file[’switches’][sw_name]

sw = self.addSwitch(sw_name, cls=StratumBmv2Switch, cpuport=CPU_PORT, loglevel=loglevel, listenPort=int(sw_info[’grpc’]))

equipments[sw_name] = sw

for host_name in topo_file[’hosts’]:

host_info = topo_file[’hosts’][host_name]

host = self.addHost(host_name, cls=IPv4Host, mac=host_info[’mac’], ip=host_info[’ip’], gw=host_info[’gateway’])

equipments[host_name] = host

for link in topo_file[’links’]:

node1, node2 = link.split(’-’)

link_info = topo_file[’links’][link]

self.addLink(equipments[node1], equipments[node2], port1 = int(link_info[’port1’]) , port2 = int(link_info[’port2’]))

def main():

net = Mininet(topo=DemoTopo(), controller=None)

net.start()

CLI(net)

net.stop()
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print (’#’ * 80)

print (’ATTENTION: Mininet was stopped! Perhaps accidentally?’)

print (’No worries, it will restart automatically in a few seconds...’)

print (’To access again the Mininet CLI, use ‘make mn-cli‘’)

print (’To detach from the CLI (without stopping), press Ctrl-D’)

print (’To permanently quit Mininet, use ‘make stop‘’)

print (’#’ * 80)

if __name__ == "__main__":

parser = argparse.ArgumentParser(

description=’Mininet topology script for 2x2 fabric with stratum_bmv2 and IPv6 hosts’)

args = parser.parse_args()

setLogLevel(’info’)

main()

A.3 topology.json

{
”hosts”: {

”h1”: {”ip”: ”10.0.1.10/24”, ”mac”: ”00:00:00:00:00:01”, ”gateway”: ”10.0.1.100” },
”h2”: {”ip”: ”10.0.2.10/24”, ”mac”: ”00:00:00:00:00:02”, ”gateway”: ”10.0.2.100” },
”h3”: {”ip”: ”10.0.3.10/24”, ”mac”: ”00:00:00:00:00:03”, ”gateway”: ”10.0.3.100” }

},
”switches”: {

”sw1”: { ”grpc” : ”50001” },
”sw2”: { ”grpc” : ”50002” },
”sw3”: { ”grpc” : ”50003” },
”sw4”: { ”grpc” : ”50004” }

},
”links ”: {

”sw1−sw3” : { ”port1” : ”1” , ”port2” : ”1”},
”sw1−sw4” : { ”port1” : ”2” , ”port2” : ”1”},
”sw2−sw3” : { ”port1” : ”1” , ”port2” : ”2”},
”sw2−sw4” : { ”port1” : ”2” , ”port2” : ”2”},
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”h1−sw1” : { ”port1” : ”0” , ”port2” : ”3”},
”h3−sw1” : { ”port1” : ”0” , ”port2” : ”4”},
”h2−sw2” : { ”port1” : ”0” , ”port2” : ”3”}

}
}

A.4 netcfg firewall.json

{

"devices": {

"device:sw3": {

"basic": {

"managementAddress": "grpc://mininet:50003?device_id=1",

"driver": "stratum-bmv2",

"pipeconf": "org.onosproject.pipelines.fabric",

"locType": "grid",

"gridX": 500,

"gridY": 600

},

"segmentrouting": {

"name": "sw3",

"ipv4NodeSid": 301,

"ipv4Loopback": "192.168.2.1",

"routerMac": "00:BB:00:00:00:03",

"isEdgeRouter": false,

"adjacencySids": []

}

},

"device:sw4": {

"basic": {

"managementAddress": "grpc://mininet:50004?device_id=1",

"driver": "stratum-bmv2",

"pipeconf": "org.onosproject.pipelines.fabric",

"locType": "grid",

"gridX": 600,

"gridY": 600

},

"segmentrouting": {

"name": "sw4",
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"ipv4NodeSid": 302,

"ipv4Loopback": "192.168.2.3",

"routerMac": "00:BB:00:00:00:04",

"isEdgeRouter": false,

"adjacencySids": []

}

},

"device:sw1": {

"basic": {

"managementAddress": "grpc://mininet:50001?device_id=1",

"driver": "stratum-bmv2",

"pipeconf": "org.onosproject.new-pipelines.fabric",

"locType": "grid",

"gridX": 800,

"gridY": 800

},

"segmentrouting": {

"name": "sw1",

"ipv4NodeSid": 101,

"ipv4Loopback": "192.168.1.1",

"routerMac": "00:aa:00:00:00:01",

"isEdgeRouter": true,

"adjacencySids": []

}

},

"device:sw2": {

"basic": {

"managementAddress": "grpc://mininet:50002?device_id=1",

"driver": "stratum-bmv2",

"pipeconf": "org.onosproject.pipelines.fabric",

"locType": "grid",

"gridX": 200,

"gridY": 800

},

"segmentrouting": {

"name": "sw2",

"ipv4NodeSid": 102,

"ipv4Loopback": "192.168.1.2",

"routerMac": "00:aa:00:00:00:02",

"isEdgeRouter": true,
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"adjacencySids": []

}

}

},

"ports": {

"device:sw1/3": {

"interfaces": [

{

"name": "sw1-eth3",

"ips": [

"10.0.1.100/24"

],

"vlan-untagged" : 10

}

]

},

"device:sw1/4": {

"interfaces": [

{

"name": "sw1-eth4",

"ips": [

"10.0.3.100/24"

],

"vlan-untagged" : 30

}

]

},

"device:sw2/3": {

"interfaces": [

{

"name": "sw2-eth2",

"ips": [

"10.0.2.100/24"

],

"vlan-untagged" : 20

}

]

}
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}

}

A.5 .gitlab-ci.yml

stages:

- compile

- test

- build

p4Build:

image: docker:latest

artifacts:

paths:

- p4/

expire_in: 10 minutes

services:

- docker:dind

stage: compile

services:

- docker:dind

script:

- echo ‘Starting p4 compilation...’

- ‘ls -ls’

- ‘cd p4 && /bin/sh bmv2-compile.sh "fabric" "-DWITH_SIMPLE_NEXT"’

only:

- development

p4Test:

image: docker:latest

artifacts:

paths:

- ptf/

expire_in: 1 day

services:

- docker:dind

stage: test

script:

- echo ‘Starting test phase...’
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- ‘cd ptf && /bin/sh run_tests’

only:

- development

dependencies:

- p4Build

firewallAppBuild:

image: maven:3.8.1-openjdk-11-slim

stage: build

script:

- ‘cp -r p4/p4c-out fabric_ext/src/main/resources’

- ‘cd fabric_ext && mvn clean install’

- ‘mvn org.onosproject:onos-maven-plugin:2.2:app’

only:

- development

dependencies:

- p4Test

A.6 Makefile

mkfile_path := $(abspath $(lastword $(MAKEFILE_LIST)))

curr_dir := $(patsubst %/,%,$(dir $(mkfile_path)))

onos_url := http://localhost:8181/onos

onos_curl := curl --fail -sSL --user onos:rocks --noproxy localhost

p4-test:

@cd ptf && ./run_tests

mvn_ci:

cp -r p4/p4c-out fabric_ext/src/main/resources

cd fabric_ext && mvn clean install
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mvn_pack:

cd fabric_ext && mvn org.onosproject:onos-maven-plugin:2.2:app

_start:

$(info *** Starting BMv2, ONOS and Hosts)

docker-compose up -d

_stop:

docker-compose down

@echo "Containers are down"

p4_compile:

cd p4 && make fabric

@echo

app-install:

$(info *** Installing and activating app in ONOS...)

${onos_curl} -X POST -HContent-Type:application/octet-stream \

’${onos_url}/v1/applications?activate=true’ \

--data-binary @fabric_ext/target/fabric_firewall_extension-1.0.0-SNAPSHOT.oar

@echo

app-uninstall:

$(info *** Uninstalling app from ONOS (if present)...)

-${onos_curl} -X DELETE ${onos_url}/v1/applications/org.onosproject.fabric_firewall_extension

@echo

app-reload: app-uninstall app-install
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push-netconf-firewall: CONF := netcfg_firewall.json

push-netconf-firewall: push-netconf

push-netconf:

$(info *** Pushing ${CONF} to ONOS...)

${onos_curl} -X POST -H ’Content-Type:application/json’ \

${onos_url}/v1/network/configuration -d@./config/${CONF}

@echo

onos-cli:

$(info *** Connecting to the ONOS CLI...)

$(info *** Top exit press Ctrl-D)

@ssh -o "UserKnownHostsFile=/dev/null" -o "StrictHostKeyChecking=no" -o LogLevel=ERROR -p 8101 onos@localhost

onos-log:

docker logs onos

mn-cli:

$(info *** Attaching to Mininet CLI...)

$(info *** To detach press Ctrl-D (Mininet will keep running))

-@docker attach --detach-keys "ctrl-d" $(shell docker-compose ps -q mininet) || echo "*** Detached from Mininet CLI"

pcap:

docker exec -it mininet /mininet/host-cmd \

$(host) tcpdump -i $(host)-eth$(iface) \

-U -w /tmp/$(host)-eth$(iface).pcap

A.7 PtfAddressTest.py

@group("address")

class SrcAddressExactPermit(P4RuntimeTest):

"""Tests

"""

def runTest(self):
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print_inline("ICMP Packet ... ")

configure = ConfigureFabric()

configure.configFabricPipe(self)

icmp_pkt = create_icmp_packet()

self.testPermitPacketSrcExact(icmp_pkt, configure.inPort, configure.outPort)

@autocleanup

def testPermitPacketSrcExact(self, pkt, pIn, pOut):

print(’\n\nAllow Packet Test’)

inPort = pIn

outPort = pOut

# ---- START SOLUTION ----

self.insert(self.helper.build_table_entry(

table_name="FabricIngress.fwll_filtering.firewall_filtering_table",

match_fields={

# Ternary match.

"src": ( HOST2_IP, 0xffffffff),

},

action_name="FabricIngress.fwll_filtering.permit",

priority=DEFAULT_PRIORITY

))

# ---- END SOLUTION ----

exp_pkt = pkt.copy()

next_hop_mac = HOST1_MAC

new_packet = pkt_route(exp_pkt, next_hop_mac)

new_packet = pkt_decrement_ttl(new_packet)

# maskedP = mask.Mask(new_packet)

print_inline("ICMP Packet Sent... ")
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# Send packet...

testutils.send_packet(self, inPort, str(pkt))

# verify on outport port.

testutils.verify_packet(self, new_packet, outPort)

print_inline("ICMP Packet Received on Output Port... ")

testutils.verify_no_other_packets(self)

@group("address")

class SrcAddressExactDrop(P4RuntimeTest):

"""Tests

"""

def runTest(self):

print_inline("ICMP Packet ... ")

configure = ConfigureFabric()

configure.configFabricPipe(self)

icmp_pkt = create_icmp_packet()

self.testDropPacketSrcExact(icmp_pkt, configure.inPort, configure.outPort)

@autocleanup

def testDropPacketSrcExact(self, pkt, pIn, pOut):

print(’\n\nDrop Packet Test’)

inPort = pIn

outPort = pOut

# ---- START SOLUTION ----

self.insert(self.helper.build_table_entry(

table_name="FabricIngress.fwll_filtering.firewall_filtering_table",

match_fields={

# Ternary match.
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"src": ( HOST2_IP, 0xffffffff)

},

action_name="FabricIngress.fwll_filtering.drop",

priority=DEFAULT_PRIORITY

))

# ---- END SOLUTION ----

# Send packet...

testutils.send_packet(self, inPort, str(pkt))

print_inline("ICMP Packet Sent... ")

testutils.verify_no_other_packets(self)

print_inline("Packet not received as expected...")

A.8 firewall filtering.p4

#include <core.p4>

#include <v1model.p4>

#include "../header.p4"

control FirewallFiltering (inout parsed_headers_t hdr,

inout fabric_metadata_t fabric_metadata,

inout standard_metadata_t standard_metadata) {

direct_counter(CounterType.packets_and_bytes) firewall_counter;

action drop() {

mark_to_drop(standard_metadata);

fabric_metadata.skip_next = _TRUE;

firewall_counter.count();

}

action permit() {
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// Allow packet as is.

firewall_counter.count();

}

table firewall_filtering_table{

key = {

// optional with lpm, ternary does the job

hdr.ipv4.src_addr : ternary @name("src");

// optional with lpm, ternary does the job

hdr.ipv4.dst_addr : ternary @name("dst");

// required but can match all, ternary does the job

fabric_metadata.ip_proto : ternary @name("protocol");

// optional with exact value or range

fabric_metadata.l4_dport : range @name("dport");

// optional with exact value or range

fabric_metadata.l4_sport : range @name("sport");

}

actions = {

drop();

permit();

}

counters = firewall_counter;

const default_action = drop();

}

apply {

if (hdr.ipv4.isValid()) {

firewall_filtering_table.apply();

}

}

}
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Appendix B

Zenoh P4 ecosystem

B.1 Dockerfile

FROM opennetworking/mn-stratum:20.12 as runtime

RUN install_packages curl ca-certificates \

python3-pip python3-setuptools

RUN apt update -y

RUN apt upgrade -y

RUN apt install wget build-essential libreadline-gplv2-dev \

libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev \

libc6-dev libbz2-dev libffi-dev zlib1g-dev -y

RUN wget https://www.python.org/ftp/python/3.9.4/Python-3.9.4.tgz

RUN tar xzf Python-3.9.4.tgz

WORKDIR Python-3.9.4

RUN ./configure --enable-optimizations

RUN make altinstall

WORKDIR /

RUN python3 --version

RUN python3.9 --version

RUN python3.9 -m pip install --upgrade pip

RUN python3.9 -m pip install --upgrade setuptools

RUN curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs -o \

rustup.sh && sh rustup.sh -y

RUN pip3.9 install --no-cache-dir eclipse-zenoh==0.5.0-b8
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WORKDIR /root

COPY ./stratum.py ./stratum.py

B.2 stratum.py

# coding=utf-8

# Copyright 2018-present Open Networking Foundation

# SPDX-License-Identifier: Apache-2.0

’’’

This module contains a switch class for Mininet: StratumBmv2Switch

Prerequisites

-------------

1. Docker- mininet+stratum_bmv2 image:

$ cd stratum

$ docker build -t <some tag> -f tools/mininet/Dockerfile .

Usage

-----

From withing the Docker container, you can run Mininet using the following:

$ mn --custom /root/stratum.py --switch stratum-bmv2 --controller none

Advanced Usage

--------------

You can use this class in a Mininet topology script by including:

from stratum import ONOSStratumBmv2Switch

You will probably need to update your Python path. From within the Docker image:

PYTHONPATH=$PYTHONPATH:/root ./<your script>.py

Notes

-----

This code has been adapted from the ONOSBmv2Switch class defined in the ONOS project

(tools/dev/mininet/bmv2.py).
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’’’

import json

import multiprocessing

import os

import socket

import threading

import time

from mininet.log import warn

from mininet.node import Switch, Host

DEFAULT_NODE_ID = 1

DEFAULT_CPU_PORT = 255

DEFAULT_PIPECONF = "org.onosproject.pipelines.basic"

STRATUM_BMV2 = ’stratum_bmv2’

STRATUM_INIT_PIPELINE = ’/root/dummy.json’

MAX_CONTROLLERS_PER_NODE = 10

BMV2_LOG_LINES = 5

def writeToFile(path, value):

with open(path, "w") as f:

f.write(str(value))

def pickUnusedPort():

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((’localhost’, 0))

addr, port = s.getsockname()

s.close()

return port

def watchdog(sw):

try:

writeToFile(sw.keepaliveFile,

"Remove this file to terminate %s" % sw.name)

while True:

if StratumBmv2Switch.mininet_exception == 1 \

88



or not os.path.isfile(sw.keepaliveFile):

sw.stop()

return

if sw.stopped:

return

if sw.bmv2popen.poll() is None:

# All good, no return code, still running.

time.sleep(1)

else:

warn("\n*** WARN: switch %s died \n" % sw.name)

sw.printLog()

print("-" * 80) + "\n"

# Close log file, set as stopped etc.

sw.stop()

return

except Exception as e:

warn("*** ERROR: " + e.message)

sw.stop()

class StratumBmv2Switch(Switch):

# Shared value used to notify to all instances of this class that a Mininet

# exception occurred. Mininet exception handling doesn’t call the stop()

# method, so the mn process would hang after clean-up since Bmv2 would still

# be running.

mininet_exception = multiprocessing.Value(’i’, 0)

nextGrpcPort = 50001

def __init__(self, name, json=STRATUM_INIT_PIPELINE, loglevel="debug",

cpuport=DEFAULT_CPU_PORT, pipeconf=DEFAULT_PIPECONF,

onosdevid=None,

**kwargs):

Switch.__init__(self, name, **kwargs)

self.grpcPort = StratumBmv2Switch.nextGrpcPort

StratumBmv2Switch.nextGrpcPort += 1

self.cpuPort = cpuport

self.json = json

self.loglevel = loglevel

self.tmpDir = ’/tmp/%s’ % self.name
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self.logfile = ’%s/stratum_bmv2.log’ % self.tmpDir

self.netcfgFile = ’%s/onos-netcfg.json’ % self.tmpDir

self.chassisConfigFile = ’%s/chassis-config.txt’ % self.tmpDir

self.pipeconfId = pipeconf

self.longitude = kwargs[’longitude’] if ’longitude’ in kwargs else None

self.latitude = kwargs[’latitude’] if ’latitude’ in kwargs else None

if onosdevid is not None and len(onosdevid) > 0:

self.onosDeviceId = onosdevid

else:

# The "device:" prefix is required by ONOS.

self.onosDeviceId = "device:%s" % self.name

self.nodeId = DEFAULT_NODE_ID

self.logfd = None

self.bmv2popen = None

self.stopped = True

# In case of exceptions, mininet removes *.out files from /tmp. We use

# this as a signal to terminate the switch instance (if active).

self.keepaliveFile = ’/tmp/%s-watchdog.out’ % self.name

# Remove files from previous executions

self.cleanupTmpFiles()

os.mkdir(self.tmpDir)

def getOnosNetcfg(self):

basicCfg = {

"managementAddress": "grpc://localhost:%d?device_id=%d" % (

self.grpcPort, self.nodeId),

"driver": "stratum-bmv2",

"pipeconf": self.pipeconfId

}

if self.longitude and self.latitude:

basicCfg["longitude"] = self.longitude

basicCfg["latitude"] = self.latitude

netcfg = {

"devices": {

self.onosDeviceId: {

"basic": basicCfg

}
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}

}

return netcfg

def getChassisConfig(self):

config = """description: "stratum_bmv2 {name}"

chassis {{

platform: PLT_P4_SOFT_SWITCH

name: "{name}"

}}

nodes {{

id: {nodeId}

name: "{name} node {nodeId}"

slot: 1

index: 1

}}\n""".format(name=self.name, nodeId=self.nodeId)

intf_number = 1

for intf_name in self.intfNames():

if intf_name == ’lo’:

continue

config = config + """singleton_ports {{

id: {intfNumber}

name: "{intfName}"

slot: 1

port: {intfNumber}

channel: 1

speed_bps: 10000000000

config_params {{

admin_state: ADMIN_STATE_ENABLED

}}

node: {nodeId}

}}\n""".format(intfName=intf_name, intfNumber=intf_number, nodeId=self.nodeId)

intf_number += 1

return config

def start(self, controllers):
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if not self.stopped:

warn("*** %s is already running!\n" % self.name)

return

writeToFile("%s/grpc-port.txt" % self.tmpDir, self.grpcPort)

with open(self.chassisConfigFile, ’w’) as fp:

fp.write(self.getChassisConfig())

with open(self.netcfgFile, ’w’) as fp:

json.dump(self.getOnosNetcfg(), fp, indent=2)

args = [

STRATUM_BMV2,

’-device_id=%d’ % self.nodeId,

’-chassis_config_file=%s’ % self.chassisConfigFile,

’-forwarding_pipeline_configs_file=%s/pipe.txt’ % self.tmpDir,

’-persistent_config_dir=%s’ % self.tmpDir,

’-initial_pipeline=%s’ % self.json,

’-cpu_port=%s’ % self.cpuPort,

’-external_stratum_urls=0.0.0.0:%d’ % self.grpcPort,

’-local_stratum_url=localhost:%d’ % pickUnusedPort(),

’-max_num_controllers_per_node=%d’ % MAX_CONTROLLERS_PER_NODE,

’-write_req_log_file=%s/write-reqs.txt’ % self.tmpDir,

’-bmv2_log_level=trace’,

]

cmd_string = " ".join(args)

try:

# Write cmd_string to log for debugging.

self.logfd = open(self.logfile, "w")

self.logfd.write(cmd_string + "\n\n" + "-" * 80 + "\n\n")

self.logfd.flush()

self.bmv2popen = self.popen(cmd_string, stdout=self.logfd, stderr=self.logfd)

print " %s @ %d" % (STRATUM_BMV2, self.grpcPort)

# We want to be notified if stratum_bmv2 quits prematurely...

self.stopped = False

threading.Thread(target=watchdog, args=[self]).start()
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except Exception:

StratumBmv2Switch.mininet_exception = 1

self.stop()

self.printLog()

raise

def printLog(self):

if os.path.isfile(self.logfile):

print "-" * 80

print "%s log (from %s):" % (self.name, self.logfile)

with open(self.logfile, ’r’) as f:

lines = f.readlines()

if len(lines) > BMV2_LOG_LINES:

print "..."

for line in lines[-BMV2_LOG_LINES:]:

print line.rstrip()

def cleanupTmpFiles(self):

self.cmd("rm -rf %s" % self.tmpDir)

def stop(self, deleteIntfs=True):

"""Terminate switch."""

self.stopped = True

if self.bmv2popen is not None:

if self.bmv2popen.poll() is None:

self.bmv2popen.terminate()

self.bmv2popen.wait()

self.bmv2popen = None

if self.logfd is not None:

self.logfd.close()

self.logfd = None

Switch.stop(self, deleteIntfs)

class NoOffloadHost(Host):

def __init__(self, name, inNamespace=True, **params):

Host.__init__(self, name, inNamespace=inNamespace, **params)

def config(self, **params):

r = super(Host, self).config(**params)
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for off in ["rx", "tx", "sg"]:

cmd = "/sbin/ethtool --offload %s %s off" \

% (self.defaultIntf(), off)

self.cmd(cmd)

return r

class NoIpv6OffloadHost(NoOffloadHost):

def __init__(self, name, inNamespace=True, **params):

NoOffloadHost.__init__(self, name, inNamespace=inNamespace, **params)

def config(self, **params):

r = super(NoOffloadHost, self).config(**params)

self.cmd("sysctl net.ipv6.conf.%s.disable_ipv6=1" % (self.defaultIntf()))

return r

# Exports for bin/mn

switches = {’stratum-bmv2’: StratumBmv2Switch}

hosts = {

’no-offload-host’: NoOffloadHost,

’no-ipv6-host’: NoIpv6OffloadHost

}
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