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Quero deixar também um agradecimento muito especial à Fátima Barbosa
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Palavras Chave Classificação de Sequências, Inteligência Artificial, Compressão de Dados,
Conjunto de Preditores, Metagenómica

Resumo Os cont́ınuos avanços em tecnologias de sequenciação de ADN e técnicas
em metagenómica requerem metodologias de reconstrução confiáveis e de
classificação precisas para o aumento da diversidade do repositório natu-
ral, contribuindo entretanto para a descrição e organização dos organismos.
No entanto, após a sequenciação e a montagem de-novo, um dos desafios
mais complexos advém das sequências de ADN que não correspondem ou se
assemelham a qualquer sequência biológica da literatura. São três as princi-
pais razões que contribuem para essa exceção: uma irregularidade emergiu
no processo de reconstrução, a sequência do organismo é altamente dis-
similar dos organismos da literatura, ou um novo e diferente organismo foi
reconstrúıdo. A incapacidade de classificar com eficiência essas sequências
desconhecidas aumenta a incerteza da constituição da amostra e desperdiça
a oportunidade de descobrir novas espécies, uma vez que muitas vezes são
descartadas.
Neste contexto, o principal objetivo desta tese é fornecer uma solução com-
putacional eficiente para resolver este desafio com base em um conjunto
de especialistas, nomeadamente preditores baseados em compressão, a dis-
tribuição de conteúdo de sequência e comprimentos de sequência normal-
izados. O método usa sequências de ADN e de aminoácidos e fornece clas-
sificação eficiente além das comparações referenciais padrão. Excepcional-
mente, ele classifica as sequências de ADN sem recorrer diretamente a geno-
mas de referência, mas sim às caracteŕısticas que as sequências biológicas da
espécie compartilham. Especificamente, ele usa apenas recursos extráıdos
individualmente de cada genoma sem usar comparações de sequência. Além
disso, o pipeline é totalmente automático e permite a reconstrução sem re-
ferência de genomas a partir de reads FASTQ com a garantia adicional de
armazenamento seguro de informações senśıveis.
O RFSC é então um pipeline de classificação de aprendizagem automática
que se baseia em um conjunto de especialistas para fornecer classificação
eficiente em contextos metagenómicos. Este pipeline foi aplicado em dados
sintéticos e reais, alcançando em ambos resultados precisos e exatos que,
no momento do desenvolvimento desta dissertação, não foram relatados na
literatura. Especificamente, esta ferramenta desenvolvida, alcançou uma
precisão de aproximadamente 97% na classificação de doḿınio/tipo.





Keywords Sequence Classification, Machine Learning, Data Compression, Experts En-
semble, Metagenomics

Abstract The continuous advances in DNA sequencing technologies and techniques
in metagenomics require reliable reconstruction and accurate classification
methodologies for the diversity increase of the natural repository while con-
tributing to the organisms’ description and organization. However, after
sequencing and de-novo assembly, one of the highest complex challenges
comes from the DNA sequences that do not match or resemble any bio-
logical sequence from the literature. Three main reasons contribute to this
exception: the organism sequence presents high divergence according to the
known organisms from the literature, an irregularity has been created in the
reconstruction process, or a new organism has been sequenced. The in-
ability to efficiently classify these unknown sequences increases the sample
constitution’s uncertainty and becomes a wasted opportunity to discover
new species since they are often discarded.
In this context, the main objective of this thesis is the development and
validation of a tool that provides an efficient computational solution to
solve these three challenges based on an ensemble of experts, namely
compression-based predictors, the distribution of sequence content, and
normalized sequence lengths. The method uses both DNA and amino acid
sequences and provides efficient classification beyond standard referential
comparisons. Unusually, it classifies DNA sequences without resorting di-
rectly to the reference genomes but rather to features that the species bio-
logical sequences share. Specifically, it only makes use of features extracted
individually from each genome without using sequence comparisons.
RFSC was then created as a machine learning classification pipeline that
relies on an ensemble of experts to provide efficient classification in metage-
nomic contexts. This pipeline was tested in synthetic and real data, both
achieving precise and accurate results that, at the time of the development
of this thesis, have not been reported in the state-of-the-art. Specifically, it
has achieved an accuracy of approximately 97% in the domain/type classi-
fication.
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Chapter 1

Introduction

1.1 Motivation

Metagenomics analyses are increasingly gaining importance in clinical, forensic, and exo-
biology fields [8, 9, 10, 11, 12]. One of the biggest drivers responsible for this growth was
the emergence of next-generation sequencing technologies (NGS), which allow applications
from gene expression quantification to genotyping and genome reconstruction [13]. NGS dif-
ferentiates itself from traditional methods by introducing multiplex and analytical resolution
capabilities, thus making it a more time and cost-efficient approach for fast screening [14, 15].

For the classification of new organisms in metagenomic samples, there is the need to follow
well-defined laboratory and computation steps, namely from sequencing, passing by trimming
and filtering, to de-novo assembly. This process can enter a loop between computation and
laboratory through cloning and enrichment of specific reconstructed regions for achieving
higher quality and completeness [16].

However, after sequence reconstruction, sometimes the results can be inconclusive when
using referential comparison methods, specifically when irregularities are created in the re-
construction process, the divergence between the sequences of known organisms and the
reconstructed sequence is too high, or a new organism has been sequenced [17, 18].

The vast majority of the classification pipelines available adopt a referential comparison
method (e.g., Ganon [19], Fastv [20], VirTect [21], VIcaller [22], ViPR [23], GenomeDetective
[24], RAST [25], MEGAN [26], MGS-Fast [27], MetaPhlAn [28]) where the reconstructed
sequence is compared to a set of references present in a database [29]. This approach, however,
becomes a disadvantage when faced with problems of the magnitude of the ones presented
above.

The constant growth of the reference databases (e.g., GenBank [30], RefSeq [31], DDBJ
[32], INSC [33], MIPS [34], MG-RAST Database [35]) and the increase in the size of sequencing
datasets has also contributed to strategy changes regarding the comparison between each read
with all sequences presented in those databases since the alignment used by some programs
such as BLAST [36] becomes increasingly computationally expensive [29]. With this in mind,
reference-based approaches, such as mapping k-mers (e.g. Kraken2 [37], centrifuge [38]),
compression-based mapping (e.g. FALCON-meta [39]), or protein sequence alignments (e.g.
Kaiju [40] and GOTTCHA [41]), have successfully emerged [29, 42, 43].

However, if the sequence has an extremely high level of dissimilarity or singularity, how
can these reference-based programs discover and classify? How to distinguish the biological
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organism sequence from a sequencing or assembly exception? This challenge is an obvious
limiting factor for extending the natural biological repository and discovering new pathogens.

1.2 Objectives

This thesis proposes RFSC, an alignment-free metagenomic classification tool, to fill the
gaps resulting from referential comparison pipelines. Specifically, RFSC is a pipeline for
the reconstruction and classification of DNA sequences without resorting directly to the se-
quence of the reference genomes. Instead, it utilizes an ensemble of five predictors, namely
compression-based predictors and simple property characteristics, for probabilistic classifi-
cation of reconstructed unknown DNA sequences. Specifically, the experts used are the in-
dividual compression proportion (or entropy) of the genome (normalized compression for
DNA sequences) and proteome sequence (normalized compression for amino acid sequences),
GC-content distribution [44], and normalized sequence lengths for the genome and proteome
sequences [45].

It is counter-intuitive that knowing only how much the sequences from a genome and
proteome can be compressed (represented by a single floating-point value between zero and
one), their sequence length, and percentage of Guanine and Cytosine, it is possible to classify
an organism. For example, if it is a virus, bacteria, archaea, fungi, protozoa, plant, or specific
types of species sub-sequences, such as mitochondrial or plastid. This thesis aims at showing
that it is possible, and provides a method to automatically allow this classification with very
high accuracy. Another objective of this thesis is to perform a balanced and fair benchmark
to the reconstruction and classification system. This benchmark includes the search for an
accurate classifier according to the five predictors in use. For the purpose, synthetic and real
DNA sequences are used.

1.3 Dissertation Structure

In this thesis, the topic of bioinformatics will first be introduced, specifically its importance
and applicability in the most diverse professional and scientific areas, moving on to a state-
of-the-art analysis, considering the different existing paradigms, solutions and tools available.
Next, the various themes that support the needs of developing a reference-free sequence
classification tool will be addressed through the presentation of some of the key areas in
which this tool could have a positive impact.

Then, the entire methodology added to this project will be presented, from the imple-
mented architecture, always taking into account preferential factors of privacy, storage and
data preparation, for handling and processing the data.

In the last part of the pipeline, referring to data extraction and processing, the used
predictors will be introduced and explained, as well as all the implemented machine learning-
based classification models.

Finally, a detailed analysis of the results will be carried out and conclusions will be inferred
regarding the performance of the method and its implementation.
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Chapter 2

Background

2.1 Bioinformatics

In recent years, many areas of study such as Bioinformatics, Biotechnology, Computational
Biology and Biochemistry have gained importance in order to respond to new challenges
arising from different fields [46].

In this thesis, the attention will be focused on the field of Bioinformatics that has been
at the center of a massive scientific evolution in our days, influencing several fields of study
and investigation, thus introducing new paradigms and dogmas.

This interdisciplinary field is supported by the coexistence of several research areas, in-
cluding Biology, Medicine, Computer Science, Maths and Physics, thus allowing the capture
and analysis of biological data [47], most often DNA and amino acid sequences.

In Bioinformatics, these DNA sequences are computationally treated, resulting from out-
puts of biochemical and computational methods [4], through the application of sequencing
and assemble methods. These sequences, however, may not correspond exactly to the chemi-
cal compounds or their order due to multiple factors, including low-quality sequencing factors,
contamination [4, 48] and unknown factors [4, 49]. The determination of the nucleic com-
pounds and their respective order has been achieved with the Sanger sequencing method
[50].

Figure 2.1: Double helix DNA representation. Source: Khan Academy.
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Being the DNA and Amino Acid sequences fundamental in the bioinformatics environ-
ment, there is the need to extend this topic in order to understand what it is and where it
came from.

The DNA present in a genome is a set of molecules that contains the unique genetic code
of each organism, being each DNA molecule made of two twisting double-strands [51]. Each
strand is constituted by four chemical units, namely Adenine (A), Thymine (T), Guanine (G)
and Cytosine (C), the nucleotide bases. A representation of this structure can be found in
Figure 2.1.

There are, however, exceptions since, for example in the case of viruses, both the DNA and
the RNA molecule can be single-stranded, existing even cases in which both can be verified
at the same time.

Approaching this issue from a different perspective, and making use of some of the concepts
used in the last paragraph, the concept of nucleotide arises. Nucleotides are characterized
by being the basic building block of nucleic acids, such as DNA or RNA, being composed
of a nitrogenous base, a sugar, and a phosphate group. The nitrogenous base present in a
nucleotide may be any of the aforementioned in the case of DNA or RNA, with the exception,
in the latter case, of the Thymine (T), which is replaced in the transcription of DNA to RNA
by Uracil (U) in order to be complementary to adenine.

The constitution of these organic molecules is represented in Figure 2.2.

Figure 2.2: Nucleotide structural elements. Source: Wikipedia.

On the other hand, the codons (sets of three nucleotides) present in the DNA, when en-
coded, give rise to amino acids, existing however some directives that control this conversion.
In addition to the fact that three nucleotides encode an amino acid, the code is nonoverlapping
[52]. Therefore, from the DNA sequence it is possible to obtain the amino acid sequences,
however, from the amino acid sequences one can only infer the possible DNA sequences.

Therefore, it is possible to conclude in this matter that a set of bases form DNA while a
set of amino acids form a protein. In order to better understand the information contained
in DNA and Proteins, it is necessary to deepen the studies both in genomics and proteomics
fields, including the metagenomics field.

2.1.1 Metagenomics

Metagenomics is the study of the genomes present in samples directly extracted from the
environment. In other words, concerns the study of collections of genomes from a mixed
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community of organisms, thus avoiding resorting to a single-isolate approach, which does not
need to separate individual bacterial clones from complex microbial mixtures [53].

Therefore, and through the assignment of DNA fragments (reads, contigs, or scaffolds)
to certain appropriate bioinformatic tools or pipelines, they will, based on different types of
analysis, return a collection of genome designations or taxonomies that are present in those
DNA samples [53].

Some of the techniques used in the WGS analysis, that is, the analysis of the entire
genomic DNA sequence of a genome at a single time, are based on the compositions of
nucleotide sequences, on the analysis of protein-coding open reading frames, among several
others that will be addressed in the context of the RFSC architecture [1, 53, 54].

In order to provide an overview of the steps to be taken in a metagenomic analysis, an
image that briefly illustrates a possible metagenomic workflow is provided in Figure 2.3, in
which the five major steps in a typical shotgun metagenomics study are considered, namely
the study design and experimental protocol (Experimental Pipeline), computational pre-
processing (Preprocessing), sequence analysis, post-processing and validation. The shotgun
sequencing method is an evolution of the Sanger method that adds capability to process larger
genomes using substantial lower time, and introduces the notion of depth which is related with
the average number of sequenced reads to cover a specific genome region [55]. For example,
this technology enabled the sequencing of the human genome.

Figure 2.3: Brief representation of a metagenomics workflow. Source: Shotgun metagenomics,
from sampling to analysis [1].
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This workflow is thus initiated by a Study design and experimental protocol and passed
directly to a set of steps responsible for quality control in which there is the removal of se-
quencing adaptors, sequence trimming and removal of sequencing duplicates (Computational
pre-processing). In the next step, the Sequence analysis, a combination of read-based and
assembly-based approaches are performed in order to enable a better analysis of sequences.
Arriving at the Post-processing step, multiple statistical algorithms are implemented in or-
der to interpret the information obtained. Finally, in Validation, it is possible to obtain
conclusions about the biological data [1], namely at genomic and proteomic levels.

2.1.2 Genomics

In Bioinformatics, genome analysis takes a central position, as it provides a very impor-
tant amount of data in understanding the instructions provided by the DNA at the genome
sequence level.

One of the biggest milestones when it comes to genomic analysis concerns the first se-
quencing of the human genome back in 2000, when in the United States of America, under
the direction of the National Institutes of Health and the U.S. Department of Energy, the
Human Genome Project (HGP) successfully, and for the first time in human history, was
sequenced close to 90% of the human genome [56]. This achievement made an immense
contribution in the most varied areas, namely helping to better understand the evolution of
the human, understanding hereditary pathologies, the contribution of environmental factors
in human adaptation, the causation of several disease [56, 57], in nutrition researches [58],
among many others. The genomics area as witness three main sequencing phases, namely the
Sanger sequencing, the shotgun sequencing, and the Next-Generation sequencing (NGS).

The first two major sequencing technologies have already been mentioned while the NGS
is the current technology used in most of the cases, mainly for large genome sequencing such
as animals or plants. This technology offers a high-throughput while decreasing substantially
the sequencing cost [59]. However, it also requires the development and constant improvement
of dedicated and efficient pipelines for proper and accurate biological conclusions.

Genomics concerns the integral study of an organism’s genome, being the genomic analysis
responsible for the analysis of DNA sequences, identifying and studying their characteristics
such as structural variation, sequence length, GC Content [45], among others.

Genomics has grown substantially in the past years thanks to the multiple opportunities
and applications it offers in the most varied areas, with special attention to the fields of
evolutionary study and clinical applications, such as the study of complex diseases [60], gene
therapy [61], and genome editing [62].

2.1.3 Proteomics

Proteomics is the large-scale study of proteins. Proteomics is another of the omics tech-
nologies, where the proteomic-based technologies emerge as a complement to genomic-based
technologies, which in turn focus on the study of proteomes, that is, sets of proteins encoded
by the genome present in cells, tissues or organisms [63, 64].

Proteomics thus takes on a dominant status in the study of genetic sequences alongside
genomics, and can be considered “the tools that make living machines work” [64].

A protein is made of sequences of amino acids. Each amino acid is set according to triplets
of DNA bases. For synchronizing the phase of the triplets, specific DNA triples provide the
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initial start, known as the starting codons. On the other hand, to end a protein sequence,
one of the stop codons must be reached. Figure 2.4 shows the correspondence table between
DNA triplets (three nucleotides) and amino acids.

Figure 2.4: Correspondence table between DNA triplets for amino acids. Source: The Genetic
Code by OpenStax College, Biology.

In proteomes, unlike the genetic code where the sequences are made up of sets of four
nucleotides, the proteins can be built from twenty different amino acids in their alphabet. In
addition to these amino acids, post-translational modifications can inflict protein modifica-
tions through the addition of other chemical constituents such as sugars, fats, or phosphates
[64].

Proteomics, as all areas at the heart of bioinformatics, have been in great demand and
have evolved substantially in recent years. Its capabilities expand into many sectors, with
some of its most outstanding applications being the discovery of new protein markers for
diagnostic purposes with the aim of developing new vaccines and drugs [65], understanding
pathogenicity mechanisms [63], tumor classification [66], cancer research [67], among others.

2.2 Biological Sequence Reconstruction and Classification

As previously mentioned, genomes are possible to be found in all organisms, having all its
genetic material and being very rich in information.

One of the most powerful dataset for biomedical research contains the sequencing of the
human genome, which has between 20,000 to 25,000 genes that each one of them encodes mil-
lions of proteins [68]. Analysing and understanding this information can be used to greatly
benefit human health [68]. The protection of this intellectual property has proven to be es-
sential in several professional fields, such as biotechnology, pharmaceutical [68], evolutionary,
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among many others, having a noble objective of supporting the biological discovery, as well
as the medical research and the conservation of biodiversity [69].

The study of environmental genomics also manages to bring together a panoply of multiple
areas of interest, which, through multiple nucleotide, proteomic, metagenomic, transcriptomic
and metatranscriptomic technologies, allows the extraction of a large amount of information
regarding the taxonomy (of current and fossil organisms), the phylogeny, the evolution and
the adaptation of organisms taking into account the environmental conditions surrounding
them [70].

Nowadays, there are many large repositories online, where large quantities of sequences
from the most diverse organisms can be accessed, to be used in various research projects [71].
Some of these databases are NCBI’s GenBank [30] in the U.S., the EMBL [72] in Europe, and
the DDBJ [32] in Japan. The existence of those databases shows the substantial work related
to the reconstruction of the genomes provided in the last years. However, the complexity
related to both the sequencing and the reconstruction depends on the context and area where
the sample has been extracted. In the following subsections, several areas and contexts are
described.

2.2.1 Exobiology

Exobiology is a recent interdisciplinary scientific field that has gain momentum with the
increase of space exploration missions, that seeks to study the origin and evolution of life in
the universe [73].

Over the past few years, several studies have been conducted in the area of exobiology, such
as the ESA Exobiology Team Study from 1997-1998, in which they focused their attention
on the study of exobiology in the solar system as well as the search for life in Mars.

Some examples of application of these technologies in Exobiology may concern, monitoring
microbial communities aboard the International Space Station (ISS) as a way for maintaining
astronaut health and the integrity of life-support systems [74], and the analysis of biological
species to Mars-like environments [75].

It is not, however, strictly necessary to go very far into outer space to find evidence of alien
genetic material, since on several occasions there are observations of several extraterrestrial
nucleobases present on meteorite surfaces [76, 77, 78].

Until now, the few nucleobases found in meteorites are considered biologically common,
which often puts into question the possibility of contamination of samples from sources on
Earth. There are, however, exceptions, as discovered in the case of the Murchison and
Lonewolf Nunataks 94102 meteorites, which among them had three unusual and terrestri-
ally rare nucleobase analogs [76].

On the other hand, the existence of chemical components necessary for life in meteorites
provides an additional reason for screening of exobiology metagenomics [79]. Several celestial
corpora have contacted the Earth, which opens the possibility of having ancient or extrater-
restrial genomes in this planet’s most challenging environmental conditions. Because the
standard assembly and classification methods rely on references, there is the possibility of
missing these organisms. Curiously, there are organisms from regions with hard conditions
that have been used as models for exobiology studies [80, 81]. Therefore, in this area it is
usually expected a high dissimilarity or singularity in the genomes sequences.

All these discoveries have been revolutionizing the fields of exobiology and astrobiology,
creating a huge expectation and curiosity around the area [77]. The presence of these amino
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acids and nucleobases in meteorites may allow a better understanding of the emergence of life
on our planet as well as explore new forms of life in environments other than the earth.

Therefore, the development of reconstruction and classification methods for dissimilar
sequences have an important role in current and following years.

2.2.2 Ancient DNA

Another of the complex analysis subclasses is related to Ancient DNA reconstruction and
classification. This branch allows us to expand our knowledge on evolutionary issues that
would otherwise be very difficult to reach reliable conclusions given the obvious barrier of
time.

When applied to the DNA of human ancestors, it allows the learning of new facts about
their lives, its migratory routes, as well as analyzing the evolutionary path over time to the
present in genomic terms [82], even though the human lineage remains largely unexplored
[83]. Another of the widely recognized case studies within the Ancient DNA environment
concerns the woolly mammoths (Mammuthus primigenius), a species of mammoths of which
it was possible in 2015 to perform a complete genome sequencing for two specimens from
very different time periods (while one of the specimens it is estimated to be from 45000 years
ago, while the other should be only 4300 years old) [84]. The large age difference between
the specimens is an excellent opportunity to study different models of genome architecture
evolution within a single species [84] or, for example, in the faunal history [85].

All these areas of study share deep connections and are, to a certain degree, intrinsically
interconnected, as is the case with Ancient DNA and Exobiology, which given the fact that
the high degree of antiquity of an asteroid makes it possible for the exobiological material
that is in it deposited to be also antique. These conditions allow, in some cases, the use of
this genomic material as a form of reconstruction of the past.

2.2.3 Human interaction and hostile terrestrial environments

Several factors, both at the environmental level and due to human consequences, transform
certain environments into hostile situations to the existence of life. However, and even these
environments having few properties that are suitable for the existence of life, there are certain
organisms that, against all odds, manage to thrive.

The study of these organisms and enzymes produces great value for the pharmaceutical
industry, allowing, in the case of the xenobiotic field, to analyze the effect of certain chemicals
in our lives, and its effect in our well-being [86].

Occurrences of this caliber appear with some regularity, such as the discovery of a bacteria
that can be found in adverse conditions in which requires acids and dissolved metals in order to
function [87], or even bacteria acting as natural decontamination agents such as Aeromonas
veronii, a tributyltin (TBT)-degrading bacterium isolated from Ria de Aveiro in Portugal
which act as decontamination agents in this polluted areas [88].

On the other hand, antibiotic resistance is an emerging global problem with impact on
genome evolution for both pathogenic and host species [89]. Therefore, antibiotic resistance
is causing changes in the genomes of bacteria and certain hosts that are not adapted for such
rapid evolution, forcing an evolution based on natural selection.
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2.2.4 De-novo assemblers and reference-based assemblers

One of the major challenges in handling DNA sequences concerns the reconstruction of
the original DNA sequence from fragment reads (DNA assembly) that are usually randomly
generated from a long DNA molecule [90].

The reconstruction process, given its immense complexity in terms of the amount of data to
be processed, becomes quite heavy, time-consuming and costly, depending on the complexity
of the organism under analysis, the sequencing methodology, and the characteristics of the
samples as previously addressed.

To overcome this assembly DNA challenge, there are several proposed solutions, which
are generically divided into three groups: DNA sequence reconstruction without resorting to
any previously reconstructed reference sequence, called de-novo assemblers, reference-based
reconstruction, called reference-based assemblers [90], and hybrid reconstruction that relies
on both approaches, for example, TRACESPipe [91].

Regarding the reference-based approaches, there is a need to distinguish an aligner from an
assembler, since for an aligner as is the case of BWA [92] and Bowtie2 [93], in order to perform
assemblies it needs to be adapted using other programs developed for that purpose [94]. While
the sequence aligners have the purpose of verifying the sequence identity or similarity between
two or more different sequences, the sequence assemblers have the objective of creating a long
consensus sequence from short fragments of the same sequence in order to reconstruct the
original DNA sequence. Therefore, aligners based on BWA [92] and Bowtie2 [93] can behave
as an assembler when used together with, for example, SAMtools [95], a tool that implements
various utilities for post-processing alignments in the SAM format [95], namely variant call.

In order to mitigate operating costs, the choice of the methods, taking into account the
analysis situation (that is, whether there is a previously reconstructed reference sequence from
a similar organism or not), takes an even more important role than would be expected. Other
factors that need to be taken into account focus on the size of the genomes to be assembled,
the redundancy (a factor that makes it especially difficult to analyze in the plants domain,
since they have a high redundancy [96]), the acceptance of paired-end (PE) or single-end (SE)
reads, among others.

There are thus several tools that, depending on the needs, may provide a much better
solution when compared to others. To perform a de-novo assembly in small genomes, tools
such as metaSPAdes [97], Velvet [98] and Hinge [99], when the size becomes considerable
(up to 130MB) HGAP [100], DNASTAR Lasergene Genomics [101] and ABySS [102] are
good options. On the other hand, if the assembly in question becomes based on a reference,
tools such as RaGOO [103], Ragout [104], RECORD [105], MIRA [106], or aligner-based
approaches, may be more adequate.

The PacBio High-Fidelity (HiFi) sequencing is a recent technology that produces reads
with length 10 to 25 Kpb with very high accuracy (>99,9%). These are the assemblers that
are able to efficiently deal with the size of these reads: HiCanu [107], hifiasm [108] and Falcon
[109]. The HiFi assemblers are able to resolve more segmental duplications than common
approaches and additionally are also able to produce haplotype-resolved assemblies.

In the next tables, a summary of tools for de-novo assembly, Table 1, and reference-based
assembly, Table 2, is available, categorized by their applicability in genomic samples size.

On the other hand, in a metagenomic context, where multiple genomes usually coexist,
there are a number of situations that should be taken into account that greatly hinder the
assembly process. These factors relate to the depth of sequencing that is not uniform among
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Table 1: De-novo assemblers categorized by their applicability in small and long size genomic
samples, with the respective URL and reference.

De-Novo Assemblers

Tool Specification URL Reference

metaSPAdes
Small

Genomes

https://cab.spbu.ru/

software/meta-spades/
[97]

Velvet
https://www.ebi.ac.uk/$\

sim$zerbino/velvet/
[98]

HGAP
Large

Genomes

https://github.com/

PacificBiosciences/

Bioinformatics-Training/

wiki/

HGAP-in-SMRT-Analysis

[100]

DNASTAR Requires a Comercial License [101]
AFEAP Requires a Comercial License [110]

MaSuRCA Small
and

Large
Genomes

https://github.com/

alekseyzimin/masurca
[111]

ABySS
https://github.com/

bcgsc/abyss
[102]

HiCanu Large
and

Redundant
Genomes

with
Large
Reads

https://github.com/

marbl/canu
[107]

Hifiasm
https://github.com/

chhylp123/hifiasm
[108]

Hinge
https://github.com/

HingeAssembler/HINGE
[99]

Falcon
https://github.com/

PacificBiosciences/

FALCON

[109]

all of the genome, being most of the time highly unequal between different organisms, the
nonclonal nature of the organisms within a single sample since between-strain differences
become very similar to variation between repeats, and finally, the fact that the depth of a
coverage of a particular species is rarely very high [112].

Taking this into account, there exists a set of assembly tools that have a better adaptation
to analyze this type of metagenomic samples, such as MetaSPAdes [97], an assembler that uses
multiple k-mers with different abundances, conserved regions and strain mixtures, or IDBA-
UD [113], an assembler that also makes use of multiple k-mer sizes and coverages between
paths [112]. Moreover, this selection is made with the assumption that the sequencing reads
are short and provenient of the previous mentioned challenging contexts.

11

https://cab.spbu.ru/software/meta-spades/
https://cab.spbu.ru/software/meta-spades/
https://www.ebi.ac.uk/$\sim $zerbino/velvet/
https://www.ebi.ac.uk/$\sim $zerbino/velvet/
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-Analysis
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-Analysis
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-Analysis
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-Analysis
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-Analysis
https://github.com/alekseyzimin/masurca
https://github.com/alekseyzimin/masurca
https://github.com/bcgsc/abyss
https://github.com/bcgsc/abyss
https://github.com/marbl/canu
https://github.com/marbl/canu
https://github.com/chhylp123/hifiasm
https://github.com/chhylp123/hifiasm
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
https://github.com/PacificBiosciences/FALCON
https://github.com/PacificBiosciences/FALCON
https://github.com/PacificBiosciences/FALCON


Table 2: Reference-based assemblers categorized by their applicability in small and long size
genomic samples, with the respective URL and reference.

Reference-Based Assemblers

Tool Specification URL Reference

RaGOO

Small
and

Large
Genomes

https://github.com/

malonge/RaGOO
[103]

Ragout
https://github.com/

fenderglass/Ragout
[104]

RECORD
https://sourceforge.

net/projects/

record-genome-assembler/

[105]

MIRA
https://github.com/

bachev/mira
[106]

Amos
http://amos.sourceforge.

net/wiki/index.php/AMOS
[114]

RACA
https://github.com/

ma-compbio/RACA
[115]

ARACHNE https://wi.mit.edu/ [116]

IMR/DENOM
http://mtweb.cs.ucl.ac.

uk/mus/www/19genomes/

IMR-DENOM/

[117]

AlignGraph
https://github.com/baoe/

AlignGraph
[118]

2.3 Compression-based Analysis

Data compression-based analysis has become increasingly common when working with
large amounts of data, offering good precision and accurate results when efficient and opti-
mized compression models are applied.

Efficient compression methods have been applied in the most distinct areas of study, having
had a special relevance in bioinformatics, in which the results adjacent to them have been
proven to be very promising both in terms of clustering, classification, anomaly detection,
singularity, among others [119].

There are, however, several risks that must be taken into account when starting to use
this type of methodology. The choice of the data compressor to the data type is fundamental.
Efficient data compressors are demanding for achieving higher accuracy in data analysis.

Assuming that, for this type of study, the only method in interest is the Lossless com-
pression, since in bioinformatics it is essential to be able to reconstruct the complete original
input from the compressed output, not risking the detection of false positive or misleading
patterns [119, 120].

Looking at some of the techniques used in compression algorithms for genome sequences,
they can, generally be divided into reference-free and reference-based methods [121].

In the case of reference-free methods, those tools make use of the structural properties
of the sequences in order to enable their compression using, for example, the palindromes
existing in the sequences under analysis [121, 122]. Some of the basic techniques used in
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reference-free compression methods concern the naive bit encoding, dictionary-based and
statistical approaches [123].

In the Naive bit encoding, it is usual to perform the encoding of four bases within one
byte via bit encoding, thus replacing each input symbol by two bits using the replacement
{A→ 00, C → 01, G→ 10, T → 11} [123].

In the Dictionary-based methodologies, it is usual to replace DNA subsequences that are
repeated throughout the input sequence with references to a dictionary. However it does not
need to be stored together with the compressed information, as it can be reconstructed in the
decompression process [123, 124].

A statistical compression algorithm, also known as entropy encoding algorithm, is usually
represented by a probabilistic or prefix tree data structure, which is created from a statis-
tical model of the compressor’s input data. It is a variable length code algorithm in which
subsequences with a higher frequency are represented with shorter codes [123, 125].

As described in Figure 2.5 there are several genome sequence compression tools using
reference-free methods in its core [126, 127], such as, biocompress series [128, 129], Cfast
[130], CDNA [131], ARM [132], GenCompress [133], Off-line [134], CTW+LZ [135], DNA-
Compress [136], NMLComp [137], DNA-X [138], DNAC [139], DNASequitur [140], DNA-
Pack [141], GeNML [142], 2D [143], DNASC [144], GBC [145], POMA [146], DNAEnc3
[147], DNAEnc4v2 [148], DNACompact [149], BIND [150], LUT [151], GenCodex [152], Se-
qCompress [153], HighFCM [154], OCW [155], OBComp [156], Jarvis [157] and GeCo series
[158, 159, 4].

On the other hand, the reference-based compression methods, also known as referential
compression algorithms, are also algorithms that benefit from the use of dictionary-based
methodologies, differing from the reference-based methodology since they encode sequences
with respect to an external set of reference sequences [123, 160, 161]. There are several
tools that make use of methodologies based on reference-based compression, such as DNAzip
[162], RLZ [163], GRS [164], GReEn [165], GDC [166], COMRAD [167], FRESCO [168] and
iDoComp [169]. There are however, at this reference-based compression level, two possible
modes, being them the relative compression and the conditional compression [170].

The reference-based relative compression mode is characterized by using exclusively infor-
mation/models from an auxiliary sequence and never from the sequence itself. On the other
hand, the reference-based conditional compression mode uses, in addition to the reference-free
compression models, models over one or more additional sequences [170].

Consequently, the vast majority of genomic sequence reference-based compression algo-
rithms makes use of relative compression, since when sequences are very similar they have
much less computational complexity and require much less resources when compared to con-
ditional compression, being sufficient however to model the sequence accurately enough when
there is a very high similarity between the sequences. Conditional compressors are nonethe-
less more recommended when the sequences have less dissimilarity [171, 170]. Moreover, they
can be adapted to perform similarity analysis based on information distances [172]. There
exist some reference-based compression tools that support any of those approaches by param-
eterization, as is the case of the GeCo series [158, 159, 4].

Besides the compressor tools already mentioned in each of the techniques, there is also a set
of tools, which, in order to try to improve the performance in terms of sequence compression,
makes use of both reference-free and reference-based methods in different stages of processing,
as is the case GeCo [158], GeCo2 [159], GeCo3 [4], XM [173], DNA-COMPACT [174] and
CoGI [175].
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The diagram in Figure 2.5 provides a visual representation of the appearance of the main
lossless and reference-free genomic sequence compressors over the latest 3 decades.

Figure 2.5: Proposed reference-free genomic sequence compressors sorted by release until
2021. Adapted from [2]. Source: A Reference-Free Lossless Compression Algorithm for DNA
Sequences Using a Competitive Prediction of Two Classes of Weighted Models [2].

One of the most popular application of the reference-free sequence compression of genomic
sequences is the Kolmogorov complexity estimation [3]. However, to approximate the Kol-
mogorov complexity there is the need to use a normal compressor. A normal compressor is a
compressor described by a set of properties, including idempotency, monotonicity, symmetry
and distributivity [176]. In these compressors, the idempotency arises from the fact that if
they are compressed together and through an approach based on concatenation the informa-
tion of a sequence and a copy of that same sequence, the result of this compression will have
to be approximately equal to the number of bits that the compressor needs to describe the
compressed version of one of them. As for monotonicity, this property states that if a certain
sequence is compressed together with any other type of information, the number of bits must
always be greater than or equal to the number of bits in the sequence. In symmetry the order
between large digital objects to be compressed, can be arbitrary. The distributivity property
is related to the triangle inequality, which essentially shows that the shortest distance between
two objects is a straight line [176].

There are a few studies that demonstrate the quality of inter-domain classification using
lossless normal compressor techniques, being one of them applied in the approximation of the
Kolmogorov complexity [177], where it is possible, from a visual representation point of view,
group the various sequences by domains, using for this case, a normalized compression for
each sequence as a function of its logarithmic size [3], as it is demonstrated in Figure 2.6.

Therefore, this capability as a reference-free approach provides an interesting insight to
explore this measure along with other experts for the development of an automatic taxonomic
classification application using machine learning.
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Figure 2.6: Normalized compression for each sequence of a specif domain, as a function of its
logarithmic size [3]. Source: On the Approximation of the Kolmogorov Complexity for DNA
Sequences [3].

2.4 Machine Learning

Machine learning becomes another of the key areas in this thesis, since after the acquisition
of all predictors (inputs extracted from sequences for analysis), there is a need to handle and
analyze them in order to obtain a prediction that is the most reliable possible, without using
any referential method in this process and through an automatic classification system.

In this category, there are many interesting possibilities that deserve attention. From
classical machine learning methods to classifying neural networks, there are many options
that deserve reflection and analysis for application in this problem.

2.4.1 Classical Methods

In classical machine learning methods there are some algorithms that arouse greater in-
terest, either because they are the most traditional or because, within this category, they are
the ones that usually show the best behavior, among them are the Naive Bayes (NB), the
Gaussian Naive Bayes (GNB), K-Nearest Neighbor (KNN), Support Vector Machines (SVM),
decision trees and ensemble methods. In order to better understand the differences, advan-
tages and disadvantages of these methods, it is necessary to carry out an individual analysis
of them.

1. Naive Bayes (NB) Based on the Bayesian decision theory, NB assumes that each in-
put predictor is independent, formulating naive assumptions [178]. This method makes
use of conditional independence, being a popular method in multi-class prediction prob-
lems [178, 179]. However, considering that all predictors are independent translates into
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a disadvantage, since for practical real-life purposes, this situation rarely occurs. Never-
theless, it usually provides acceptable results using lower computational time and code
complexity.

2. Gaussian Naive Bayes (GNB) Based on the NB model analyzed above, the GNB
assumes a normal distribution, which brings benefits when the predictors used are con-
tinuous [180]. Even though it is a simple classification technique, the predictions it
obtains are usually of good quality, given the low complexity of the algorithm.

3. K-Nearest Neighbor (KNN) One of the best known and most straightforward clas-
sical machine learning methods widely used in classification problems [181]. In this
method, the solution is achieved by identifying the K nearest neighbors to the query
that is being classified. The classification is assigned through the largest number of
neighbors of a given domain. A parameter to take into account in this approach will be
the selection of the value for K, since for each problem this variable may need adjust-
ment.

4. Support Vector Machines (SVM) Similar to the other methods described earlier,
SVM also allows the classification of a query among a set of domains. Its special feature
is the use of different types of kernels (such as the Polynomial kernel, the Gaussian
radial basis function kernel, the Sigmoid kernel, among many others) that allow trans-
forming the input data in order to find the optimal boundary between the possible
outputs. These boundaries are called hyperplanes and can exist in different dimensions,
depending on the number of domains that one intends to delimit [182].

5. Decision Trees These types of algorithms are commonly referred to as binary trees in
which classification is done by the splitting criteria. In these binary trees, the logical
predicates at its nodes, and class labels in sheets are found [183, 184]. These methods
tend to produce better predictions compared to the other classical methods analyzed
here since they can work without loss of accuracy with sequences in which the predictors
differ greatly at the level of orders of magnitude [183]. There are different ways to
build decision trees that must be taken into account when using these algorithms, the
most common being the top down greedy method partitioning [184], always seeking to
maximize the initial criteria, in order to obtain a global maximum.

2.4.2 Ensemble Methods

These machine learning techniques have as main feature the combination of several base
models in order to achieve more accurate and stable predictions, being the different methods
that are part of the ensemble methods the Stacking (or Stacked Generalization), the BAGGing
(or Bootstrap AGGregating) and the Boosting [185, 186].

1. Stacking Stacking is a method that applies several models to the original data, using
logistic regressions to combine all single models, with the main objectives of minimizing
the variance and increasing the predictive force.

2. BAGGing BAGGing has as its main focus decreasing the variance of the prediction,
by generating additional data for training by introducing combinations with repetitions
in the training datasets, using in turn weighted average functions to combine all single
models, being very useful in random subspaces such as Random Forrests.

16



3. Boosting Finally, Boosting has the priority of increasing the predictive force making
use of optimized distributed gradients, as is the case with XGBoost, using weighted
majority votes techniques as a way to match all single models.

2.4.3 Artificial Neural Networks

In the domain of Deep Learning (DL) and Neural Networks (NN), there are the concepts
of Deep Neural Networks (DNN) and Artificial Neural Networks (ANN).

Artificial Neural Networks (ANN) have proven to be very useful and powerful in recent
decades, tending to be ideal for handling a huge amount of data, and getting excellent accuracy
results in pattern recognition problems [187].

There are several advantages that can lead to opt for a neural network, such as the
possibility of storing all the information of the entire network, the possibility of training
the network, parallelism in processing, fault tolerance, among others. However, there are also
some disadvantages that must be analyzed from project to project as they can put the benefits
in question, such as the large hardware dependence and the monetary costs of hardware and
time [188].

The choice of the neural network algorithm is also a fundamental step in this stage, since
different algorithms are designed for different realities. Some of the most popular deep learn-
ing algorithms are Multilayer Perceptrons (MLP), Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN) and Long Short Term Memory Networks (LSTM).

The following descriptions briefly contextualize a little more each of these Artificial Neural
Networks (ANN).

1. Multilayer Perceptrons (MLP) This ANN is mainly suitable for classification or
regression prediction problems in which the supervised learning technique called back-
propagation for training is used. It is a network characterized by having three or more
layers, having at least one input layer, the hidden layer and an output layer [189].

2. Convolutional Neural Networks (CNN) This ANN is a more focused neural net-
work for image recognition and processing, operating on multiple layers (including con-
volutional layer, non-linearity layer, pooling layer and fully-connected layer) [187]. It
was primarily designed to perform pixel data processing.

3. Recurrent Neural Networks (RNN) While CNN is a neural network designed
for pixel data processing, RNN is commonly used in speech recognition and natural
language processing, capturing time dynamics via cycles in the graph [190].

4. Long Short Term Memory Networks (LSTM) LSTM is an RNN based neural
network better prepared for classifications and predictions of one or a set of queries,
namely because these are networks that use special memory units, which allows them
to have a greater storage of information for long periods of time, allowing better overall
network performance [191].

For classification purposes, the choice of the algorithm is fundamental. However, this
is a complex task, that requires extensive experience, if the algorithms are not all tested.
Usually the choice of the algorithm is based on a balance between high precision/accuracy,
computational resources, and easiness of implementation. Despite this choice, it is known
that in recent competitions, the ensemble methods have provided the best scores.
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Chapter 3

Reconstruction and Classification
Methodology

The exponential growth of genome-wide association studies (GWAS) and its success in the
identification of genetic risk variants and their biological functions has opened unprecedented
opportunities for the introduction of genomic analysis in the most varied professional fields
[192, 193, 194]. In the medical field, genomics and metagenomics analysis are starting to be the
key in a new era of health care [195]. Since diagnosis plays a pivotal role in the patient’s clinical
progress, the introduction of these tools may provide personalized treatment, early detection,
and disease prevention [196, 197]. For example, one of the significant contributions in this field
can be the earlier detection of viral agents that can be associated with or cause of diseases
[198, 199]. The emergence and re-emergence of new pathogens caused by climate changes
[200], hybridization [201], evasive species [202], evolution-prone reservoirs [203, 204], and the
abusive antibiotics usage [205] are continuous factors for sequence dissimilarity according to
the extant species. Moreover, emergent discoveries of viral communities residing in different
human organ samples provide additional purposes for screening intra-organ diversity genomes
[206].

Another field where metagenomics analysis is considerably gaining ground is archaeoge-
nomics. Archaeogenomics has been responsible for challenging fundamental themes of an-
thropological research such as human origins, migratory movements of ancient and modern
populations, and infection agents [207, 208, 209]. Specifically, ancient DNA is usually dis-
tant from extant species that have accumulated evolutionary changes over the years; besides,
ancient DNA is commonly characterized by damage patterns, namely fragmentation, deam-
ination, and depurination [210]. Therefore, ancient genomes present higher dissimilarity to
extant ones, which adds additional complexity to the classification process [211].

Since the specifications between the mentioned fields are different, it is essential to ensure
that the reconstruction and classification pipelines used are customized, flexible, and robust
to meet the criteria and their characteristics.

Different computer-assisted techniques have been implemented in the last few years in the
development of reference-based classifiers, such as consensus searches, inductive learning/neu-
ral networks, and sequence alignments [212, 213, 214, 215, 216]. In the case of sequence
alignments, the program aligns all the unknown sequences using one or more known database
sequences to predict common portions [217]. This process results in good results for specific
small DNA sequences classification, but it becomes increasingly complex when scaled for the
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largest datasets. In addition, these techniques have proven to be inaccurate in scenarios of
low sequence identity, making evident the need for the emergence of new and more robust
methods [215, 218]. As a way to mitigate these aspects, the pipeline proposed in this paper
uses tools (e.g. metaSPAdes [97]) that rely on alignment-free sequence analysis methods, such
as k-mers [219], where the fast detection of shared k-mer content strongly contributes to the
reduction of the computational cost of assembly [220].

Methods that use different layers or levels of the chemical contents are more accurate
in metagenomics classification. For instance, a multi-level analysis performing an additional
proteome analysis can provide information that would otherwise be difficult to obtain. The
proteome analysis of sequences allows the study of domains in which they are inserted, their
structures, and functions [221]. Alternatively to these domains, proteins can also be found
grouped into families based on their whole sequence [222, 223]. In this way, analysis can
be carried out in order to identify protein-coding genes in metagenomic data as well as
for grouping related sequences into families [223]. For this feature, tools such as BLASTP
search [224] can be options to analyze metagenomic datasets (e.g. Swiss-Prot [225] and Pfam
[226, 227]). However, problems related to the size of databases, scalability, and computational
costs concerning the reference-based methods remain [222].

Despite all concentrated efforts, in the presence of a new or an extremely high dissimilarity
genome sequence, these methods may not perform efficient classification specifically because
they rely on references directly.

For providing reference-free metagenome distance estimation, fast methods recurring to
Local Sensitive Hashing [228, 229] successfully emerged. These methods enable splitting the
existing different nature sequences with higher accuracy. However, in these cases, the task
of classification remains a challenge. Therefore, this thesis describes RFSC, a comprehen-
sive solution designed for reference-free reconstruction and accurate classification combining
reference-free and reference-based methods both at DNA and protein levels.

3.1 Architecture

The RFSC pipeline uses a set of tools in its composition distributed over distinct steps as
shown in Figure 3.1, namely reference-free reconstruction, database creation, reference-based
classification, and features-based classification.

Initially, reference-free reconstruction is characterized by the assembly of the genomes
from FASTQ reads. Specifically, the reads go through a quality control process, entering
into the process of genome reconstruction by building scaffolds from overlapping reads (de-
novo assembly). After, the metagenomics database is built for reference-based classification.
Here, a database is used because a low divergence level characterizes most of the genomes
reconstructed. Only the organisms whose relative similarity or identity is below a specific
threshold move on to the next stage for a deeper analysis, using for that purpose sequence
features.

In the features-based classification (reference-free analysis), several tools and methods are
used together, such as the entropy-based approach for analyzing sequences [230], GC-content
analysis [44, 231], and sequence size, to create an ensemble of experts. These experts are
then fed to a machine-learning algorithm to perform the classification of the sequence. The
analysis of both protein and DNA analysis is carried through this process.

In any stage of the RFSC’s workflow (Figure 3.1), the encryption/decryption of any files
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Figure 3.1: The architecture of RFSC for reference-free reconstruction, reference-based, and
features-based classification of genomes. The tools are represented with the respective logos
and names. There are four flowlines, namely the metagenomics, database, features, and mul-
tiple. The multiple flowlines stands for different flowlines that by space and color constrains
have been represented as coincident. In any of the phases the cryfa tool can be used for secure
storage of any file.

using Cryfa [232] may be performed. This process allows assigning a layer of security to the
sensitive data processed in the pipeline [233], specially when they provide from clinical or
exobiology scenarios.

The following sections will describe the functionalities, complementary options, and de-
tails of RFSC, paying particular attention to the pipeline tools, data privacy and storage,
data preparation, de-novo assembly, reference-based classification, features-based classifica-
tion (predictors and classifiers), testing methods, and evaluation methods.

3.1.1 Pipeline tools

In this subsection, the different approaches that RFSC uses are described. In many cases,
already existing tools were used, given their efficiency and high quality. Table 1 presents all
the tools integrated in RFSC with their respective references. In general, only the second
stage required developing a specific tool for reference-free classification that is described and
benchmarked in this thesis.

Notice that several tools may be substituted from the vast existing literature. Neverthe-
less, the choice of tools provided in this pipeline was based on multiple factors, such as the
compatibility between tools, computational resources, diversity, and research aims.
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Table 1: Tools integrated in RFSC and their respective references (Ref).

RFSC Integrated Tools

Tool URL Ref

Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic [234]
FASTP https://github.com/OpenGene/fastp [235]
metaSPAdes https://cab.spbu.ru/software/meta-spades/ [97]
GTO https://cobilab.github.io/gto/ [15]
Entrez https://www.ncbi.nlm.nih.gov/genome [236]
FALCON-meta https://github.com/cobilab/falcon [39]
Cryfa https://github.com/cobilab/cryfa [237]
Blastn https://blast.ncbi.nlm.nih.gov/Blast.cgi [238]
ORFfinder https://www.ncbi.nlm.nih.gov/orffinder/ [239]
ORFM https://github.com/wwood/OrfM [240]
GeCo3 https://github.com/cobilab/geco3 [4]
AC https://github.com/cobilab/ac [5]

3.1.2 Data Privacy

With the great increase in the use of genomic tools in professional fields such as medicine
and biological research, the amount of sensitive information pertaining to patients and sci-
entific studies tends to become much greater over time. Therefore, it is imperative to have
confidentiality, integrity, and authenticity in the information handled, which translates into
a higher level of requirements in the field of data security [232]. In order to satisfy these
conditions, RFSC provides secure encryption of genomic data through the Cryfa tool [232].

Cryfa is an industry-oriented tool, capable of encrypting files in FASTA, FASTQ, VCF,
SAM, and BAM formats, using a fixed-block transformation followed by AES (Advanced
Encryption Standard) [232, 237].

3.1.3 Data Storage

The large amount of sequencing information generated presents a challenge for long-term
storage. As a way of trying to mitigate the impacts of storing large amounts of data, the use
of data compression tools (e.g. Gzip) is one of the approaches followed by RFSC.

Cryfa also contributes to storage reduction, as it reduces storage approximately three
times when compared to general encryption methods, without compromising security [237].

3.1.4 Data Preparation

Trimming Stage

The error-prone nature of high-throughput sequencing reads specially in ancient DNA
and the exobiology areas, results in an additional layer of complexity for genomic analysis.
Another factor to consider is related to Illumina sequencing, in which the error is distributed
non-randomly over the length of the read [241].

In this way, before the reads are analyzed, they have to be trimmed and cleaned, removing
eventual sequencing errors, and filter reads with low-quality scores [242]. For this purpose,
RFSC makes use of two tools, namely Trimmomatic [234] and FASTP [235]. Both tools have
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similar behaviors, making it possible to perform quality control, adapter trimming, quality
filtering, per-read quality pruning, among other operations that have the goal of providing
clean data for downstream analysis [235]. As the read trimming stage is a fundamental
process throughout this analysis, these two tools are available to the user choice to trim
high-throughput sequences.

Although both tools support multi-threading and single-end (SE) and paired-end (PE)
reads, some differentiating features exist. For example, FASTP allows a performance 2–5
times faster than other FASTQ preprocessing tools (such as Trimmomatic) [235].

In the Trimmomatic approach, some extra parameters are defined, namely choosing a
minimum quality score (set to 3) in order to keep a base at the beginning and the end, a low-
quality data filter with an average quality of 15, a set of thresholds defined for a palindrome,
and simple clip with respective values of 30 and 15, as well as the disposal of all reads
containing less than 25 bases [91, 241].

Database

The database built for the multiple domains have the main objectives to offer datasets as
extensive, diverse, and complete as possible. As such, both genomic and proteomic databases
can be updated with the latest NCBI data whenever necessary. Moreover, other databases
can be combined to increase diversity.

The datasets of the database used in the RFSC refer to the domains of viruses, bacteria,
archaea, plants, fungi, protozoa, plastids, and mitochondria, as it can be seen in Table 2. This
table shows the database containing the FASTA reference genomes, the number of sequences
present in each dataset, and their respective compressed size.

Table 2: NCBI Database downloaded and built for RFSC. Each dataset size is provided as
compressed size with Gzip (default level: -5).

NCBI Compressed Databases

Domain Number of Sequences Length

Viruses 10804 126.8 MB
Bacteria 21372 26 GB
Archaea 1125 4.4 GB
Fungi 375 5.3 GB
Plant 134 35.8 GB

Protozoa 94 1.4 GB
Plastid 6081 1.5 GB

Mitochondrion 11345 314 MB

Total (DB) 51330 74.9 GB

Despite the recent increase in the quality of the NCBI reference genomes database, there
is still some space for improvement as its quality has a direct impact on the ability to interpret
a microbiome sample [243]. Therefore, tools for the extraction of contaminants are valuable
approaches to complement this pipeline [244]. Moreover, the constant improvements of the
reconstruction methodologies are enabling a substantial increase in the reference genomes
quality, especially for harder genomes to assemble primarily because of higher repetitive
nature [245]. Therefore, the current growth in data quality is expected to produce higher
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classification accuracy in the proximal future.

Notice that the RFSC database becomes almost obsolete in reference-free classification,
having only direct applicability in referential analysis. This database’s particular point in the
features-based approach is updating the different domains’ compression values in nucleotide
and protein analysis and simple characteristics such as GC-content and sequence length.
Therefore, by default, RFSC provides the features already computed. Nevertheless, this can
also be re-built or added at any time automatically.

ORF Stage

The RFSC works automatically at both nucleotide and protein levels, enabling an ad-
ditional layer of information to provide accurate results in the classification process. It is
necessary to perform extra computations on the sequences to extract the amino acids se-
quences automatically, specifically detecting the Open Reading Frames (ORF).

RFSC detects the ORF by extracting the data between the start and stop codons followed
by the translation. Accordingly, RFSC offers two possibilities to perform this analysis, namely
ORFfinder [239], and OrfM [240]. Even though the results generated by both tools are very
similar, there are some differences worth exploring.

In general, ORFfinder provides higher accuracy of true ORF, usually originating datasets
with higher quality when compared to OrfM. However, it is much more computationally
expensive, making its use often unfeasible in a timely period. In contrast, OrfM allows 4-5
times faster processing time when compared to similar tools (i.e. GetOrf [246] and Translate
[247]) [240]. Producing good quality results but not as robust as ORFfinder, it is, therefore,
best suited to large, high-quality datasets [240].

This step is essential for automatically translating the nucleotide sequences into protein
sequences for further use in the experts’ ensemble.

3.1.5 De-Novo Assembly

When analyzing the pipeline architecture shown in Figure 3.1, the de-novo (reference-free)
assembly appears after the trimming stage (described previously). This step in the pipeline
aims to reconstruct the genomes, starting from many reads without any prior knowledge about
the correct sequence, order, abundancy, or composition. This step allows the reconstruction
of the genomes, starting from a large number of reads without any kind of priori knowledge
about the correct sequence or order of them.

To proceed with the de-novo assembly, the core meta-assembler metaSPAdes was used to
assemble datasets with non-uniform coverage [97]. metaSPAdes was created primarily as a
tool for metagenomic assembly rather than target-based assembly. metaSPAdes is used by
activating a sequence of flags to improve the output data and reduce mismatches and short
indels. Additionally, metaSPAdes also supports data consisting of single-reads and paired-
reads, both of which are supported in RFSC. Depending on the DNA fragments used, the
use of paired reads can become much more beneficial when compared to single reads, either
in resolving structural rearrangements or in indicating the size of repetitive regions and how
far apart contigs are from each other [248].

In the final part of the assembly, metaSPAdes creates scaffolds in a FASTA format with
the reconstructed genomes or fragments of genomes. In several cases, when the depth of
sequencing is low, several scaffolds are generated. As a complementary tool to the pipeline, the
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order and groups of these scaffolds can be predicted with comparative programs as smash++
[249].

After the reconstruction process, follows the classification using reference-based, reference-
free, and features-based approaches. In the following subsections, these methodologies will
be described in detail.

3.1.6 Reference-Based Classification

Despite RFSC being primarily directed at obtaining a features-based (reference-free) clas-
sification, it also supports a referential classification, mainly because most genomes present
in a metagenomic sample have high levels of similarity/identity regarding the existing ones.
As such, in the reference-based classification, there are two complementary possibilities im-
plemented in the RFSC:

• Alignment-based classification using Blastn [36];

• Alignment-free classification using FALCON-meta [39].

These tools measure the identity/similarity between the input sequences (in this case, the
FASTA files from the metaSPAdes) and any multi-FASTA database (RFSC offers support to
download and build NCBI databases, although any other database can be used).

Regarding both reference-based classification tools, there are some differentiating factors
between them. FALCON-meta, a fast and accurate tool, is used to measure the similarity
against whole-genome reference databases, providing the score representing the similarity
of the reads to each reference sequence. [39]. On the other hand, unlike FALCON-meta,
Blastn [238] is a tool that performs sequence alignment to identify the species most likely
resembling the input sequence. Furthermore, the Blastn database for reference analysis can be
built locally or accessed remotely to measure the highest similarity rate against the reference
database.

After using one or both of the reference-based classification tools, if the score representing
the identity/similarity of the sequence is greater or equal to 70% (default value that can be
changed as a parameter), the introduced genome is considered to have an identity/similarity
factor very close to that reference. Otherwise, since the genome sequences are dissimilar or
unknown, they follow to the next phase of the pipeline, namely the features-based (reference-
free) classification.

3.2 Predictors

The features-based classification uses multiple predictors for feature extraction before the
classifiers application phase. RFSC uses the following five predictors:

• Nucleotide sequences normalized compression;

• Amino acid sequences normalized compression;

• Nucleotide sequences GC-Content;

• Nucleotide sequences normalized length;

• Amino acid sequences normalized length.

These predictors will result in five floating-point values that will be redirected into a
chosen classifier. Below, these predictors are going to de described in detail.

24



3.2.1 Nucleotide and Amino Acid sequences Normalized Compression

The Normalized Compression (NC) is a measure that quantifies the proportion of com-
plexity (or information) that exists in a string [3]. The NC enables to provide a normalized
upper-bound approximation to the Kolmogorov complexity [250, 177]. By knowing the pro-
portion of complexity contained in strings, they can be compared independently from their
sizes.

For computing the NC in nucleotide and amino acids, it is used efficient data compressors
for each specific nature. The NC for the nucleotide sequences is computed using GeCo3 [4],
while for the amino acid sequences with AC [5]. For finding the best compression levels for
the GeCo3 and AC, a benchmark with the data compressors was created using the whole
database, as it can be observed in Figure 3.2.

Figure 3.2: Compression level benchmark with cumulative sizes for all tested levels (namely
levels 1, 2, 3, 4 and 7) of each domain or type considered (Viral, Bacteria, Archaea, Fungi,
Plant, Protozoa, Mitochondrial, and Plastid).

Specifically, the NC is calculated according to

NC(x) =
C(x)

|x| log2 |A|
, (3.1)
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where x is a string, C(x) is the compressed size of x in bits, |A| the number of different elements
in x (size of the alphabet) and |x| the length of x. In the case of the DNA sequences, |x| = 4,
while for the amino acid sequences |x| = 20.

Figure 3.3 depicts the histograms of the sequences as a function of the Normalized Com-
pression, where Figure 3.3 (a) plot represents the nucleotide domain and Figure 3.3 (b) the
amino acid domain. The mean (µ) and standard deviation (σ) values are also represented
in both cases. The histograms have been computed using the sequences described in the
database subsection.

(a) Viral Nucleotide NC (b) Viral Amino Acid NC

Figure 3.3: Histograms of the Normalized Compression (NC) computed with GeCo3 [4] for
genomic sequences (a) and AC [5] for amino acid sequences (b).

3.2.2 GC-Content

The GC percentage is given by the number of cytosine (C) and guanine (G) bases in a
string z with length |z| according to

GC(z) =
100

|z|

|z|∑
i=1

N (zi||zi ∈ Ξ), (3.2)

where zi is each symbol of z (assuming causal order), Ξ is a subset alphabet containing the
symbols {G,C} andN the program that counts the numbers of symbols in Ξ. Complementary,
AT (z) = 100− GC(z).
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Figure 3.4: The GC-content Gaussian distribution histograms per life or type domain.

Figure 3.4 depicts the GC-content histograms, computed with the values of the division of
Equation 3.2 by 100, for several sequence domains and types, namely viral, bacteria, archaea,
plant, protozoa, and mitochondrial. The histograms have been computed using the sequences
described in the database subsection.

3.2.3 Nucleotide and Amino Acid sequences normalized length

Another predictor used in the classification process is the normalized length. The nor-
malized length of a sequence is defined as the number of symbols that the sequence contains
according to the largest sequence from the database. Both the normalized lengths for the
DNA sequences and amino acid sequences have been used.

(a) Viral Nucleotide Length (b) Viral Amino Acid Length

Figure 3.5: Histograms of the normalized lengths for DNA (a), and amino acids (b) sequences.

Figure 3.5 depicts the nucleotide and amino acid lengths histograms for the viral domain.
The mean (µ) and standard deviation (σ) values are also represented in both cases. The
histograms have been computed using the sequences described in the database subsection.
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3.3 Classifiers

Figure 3.6 provides a spatial representation of a portion of the values present in the
database of the different domains, making use of the DNA NC, amino acid NC, and GC-
Content values of the sequences as substitutes for the xx, yy and zz axes, respectively. For
training and testing the algorithms, the full database previously referred in Table 2 was used.

Figure 3.6: Sample distribution of a training dataset sample considering the DNA NC (Nor-
malized Compression), Amino Acid NC, and GC-Content.

Notice that although there were used the normalized lengths as extra predictors, in Fig-
ure 3.6, a good distinction of the classes with the NC of the DNA and amino acids can already
be identified. This characteristic enlightens the importance of efficient data compression in
the sequence classification task. However, when a predictor is used individually, the accuracy
is modest. This behavior can be observed in Figure 3.7, Figure 3.8 and Figure 3.9, which
includes a study case for the success prediction percentages for each domain/type taking into
account each predictor.
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Figure 3.7: Study case for the success prediction percentages for each domain taking into
account each individual predictor, more specifically the Nucleotide and Amino Acid Com-
pression (NC) predictors, the Nucleotide and Amino Acid Lengths predictors, and the GC-
Content predictor.

Figure 3.8: Study case for the success prediction percentages for each domain taking into
account each individual predictor, more specifically the Nucleotide and Amino Acid Com-
pression (NC) predictors, the Nucleotide and Amino Acid Lengths predictors, and the GC-
Content predictor.

Figure 3.9: Study case for the success prediction percentages for each domain taking into
account each individual predictor, more specifically the Nucleotide and Amino Acid Com-
pression (NC) predictors, the Nucleotide and Amino Acid Lengths predictors, and the GC-
Content predictor.

For automatic classification, it is required to have an automatic mechanism. According to
Figure 3.1 in the features-based classification area, for the implementation of this mechanism,
it was used different probabilistic, voting, and machine learning algorithms. These classifiers
are the following:
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• Gaussian Naive Bayes (GNB);

• K-Nearest Neighbors (KNN);

• eXtreme Gradient Boosting (Xgboost).

The following subsections provide the definitions and details for the three types of classi-
fiers used in RFSC.

3.3.1 Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes [251] is defined as the group of supervised machine learning classifi-
cation algorithms based on the Bayes theorem following Gaussian normal distribution, where
there is an assumption of independence between every pair of predictors.

The likelihood of each predictor recognizing the associated domain is calculated according
to

L(αi|β) =
1√

2πσ2β

exp(−
(αi − µβ)2

2σ2β
), (3.3)

where the αi and β refer to the sequence to be analyzed and the domain to which it may belong,
respectively. In turn, the parameters µβ and σβ are estimated using maximum likelihood.

A visual representation of the method of operation of a GNB classifier is provided in
Figure 3.10.

Figure 3.10: Gaussian Naive Bayes Classifier visual representation. Source: moothness with-
out Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies
[6].

3.3.2 K-Nearest Neighbor (KNN)

K-Nearest Neighbors [252] is another approach to data classification, taking distance func-
tions into account and performing classification predictions based on the majority vote of its
K neighbours.
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In this KNN implementation, the Euclidean distance function between two points was
used, calculated according to

DEucl =

√√√√ K∑
i=1

(xi − yi)2, (3.4)

where K is the representation of the number of predictors used in this algorithm.
In order to help understand this algorithm, a visual representation of the classification of

an element between two categories using the K-Nearest neighbor is presented in Figure 3.11.

Figure 3.11: K-Nearest Neighbor Classifier visual representation. Source: javaTpoint.

3.3.3 eXtreme Gradient Boosting (Xgboost)

XGBoost [253] is a widespread and efficient open-source implementation of the gradient
boosted trees algorithm. Gradient boosting is a supervised learning algorithm that predicts a
target variable by combining the estimates of a set of simpler models. Specifically, new models
are created that predict the residuals or errors of prior models and then added together to
make the final prediction. This task uses a gradient descent algorithm to minimize the loss
when adding new models. This method can be used in both regression and classification
predictive modeling problems.

Given a dataset (X,Y ), where X is the data and Y the labeled targets that belong to the
interval i ∈ [0,m], the gradient boost is computed as follows

Fi = Fi−1(X) + αihi(X, ri−1), (3.5)

where αi and ri are the regularization parameters and residuals computed with the ith element.
The hi is a function that is trained to predict the residuals (ri) using the data X for the ith

tree. To compute αi, the residuals (ri) are utilized in the function

arg min
α

m∑
i=0

L(Yi, Fi−1(Xi)) + αhi(Xi, ri−1), (3.6)

where L(Y, F (X)) is the differential loss function.
Compared to the previously presented classifiers, a visual representation of the operation

of the XGBoost algorithm is provided in Figure 3.12.
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Figure 3.12: Structure of extreme gradient boosting algorithm. Source: Predicting the Risk
of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm [7].

3.4 Implementation

3.4.1 Program features

The functionalities of the RFSC are now presented below, exposing them and contextu-
alizing the actions related to its applicability.

System Options

Basic installation actions, cleaning executables, help menus, among others.

• -h, --help
Displays the help menu and exits the program.

• -v, --version
Displays the version of the program and other important informations.

• -i, --install
Installs all the necessary tools for the correct functioning of the program.

• -clc, --clean
Cleans all generated files including the output results.

• -cla, --clean-all
Cleans all training files to be used in the classifiers (CSVs).

• -all, --run-all
Set of predefined parameters to use the program considering both reference-based op-
tions: FALCON-meta [39], and reference-free: XGB [254].
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It makes use of Trimmomatic [234] receiving PE reads and metaSPAdes [97] in the
Reference-based Reconstruction.

Finally, it limits the length and coverage values for the scaffolds in the filtering process
to 100 and 30, respectively, also limiting the maximum and minimum thresholds for
similarity in reference based analysis to a maximum of 70% and a minimum of 1%.

Program Basic Features

Features for the definition of basic parameters when executing the program, such as defini-
tion of available threads, encryption and decryption of files, generation of synthetic sequences,
among others.

• -t, --threads THREADS
Number of threads (THREADS ) inserted by the user to be used in the program.

• -dec, --decrypt
Option to decrypt all files in /Data Security/Decrypted Data.

• -enc, --encrypt
Option to encrypt all files in /Data Security/Encrypted data.

• -tmm, --set-threshold-max-min MAX MIN
Define maximum (MAX ) and minimum (MIN ) percentage of thresholds for similarity
in reference based analysis.

• -dlc, --set-len-cov LEN COV
Define the length (LEN ) and coverage (COV ) values for the scaffolds filtering process.

• -synt, --synthetic FILE1:FILE3
Option to generate a synthetic sequence using three reference files (for testing purposes).

• -gad, --gen-adapters
Generate a FASTA file with adapters for trimming phase.

• -orf, --orf-finder
Perform DNA sequence translation for amino acids using the ORFfinder [239] tool,
finding all open reading frames (ORF) and removing stop codons.

• -orfd, --orf-dataset TOOL DOMAIN
Similar to the previously option, converts nucleotide sequences presented in the NCBI
databases into protein sequences, allowing the user to select the tool to use (TOOL),
between ORFfinder [239] and OrfM [240], and defining the domain to be converted
through the DOMAIN parameter.

• -efetch, --efetch-fasta ID FOLDER
Makes use of the entrez efetch [236] tool to download a nucleotide using an Nucleotide
Identifier (ID) and selecting the destination storage in the FOLDER parameter, that
could be the RefBased or RefFree folder.
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Build Databases Features

Options that enables the download and build of NCBI databases locally.

• -bviral, --build-ref-virus
Option to build a reference database for virus from NCBI.

• -bbact, --build-ref-bacteria
Option to build a reference database for bacterias from NCBI.

• -barch, --build-ref-archaea
Option to build a reference database for archaeas from NCBI.

• -bprot, --build-ref-protozoa
Option to build a reference database for protozoas from NCBI.

• -bfung, --build-ref-fungi
Option to build a reference database for fungis from NCBI.

• -bplan, --build-ref-plant
Option to build a reference database for plants from NCBI.

• -bmito, --build-ref-mitochondrial
Option to build a reference database for mitochondrial genomes from NCBI.

• -bplas, --build-ref-plastid
Option to build a reference database for plastids from NCBI.

CSV Generation Features

Generation of CSV files for training (and testing) the classifier models.

• -ncd, --nc-dna-csv DOMAIN
Compresses the sequences of a selected DOMAIN and generates a CSV file for that
DNA NCBI dataset.

• -nca, --nc-aa-csv DOMAIN
Compresses the sequences of a selected DOMAIN and generates a CSV file for that AA
NCBI dataset.

• -gc, --gc-content-csv DOMAIN
Analyses the percentage of GC-Content in each sequence of the chosen NCBI database
DOMAIN.

• -lenseq, --len-dna-aa-csv DOMAIN
Analyses the lengths of DNA and AA sequences in the chosen NCBI database DOMAIN.

• -train-test, --train-test-dataset-csv TRAIN PARTITION
Option to divide the dataset into a train and test dataset for testing purposes, setting
the TRAIN PARTITION parameter as a value between 0 and 1 for the definition of
the train partition percentage.

• -sdataset, --small-dataset-csv MAX SAMPLES
Option to create a reduced dataset with a maximum number of samples (MAX SAMPLES )
for each domain.
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Reference-Free Reconstruction Features

Features that enables the performance of trimming and/or de-novo genome assembly.

• -trim, --filter TOOL MODE
Application of trimming operations in order to filter the reads present in the In-
put Data/ReferenceBased/ folder using a specific tool defined by the TOOL parameter,
which can be the Trimmomatic [234] (TT) or the FASTP [235] (FP), and selecting the
type of end reads in the MODE as being PE or SE.

• -rda, --run-de-novo
Application of a De-Novo sequence assembly tool, the metaSPAdes [97], to sequences
arriving from the trimming stage.

Reference-Based Classification Features

Options that allows the reference-based classification.

• -rfa, --run-falcon MODE DOMAIN
Applies a reference-based classification tool, FALCON-meta [39], to sequences from
the reference-free reconstruction stage, selecting the mode of analysis of the previously
generated scaffold nodes through the MODE parameter (that could use the complete
scaffold: SO, or split the scaffold into different smaller nodes: RM). Finally, it enables
the user to select the domain to analyze through the DOMAIN parameter.

• -rbr, --run-blastn-remote
Applies a reference-based classification tool, similar to the previous option, but using
instead remote Blastn [238] for remote access to the NCBI databases.

Reference-Free Classification Features

Options that allows the use of machine learning classifiers in order to perform reference-
free classification.

• -gnb, --run-gaussian-naive-bayes-classifier NUM DOMAINS PREDICTORS
Applies a reference-free classifier: Gaussian Naive Bayes (GNB) Classifier, to the se-
quence(s) presented in the Input Data/ReferenceFree folder.

It allows the user to select the number of domains present for classification through the
parameter NUM DOMAINS (default: 8) and the desired predictors to be used in the
classification through the parameter PREDICTORS following a binary logic described
below:

′1111′− > Applies all the predictors;

′0001′− > Applies only the DNA compression predictor;

′0010′− > Applies only the AA compression predictor;

′0011′− > Applies only the GC-Content predictor;

′0100′− > Applies only the DNA length predictor;

′0101′− > Applies only the AA length predictor;
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′0110′− > Applies both the DNA and AA compression predictors;

′0111′− > Applies the DNA and AA compression, and the GC-Content predictors;

′1000′− > Applies the DNA and AA compression, the GC-Content, and the DNA
length predictors;

′1001′− > Applies the DNA and AA compression, the GC-Content, and the DNA
and AA length predictors;

′1010′− > Applies the DNA and AA compression, together with the DNA and
AA length predictors;

• -knn, --run-k-nearest-neighbor-classifier K
Applies a reference-free classifier: K-Nearest Neighbor (KNN) Classifier, to the se-
quence(s) presented in the Input Data/ReferenceFree folder, enabling the user to chose
the K neighbors to be considered in the prediction.

• -xgb, --run-xgboost
Applies a reference-free classifier: eXtreme Gradient Boosting (XGB) Classifier, to the
sequence(s) presented in the Input Data/ReferenceFree folder.

Test Classifier Performance Features

Set of options that allows the retrieval of accuracy levels concerning the predictive quality
of the classifiers.

• -testKNN MODE
Testing mode developed for the KNN classifier where the MODE parameter allows the
toggles between using a train and test database (--test) and using a Cross-Validation
technique, defining which domain to test (i.e. --viral).

• -testXGB MODE
Testing mode developed for the XGB classifier where the MODE parameter allows the
toggles between using a train and test database (--test) and using a Cross-Validation
technique, defining which domain to test (i.e. --viral).

• -testGNB PERCENTAGE
Testing mode developed for the GNB classifier that allows the use of a train and test
database where the PERCENTAGE represents the percentage of the dataset reserved
for the training section.

• -testGNB-CV, --testGNB-CrossV DOMAIN
Testing mode developed for the GNB classifier that allows the use of a Cross-Validation
technique where the DOMAIN represents the domain that is going to be tested.

• -aKNN, --accuracy-KNN AC-MODE T-MODE
Analyse the accuracy of the KNN classifier when testing it against a known dataset,
where the AC-MODE toggles between a simple accuracy mean (Accuracy) and a weighted
F1-Score (F1Score), and the T-MODE toggles between the Cross-Validation Method
(CV ) and the Train-Test Database (Test).

There is a need to run the option -testKNN MODE first.
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• -aXGB, --accuracy-XGB AC-MODE T-MODE
Analyse the accuracy of the XGB classifier when testing it against a known dataset,
where the AC-MODE toggles between a simple accuracy mean (Accuracy) and a weighted
F1-Score (F1Score), and the T-MODE toggles between the Cross-Validation Method
(CV ) and the Train-Test Database (Test).

There is a need to run the option -testXGB MODE first.

• -aGNB, --accuracy-GNB AC-MODE T-MODE TRAIN-PERCENTAGE
Analyse the accuracy of the GNB classifier when testing it against a known dataset,
where the AC-MODE toggles between a simple accuracy mean (Accuracy) and a weighted
F1-Score (F1Score), and the T-MODE toggles between the Cross-Validation Method
(CV ) and the Train-Test Database (Test).

An extra PERCENTAGE parameter is introduced in this option to specify the percent-
age of the dataset used for training purposes (in case of Cross-Validation the parameter
should be set to ’0’).

There is a need to run the option -testGNB PERCENTAGE or -testGNB-CV
DOMAIN first.

3.4.2 Running in Docker Container

The Docker Container is used to allow the full replication of the experiments. In order to
run the program using a Docker container, the following steps will need to be performed:

1 git clone https :// github.com/cobilab/RFSC

2 cd RFSC

3 docker -compose build

4 docker -compose up -d && docker exec -it rfsc bash && docker -compose down

3.4.3 Install Program and Dependencies Locally

In order to install this tool, the following steps will need to be performed:

1 git clone https :// github.com/cobilab/RFSC

2 cd RFSC

3 ./RFSC.sh --install

3.4.4 Re-building NCBI Reference Databases

If there is interest in re-building the NCBI reference databases, the RFSC can once again
be used as follows:

1 ./RFSC.sh --build -ref -virus --build -ref -bacteria --build -ref -archaea --build -

ref -protozoa --build -ref -fungi --build -ref -plant --build -ref -mitochondrial

--build -ref -plastid

3.4.5 Running Examples

In order to help to understand the interaction with the program, some examples of how
to use it will be presented.
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Reference-Free Reconstruction of Synthetic Sequences

Some genomes will be retrieved from the NCBI repository using the entrez efetch [236]
tool in order to generate a synthetic sequence, subsequently proceeding to a Reference-Free
Reconstruction of the same. These steps are shown in the set of commands below.

1 ./RFSC.sh --clean y

2 ./RFSC.sh --threads 8 --gen -adapters

3 ./RFSC.sh --efetch -fasta 155971 Input_Data/EntrezGenomes

4 ./RFSC.sh --efetch -fasta EF491856 .1 Input_Data/EntrezGenomes

5 ./RFSC.sh --efetch -fasta MT682520 Input_Data/EntrezGenomes

6 ./RFSC.sh -synt Input_Data/EntrezGenomes /155971. fna Input_Data/EntrezGenomes/

EF491856 .1.fna Input_Data/EntrezGenomes/MT682520.fna

7 ./RFSC.sh -trim TT PE --run -de-novo

Reference-Based Classification

If the reference databases have already been built, the Reference-Free Reconstruction stage
is finished and will be needed to carry out a Reference-Based Classification, FALCON-meta
can be used for that purpose.

1 ./RFSC.sh --threads 8 --set -len -cov 100 3 --set -threshold -max -min 70 1 --run -

falcon SO Viral

Reference-Free Classification

Finally, if there is a requirement to classify a genome using only a Reference-Free Classi-
fication method, the XGBoost method can be used.

Below are the commands that exemplify how to download a viral genome (GeneID: 155971
that corresponds to a B19 genome, also known as Parvovirus) from the NCBI repository using
the entrez efetch [236] tool, and submitting it to a Reference-Based Classifier, in this case the
Gaussian Naive bayes, K-Nearest Neighbor, and XGBoost classifier.

1 ./RFSC.sh --threads 8 --efetch -fasta 155971 RefFree # Download a viral genome

2 ./RFSC.sh --run -gaussian -naive -bayes -classifier 1111 # Gaussian Naive Bayes

3 ./RFSC.sh --run -k-nearest -neighbor -classifier 2 # K-nearest neighbor

4 ./RFSC.sh --run -xgboost # XGBoost

3.4.6 Availability of source code and requirements

� Project name: RFSC

� Project home page: http://github.com/cobilab/RFSC

� RRID: SCR 021724

� biotools: rfsc

� Operating system(s): Platform independent

� Programming language: bash and python

� Other requirements: Conda

� License: GNU GPL
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3.4.7 Software and Hardware recommendations

Laptop computer running Linux Ubuntu (for example, 18.04 LTS or higher) with GCC
(https://gcc.gnu.org), Conda (https://docs.conda.io) and CMake (https://cmake.
org) installed. The hardware must contain at least 8 GB of RAM, and a 800 GB disk. In
turn, if the database is not re-built, it is only needed near 10 GB of space. There is, however,
a substantial space disk increase need for applications where multiple and curated databases
are merged for higher diversity. Therefore, this option requires a disk space according to the
size of the databases in use, and the sequencing reads space.
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Chapter 4

Benchmark

4.1 Methodology

As a way to test and validate the classification methodology developed, there was a need
to adopt robust test measures that would enable the most realistic results to be obtained
for the analysis. For this purpose, two testing methods were implemented for all machine
learning models implemented, namely the K-Fold Cross-Validation [255] and the Train-Test
Split [256] Database.

K-Fold Cross-Validation

K-Fold Cross-Validation, one variation of Cross-Validation [255], was one of the methods
chosen to validate the implemented models. This resampling procedure was applied using a
K=5, thus giving rise to a 5-Fold Cross-Validation.

This methodology was applied to all implemented models following the guidelines pre-
sented below, although with some differences described next. In Gaussian Naive Bayes, a
5-Fold Cross-Validation was applied to each domain, individually, presented in the NCBI
dataset (built locally). In contrast, in the other two classification methods (KNN and XG-
Boost), the NCBI dataset mentioned above was divided into Training-Testing datasets using
a 75%-25% rule, where the 5-Fold Cross-Validation was applied to the training dataset.

Train-Test Split

Another of the techniques used for evaluating the performance of models was the Test-
Train Split Dataset. In this method, the databases of all domains are concatenated and
submitted to a split process that, in a pseudo-random way, selects 75% of the dataset for
training purposes and 25% for testing purposes. This method seeks to simulate a more
realistic test environment that would allow to obtain results as similar as possible to a real
use case.

Passing the testing phase, it is necessary to evaluate the quality of the data in order to
analyze the accuracy of the implemented models. For this purpose, two analysis methods are
used in order to calculate the percentage of success of each model, these being the Accuracy
Metric and the Weighted F1-Score.
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Accuracy Metric

One of the selected methods was the Accuracy, however in this method there is no dis-
tinction between True Positives (TP) and False Negatives (FN), thus making a measure of
all the correctly identified cases.

The Accuracy can then be calculated according to

Accuracy =
TP + TN

(TP + FP + TN + FN)
. (4.1)

In Eq. 4.1 is implemented a ratio between all correctly labeled sequences and all the
sequences, with TP, FP, TN and FN, corresponding to the True Positive, False Positive,
True Negatives and False Negative, respectively.

This method, even though it is quite reliable, does not differentiate imbalanced classes,
giving equal importance to all classes.

Weighted F1-Score

As a way to solve the problem of imbalanced classes, a second evaluation method was
selected, the Weighted F1-Score.

This method is based on the F1-Score which can be calculated according to

F1Score = (
( TP
TP+FN )−1 + ( TP

TP+FP ))−1

2
)−1. (4.2)

In Eq. 4.2 is implemented a harmonic mean of Precision and Recall, with TP, FP and
FN, corresponding respectively to the True Positive, False Positive and False Negative. With
this method it is possible to obtain more conservative data in relation to Accuracy Metric.

The use of an average Weighted parameter allows to calculate metrics for each domain in
order to determine the number of true instances for each domain, specifically

F1Score(Weighted) = (
β2

1 + β2
(

TP

TP + FN
)−1 +

1

1 + β2
(

TP

TP + FP
)−1)−1. (4.3)

In Eq. 4.3 a variable β appears, representing the increasing of sensitivity when compared
to specificity. Still in this equation, the variables TP, FP, and FN, correspond respectively
to the True Positive, False Positive, and False Negative.

4.2 Results

This section describes the results obtained regarding the accuracy and F1-Score metrics
for the classification task using the RFSC. Two types of datasets have been used for bench-
marking, namely a synthetic dataset and a natural dataset (mentioned as real). The synthetic
dataset has been constructed to simulate the characteristics of progressive mutations for anal-
ysis of the classification accuracy deviation.
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4.2.1 Synthetic Data

To test the RFSC pipeline’s capability to deal with pseudo-random mutations (uniform
distribution) in reconstruction followed by the classification, we used a set of 140 randomly
selected natural genomic sequences and applied different levels of Single Nucleotide Polymor-
phisms (SNP).

The randomly-selected selected sequences were divided into different groups, specifically:

• 20 Viral sequences;

• 20 Bacterial sequences;

• 20 Archaea sequences;

• 20 Fungi sequences;

• 10 Plant sequences;

• 10 Protozoa sequences;

• 20 Mitochondria sequences;

• 20 Plastid sequences.

This number of sequences was selected to allow a better balance between classes of different
domains and prevent the results from becoming as less biased as possible.

Using GTO [15], different levels of mutations (SNP) were applied to the sequences, ranging
from 0% to 10%. Then, we used the output of each mutated sequence for recreating the process
of sequencing using the ART tool [257]. The output of the ART was FASTQ reads containing
the applied mutations. Finally, the FASTQ reads of each mutated sequence were used as
input data to the RFSC pipeline.

The percentage of successful predictions was subsequently analyzed using both the Accu-
racy metric and the Weighted F1-Score after the automatic reconstruction and classification
by the RFSC pipeline, as shown in Table 1.

Table 1: Accuracy and F1-score results obtained for the classification of 140 synthetic se-
quences and the respective instances with the mutation rates using Gaussian Naive Bayes
(GNB), k-Nearest Neighbors (KNN) and eXtreme Gradient Boosting (Xgboost) classifiers.
These results were obtained for synthetic sequences after mutations were applied in the se-
quences, ranging from 0% to 10%.

Results: Synthetic data

Mutation GNB KNN Xgboost
(%) Accuracy F1Score Accuracy F1Score Accuracy F1Score
0 29.290 22.097 80.000 78.773 90.710 90.001
1 29.290 22.328 80.710 79.902 87.860 87.224
2 17.140 10.340 70.000 69.802 87.140 86.531
4 15.710 9.443 55.000 51.110 69.290 65.755
6 15.000 8.914 47.140 44.306 65.000 60.958
8 14.290 7.420 50.000 48.163 63.570 59.347
10 15.000 7.798 50.710 50.030 61.430 57.645
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As reported in Table 1, for all mutation rates, the best results were obtained using the
XGBoost classifier. Specifically, for 0% mutation, the accuracy obtained was 90.710% and
the F1-score of 90.001%, while for 10% mutation, the accuracy was 61.430% and the F1-
score of 57.645%. These results improve the second-best classifier (KNN) on average 10.3%,
and 12.18% accuracy and F1-score, respectively. This improvement shows that XGBoost is
the most suitable classifier since it performs better than other classifiers even when a high
mutation rate is applied to the generated data.

On the other hand, the robustness of the results shows that the predictors are resistant
to significant mutations. Notice that these results are the outcome of automatic classification
after automatic genome reconstruction using a balanced dataset while containing simulated
levels of mutations. Moreover, genomic sequences often suffer errors in the sequencing and
assembly process. The fact that these predictors are robust to noise (in this event caused by
inducing mutations on the sequence) demonstrates that they are highly suitable for classifying
genomic sequences.

The simulated mutations have a uniform distribution, changing the normalized compres-
sion values to higher complexity and approximating the GC-content to a uniform distribution.
Notwithstanding, the RFSC pipeline can adapt and still perform with high accuracy in the
highest mutations levels. In a real scenario, it is not common to have this dramatic change
in the distribution complexity. Nevertheless, it was used the most complex distribution as
random mutations to understand this type of limit and adaptability of RFSC. Therefore,
in a real scenario, it should be expected equal or higher adaptability since the distribution
contains, in the worst case, this maximum complexity for these levels of mutations.

In order to apply a certain percentage of mutation in a set of genomes, it is first necessary
to select those that will participate in this process, place them in a directory together with
the code provided below and execute the same, introducing the desired mutation percentage
as an argument (i.e. 0.01).

1 #!/bin/bash

2

3 MUTATION_PERC=$1; # ex. 0.01

4 PERC=$(echo "$MUTATION_PERC * 100" | bc)

5

6 for file in *.gz

7 do

8 genome=${file%".gz"}

9 echo "Starting analysing the file: $genome"

10

11 gunzip $file

12

13 gto_fasta_mutate -e $MUTATION_PERC -a < $genome > Temporary.fna

14 rm $genome

15 mv Temporary.fna $genome

16 gzip $genome

17

18 echo "$genome has suffered a $PERC mutation!"

19 done

After this procedure, the mutated genomes must be moved in the RFSC/Input Data/
ReferenceFree folder, and then the script must be executed using the desired prediction mech-
anisms.
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4.2.2 Real Data

Identifying and classifying unknown DNA sequences from metagenomic samples is a com-
plex challenge to benchmark, mainly because a high quantity of unknown genomes very rarely
exists, where most of the samples contain highly similar to similar DNA sequences. Specifi-
cally, the currently reported and verified genomes number that is new (or significantly dissim-
ilar) is minimal, which difficults the process of achieving an accuracy ratio of a methodology
using a fair number of predictions (at least more than one million).

Therefore, to provide a fair classification benchmark using only the reference-free ap-
proach, it was assumed that each genome from the database (described previously at Table 2)
is new and has already been assembled. For providing the accuracy metrics, it was used the
accuracy and F1-score classification described previously and present the results in Table 2.

Table 2: Accuracy and F1-score classification results of raw data (obtained from the NCBI
database) using a random classification process (pRandom), Gaussian Naive Bayes (GNB),
K-Nearest Neighbors (KNN), and eXtreme Gradient Boosting (Xgboost) classifiers.

Real Data

Classification pRandom GNB KNN Xgboost

Accuracy (%) 12.500 71.560 86.249 96.970
F1Score (%) - 46.119 86.210 96.960

As shown in the results obtained for the classification of real data, the XGBoost classifier
obtained the best classification. Specifically, the XGBoost classifier achieved an accuracy of
96.97% and a weighted F1-score of 96.96%, incrementing 10% relatively to the second-best
classifier KNN.

Furthermore, since the classification task was performed by utilizing the natural data
directly, part of the inaccuracy of 3.04% could be explained by possible errors in the assem-
bly process of the original sequence or eventual sub-sequence contamination of parts of the
genomes. Moreover, several genomes were reconstructed many years ago, using older methods
that have been improved over the years. Since some of the sequences are singular, they are
considered references. Therefore, by running the entire pipeline, including the reconstruction
from the reads (if they were all available), better results may be achieved.

Overall, these results show the potential of this pipeline to accurately perform the discov-
ery and classification of unknown DNA sequences in metagenomic samples, specifically in the
most complex areas.
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Chapter 5

Conclusions

This thesis describes a computational pipeline for efficient reconstruction and accurate
classification of unknown DNA sequences in metagenomic samples. A fully automatic and
flexible pipeline was developed, additionally allowing secure storage for sensitive data.

This pipeline (RFSC) combines reference-free approaches with reference-based approaches,
both using alignments and alignment-free methods. Moreover, both DNA and protein se-
quence levels are used, where the latter is automatically predicted and extracted.

The features-based classification (reference-free classification) classifies DNA sequences
without resorting directly to the reference genomes, but instead to features that the biolog-
ical sequences share. The extraction of features is provided by five predictors, namely the
normalized compression and normalized lengths (both for DNA and amino acids sequences)
and the GC-content of DNA sequences.

Considering all the benchmark results described in this manuscript, it can be concluded
that using a set of predictors (which individually show themselves to be insufficient) and
an efficient classifier, it is possible to make classifications with a high degree of accuracy.
Specifically, two primary benchmarks were performed: reconstruction and classification of raw
data with increasing degrees of synthetic mutations and classification of reference biological
data obtained from the NCBI database.

The XGBoost classifier achieved the best performance in both classification tasks, ob-
taining on average a 10% improvement over the second-best classifier. Furthermore, this
improvement was maintained even when a higher mutation rate was applied to the synthetic
sequences. Genomic sequences often suffer errors in the sequencing and assembly process.
The fact that these predictors are robust to noise (in this case caused by inducing mutations
on the sequence and by eventual reconstruction imprecision) proves that they are suitable for
classifying genomic sequences in the most complex scenarios.

Regarding the classification of real data, it was obtained an accuracy of 96.97% and a
weighted F1-score of 96.96%. As far as it is known, this high accuracy for unknown DNA
sequences using a reference-free approach has not been reported in the state-of-the-art. More-
over, it is believed that these results are inspiring since they clearly show the capability of this
method to perform the discovery and classification of unknown DNA sequences in metage-
nomic samples. This pipeline can now be used in the most challenging natures, namely in
clinical, archaeogenomics, or exobiology areas.
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5.1 Future Work

Although this thesis has already supported the theory that it is possible to classify organ-
isms without resorting exclusively to reference-based mechanisms, and the results obtained
largely embrace this assertion, there is always room for improvement and evolution.

Following this idea, the next steps to be taken would be the enrichment of the training
datasets given to the classifiers in the learning phase in order to further mitigate the possibility
of prediction error.

Another addition that would bring added value to the project would be the introduction
of support for new domains and intra-domain in the prediction analysis.

Lastly, the study and possible introduction of new predictors in the ensemble, such as spe-
cific group features, minimal absent words, nucleotide and/or aminoacid distribution, chemical
distributions properties, normalized similar-gene count and normalized BDM [258], could also
translate into an even better quality of the performed predictions.
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[89] Diana Dias, Rita T Torres, Göran Kronvall, Carlos Fonseca, Sónia Mendo, and Tânia
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and Maido Remm. Fastgt: an alignment-free method for calling common snvs directly
from raw sequencing reads. Scientific Reports, 7, 2017.

62



[220] Jason R Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-
generation sequencing data. Genomics, 95(6):315–327, 2010.

[221] C A Orengo, A D Michie, S Jones, D T Jones, M B Swindells, and J M Thornton.
Cath–a hierarchic classification of protein domain structures. Structure, 5(8), 1997.

[222] S Yooseph, G Sutton, DB Rusch, AL Halpern, SJ Williamson, K Remington, JA Eisen,
KB Heidelberg, G Manning, W Li, and et al. The sorcerer II global ocean sampling
expedition: Expanding the universe of protein families. PLoS Biol, 5(3), 2007.

[223] Shibu Yooseph, Weizhong Li, and Granger Sutton. Gene identification and protein
classification in microbial metagenomic sequence data via incremental clustering. BMC
Bioinformatics, 9(182), 2008.

[224] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment
search tool. J Mol Biol, 215(3), 1990.

[225] E Gasteiger, E Jung, and A Bairoch. Swiss-prot: connecting biomolecular knowledge
via a protein database. Curr Issues Mol Biol, 3(3):47–55, 2001.

[226] A Bateman, L Coin, R Durbin, RD Finn, V Hollich, S Griffiths-Jones, A Khanna,
M Marshall, S Moxon, EL Sonnhammer, DJ Studholme, C Yeats, and SR Eddy. The
pfam protein families database. Nucleic Acids Res, 32, 2004.

[227] E L Sonnhammer, S R Eddy, E Birney, A Bateman, and R Durbin. Pfam: mul-
tiple sequence alignments and hmm-profiles of protein domains. Nucleic Acids Res,
26(1):320–322, 1998.

[228] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H
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