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da Universidade de Aveiro.
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Palavras Chave Posicionamento por luz viśıvel, Sistema de posicionamento em espaços in-
teriores, Posicionamento 3D, Sensor de imagem CMOS, Obturador rolante,
Transformação projetiva, Aprendizagem automática, Rede neural convolu-
cional, YOLO

Resumo Nesta dissertação, é apresentado um sistema de posicionamento 3D por luz
viśıvel, baseado em aprendizagem automática e comunicações com câmara.
O sistema foi desenvolvido para espaços interiores e utiliza luminárias LED
(diodo emissor de luz) como pontos de referência e um sensor CMOS (com-
plementary metal-oxide semiconductor) como receptor. As luminárias LED
são moduladas utilizando OOK (On–Off Keying) com frequências únicas.
O algoritmo YOLOv5 (You Only Look Once version 5) é utilizado para
classificar e estimar a posição de cada luminária LED viśıvel na imagem. A
posição e orientação do receptor é estimada utilizando um algoritmo de ge-
ometria projetiva. O sistema foi validado utilizando um setup em tamanho
real com 8 luminárias LED, e obteve um erro de posicionamento médio de
3.5 cm. O tempo médio para obter a posição e orientação da câmara é de
aproximadamente 52ms, o que torna o sistema adequado para posiciona-
mento em tempo real. Tanto quanto sabemos, esta é a primeira aplicação
do algoritmo YOLOv5 para localização por luz viśıvel em espaços interiores.





Keywords Visible light positioning, Indoor positioning system, Three-dimensional posi-
tioning, CMOS image sensor, Rolling shutter, Perspective-n-Point, Machine
Learning, Convolutional Neural Network, YOLO

Abstract In this dissertation, a 3D indoor visible light positioning system based on ma-
chine learning and optical camera communications is presented. The system
uses LED (light-emitting diode) luminaires as reference points and a rolling
shutter complementary metal-oxide semiconductor (CMOS) sensor as the
receiver. The LED luminaires are modulated using On-Off Keying (OOK)
with unique frequencies. You Only Look Once version 5 (YOLOv5) is used
for classification and estimation of the position of each visible LED luminaire
in the image. The pose of the receiver is estimated using a perspective-n-
point (PnP) problem algorithm. The system is validated using a real-world
sized setup containing eight LED luminaires, and achieved an average po-
sitioning error of 3.5 cm. The average time to compute the camera pose
is approximately 52ms, which makes it suitable for real-time positioning.
To the best of our knowledge, this is the first application of the YOLOv5
algorithm in the field of VLP for indoor environments.
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Chapter 1

Introduction and Motivation

This chapter provides a background to the performed work. It presents an introduction
to the topic, and describes the reasons for exploring it. The structure of the dissertation is
described at the end.

Nowadays, in the era of the Internet of Things (IoT) and robotics, many applications
need precise location and real-time tracking in indoor environments [1, 2]. The current global
positioning system (GPS) is unreliable for indoor spaces, as signal strength and multipath
problems require complex algorithms and longer times to successfully track the position [3].
Therefore, the demand for indoor localization services is growing.

There are a variety of indoor positioning solutions, such as WiFi-based, infrared, and
Ultra-Wideband (UWB) already well developed [4, 5, 6]. These techniques achieve good po-
sitioning accuracy, especially in simulation, but they all have certain limitations in practice
that reduce their accuracy to around 15 cm in the case of UWB signals, which is the best
of the previously mentioned techniques [7, 8]. For instance, radio frequency (RF) signals
are affected by multipath effects in indoor spaces that increase localization errors and are
constrained by the available spectrum, which is heavily congested [9]. For comparison, an
overview of indoor positioning technologies is provided in Table 1.1 including their accuracy
and major limitations. By contrast, the positioning technique based on light emitting diodes
(LEDs), visible light positioning (VLP), is getting more attention due to the tremendous
advantages of LEDs, such as high bandwidth, high security, long life expectancy, electromag-
netic interference free, low implementation cost, and high energy-efficiency [10]. Moreover,
VLP has a positioning accuracy that is higher than those non-VLP-based methods due to
its precise angular resolution [11, 12]. Since VLP systems do not generate electromagnetic
interference, they can be implemented in signal-sensitive areas such as hospitals and airports,
unlike RF-based positioning systems [13].

VLP-based indoor positioning systems can be divided into two categories, related to the
type of sensor in the receiver: photodiode-based (PD-based) and image sensor-based (IS-
based). The PD-based positioning system has been widely studied. However it has several
drawbacks, such as high sensitivity to the direction of the light beam and poor performance
on dynamic positioning, making the image sensor-based positioning system a promising al-
ternative [14]. Moreover, due to the incorporation of image sensors in various commercial
mobile devices, IS-based VLP systems can be used in real-life scenarios without the need for
peripherals. It is important to note that IS-based VLP requires a clear line-of-sight between
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the LED luminaires and the receivers and does not work when the LED luminaires are off.
For reference, Table 1.2 gives a summary of the distinctions between a VLP system using a
photodiode and a camera as receivers.

The deployment of IS-based VLP systems does not involve many infrastructure changes.
If the indoor environment already has LED illumination, it is only necessary to add a specific
driver to control each LED luminaire.

In recent years, machine learning (ML) has become a powerful tool and has been used in
various research fields, solving classification and regression problems, such as, data mining and
pattern recognition. As stated in [15], ML has a high potential to contribute to the develop-
ment of flexible and robust vision algorithms. Furthermore, learning-based vision systems are
expected to provide a higher level of competence and greater generality. Recently, ML-based
techniques have been adopted in optical camera communications (OCC) in applications such
as image classification and feature identification [16, 17]. Deep learning has also provided
some methods for the OCC systems, namely to detect and recognise the LED luminaires [18].

In this dissertation, we present an indoor 3D VLP system based on the YOLOv5 algorithm
to enable accurate real-time 3D positioning. Firstly, LED luminaires are modulated using On-
Off Keying (OOK) with unique frequencies to simplify their recognition. After that, the image
acquired by the CMOS sensor in the receiver goes through YOLOv5, and the classification
and position of each visible LED luminaire in the image are acquired. Employing the pinhole
camera model, we estimate the camera pose in 3D space using three OpenCV algorithms. This
problem is usually formulated as finding the extrinsic parameters of a calibrated camera, given
a set of 2D-to-3D point correspondences. Furthermore, and since any ML-based system is
heavily dependent on datasets, an automated procedure for collecting and labeling images is
presented in order to create a labeled dataset for VLP. The goal of this work is to implement
and demonstrate a novel and complete VLP system with six degrees of freedom (DOF) using
ML and optical camera communications (OCC), validating 3 of the 6 DOF in a room with
typical dimensions. This system can be applied in a large number of scenarios, for example to
manage a fleet of multiple mobile IoT devices in a hospital, to provide information to visitors
in a museum based on their current location or for the shopping center to offer advertising to
its customers based on their location.

The rest of this dissertation is organized as follows. The state of the art and past contri-
butions are detailed in chapter 2. In chapter 3, the system architecture and methodology are
explained. The implementation of the VLP system is shown in chapter 4. Finally, chapter 5
presents the experimental results and discussion, followed by the conclusions and future work.
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Technology Accuracy UC IC Weaknesses

Infrared 57 cm - 2.3 m H L Sunlight interference

Ultrasonic 1 cm - 2 m H H Cost and interference

Audible sound Meters L L Low precision

Wi-Fi 1.5 m L L Vulnerable to access point changes

Bluetooth 30 cm - meters L L Intrusive; Needs signal mapping

ZigBee 25 cm L H Low precision; User needs special equip.

RFID 1 - 5 m H L Very low precision

UWB 15 cm H H High cost

Table 1.1: Comparison of main indoor positioning technologies. UC: end user cost; IC:
installation and maintenance cost; H: high; L: low [19].

Receiver Photodiode Camera

Interference High Low

SNR Low High

MIMO Multiplexing Easy to implement Difficult to implement

Decoding (complexity) Signal processing (low) Image processing (high)

Data rate High Low

Range Near Far

Table 1.2: Comparison between photodiode-based and camera-based communication systems
[7].
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Chapter 2

State of the art and Past
Contributions

This chapter describes the state of the art and presents previous contributions to camera-
based VLP systems.

Over the past few years, several contributions regarding camera-based VLP systems have
been proposed in the literature. For instance, in [20], a 3D camera-based positioning system
was proposed using visible light sources as beacons and a smartphone camera as the receiver,
taking advantage of the rolling shutter effect. According to the authors, the beacons were
modulated using On-Off Keying (OOK) and Manchester encoding, transmitting an unique
identifier (ID). An image processing algorithm was proposed for the ID decoding and the
fixture localization. The authors stated that they obtained an average position error of 7.4 cm
using a setup with 1m long, 1m wide and with 2.7m high. In [21], a 2D positioning system
using a smartphone camera and two LED luminaires was proposed. According to the authors,
Multiple Frequency-Shift Keying (MFSK) modulation was used to transmit the coordinate
information of each LED luminaire. The authors performed image processing to detect the
LED-IDs and obtained an average position error of 3.25 cm for the flat situation and 5.1 cm
for the 10-degree tilt of the smartphone. In another work [22], according to the authors,
an indoor VLP system based on the Robot Operating System (ROS) was presented for the
first time. They used the OOK-PWM modulation method to differentiate the LED-IDs, thus
introducing different features into the image captured by the rolling shutter CMOS sensor.
The proposed VLP algorithm consisted of three parts: the dynamic tracking algorithm for
LED-ROI, the LED-ID detection scheme, and the positioning algorithm using 2 LEDs. The
authors implemented a prototype system on a Turtlebot3 Robot [23]. The experimental
results presented by the authors show that the proposed system was able to provide robot
indoor positioning accuracy within 1cm and an average computational time of 80ms.

Machine learning (ML) approaches are normally divided into three categories, supervised
learning, unsupervised learning and reinforcement learning. Supervised learning is defined by
the use of labeled datasets to train artificial intelligence (AI) algorithms that can classify data
(classification) or accurately predict the results (regression). Unsupervised learning refers to
the use of AI algorithms to identify patterns in datasets containing data points that are
neither classified nor labelled. Reinforcement learning is an AI algorithm based on rewarding
desired behaviors and/or punishing undesired ones. For these algorithms, it is important
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to collect representative data of good quality and in large quantity. It is also important to
avoid overfitting or underfitting the data. As a reference, supervised learning algorithms are
used in this dissertation. In [24], a VLP system was introduced using a hierarchical k-means
clustering approach and two LED luminaires. The experimental results showed that the
average accuracy of 31 cm was achieved for a room of 4.3×4×4 m3. According to the authors,
this was the first publication to use ML for VLP.

In [16], a ML-based indoor positioning system was introduced that takes advantage of the
rolling shutter effect of the smartphone’s CMOS image sensor. To recognise the LED-IDs,
the authors used Linear Support Vector Machine (SVM). Furthermore, an image processing
method was used for the image features extraction and selection. In addition, they used
the smartphone’s built-in fusion sensors to improve the LED-ID detection and positioning
accuracy. According to the authors, the system was able to provide an accuracy of 2.49,
4.63, 8.46 and 12.20 cm with angles of 0, 5, 10, and 15°, respectively, within a 2×2×2 m3

positioning space. Finally, it was also indicated that the total image processing/classification
time was 17.36ms.

Deep learning (DL) is one of the ML techniques that outperform traditional methods in
various applications especially when a large amount of data is available [25]. A Convolutional
Neural Network (CNN) is a DL algorithm and was first introduced to the field of visible light
communication (VLC) in [26], according to the authors. In this paper, an online-to-offline
(O2O) method based on VLC was proposed, which implemented, instead of the traditional
modulation and demodulation, modulation and recognition. The authors used RGB light-
emitting diode (RGB-LED) as the transmitter, and used Pulse Width Modulation (PWM)
to modulate the signal to make it flicker at high frequency. At the receiver, the CMOS image
sensor was used in the system to capture LED images with stripes. A CNN was introduced in
the proposed system as a classifier. According to the authors, this scheme greatly simplifies
the complexity of the VLC system.

In 2020, just days after the release of YOLOv4, YOLOv5 was launched by Glenn Jocher,
founder and CEO of Utralytics [27] and, so far, is the latest product of YOLO. YOLOv5 is
a family of object detection architectures and models pre-trained on the COCO (Common
Objects in Context) dataset [28]. The object detection in YOLO is done as a regression
problem and provides the class probabilities of the detected bounding boxes. It is available
in four models, namely s, m, l and x, each one of them offering different levels of detection
accuracy and performance. Larger models like YOLOv5x can, in some cases, achieve better
results, but have more parameters, require more GPU memory to train and are slower to
run. For reference, YOLOv5s has 7.2 Million parameters and YOLOv5x has 86.7 Million
parameters. A model with more parameters is more prone to overfitting.

The network architecture of YOLOv5 is shown in Figure 2.1. The architecture is com-
posed of three main parts: backbone, neck and output. The backbone part extracts feature
information from the input images, the neck part aggregates the extracted feature infor-
mation and generates three scales of feature maps, and the final part detects/classifies the
objects and outputs the results. As stated in [29], the backbone part is a convolutional
neural network which extracts feature maps of different sizes from the input image by mul-
tiple convolution and pooling. As can be seen in Figure 2.1, there are four layers of feature
maps generated in the backbone network whose sizes are: Image width

4 × Image height
4 pixels,

Image width
8 × Image height

8 pixels, Image width
16 × Image height

16 pixels and Image width
32 × Image height

32
pixels. Having these feature maps of different sizes, the neck part merges the feature maps
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Figure 2.1: Network architecture of YOLOv5 [29].

of different levels to reduce information loss and get more contextual information. In the
merging process, the feature pyramid structures of the feature pyramid network (FPN) [30]
and the path aggregation network (PAN) [31] are used. As mentioned in [32], the FPN struc-
ture transmits strong semantic features from the higher feature maps to the lower feature
maps. At the same time, the PAN structure transmits strong localization features from lower
feature maps to the higher feature maps, which increases the object localization accuracy.
Similarly to YOLOv3, YOLOv5 outputs predictions at three different scales, which are given
by downsampling the dimensions of the input image by 32, 16 and 8 respectively. Thus, the
shape of each detection feature map is given by the following expressions:(

N

32
× N

32
× [B × (5 + C)]

)
(
N

16
× N

16
× [B × (5 + C)]

)
(
N

8
× N

8
× [B × (5 + C)]

) (2.1)

In this expressions, B is the number of bounding boxes a cell on the feature map can
predict, “5” is for the 4 bounding box attributes and one object confidence and C is the
number of classes. In YOLOv5 trained on COCO, B is equal to 3, using 3 anchors, and C
is equal to 80. As stated in [33], anchor boxes are a set of predefined bounding boxes of a
certain height and width. These boxes are defined to capture the scale and aspect ratio of the
objects to be detected and are usually chosen based on the dimensions of the objects in the
training dataset. If we have an image of 1632×1632 pixels, the detection feature maps would
be (51×51×255, 102×102×255, 204×204×255). This technique enables multi-scale object
detection and classification, allowing the model to handle small, medium and large objects.
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Multi-scale detection ensures that the model can follow the size changes of the LED patterns
in the image. A detailed illustration of this process is presented in Figure 2.2.

In the architecture, the focus module (seen in Figure 2.1) slices the image and fully extracts
the features to retain more information, the goal of which is to reduce the amount of model
calculations and speed up model training [34]. The CBL module is the smallest component in
the YOLO network structure and consists of the modules of convolution, batch normalization
and Leaky relu activation function [32]. As mentioned in [29], there are two types of cross-
stage partial network (CSP) in YOLOv5, one used in the backbone part and the other in the
neck. The CSP network in the backbone consists of several residual units, while the CSP
network in the neck replaces the residual units with CBL modules. Being the residual units
a block that uses a feedfoward technique to reduce the vanishing gradient problem. The CSP
network is designed to improve the inference speed while maintaining precision by reducing
the size of the model. The spatial pyramid pooling (SPP) module performs maximum pooling
with different kernel sizes and merges the features by concatenating them. Pooling mimics the
human visual system by performing downsampling operations to represent image features at a
higher level of abstraction. It makes the feature map smaller and simplifies the computational
complexity of the network by extracting the main features. The Concat module represents
the tensor concatenation operation.

Finally, YOLOv5 applies Non-Maximum Suppression (NMS) to discard all bounding boxes
that have a low probability (lower than the confidence threshold) or that contain the same
object as other bounding boxes with higher confidence scores. By choosing a threshold value,
NMS discards all overlapping bounding boxes that have an Intersection over Union (IoU)
value greater than the threshold value.

Recently, the aforementioned object detection architectures have been used in multiple
applications, namely to supervise human behaviour. In [36], a safety helmet monitoring
system based on YOLOv5 was proposed. According to the authors, 6045 annotated images
were used to train the four models. In each image, each head without a helmet was annotated
as “Alarm” and each head with a correctly positioned helmet was annotated as “Helmet”.
In the end, YOLOv5s achieved an average detection speed of 110 FPS and a mean average
precision (mAP) of 93.6% and YOLOv5x achieved an average detection speed of 21 FPS
and a mAP of 94.7%, being respectively the fastest model and the most precise. Another
example is presented in [37], in which a deep learning algorithm based on YOLOv5s was
proposed to replace manual inspection of mask wearing in the fight against the COVID-19
pandemic. According to the authors, the algorithm was trained on 7,959 annotated images
and obtained an experimental success rate of about 97.9%. More similar to our work, in [18],
a LED detection and recognition system based on Deep Learning was proposed for Vehicle
to Vehicle (V2V) communications. It uses a newly developed network based on the YOLOv5
object detection model to determine the position and status of the LED in the vehicle OCC
system. The performance of the developed network was compared with other state of the art
methods such as YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The
results were quite acceptable (average precision higher than 71.28%) which demonstrates the
potential of these methods for LED identification and recognition. According to the authors,
the whole system achieved a processing frame rate of 36 FPS.

In 2017, at the Maxima Medisch Centrum, an autonomous indoor drone, developed by
Blue Jay, was demonstrated using VLC technology from Philips Lighting to navigate the
indoor space [38]. The autonomous drone is able to determine its position in the indoor space
in real time, allowing it to play a game of tic-tac-toe with children and collect and deliver
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Figure 2.2: Illustration of the basic principle of YOLOv5 [35].
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Figure 2.3: Representation of the autonomous indoor drone developed by Blue Jay.

items to a location to help the less mobile. According to the authors, the project aims to
help in healthcare by assisting caregivers. An illustration of the innovative project is shown
in the Figure 2.3.

Also in 2017, Philips Lighting installed the first indoor-positioned supermarket in Germany
[39]. This system joins Bluetooth Low Energy (BLE) as well as smartphone sensor-based
positioning with VLC technology. According to the authors, Philips Lighting introduced a
new smartphone app that gives shoppers access to location-based services, such as finding
items in the shop with an accuracy of 30 cm. The team that developed this system indicates
that they are convinced that this system is future-proof, especially for larger shops, and is
not only targeted at the younger clientele, as customers without smartphones can also benefit
from the service, as staff can use the app to search for goods more quickly and reliably. A
similar technology has also been implemented in a supermarket in Dubai in the United Arab
Emirates [40].

2.1 Summary

This chapter introduced the results presented in past contributions for camera-based VLP
systems to serve as a comparison for the results obtained in this work. Furthermore, the
YOLOv5 architecture was detailed to explain how the state-of-the-art algorithm works. Fi-
nally, two implementations of VLP systems in real-life scenarios were also analysed.
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Chapter 3

System Architecture and
Methodology

This chapter focuses on the system architecture and the methodology for developing the
complete system. It also presents the working principles of a camera from a geometrical point
of view, emphasising the mathematical expressions behind it.

The proposed system is designed to be used in an indoor environment (e.g. at an airport,
hospital or shopping center) with illumination LEDs on the ceiling and a mobile device with
a camera and positioning needs. By using the LED luminaires as emitters and the mobile
device as a receiver, the system provides the receiver’s position and orientation in the 3D
space. An illustration of the system usage environment is presented in Figure 3.1. The black
box in the illustration can represent a robot, a smartphone or any other mobile device that
has a camera as an optical receiver.

Figure 3.2 presents the overview of the positioning system architecture. It consists of two
main parts, the emitter side and the receiver side, separated by the optical channel.

On the emitter side, each LED luminaire is modulated with OOK at a unique frequency,
high enough that the human eye cannot detect any fluctuation in the light intensity – es-
sentially flicker-free. Thus, each LED luminaire has a distinctive characteristic. Generally,
200Hz is accepted as the minimum frequency to avoid this phenomenon in VLC systems [41].
Since we are interested in developing a positioning system that also serves for general-purpose
illumination, the luminous intensity of the various LED luminaires should, ideally, be constant
and equal between them.

On the receiver side, a Tagged Image File Format (TIFF) image is acquired with the
CMOS sensor exposure time set to the minimum possible value and the maximum resolution,
in order to maximize the detectable blinking frequency of the LED luminaires. Assuming
a constant frame rate, a higher image resolution means a higher data rate. After the im-
age passes through the 3D VLP algorithm, the position and orientation of the receiver are
estimated.

The 3D VLP algorithm is mainly composed of two processes: LED-ID recognition and
the positioning algorithm. The LED-ID recognition is performed by taking advantage of
the rolling shutter mechanism of the CMOS image sensor. YOLOv5 is used to classify the
pattern of each LED luminaire and obtain their corresponding coordinates in the image.
A bounding box is generated around each detected LED pattern, which allows the central
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Figure 3.1: System usage environment.
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Figure 3.2: Block diagram of the VLP system.
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Figure 3.3: Diagram demonstrating the time delay between each row of pixels in a rolling
shutter CMOS image sensor.

Figure 3.4: Illustration of the rolling shutter effect.

position of each pattern in the image to be obtained. YOLOv5 has state-of-the-art results in
several benchmarks, such as COCO [42], and due to the image only going through the CNN
once, this process is considerably faster than solutions such as Region Based Convolutional
Neural Network (R-CNN) [43]. Therefore, the algorithm is expected to be fast and robust
in identifying the LED-IDs. Since this framework provides different models with different
numbers of network parameters and FLOPs (Floating Point Operation Per Second), model s
was selected in order to minimise the probability of overfitting the data.

For a rolling shutter CMOS image sensor, the data reading is performed row by row.
Figure 3.3 shows a diagram demonstrating the time delay between each row of pixels in this
sensor. Thus, the captured image displays bright and dark stripes while the LED luminaire
is turning on and off during the period of exposure. Changing the distance of the CMOS
sensor from the LED luminaires does not affect the width of the stripes, because the scanning
frequency of the CMOS sensor is fixed. However, the area of the LED luminaires in the image
will decrease as the distance between the LED luminaires and the camera increases, and this
will result in a reduction in the number of stripes. Increasing the modulation frequency causes
a decrease in the width of the stripes. An illustration of this phenomenon is shown in Figure
3.4.
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Figure 3.5: Demonstration of the transition between stripes.

Depending on the exposure and readout times, white to black and black to white tran-
sition bands appear in the image. These transition bands, illustrated in Figure 3.5, can be
considered as intersymbol interference (ISI) [44]. The height of the transition bands (in pixels)
is calculated using the following expression [45]:

htrans = texp ×
him
tfr

=
texp
trr

(3.1)

where texp is the exposure time, him is the height of the image, tfr is the frame readout time
and trr is the row readout time.

In a VLC system, the transition bands should be as narrow as possible. The transitions
increase when the exposure time increases or when the row readout time decreases.

Regarding the positioning algorithm, the camera pose is made up of 6 degrees of free-
dom (DOF) (x, y, z, roll, pitch and yaw). Therefore, to obtain the receiver’s position and
orientation, it is necessary to get information of at least three image points (2D) and their
corresponding world coordinates (3D). In our setup, the 3D points correspond to the world
coordinates of the center of each visible LED luminaire in the image, and the 2D points cor-
respond to the image coordinates of the center of each LED projection. It is also necessary
to have the intrinsic matrix and the distortion coefficients of the camera. These parameters
are obtained after performing the camera calibration. Thus, and although it is not evidenced
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Figure 3.6: Example of the geometrical setup diagram of the VLP system.

in diagram 3.2, it is assumed that the system knows: the camera parameters, the LED lu-
minaires coordinates in the world coordinate system (WCS) and the association between the
frequency modulated by each LED luminaire and the corresponding coordinates. Subsection
3.1 presents the working principles of a camera and the mathematical expressions behind the
camera-to-world transformation. To solve the Perspective-n-Point (PnP) problem, there are
already several algorithms implemented in the literature.

The image filtering and resizing block has been added since we are not interested in color
information and do not need to differentiate between a large number of LED luminaires for
the system demonstration.

Figure 3.6 shows an example of the geometrical setup diagram of the indoor VLP system,
in this case composed of 8 emitters (i.e., LED luminaires) and one receiver (i.e., a rolling
shutter CMOS sensor) positioned on the ceiling and at the floor level. The diagram shows
the world coordinate system, the camera coordinate system and the image plane. The kth
emitter has a known set of coordinates (xTk, yTk, zTk), which is associated with the WCS.
The image plane is parallel to the Xc and Yc axes and the camera’s viewing direction (optical
axis) is aligned with the Zc axis. The main goal is to obtain accurately and in real time the
position and orientation (xs, ys, zs, αs, βs, γs) of the receiver in the WCS from a single input
photograph.

To implement the YOLO-based VLP system it is essential, besides implementing the PnP
algorithm, to first train the object detection algorithm. Thus, it is necessary to have a labeled
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Figure 3.7: Flow diagram to implement the VLP system using YOLOv5 and PnP.

dataset composed of images, similar to the test images, and their annotations. To obtain the
labeled dataset quickly and reliably, an automated image acquisition and labeling procedure
was developed. This sequence is shown in the block diagram in Figure 3.7.

To have an automated image collection procedure, an image acquisition module was de-
veloped and built using 3D printing. This module aims to streamline the process of collecting
images for datasets, offering a practical and intuitive graphical interface. To this end, the
module operates automatically and autonomously, allows quick adjustments to the camera
orientation and is easy to position precisely at a given point in space.

In order to generate the labeled dataset to train YOLOv5 to detect LED patterns, it is
necessary to acquire a large number of images similar to the test images, i.e. acquire images
with all modulated LED luminaires active, at various points in the indoor environment,
and create the annotation file for each image. For this process to be fast and accurate, it
is important that it is fully automated. The process of annotating the images consists of
delimiting all the visible luminaires in the image with a bounding box, assigning each of them
a class label. To perform this task automatically, a ROI algorithm is required to generate the
bounding boxes and isolate each visible LED luminaire in the image and a CNN to assign the
correct label to each isolated LED luminaire. For this purpose, it is essential to first train the
CNN to classify the LED patterns.

In order to generate the dataset to train the CNN, it is necessary to acquire a large
number of images with only one modulated LED luminaire active at various points in the
indoor environment. In this way, it is possible to be certain of the LED-ID of each set of
images. By using a ROI algorithm and grouping the cropped LED images by class, the CNN
can learn to differentiate between the various individual LED patterns. This entire sequence
can be seen in the block diagram in the Figure 3.8.
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The datasets developed in this dissertation can be used to train and validate other algo-
rithms with different characteristics. These datasets can be found at https://www.kaggle.
com/celsopereira1/visible-light-positioning-dataset.

3.1 Camera-to-World Transformation

A camera is an optical instrument that allows incident light in to capture an image on a
light-sensitive surface (image sensor), resulting in a 2D projection of the 3D world in front of
it. This 2D-to-3D mathematical relationship can be described, in an ideal scenario, by the
pinhole camera model. In this model, the camera aperture is described as a point (infinitely
small hole) and no lenses are used to focus the light. The light from the scene passes through
the aperture and projects an inverted image on the image plane. The pinhole camera diagram
is presented in Figure 3.9.

Given these characteristics, a pinhole camera has an infinite depth of field, since every-
thing in the image is projected in focus. Like a real camera, the pinhole camera has a focal
length (F ) that corresponds to the distance between the focal center (Fc) and the image
plane. The focal length influences the field of view (FOV) and, in a real camera, the amount
of perspective distortion present in the image. A shorter focal length gives a wider FOV
with more perspective distortion and a longer focal length gives a narrower FOV with less
perspective distortion. The geometrical model for the pinhole camera is presented in Figure
3.10.

The camera axis follows the standard camera coordinate system (CCS), with the Xc axis
pointing to the right, the Yc axis downwards and the Zc axis pointing to the front. An
arbitrary point P in 3D space is projected onto the image plane at (u,v), as can be seen in
Figure 3.10.

In this subsection, all operations will be represented by matrices, and the multiple points
in both 2D and 3D space will be represented in homogeneous coordinates.

In the pinhole camera model, the distortion-free projective transformation that maps 3D
points in world coordinates (Xw,Yw,Zw) into 2D points in image coordinates (u,v) is given
by:

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



Xw

Yw
Zw

1

 (3.2)

which is equivalent to:

s

uv
1

 = A
[
R|t

] 
Xw

Yw
Zw

1

 (3.3)

with

A =

fx 0 cx
0 fy cy
0 0 1

 (3.4)

18

https://www.kaggle.com/celsopereira1/visible-light-positioning-dataset
https://www.kaggle.com/celsopereira1/visible-light-positioning-dataset


Figure 3.8: Flow diagram to implement an automated procedure for image collection and
labeling.
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Figure 3.9: Pinhole camera diagram.

Figure 3.10: Geometrical model for the pinhole camera.
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R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.5)

t =

txty
tz

 (3.6)

where s is the projective transformation’s arbitrary scaling, A is the camera intrinsic matrix
composed of the focal lengths fx and fy which are expressed in pixels, and the principal point
(cx, cy), R is the rotation matrix and t is the translation vector. The focal lengths are
converted from meters to pixels with the following expressions:

fx = F
Nx

W
(3.7)

fy = F
Ny

H
(3.8)

where F is the focal length, in meters,W and H are the sensor width and height also in meters,
and Nx and Ny are the number of pixels in both axes. In this scenario, the translation vector
(tx,ty,tz) corresponds directly to the camera’s position in the world coordinate system (WCS).
To obtain the orientation of the camera, R can be expressed by three matrices representing
the rotations around each axis.

R = RzRyRx (3.9)

Rx =

1 0 0
0 cos (θx) − sin (θx)
0 sin (θx) cos (θx)

 (3.10)

Ry =

 cos (θy) 0 sin (θy)

0 1 0
− sin (θy) 0 cos (θy)

 (3.11)

Rz =

cos (θz) − sin (θz) 0
sin (θz) cos (θz) 0

0 0 1

 (3.12)

The angles (θx, θy, θz) are the Euler angles and directly represent the camera’s orientation
in the WCS, in radians.

To portray a real camera, the camera model should incorporate the lens distortions. Thus,
the above model is extended and the 2D points in the image plane (u,v) are updated to
compensate for these distortions.
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(3.13)

where k1, k2, k3, k4, k5, k6 are the radial coefficients, p1, p2 are the tangential distortion coef-
ficients and s1, s2, s3, s4 are the thin prism distortion coefficients.

Then, equation (3.2) is used to obtain the extrinsic camera parameters.

3.2 Summary

This chapter presented the system architecture and the methodology for developing the
complete system. Moreover, it presented the rolling shutter effect and emphasised the working
principle of a camera from a geometrical point of view. The mathematical process introduced
at the end of this chapter is implemented by the PnP algorithm used in this work.
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Chapter 4

Implementation

This chapter describes in detail the implementation process of the complete system. The
developed software is presented and an explanation for each step is given. It also provides
additional information about the emitters and the receiver.

Figure 4.1 shows a photograph and description of the experimental setup, as well as
the module developed for automatic image acquisition. The setup consists of eight emitters
(LED luminaires) modulated with OOK with frequencies ranging from 1 kHz to 4.5 kHz with
a 500Hz interval. Full details of the transmitters and receiver are given in sections 4.1 and
4.2 respectively.

With its distinctive feature, each LED luminaire presents a different pattern in the image
acquired by the receiver. An example of each LED pattern is shown in Figure 4.2.

During the implementation process, the CMOS image sensor was placed parallel to the
floor at a height of 25.6 cm. All images were acquired with full resolution (3264×2464 pixels)
and with the exposure time set to the minimum possible value. This value was chosen to
maximise the detectable blinking frequency of the LED luminaires, which can be calculated
using the following expression [45]:

hcomp =

1
fled

− texp

tr
(4.1)

where hcomp is the the height (in pixels) of the complete white (or black) strip, fled is the
blinking frequency of the LED luminaire, tr is the row readout time, and texp is the exposure
time.

Due to the camera characteristics (the minimum texp is equal to 9 µs and the tr is equal
to 18 µs), the maximum detectable blinking frequency is approximately 37 kHz. This range
shows an indication that more LED luminaires with unique frequencies could be placed en-
suring positioning in larger indoor environments. For this, it is also important to take into
consideration the ability to distinguish between close frequencies.

With the presented camera characteristics it is also possible to calculate the height of the
transition bands in the image, in pixels. Using the expression presented previously:

htrans =
9µs

18µs
= 0.5px (4.2)

As the result is less than 1, it is considered negligible, and it can be assumed that there
is no transition bands for the emitter frequencies used.
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Figure 4.1: Experimental setup.
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Figure 4.2: Example of the pattern in the image of each modulated LED (in grayscale).
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Input image size 150x150

Initial learning rate 0.0001

Optimizer Adam

Epoch 30

Batch size 64

Table 4.1: The training parameters related to the CNN.

In order to implement the complete system, we started by acquiring the images needed
to train the CNN using the image acquisition module. Thus, 2849 images were acquired with
only one known LED luminaire active. Then, all images were processed using the developed
ROI algorithm, in order to isolate each LED in an image with 150× 150 pixels, and grouped
by class. In this process, the LED luminaires that are fully visible and the LED luminaires
that appear in the image with a size greater than 1

3 of the total LED are isolated. This
processed image dataset is balanced, with approximately 355 images of each LED-ID. All the
details of the developed ROI algorithm are presented in section 4.3.

Taking into consideration the nature of the dataset, a CNN was developed with the aim
of precisely classifying each LED pattern. CNNs perform well in image classification because,
rather than pre-processing the data to derive features such as textures and shapes, CNNs
take image’s raw pixel data as input and “learn” to extract these features, and ultimately
infer what object they constitute [46]. The CNN architecture is described in section 4.4.

To train and test the developed CNN, the dataset composed of the cropped images was
augmented to a total of 63876 data-augmented images using horizontal and vertical flip aug-
mentation. The various classes have approximately the same number of images (8000 images).
This artificial expansion of the dataset allows to increase the performance and generalizability
of the model. The dataset was divided into 80% for training and 20% for testing. The training
hyperparameters related to the developed CNN are shown in Table 4. The Adam (Adaptive
Moment Estimation) [47] optimizer was used for training. Optimizers are algorithms used
to change the attributes of the neural network, such as learning rate and weights, in order
to reduce losses and provide the most accurate results possible. The authors of the Adam
algorithm indicate that it is computationally efficient, has low memory requirements and is
suitable for problems with very noisy/or sparse gradients.

To evaluate the CNN performance quantitatively, we used Precision, Recall and F1-Score.
The calculation formulas are given as follows:

Precision =
TP

TP + FP
(4.3)

Recall =
TP

TP + FN
(4.4)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4.5)

where, for each class, TP (True Positives) is the number of correctly detected LEDs of that
same class, FP (False Positives) is the number of LEDs of other classes treated as LEDs of
that class, and FN (False Negatives) is the number of LEDs of that class treated as LEDs of
the other classes.
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Precision Recall F1-Score Support

LED11 1.0000 1.0000 1.0000 1611

LED12 0.9988 0.9988 0.9988 1648

LED13 0.9960 1.0000 0.9980 1511

LED14 1.0000 1.0000 1.0000 1535

LED3 0.9988 1.0000 0.9994 1615

LED4 1.0000 1.0000 1.0000 1634

LED7 1.0000 0.9957 0.9978 1611

LED8 0.9994 0.9988 0.9991 1611

Accuracy 0.9991 12776

Macro Avg 0.9991 0.9991 0.9991 12776

Weighted Avg 0.9991 0.9991 0.9991 12776

Table 4.2: CNN classification report.

Using the macro-average metric, we obtained: Precision score equal to 99.91%, Recall
score equal to 99.91% and F1 score equal to 99.91%. The macro-average computes the metric
independently for each class and then takes the average, thus treating all classes equally. The
CNN classification report, with the main classification metrics, is presented in Table 4.2. In
the weighted-average metric, the contribution of each class to the average is weighted by its
size. This metric is most often used when the dataset is unbalanced. The support column is
the number of samples for each class in the test dataset.

To check where the model failed, we plotted the normalized confusion matrix seen in
Figure 4.3. It compares each predicted class with the associated label. The diagonal is where
the model performed accurately. The higher the diagonal values of the confusion matrix the
better, indicating many correct predictions. When the classification is incorrect we can see
exactly where the model has failed. Looking at the confusion matrix, we can verify that
practically all the predicted labels are the true labels. Occasionally, classification errors may
occur between LED luminaires with close frequencies, namely between LED13 (1 kHz) and
LED7 (1.5 kHz) and between LED8 (4 kHz) and LED12 (3.5 kHz).

With the classification of the LED patterns being done with high precision, 820 images
with all LED luminaires active were acquired and converted to grayscale. In each of them, at
least 3 LED luminaires are always visible. Using the ROI algorithm and CNN, an annotation
file is generated for each image, thus creating the labeled dataset required to train YOLOv5.
Note that the annotations were generated in YOLO and PascalVOC formats. The Pascal
VOC format generates an XML file for each image, highlighting each bounding box with its
class and pixel coordinates (xmin, ymin, xmax, ymax). This process is demonstrated in Figure
4.4.

To train and validate the YOLOv5s, the labelled dataset was augmented to a total of
2630 annotated images, applying the same data augmentation technique used previously.
For this, the Albumentations library [48] was used to adjust the annotations accordingly.
The augmented dataset was divided into 1980 annotated images for training and 650 for
validation. The training hyperparameters related to the YOLOv5s are shown in Table 4. The
SGD (Stochastic gradient descent) optimizer was used for training. The main advantages
of this iterative method are its efficiency and ease of implementation. After training the
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Figure 4.3: CNN confusion matrix.

Figure 4.4: Process for generating the image annotations with the CNN already trained (with
visual representation).
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Input image size 1632x1632

Initial learning rate 0.01

End learning rate 0.2

Optimizer SGD

Epoch 100

Batch size 2

IoU threshold 0.2

Momentum 0.937

Table 4.3: The training parameters related to the YOLOv5s.

algorithm, the best weights were saved.
To measure the accuracy of object detectors such as YOLO or R-CNN the average pre-

cision (AP) metric is typically used. AP computes the area under the precision-recall (PR)
curve. The PR curve is a plot of precision as a function of recall. It shows the trade-off be-
tween precision and recall for different thresholds [49]. A high area under the curve represents
both high recall and high precision, where high recall is related to a low false negative rate,
and high precision is related to a low false positive rate. Mathematically, AP is defined as:

AP@IoUThreshold =

∫ 1

0
p(r) dr (4.6)

The average of this value, taken over all classes, is called mean Average Precision (mAP).
In our validation dataset, a mAP of 0.992 was obtained for an Intersection over Union

(IoU) threshold of 0.5. The fact that this value is close to 1 indicates that the system is quite
precise. The PR curve is shown in Figure 4.5.

To check where the YOLOv5s failed, we plotted the normalized confusion matrix seen in
Figure 4.6. Observing the confusion matrix, we can check that almost all the predicted labels
are the true labels. Eventually, classification errors may occur between LED luminaires with
close frequencies, namely between LED13 (1 kHz) and LED7 (1.5 kHz) and between LED3
(3 kHz) and LED4 (2.5 kHz).

With YOLOv5s trained and validated, the next step was to implement the PnP algo-
rithm. For that, the position of the LED luminaires on the ceiling was measured using a
tape. The position of the LED luminaires in the room is presented in Table 4.4. The point
with coordinates (0,0,0) corresponds to the bottom left corner of the room, seen in Figure
4.1. Furthermore, the calibration of the camera was also performed to obtain the intrinsic
parameters and the distortion coefficients. Since we have full control over the imaging process,
the checkerboard based method was used to calibrate the camera. The checkerboard patterns
are commonly used in calibration because of their distinctiveness and ease of recognition in
an image. The corners of the squares on the checkerboard are quite easy to detect, as they
show sharp gradients in two directions. The calibration process is presented by a flowchart
in Figure 4.7. After applying this calibration method, the following results were obtained:

Camera intrinsic matrix:

1288.6255 0 813.2959
0 1290.6448 819.7536
0 0 1


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Figure 4.5: YOLOv5s Precision-Recall curve.
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Figure 4.6: YOLOv5s confusion matrix.
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Figure 4.7: Camera calibration flowchart.

Distortion coefficients (k1, k2, p1, p2, k3):
[
0.2172 −0.6233 −0.0008 −0.0004 0.5242

]
With this data, it was possible to implement the camera-to-world transformation algo-

rithm and thus finalise the system implementation. The camera-to-world transformation
algorithm is detailed in section 4.5.

As stated in chapter 3, the image filtering and resizing block was added since we are not
interested in color information and do not need to differentiate between a large number of
LED luminaires for the system demonstration. Thus, in this block, the input images are
converted to grayscale, resized in order to make the system faster, and padded to 1632x1632
pixels while maintaining the aspect ratio.

For the system to be implemented in another similar indoor setup, it is only necessary
to perform the calibration of the new rolling shutter camera in order to obtain the camera
parameters and measure the real position of the LED luminaires in the new indoor space.
The new camera must generate images with similar characteristics to those presented in this
dissertation, this is, this new camera must present the same readout and exposure times.
With different values for readout and exposure times, the same LED luminaire frequency
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Parameter Symbol Value

Room size (w, l, h) 4.200 × 2.700 × 2.710 (m)
The coordinates of

Tx13 (xT13, yT13, zT13) 0.330,0.485,2.710 (m)
Tx7 (xT7, yT7, zT7) 1.523,0.485,2.710 (m)
Tx11 (xT11, yT11, zT11) 2.713,0.485,2.710 (m)
Tx4 (xT4, yT4, zT4) 2.908,0.492,2.710 (m)
Tx14 (xT14, yT14, zT14) 0.335,2.080,2.710 (m)
Tx8 (xT8, yT8, zT8) 1.528,2.087,2.710 (m)
Tx12 (xT12, yT12, zT12) 2.713,2.081,2.710 (m)
Tx3 (xT3, yT3, zT3) 2.908,2.085,2.710 (m)
P6 (xP6, yP6, zP6) 1.623,1.010,0.000 (m)
P7 (xP7, yP7, zP7) 1.873,1.010,0.000 (m)
P8 (xP8, yP8, zP8) 2.123,1.010,0.000 (m)
P9 (xP9, yP9, zP9) 2.373,1.009,0.000 (m)
P11 (xP11, yP11, zP11) 1.623,1.260,0.000 (m)
P12 (xP12, yP12, zP12) 1.873,1.260,0.000 (m)
P13 (xP13, yP13, zP13) 2.123,1.260,0.000 (m)
P14 (xP14, yP14, zP14) 2.373,1.259,0.000 (m)
P16 (xP16, yP16, zP16) 1.623,1.510,0.000 (m)
P17 (xP17, yP17, zP17) 1.873,1.510,0.000 (m)
P18 (xP18, yP18, zP18) 2.123,1.510,0.000 (m)
P19 (xP19, yP19, zP19) 2.373,1.509,0.000 (m)

Transmit power of each Tx Pt 18 W
Transmitter size (diameter) 150 (mm)

Receiver’s field of view FoV 62.2 degrees (horizontal) and 48.8 degrees (vertical)
Focal Length f 3.04 mm

Image Resolution 3264x2464 pixels

Table 4.4: Key system parameters.

would correspond to a different strip pattern. If the system is to be implemented in a setup
with more LED luminaires, the whole procedure presented in this dissertation has to be
repeated, since the object detection algorithm was only trained for 8 LED luminaires with
the mentioned frequencies.

4.1 Emitter Details

Each emitter is composed of an LED luminaire and its driver. The driver used in this
dissertation was developed by Pedro Rodrigues (former student of the University of Aveiro) in
his dissertation project [50] and it drives a DLA G2 luminaire from Tridonic with a nominal
power of 18W and a diameter of 15 cm.

At the beginning of this dissertation project, four emitters were already mounted on
the ceiling, and in preparation for this dissertation, twelve more units were assembled and
mounted. Figure 4.8 shows an emitter mounted on the ceiling in the Integrated Circuit
Systems laboratory of Instituto de Telecomunicações in Aveiro.

To better understand the behavior of the emitter in the system, the transient voltage
in the sensing resistor Rs (LED signal) was measured using an oscilloscope. The driver
was programmed to switch on and off at 3 kHz. Figures 4.9 and 4.10 show the response of
the current regulator in transient regions, namely on the rising edge and the falling edge,

33



Figure 4.8: Ceiling-mounted emitter.

respectively.
As we can see, the settling times of the rising and falling edges of the LED signal are 342 ns

and 446 ns, respectively. These non-ideal on-off/off-on transition times affect the white-to-
black and black-to-white transitions in the image, but not significantly.

For VLC, the maximum frequency of the emitters is an important characteristic. In this
case, it can be calculated using the following expression:

fmax =
1

tsup + tsdown
=

1

342ns+ 446ns
= 1.27MHz (4.7)

where tsup is the settling time of the rising edge and tsdown is the settling time of the falling
edge in the sensing resistor.

Note that this frequency is sufficient to test all the capabilities of our system. On the
other hand, the minimum frequency at which these emitters can operate is approximately
150Hz, which is limited by the counter present in the microcontroller.

The driver is remotely controlled using an nRF24L01+ transceiver. The graphical user
interface (GUI) developed by Pedro Rodrigues in python was used to control the function-
alities of the emitters. In addition to the three existing modes for controlling the emitters
(DC, OOK+Manchester and VPPM), a new mode, OOK, has been added, allowing the LED
luminaires to be switched on and off at different frequencies. The GUI is presented in Figure
4.11.
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Figure 4.9: LED signal (settling time of the rising edge highlighted).

Figure 4.10: LED signal (settling time of the falling edge highlighted).
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Figure 4.11: GUI to control the emitters.

4.2 Receiver Details

To acquire the images in a controlled manner, the receiver module shown in Figure 4.12
was developed and constructed. It is composed of a Raspberry Pi 3B, a Raspberry Pi V2
camera module, a HerkuleX DRS-0101 servo, an Arduino Uno and a Nextion NX3224T028
display. The camera module uses the 8 MP Sony IMX219 image sensor. The 3D printed
structure allows the roll, pitch and height of the camera to be varied. The roll variation is
performed automatically and the pitch and height adjustments are performed manually. This
module is powered by a battery (5 V - 15.6 Ah) and operates autonomously.

During the course of the dissertation, this module has undergone several updates to make
image acquisition a faster, more user-friendly, versatile, and accurate process. This iterative
process can be seen in Figure 4.13.

Taking advantage of the touchscreen present in the final version, the GUI allows the user
to enter the reference point number where the images are being acquired and the degrees
of rotation between the acquisition of each image. In this work, the reference point number
was useful since we collected images on a grid fixed on the floor surface. In addition, the
module’s operating state is also displayed (standby or running). The GUI present in the
receiver module is shown in Figure 4.14.

The sequence of operation of the receiver is shown in the block diagram in Figure 4.15.
The receiver was programmed to acquire images including the raw Bayer data with a reso-
lution of 3264 × 2464 pixels and an exposure time of 9 µs. Then, to make the images more
“normal”, demosaicing was performed. The name of each image file follows the structure
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Figure 4.12: Receiver module.

Figure 4.13: Earlier versions of the receiver module.

Figure 4.14: GUI present in the receiver module.
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Figure 4.15: Sequence of operation of the receiver module.

38



Figure 4.16: CMOS camera architecture with BGGR pattern [51].

VLP_PointNumber_IterationNumber.tiff, so for example, if the receiver is positioned at
point 6 on the grid and the user has requested 2 degrees of rotation between each image, the
file names will be VLP_6_1.tiff to VLP_6_161.tiff. Note that the Herkulex servo can only
rotate 320 degrees.

Raw Bayer data is the data recorded by the camera’s sensor before any GPU processing.
Thus, the Bayer data is always full resolution and is organized in a BGGR pattern. An
illustration of the CMOS camera architectute with this pattern is presented in Figure 4.16.

Finally, Figure 4.17 shows the 3D model of each constituent part of the receiver. These
models were designed using the Fusion360 software [52]. The HerkuleX DRS-0101 bracket,
the Raspberry Pi 3B case and the camera case were adapted from the models shown in [53],
[54] and [55], respectively.

4.3 ROI Algorithm

The ROI algorithm extracts the LED luminaires from the original image. Taking advan-
tage of the background of the images being almost black and the LED luminaires appearing
in almost pure white, several algorithms present in the OpenCV library were used.

Figure 4.18 shows the block diagram of the ROI algorithm, and Figure 4.19 presents the
images that result from the different steps of the process. The first steps in the ROI algorithm
are the conversion to grayscale and the smoothing of the image (median blur). This filter
is intended to reduce the noise from the original image. Then, an adaptive threshold and
two consecutive morphological operations (erosion and dilation) are applied. This allows the
bright stripes to stand out from the background. Using contour detection, the borders of the
bright stripes are detected.

The contours that are close to each other, which correspond to the stripes of the same
LED luminaire, are grouped together to generate a bounding box adapted to the dimensions
of the LED luminaires in the image. If the bounding box is larger than full LED width

3 ×
full LED height

3 pixels, this means that in these conditions at least 1
3 of the total LED luminaire
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Figure 4.17: 3D models of the receiver parts.

Figure 4.18: Block diagram of the ROI algorithm.

Figure 4.19: Illustration of the resulting images from each block of the ROI algorithm.
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Figure 4.20: Example result of the LED isolation, (a) full LED, (b) partially visible LED.

Figure 4.21: Visual Representation of CNN’s architecture.

is visible, then the bounding box is resized and padded to 150×150 pixels, keeping the aspect
ratio. If this condition is not met, the bounding box is discarded. This way, the LED
luminaires that are fully visible and the LED luminaires that appear in the image with a size
greater than 1

3 of the total LED are considered. We chose to include the partially visible
luminaires in order to increase the robustness of the system in cases that few luminaires
are visible. However, if the portion of the partially visible luminaire was too small, an
identification error in YOLOv5 could arise, for that, a minimum of 1

3 of the total LED
luminaire was chosen as a rejection threshold. The original grayscale image is then cropped
according to these regions. An example result of the LED isolation is shown in Figure 4.20.

4.4 CNN Structure

To accurately classify each individualised LED pattern, the CNN architecture shown in
Figure 4.21 was implemented.

The model consists of 12 layers. All model parameters were chosen to avoid overfitting or
underfitting the data.

The model starts with a 2D convolutional layer. In a 2D convolution, the kernel (small 2D
matrix of weights), slides over the 2D input data performing an element-wise multiplication
and summing the results into a single output pixel. The kernel replicates this process for each
location it slides over, thus the output features are the weighted sums of the input features [56].
Since the images are visually simple, with little irregular shapes, just a convolutional layer was
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implemented to highlight the lines in the image. This layer allows the model to learn position
and scale invariant structures in the data [57]. The implemented 2D convolutional layer has
32 kernels with a kernel size of (3 × 3), which defines the dimensions of the output space.
Furthermore, the stride was set to 1 and zero padding was added evenly to the left/right or
up/down of the input. Zero padding adds zeros outside the image border. Padding is added
to the image frame to allow more space for the kernel to cover the image. It also allows more
accurate analysis of the image and preservation of the original input size. Stride refers to the
number of pixels that the filter shifts over the input matrix, both horizontally and vertically.

The activation function used in this architecture is the rectified linear activation function
(ReLU). As stated in [58], the goal of an activation function is to introduce non-linearity in
the output of a neuron. These functions allow for back-propagation, the process of perform-
ing a backward pass while adjusting the model’s parameters (weights and biases), since the
gradients are provided together with the error to update the weights and biases. The ReLU
outputs the input directly if it is positive, otherwise, it will output zero. It overcomes the van-
ishing gradient problem, allowing our model to learn faster and perform better. Furthermore,
the ReLU is trivial to implement and has a linear behavior [59].

Then, Batch Normalization is used to normalize to zero mean and unit variance each
element of a layer in the network [60]. Normally, this normalization step is applied right after
(or right before) the non-linear activation function. As stated in [61], it is very effective at
reducing the number of epochs required to train a CNN as well as stabilizing the training
itself. Just for reference, the batch normalization is calculated in a different way during the
training and testing phases.

Pooling layers have a primary function of progressively reducing the amount of parameters
in the network, thus reducing the dimensions of the feature maps generated by a convolution
layer [62]. Max pooling is a pooling operation that selects the maximum element from the
region of the feature map covered by the two-dimensional filter, in this case by a (2×2) filter.
Thus, the output of the max pooling layer is a feature map containing the most prominent
features of the previous feature map. This makes the model more robust to changes in the
position of the features in the input image.

In order to make the network more robust we applied dropout, the process of disconnecting
random neurons (along with their connections) between layers during the training. It is
reported in the literature that this process reduces overfitting, increases accuracy, and allows
our network to generalize better to unknown images [63]. It is also a very computationally
efficient regularization method. The first dropout layer was set with a rate of 0.25 and the
second with a rate of 0.5. The dropout rate is a value between 0 and 1 and represents the
fraction of the input units being dropped.

In the last stages of the CNN, we have the fully-connected (Dense) layers. The input to
the first fully-connected layer is the output from the dropout layer, which is flattened. The
flattening layer converts the data into a long feature vector [64]. In the fully-connected layers,
all the neurons in one layer are connected to the neurons in the next layer. In the background,
the fully-connected layer performs a matrix-vector multiplication [65]. The values used in the
matrix are parameters trained and updated using back-propagation. The final fully-connected
layer has eight outputs, since we have eight distinct LED-IDs (classes).

Normally, activation functions and dropout layers are used between two consecutive fully-
connected layers to introduce non-linearity and reduce overfitting respectively [66]. In this
model, besides these two types of layers, a batch normalization layer was also added.

At the end, the softmax layer returns the class probabilities for each class. It converts a
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Model: “sequential”

Layer Type Output Shape Param #

Conv2D (150, 150, 32) 320

Activation (150, 150, 32) 0

BatchNormalization (150, 150, 32) 128

MaxPooling2D (75, 75, 32) 0

Dropout (75,75,32) 0

Flatten 180000 0

Dense 256 46080256

Activation 256 0

BatchNormalization 256 1024

Dropout 256 0

Dense 8 2056

Activation 8 0

Total Params: 46083784

Trainable Params: 46083208

Non-trainable Params: 576

Table 4.5: CNN model summary.

vector of numbers into a vector of normalized probabilities, where the probabilities of each
class are proportional to the exponentials of the input numbers. The sum of the probabilities
is 1 [67]. Finally, the normalized probability distribution is displayed.

The CNN model summary is presented in Table 4.5. In addition to the output shape of
each layer, the number of network parameters is also shown.

4.5 Camera-to-World Transformation Algorithm

The problem of finding the pose (position and orientation) of a given camera, given a set
of 2D-3D point correspondences, is called the Perspective-n-Point (PnP) problem. To obtain
the camera pose in the WCS, the process presented in Figure 4.22 was implemented. Having
as inputs the camera parameters and the coordinates of the identified LED luminaires, the
camera pose was obtained using three OpenCV algorithms [68]. These algorithms implement
the mathematical process described in section 3.1. Since it is beyond the scope of this disser-
tation to study in depth the algorithms used to solve the PnP problem, an already developed
solution was used. The position of the camera was obtained using the algorithms solvePnP
[69], with the solver introduced in [70], and the Rodrigues’ algorithm [71]. To obtain the
Tait–Bryan angles, in degrees, the RQDecomp3x3 algorithm [72] was used. For reference,
an illustration of the receiver with the Tait-Bryan angles (roll, pitch and yaw) is shown in
Figure 4.23. As a brief context, the Rodrigues algorithm converts a rotation vector to a ro-
tation matrix, or vice versa, and the RQDecomp3x3 algorithm converts a rotation matrix to
Tait–Bryan angles. The solvePnP algorithm outputs rotation and translation vectors, since
it uses the Rodrigues algorithm internally.

As explained in Chapter 3, in our setup, the 3D points correspond to the world coordinates
of the center of each visible LED luminaire in the image, and in the same order, the 2D points
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Figure 4.22: Camera-to-world transformation algorithm.

correspond to the image coordinates of the center of each LED projection.
For the solving method, there are three main options, namely: Iterative, P3P and SQPnP.

Starting with the P3P method, it requires exactly four point correspondences, which is not
ideal since we want to use as many LED luminaires as possible for the position estimation.
The Iterative method requires four or more point correspondences. Finally, the SQPnP
method, presented in 2020, requires at least three point correspondences and allow for a
large number of points. As stated in [51], the Iterative method is based on the Levenberg-
Marquardt optimization. This method finds a pose that minimizes reprojection error, given
by the sum of the squared distances between the initial coordinates of each image point
and the reprojected coordinates obtained with each guessed pose. According to the authors,
the SQPnP method formulates the problem as a nonlinear quadratic program and identifies
regions in the parameter space that contain unique minima with assurances that at least
one of them will be the global minimum, regardless of possible coplanar arrangements of the
imaged 3D points.

The SQPnP method was chosen for two main reasons. The first is that by requiring only
3 point correspondences to obtain the pose, it offers superior robustness to the system. The
second is that, through testing, the SQPnP method efficiently produced accurate results,
similar to those obtained with the Iterative method.

4.6 Summary

In this chapter the implementation process of the complete system has been described
in detail. Furthermore, the developed software has been explained step by step with some
illustrations. Finally, additional information about the transmitters and receiver has been
provided.
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Figure 4.23: Illustration of the Tait-Bryan angles (roll, pitch and yaw) on the receiver.
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Chapter 5

Experimental Results and
Discussion

This chapter presents the procedure carried out to test the proposed system and the results
obtained.

Given that the system is complete, we can analyse the behaviour of the object detection
algorithm. An example of the operation of the YOLOv5s is shown in Figure 5.1. As we can
see, the input image shows 5 LED luminaires. After passing through the algorithm, the LED
luminaires identified in the image are classified and the information regarding the bounding
boxes (x, y, w, h, confidence) is displayed. The coordinates (x, y) represent the center of the
boxes, relative to the size of the image. The normalized parameters w and h represent the
width and the height of the bounding boxes. The confidence score indicates the probability
that the predicted LED-ID is actually present in that bounding box. In this example, LED
luminaires number 7, 8, 11, 12 and 13 have been correctly identified. It can be seen that the
dimensions of the bounding boxes are quite optimised for the size of the LED luminaires in
the image.

During the experimental process, the CMOS image sensor was kept parallel to the floor
at a height of 25.6 cm. All images were acquired as TIFF with full resolution (3264×2464
pixels) and with the exposure time set to the minimum possible value.

To analyse the positioning error and evaluate the performance of the system, a grid with
12 regularly spaced reference points was defined on the floor surface. The position of these
points relative to the referential defined in the room was measured using a tape, see Table
4.4. Figure 5.2 provides an illustration of the position of the grid in the room.

At each point a set of 161 images were taken with 2 degrees of rotation between each
one. The 1932 images were then passed through the 3D VLP algorithm shown in Figure 3.2,
with the YOLOv5s algorithm set with the parameters Confidence threshold equal to 0.35
and IoU threshold equal to 0.45. An example of the results of the VLP system is shown in
Table 5.1, in this case at reference point number 6. The coordinates of this reference point
are (1.623, 1.010, 0.000) in meters. As indicated earlier, the camera was positioned parallel
to the floor at a height of 25.6 cm facing upwards, i.e. with pitch and yaw angles equal to
0. From photograph to photograph, the camera was rotated by 2 degrees. This behaviour
is visible in the fifth column of Table 5.1. Overall, the results are in line with expectations.
Note that, estimates that provided considerably different values in one or more components,
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Figure 5.1: Input and output examples of the YOLOv5s algorithm.

Figure 5.2: Illustration of the position of the reference points in the room (values are given
in meters).
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P6

Elapsed Time (s) Xs (m) Ys (m) Zs (m) Rolls (°) Pitchs (°) Yaws (°)
0.017 1.588 0.962 0.252 140.335 -1.519 0.898

0.018 1.594 0.959 0.253 142.384 -1.454 0.879

0.017 1.600 0.985 0.251 144.134 -1.345 0.346

0.017 1.614 0.969 0.258 145.948 -1.048 0.647

0.019 1.608 0.999 0.257 148.305 -1.167 0.013

0.017 1.595 1.040 0.258 149.957 -1.366 -0.782

0.017 1.608 1.015 0.260 152.000 -1.152 -0.350

0.017 1.595 1.040 0.256 153.925 -1.472 -0.958

Table 5.1: Example of the VLP system outputs at floor point number 6.

P6

Elapsed Time (s) Xs (m) Ys (m) Zs (m) Rolls (°) Pitchs (°) Yaws (°)
0.018 1.559 2.655 1.450 -154.688 -1.913 -49.049

0.017 1.306 0.776 0.385 -91.753 -7.717 3.407

0.017 1.200 0.964 0.177 -58.670 -8.965 -1.478

0.017 1.543 0.017 1.073 103.828 -1.934 28.194

Table 5.2: Outliers obtained at floor point number 6.

such as those obtained in point 6, seen in Figure 5.2, were discarded manually. These outliers
are due to errors in the LED pattern classification and in the projective geometry algorithm.

Figures 5.3 and 5.4 show the position estimates and the original reference points in 2D and
3D, respectively. The arithmetic mean of the 2D and 3D positioning error was approximately
3.5 cm. The 95th percentile was approximately 4.1 cm and 4.2 cm in 2D and 3D, respectively.
Figure 5.5 shows the bar charts of the average error at each floor point in 2D and 3D. The
cumulative distribution function (CDF) plot of the positioning error is presented in Figure 5.6.
From these results, we can observe that the error remains below 5.5 cm, which is considered
a good accuracy for an indoor positioning system, using as reference the systems already
presented in the literature. Moreover, it is also possible to conclude, by comparing the two
bar charts (seen in Figure 5.5), that the Z component has a very low error.

There are several factors that contribute to errors in the positioning system estimates.
The following possible sources of error have been identified:

• The camera matrix: to obtain the camera’s intrinsic parameters, the camera has to be
calibrated. Errors in this process translate directly into errors in the position estimation.
This is one of the most critical processes for obtaining consistent and accurate estimates.

• The measurement of the LED luminaires position: as explained above, the location of
each LED luminaire in the image is related to its position in the world. If the world
position is measured incorrectly, the final position estimate will be affected. As men-
tioned previously, a tape was used to measure these positions, which has an uncertainty
of 0.5mm.

• The object detection algorithm: to estimate the position of the camera from an image,
the multiple LED luminaires need to be correctly identified. If this is not the case, the
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Figure 5.3: Experimental results for 2D positioning estimation.

Figure 5.4: Experimental results for 3D positioning estimation.
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Figure 5.5: Bar charts of the average positioning error at each floor point in 3D and 2D.
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Figure 5.6: CDF plot of the positioning error (3D and 2D).

position estimate will have a very large error. In this work, the recognition algorithm is
extremely accurate, however, it can sometimes misidentify the luminaires. Furthermore,
the algorithm can detect LED luminaires that are partially visible in the image. This
feature makes the system more robust in certain situations, but less accurate. This is
because the center of the bounding box moves away from the center of the complete
LED pattern.

• The resolution of the camera: as the image is formulated by a set of pixels, the number
of pixels in the image is directly related to the final error. The higher the number, the
lower the error. Images with 1632 × 1632 pixels were used in the test procedure, also
taking into account that the processing time is affected by the image size.

Finally, the time efficiency of the system was measured on an computer Asus Zephyrus
G14 with NVIDIA GeForce RTX 2060 with Max-Q Design 6GB and AMD Ryzen 9 4900HS
with 32GB of RAM. The average computational time of the VLP system is approximately
52ms and the maximum is 54ms, with YOLOv5s taking approximately 34ms on average to
display the classification of the detected LED luminaires. The histograms of the elapsed times
for the two individual algorithms and for the complete system are displayed in Figures 5.7,
5.8 and 5.9. To generate these graphs, the elapsed times for processing 161 representative
images in the two algorithms were computed.
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Figure 5.7: Histogram of the elapsed time for the YOLOv5s.

Figure 5.8: Histogram of the elapsed time for the camera-to-world transformation algorithm.

53



Figure 5.9: Histogram of the elapsed time for the complete system.

5.1 Summary

This chapter presented the procedure performed to test the proposed system and the
positioning results obtained. The potential sources of error in the positioning estimates were
mentioned and, finally, the time efficiency of the complete system was analysed.
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Chapter 6

Conclusions and Future Work

This chapter provides the final observations on the work developed, together with the
conclusions drawn from the results obtained. To conclude, future work is presented.

In this dissertation, a 3D VLP system based on ML and OCC, capable of providing
real-time indoor position estimates on the order of centimeters, was presented. The system
uses a set of LED luminaires modulated using OOK with unique frequencies as references,
which allows it to be used also for general-purpose illumination. Its aim is to calculate the
camera pose from a single input photograph, assuming that at least three LED luminaires are
visible in the image. The detection and recognition of the LED-IDs is done using YOLOv5s,
which makes the system fast and robust. Each block of the system and the tools used were
explained and illustrated with experimental data. The system was validated using a real-
world sized setup and the average 2D and 3D positioning error obtained was approximately
3.5 centimeters. Meanwhile, in terms of the real-time ability, the average computational time
of the proposed system is 52 milliseconds (approx. 19 times per second) and the maximum
is 54 milliseconds. In comparison with systems presented in the literature, these values
were considered good, particularly given the dimensions of the practical setup and the typical
requirements demanded of an indoor positioning system. The system, in addition to providing
the 3D positioning of the receiver also provides the orientation, however, these results have
not been compared with real world measurements and so nothing can be said about their
accuracy. The system can be easily adapted to identify more LED luminaires with unique
frequencies, ensuring positioning in larger indoor environments. Furthermore, we can state
that an automatic framework for dataset acquisition was successfully developed. Increasing
the accuracy of the system will be one of the next goals, as there is still room for improvement.

The work presented in this dissertation proves the feasibility of the proposed system.
However, possible future improvements were identified. The first is to test the performance
of other object detection algorithms. Although YOLOv5s has presented very satisfactory
results, other models may present interesting features for certain applications. Regarding the
receiver module, it would be interesting to redesign the structure to allow the variation of
the three Tait-Bryan angles and to incorporate it into a robotic platform, such as TurtleBot.
Another interesting future development would be to test other modulation techniques in the
emitters, in order to further increase the number of LED-IDs. For that, it is important to
ensure that these modulation techniques present a pattern that allows their recognition by
the ML algorithm. It would also be interesting to re-perform the camera calibration, to
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ensure a minimum reprojection error, and to implement a Linear Kalman Filter for bad pose
rejection. The use of a wide-angle camera would ensure the positioning of the receiver closer
to the luminaires, so it would also be interesting to test the performance of the system with
a wide-angle lens. Finally, it would be important to validate the system for different tilts and
heights of the receiver.
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