

Universidade de Aveiro

2022

Cláudia Maria
Ferreira Sebastião

Chaves mais pequenas para criptossistemas de
McEliece usando codificadores convolucionais

Smaller keys for McEliece cryptosystems using
convolutional encoders

Universidade de Aveiro

2022

Cláudia Maria
Ferreira Sebastião

Chaves mais pequenas para criptossistemas de
McEliece usando codificadores convolucionais

Smaller keys for McEliece cryptosystems using
convolutional encoders

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Matemática, Programa Doutoral
em Matemática, realizada sob a orientação científica do Doutor Paulo José
Fernandes Almeida, Professor Auxiliar do Departamento de Matemática da
Universidade de Aveiro, e do Doutor Diego Oscar Napp Avelli, Professor Titular
do Departamento de Matemática da Universidade de Alicante, Espanha.

Dedico este trabalho aos meus filhos.

o júri

presidente Prof. Doutor António José Arsénia Nogueira
Professor Catedrático, Universidade de Aveiro

vogais Prof. Doutor Joan Josep Climent Coloma
Professor Catedrático, Universitat d'Alacant

 Prof. Doutora Verónica Requena Arevalo
Professora contratada Doctora, Universitat d'Alacant

 Prof. Doutor António Machiavelo
Professor Auxiliar, Universidade do Porto

 Prof. Doutora Rita Isabel Gonçalves Simões
Professora Auxiliar, Universidade de Aveiro

 Prof. Doutor Paulo José Fernandes Almeida (Orientador)
Professor Auxiliar, Universidade de Aveiro

agradecimentos

O meu maior agradecimento é dirigido aos meus orientadores Professor
Doutor Paulo José Almeida e Professor Doutor Diego Oscar Napp Avelli que
foram a génese deste trabalho. Não existem palavras suficientes para
agradecer a partilha de conhecimento, a paciência, o encorajamento, o apoio,
a dedicação, a inesgotável persistência, energia e entusiasmo contagiante.
Metaforicamente falando, foram anos a "puxar" um barco que, durante a sua
viagem, foi sendo alvo de algumas tempestades. A sua força foi superior e
conseguiram que esse barco retomasse a rota correta e fosse capaz de
atracar. Ficarei para sempre grata a estes dois seres humanos incríveis.
Agradeço à Universidade de Aveiro, em particular aos elementos do
Departamento de Matemática e do CIDMA pela forma como fui acolhida e
apoiada. Grata também a todos os meus alunos, amigos e família que foram
naturalmente a minha fonte de motivação e resiliência. Por último, aos meus
filhos, a minha inspiração e à minha mãe, a minha pedra basilar a quem devo
absolutamente tudo.

palavras-chave

Criptografia pós-quântica, Criptografia baseada em códigos, Criptossistema de
McEliece, Códigos convolucionais, Criptografia de Chave Pública.

resumo

A chegada da era da computação quântica é uma ameaça real à
confidencialidade e integridade das comunicações digitais. É, por isso, urgente
desenvolver técnicas criptográficas alternativas que sejam resilientes à
computação quântica. Este é o objetivo da criptografia pós-quântica. O
Criptossistema de McEliece continua a ser uma das alternativas pós-quânticas
mais promissora, contudo, a sua principal desvantagem é o tamanho da chave
pública, uma vez que é muito maior do que o das outras alternativas. Nesta
tese estudamos as propriedades algébricas deste tipo de criptossistemas e
apresentamos uma nova variante que usa um codificador convolucional para
mascarar o código de Generalized Reed-Solomon. Conduzimos uma
criptoanálise dessa nova variante para mostrar que altos níveis de segurança
podem ser alcançados usando uma chave significativamente menor do que as
variantes existentes do esquema de McEliece. Ilustramos, assim, as vantagens
do criptossistema proposto apresentando vários exemplos práticos.

keywords

Post-quantum cryptography, Code-based cryptography, McEliece
Cryptosystem, Convolutional codes, Public Key Cryptography

abstract

The arrival of the quantum computing era is a real threat to the confidentiality
and integrity of digital communications. So, it is urgent to develop alternative
cryptographic techniques that are resilient to quantum computing. This is the
goal of pos-quantum cryptography. The code-based cryptosystem called
Classical McEliece Cryptosystem remains one of the most promising post-
quantum alternatives. However, the main drawback of this system is that the
public key is much larger than in the other alternatives. In this thesis we study
the algebraic properties of this type of cryptosystems and present a new variant
that uses a convolutional encoder to mask the so-called Generalized Reed-
Solomon code. We conduct a cryptanalysis of this new variant to show that
high levels of security can be achieved using significant smaller keys than in
the existing variants of the McEliece scheme. We illustrate the advantages of
the proposed cryptosystem by presenting several practical examples.

Contents

Contents i

1 Introduction 1

2 Linear Codes 9
2.1 Basic concepts . 10
2.2 Generalized Reed-Solomon codes 15

2.2.1 Basic definitions and properties 15
2.2.2 Encoding with GRS codes 17
2.2.3 Decoding with GRS codes 18

2.3 Goppa codes . 24
2.3.1 Basic definitions and properties 24
2.3.2 Encoding and Decoding 26
2.3.3 Irreducible binary Goppa codes 27

2.4 Convolutional codes . 28

3 Block code Cryptography 33
3.1 McEliece Cryptosystem . 34
3.2 Niederreiter cryptosystem using the parity check matrix 36
3.3 Structural Attacks for variants of McEliece cryptosystems us-

ing GRS codes . 37
3.3.1 Sidelnikov-Shestakov attack to the Niederreiter variant 37
3.3.2 Wieschebrink attacks on the BL variant 39
3.3.3 Distinguisher-Based Attack on the BBCRS variant . . 41

3.4 ISD attacks . 46

4 McEliece Cryptosystems with Convolutional Encoders 51
4.1 Definitions . 51
4.2 Construction . 56

4.2.1 Constructing the matrices T (D−1, D) 59
4.3 Attacks Against the Proposed Cryptosystem 61

i

4.3.1 Structural attacks . 63
4.3.2 Plaintext recovery . 67

4.4 Improvements: higher rates and message length reduction . . . 68
4.5 Examples . 69

5 Conclusions and future work 75

Bibliography 77

i

ii

Chapter 1

Introduction

Suppose that two people, say Alice and Bob, want to exchange a secret
key or message. To this end, Bob builds a public-key cryptosystem (PKC),
i.e., he generates two keys: a private key that he keeps secret and a public
key that he publishes and everyone can see. Then, Alice in order to send a
message to Bob, uses his public key to encrypt her message and sends it to
Bob. The system is developed in such a way that only someone who knows
the secret key (that is Bob) can decrypt the encrypted message. Hence, the
cryptosystem is considered to be secure if Eve, an eavesdropper, or Olga, an
opponent, cannot reconstruct the message knowing only the public key and
the encrypted message.

There are several PKC that are considered secure, being RSA and ECC
(Elliptic Curve Cryptography) the most popular. In the RSA cryptosystem,
Bob generates two distinct prime numbers p and q and computes an integer
e that is coprime with ϕ(pq) = (p − 1)(q − 1). Bob publishes n = pq and e
and keeps secret p and q. If Alice wants to send a secret message m to Bob
she uses the public key and sends

c = me mod n.

Bob computes an integer d such that dc ≡ 1 mod ϕ(n) to decrypt c:

cd ≡ (me)d ≡ m1−kϕ ≡ m mod n,

see more details in [54]. Note that Bob is the only one that can compute d, as
for that one needs to know ϕ(n), or equivalently the two primes p and q. To
break the system, i.e., to obtain m, Eve could compute the decomposition of
n but this is considered unfeasible if the primes p and q are selected carefully.

The ECC is based on the El Gamal cryptosystem, but instead of having
the group (Zp, ·), we consider the group (E,+), where E is an elliptic curve.

1

Bob chooses a prime number p, an elliptic curve E over Zp, and a point
P with a large order k. Bob also chooses 0 < b < k randomly and calculates
the point

B ≡ bP mod p.

The public key of Bob is (p, E, P, k, B). His secret key is the exponent b.
Normally only B is published, because all the other parameters are "known".
The set of plaintexts is {0, 1, . . . , p− 1}.

For example, many sites use the standard NIST P-256 with

p = 2256 − 2224 + 2192 + 296 − 1

and

y2 = x3 − 3x+ 41058363725152142129326129780047268409114441015993

725554835256314039467401291.

If Alice wants to send a message to Bob, she uses Bob’s public key
(p, E, P, k, B), chooses randomly a number a ∈ {1, . . . , k − 1} and computes
the point

A ≡ aP mod p.

In order to cipher a message m, Alice finds the positive solution ym of the
equation

y2 = m3 + um+ v

and considers the point M = (m, ym) of E. She then computes the point

C ≡ aB +M mod p,

and sends to Bob the pair (A,C).
In order to decipher the message m, Bob computes x = k − b and the

point xA+ C mod p. Notice that

xA+ C = (k − b)aP + abP +M

= a(kP) +M = M.

The first coordinate of M is m.

In both of these cryptosystems the computation cost to cipher and de-
cipher is much larger than other PKC, namely code based cryptosystems,
since one has to use fast modular exponentiation (in both) and operations
in elliptic curves (in the second). But they have the advantage of having
very small public keys, namely around 2048 or 4096 bits for RSA and 256
bits for ECC. However, it was pointed out recently by National Institute

2

of Standards and Technology (NIST) [13] that it might be possible that a
large-scale quantum computer will be available in 2030 capable of breaking
the RSA and most of the widely-used public key cryptosystems, such as El-
Gamal or ECC. For this reason NIST urged researchers all around the world
to come up with systems which might still be safe in an environment where
quantum computers exist [34]. Hence, there is a huge urgency for research
in the so-called post-quantum cryptography. This is the starting point and
the main motivation of this thesis.

NIST asked for new proposals to be submitted by November the 30th,
2017, and 70 proposals were submitted [34]. One of the most promising
families of public key post-quantum cryptosystems are the code-based cryp-
tosystems. As opposed to RSA or ElGamal, whose security relays on the
integer factorization or discrete logarithms problems, the security of code-
based cryptosystems rely on the hardness of decoding a linear block code
without any visible structure which is known to be an NP-hard problem [9].
Moreover, such decoding problem is known to be potentially secure in a post-
quantum computer environment, as it has so far proved resistant to quantum
computer-aided attacks. The most prominent code-based cryptosystem is the
McEliece cryptosystem. Here, the secret key is a code for which an efficient
decoding algorithm is known. The public key is a masking version of the
secret code that appears to be a random code, thus hiding the structure
of the code that allow the efficient decoding. Niederreiter [47] proposed in
1986 a cryptosystem, which is similar to the McEliece system, but instead of
using the generator matrix of a code it uses the parity check matrix of the
code. Only four cryptosystems are third round finalists to the Post Quantum
Cryptosystem (PQC) Standardization Process (with five more as alternate
candidates), and one of them is the classic McEliece cryptosystem.

The security of McEliece cryptosystem is based on two assumptions.
First, it is unfeasible to decode the seemingly random public code, and sec-
ond it is intractable for an attacker to recover the underlying structure of
the secret code from the public code. As the best known algorithms for de-
coding random linear codes are exponential in the length of the code, the
first assumption can be attained by simply increasing the size of the code.
The second assumption heavily relies on the type of underlying code that
is used. The original McEliece and Niederreiter cryptosystems use Goppa
codes as the private key, and hide its structure by a dense transformation
matrix and a permutation matrix. Surprisingly, these cryptosystems have
resisted cryptanalysis for more than forty years, as there is not currently any
efficient (polynomial-time) attack to the systems. Also, another advantage of
the McEliece and Niederreiter cryptosystems is that they allow for faster en-

3

cryption and decryption procedures when compared to other cryptosystems,
like RSA or ElGamal. However, they have not been widely implemented
due to two main disadvantages: low encryption rate and large key size, both
due to the Goppa codes they are based on (see Table 1.1 for a comparison
between the binary Goppa code-based Niederreiter cryptosystem and RSA).

Binary Goppa code-based Niederreiter RSA
Key size 1537536 6144

Encryption
complexity 72 5406
Decryption
complexity 15302 6643013

Table 1.1: Comparison between Goppa code-based cryptography and RSA
in bit operations. (extracted from [6])

For this reason, there has been many attempts in the last forty years to
replace the Goppa codes by other families of codes in order to reduce the
key size [5, 6, 7, 10, 11, 17, 18, 22]. The Generalized Reed-Solomon (GRS)
code is the most preferred alternative, as a significant improvement in the
reduction of the key size would be obtained if the class of GRS could be
securely included as a secret key in the McEliece cryptosystem. The use
of GRS codes could yield significant advantages, since they achieve maxi-
mum error correction capability, i.e., they are maximum distance separable
(MDS) codes. This translates into much smaller keys for the same security
level with respect to Goppa codes. The first proposal to use GRS codes di-
rectly in the McEliece system was proposed by Niederreiter [47] but it was
broken by the attack of Sidelnikov and Shestakov [56]. The Berger-Loidreau
cryptosystem [7] is a variant of the Niederreiter scheme which resists the
Sidelnikov-Shestakov attack. However, extending the method by Sidelnikov
and Shestakov an efficient attack on Berger-Loidreau cryptosystem was pre-
sented in [61]. In fact, as GRS have very strong algebraic properties it is
difficult to mask and therefore, to the best of our knowledge, all code-based
cryptographic practical schemes using GRS codes or low-codimensional sub-
codes of GRS codes have been partially or fully broken [16]. Most of these
attacks use a square code distinguisher to retrieve the GRS structure of the
secret key from the public code.

One recent interesting idea to remove the algebraic structure of GRS codes
was to replace the permutation used in the original McEliece cryptosystem

4

with more general transformations, [6, 19, 32, 33, 43, 59, 60]. To thwart
the attack of Sidelnikov and Shestakov and its variants, the BBCRS scheme
[6] proposed the use of the sum of matrices T + R for masking instead of
a permutation matrix, where T is a matrix with column weight m and R
is a matrix of rank z. Although modifications of this idea and different
parameters are currently under investigation, this system was broken in [19]
using attacks based on the (twisted) Schur square code distinguisher that
permits to distinguish GRS codes from random ones. See also [17, 42] for
similar distinguishers in the context of AG codes. However, the attack works
only for m < 2, and the weight two masking proposal, i.e., when m = 2, can
successfully hide the structure of the GRS code, even under the Schur product
[11, 33]. This important fact will be used in our proposal and will allow the
use of GRS codes in the proposed variant of the McEliece cryptosystem. Note
that in the BBCRS scheme, when m ≥ 2, the structure of the GRS codes
can be successfully hidden but as less errors could be added in this case, the
length and dimension of the code have to be increased in order to protect it
against ISD attacks. Unfortunately, this implies that the key size becomes
very similar to the size of the original version using Goppa codes. This, in
turn, makes these variants less appealing as the desired key reduction is not
achieved.

Another interesting variant, which we call the LJ scheme, was proposed in
[39] where the secret code is a convolutional code. Convolutional codes are a
powerful and widely used class of codes where the encoded bits depend on the
current k input bits and a few past input bits, i.e., the encoder has memory.
Hence, the main difference between block and convolutional codes, is that at
the encoder, in a convolutional code, we may have different states and after
encoding the input, we possibly move into another state. Convolutional
codes can be represented via a state machine, which corresponds to a view
of the encoder as a set of states with well-defined transitions between them.
The state machine view is fundamental for decoding, e.g., using the Viterbi
algorithm.

One of the most appealing features of the LJ scheme is the fact that its
secret generator matrix contains large parts that are generated completely
at random. Another interesting property is that convolutional codes allow
to deal with sequences of data in a sequential fashion which makes the com-
putations of data very efficient. But the authors already pointed out that
this approach suffers from two main problems. The first one being the lack
of efficient decoding algorithms, namely, that if one wants a maximum like-
lihood decoding, such as the Viterbi decoding algorithm, the memory used
must be very limited. The second problem stems from the fact that convolu-

5

tional codes usually start from the all zero state, and therefore the first code
symbols that are generated will have low weight parity-checks, which would
imply security threats. In fact, the schemes in [39] had low weight codewords
that revealed the underlying code structure, and was broken in [35].

In this dissertation we continue this line of research and explore a new
variant that allows the use of GRS codes using a convolutional mask. In
our scheme, the plaintext is not a block vector but a stream of smaller vec-
tors sent in a sequential fashion. The public key is given by the polynomial
convolutional encoder G′(D) = S(D)GP (D−1, D) where G is the generator
matrix of a GRS code, S(D) a polynomial matrix and P (D−1, D) an invert-
ible Laurent polynomial matrix. Hence, the proposed class of convolutional
codes uses GRS codes adding a convolutional layer to it in order to thwart
the key recovery attack against GRS codes, and at the same time admits a
simple iterative algebraic decoding algorithm. This idea is different from the
above ideas, and therefore the cryptanalysis has to be adapted to this case.

The matrices S(D) and P (D−1, D) are selected to protect against both
ISD and structural attacks. A crucial fact to ensure security against ISD
attacks to the first blocks and bootstrap from there, is that the truncated
sliding matrices of the convolutional encoder are not invertible, and recover-
ing the initial blocks is not possible. As for structural attacks, we build our
matrix P (D−1, D) to provide weight-ρ masking at every instant with ρ ≥ 2.
As pointed out in [11, 32], see also [33], the weight-two masking appears to be
enough to remove any identifiable algebraic structure from the public code,
and therefore structural attacks, and in particular any distinguisher attack
based on the Schur product, seem to fail as well. We note that our construc-
tion uses matrices with large parts, generated completely at random and can
be easily constructed. Moreover, it seems not obvious that subcodes of the
public code with small support can be computed in this proposal. Thus,
this thesis presents a novel code-based cryptosystem that is very different
from the existing variants of the McEliece cryptosystem. Among its several
interesting properties we underline that the proposed scheme significantly
reduces the key size of the public key, for a given security level, with respect
to existing McEliece type cryptosystems.

The structure of the thesis

This thesis is divided into 5 chapters. A briefly outline of the contents of
the chapters is given below.

Chapter 2 - Linear codes

6

In Chapter 2 we present the necessary background of linear coding theory
that is useful for the cryptographic issues treated in this dissertation. In
particular, we focus on presenting the basic theory of two classes of linear
block codes (Goppa codes and GRS codes) and the class of convolutional
codes. We show how these codes are defined, their main properties and some
of their efficient decoding algorithms. Most of the definitions and results can
be also found in [40, 45].

Chapter 3 - Block code Cryptography

Chapter 3 is devoted to describe how the McEliece cryptosystems work.
We present the original version together with Neiderreiter variant using the
parity check matrix and the most interesting variants that use GRS codes.
Their corresponding attacks are analyzed. In this chapter we also explain
when these variants are considered secure despite the fact that they are not
practical. These results will be useful to our proposal.

Chapter 4 - McEliece Cryptosystems with Convolutional Encoders

Chapter 4 is the main chapter of the thesis and contains the details of
the proposed McEliece-type cryptosystem.

This novel variant is very different from the existing variants in many
aspects. One of the most interesting features is that it allows to significantly
reduce the public key with respect to other alternatives of the McEliece cryp-
tosystem. As opposed to other variants of the McEliece cryptosystem, where
block codes are used, we propose the use of a convolutional encoder of a con-
volutional code to be part of the public key. The secret key is constituted by
the generator matrix of a Generalized Reed-Solomon code and two invertible
matrices. In this scheme the plaintext is divided into a sequence of shorter
messages and encrypted sequentially. We analyze ISD and structural attacks,
and conclude the chapter by presenting several examples for different security
levels to illustrate the significant advantages of the proposed PKC. Some of
these results have been partially presented in [2, 3] and most of the results
in this chapter have been submitted for publication, see [1].

Chapter 5: Conclusions and future work

In the last chapter we summarize the main results obtained in our work,
and discuss some interesting avenues for future work.

7

8

Chapter 2

Linear Codes

Communication systems are everywhere and they have become increas-
ingly important with the development of new technologies for data com-
munications and data storage. Errors in digital communication systems may
occur due to noisy communication channels and in order to guarantee reliable
transmission or to recover degraded data, techniques from Coding Theory are
used. Coding theory deals with the description of information in a way that
it is possible to discover and correct mistakes as long as the number of errors
is not too large. Hence, the aim of Coding Theory is to develop methods
to detect and correct these errors. In the last decades it became an active
subject of research in different areas of knowledge such as mathematics, com-
puter science, electrical engineering, statistics, among others. Coding theory
is one of the main mathematical tools in information and communication
theory. Decoding a general code has a huge complexity and this can be
used to develop cryptosystems. Researchers call cryptosystems based on the
hardness of the decoding of codes ”code-based cryptographic system”. It is
believed that such systems will still be safe even once a practically quantum
computer is built.

Linear codes are an important class of error-correcting codes that is
mainly divided into two types: block codes and convolutional codes. In
this chapter we introduce some definitions and properties of these codes. In
particular we describe two linear block codes that can be decoded efficiently,
which means that there exists an efficient polynomial time decoding algo-
rithm for them: Generalized Reed Solomon (GRS) codes and Goppa codes.
Goppa codes was the family of codes used in the original proposal of the
McEliece cryptosystem, and GRS codes are the class of codes that we shall
use in our variant of the McEliece cryptosystem. The chapter concludes with
the necessary introduction of convolutional codes needed to understand the

9

construction of our proposal.

2.1 Basic concepts
We start by introducing the notion of a linear code. In order to have

a code, we need an alphabet. Let Fq be the alphabet, a finite field with q
elements where q is a power of a prime integer p. In practice, p is usually 2,
but any prime power q is allowed.

Definition 2.1 (Linear code). Let n, k ∈ N with k < n. An [n, k] linear
block code C over Fq is a k-dimensional linear subspace of the vector space
Fn
q .

The elements of C are called codewords. Each message is represented as a
vector u of Fk

q and mapped to a unique codeword v ∈ Fn
q . The integers k and

n are the dimension and length of C, respectively, and the difference n − k
is called the redundancy of the code. The ratio R = k/n is known as the
transmission rate and measures the proportion of information transmitted in
each codeword.

Formally one can interpret encoding as applying an injective Fq-linear
function:

f : Fk
q −→ Fn

q

u 7→ v

The vector u is called the information vector and it is encoded into the
codeword v ∈ Fn

q . The message that is originally sent through a given chan-
nel, the codeword v, when passing through the transmission channel can be
affected by the existence of noise. So, the message received by the decoder
may not be exactly v but rather y = v + e, where e ∈ Fn

q is called error
vector. Therefore, the decoder will have to decide from y what would have
been the most likely vector sent, i.e., the most likely error that could have
occurred. As errors are assumed to occur rarely, the decoder search for the
codeword that is more similar to y, that is, the v nearest to y. In this way
it is necessary to introduce a notion of distance.

Definition 2.2 (Hamming Distance). Given two vectors x, y ∈ Fn
q , we define

the Hamming Distance between x and y, d(x, y), to be the number of places
where x and y differ, i.e., writing x = (x1, . . . , xn) and y = (y1, . . . , yn), then

dH(x, y) = |{i |xi ̸= yi, 1 ≤ i ≤ n}|.

10

Given a code C of length n and dimension k, let

d = min{dH(x,y) | x,y ∈ C,x ̸= y}.

We call d the (Hamming) distance of the code C and we say that C is an
[n, k, d] code. To simplify notation sometimes we will just write [n, k] instead
of [n, k, d].

Definition 2.3 (Hamming Weight). The Hamming Weight of a vector
x ∈ Fn

q is wt(x) = dH(x,0), the distance of x to the zero vector.

The weight of a vector x = (x1, . . . , xn), is equal to the number of non-zero
positions in it, i.e.,

wt(x) = |{i |xi ̸= 0, 1 ≤ i ≤ n}|.

Clearly, dH(x,y) = w(x − y).
The relation between d and the maximum number of errors that a code

C can correct is given by the following lemma:

Theorem 2.4. The maximum number of errors that an [n, k, d] code can
correct, called the error correcting capability, is ⌊d−1

2
⌋, where ⌊x⌋ denotes

the largest integer smaller or equal than x.

Proof. [24, p. 10]

Proposition 2.5 (Unique decoding). Let C be an [n, k, d] code with error
correcting capability t. For y ∈ Fn

q , there exists at most one codeword v ∈ C
such that d(y, v) ≤ t.

Proof. Suppose that there exist v ∈ C and v′ ∈ C such that d(y,v) ≤ t and
d(y,v′) ≤ t. So, d(y,v) + d(y,v′) ≤ 2t ≤ d− 1, and thus d(v,v′) ≤ d− 1 <
d which is a contradiction of d being the minimum distance between two
distinct codewords.

We can visualize a code as a collection of balls of radius t, centered around
the codewords. Since the distance between any two codewords is at least d,
all these balls do not intersect. Any vector that is obtained by adding a
codeword with an error vector with weight at most t lies in exactly one of
these balls and can be directly associated with the codeword in the center
of the ball. Figure 2.1 illustrates a linear code C with minimum distance d.
Non-intersecting balls of radius t = ⌊d−1

2
⌋ are drawn around three codewords

v1 ̸= v2 ̸= v3 of C. Error vectors e1, e2, e3 of weight at most t are added to
v1,v2,v3. The words y1 = v1 + e1, y2 = v2 + e2, y3 = v3 + e3 remain in
the ball of the respective codeword.

11

Figure 2.1: Unique decoding

Theorem 2.6 (Singleton bound). Let C an [n, k, d] linear code. Then

d ≤ n− k + 1.

Proof. [24, p. 33]

Definition 2.7 (MDS Code). An [n, k, d] linear code C is said MDS (Max-
imum Distance Separable) if d = n− k + 1.

Having large distance is important because ensures that the code can the-
oretically correct many errors. However, it is also important the existence of
an efficient decoding algorithm.

The two most common ways to represent a code are either the represen-
tation by a generator matrix or by a parity-check matrix.

Definition 2.8 (Generator matrix). An k × n matrix G is said to be a
generator matrix of the code C if its rows form a basis of C.

A generator matrix G can be used to discribe the corresponding [n, k]
linear code C as

C = {v = uG ∈ Fn
q |u ∈ Fk

q}.

Remark 2.9. Since the choice of basis is not unique, there are many genera-
tor matrices for a code. In fact, it is easy to see that given a generator matrix
G and an invertible matrix S of size k, then SG generates the same code. If

12

G = [Ik | A], where Ik is the identity matrix and A a matrix k × (n− k), we
say that G is in systematic form and any code admits an unique generator
matrix in systematic form.

Before defining the parity-check matrix of a code, we introduce the dual
of a code.

Definition 2.10 (Dual Code). Let C be an [n, k] linear code over Fq. The
Dual code of C is the [n, n− k] code C⊥ defined by:

C⊥ = {y ∈ Fn
q | ∀x ∈ C, xyT = 0}

Definition 2.11 (Parity-check matrix). The parity-check matrix of C is
an (n− k)× n matrix such that v ∈ C if and only if HvT = 0.

Clearly an [n, k] linear code C can also be described as

C = {v ∈ Fn
q |HvT = 0}.

Remark 2.12. From the previous definitions we have to HGT = 0. Hence,
a parity-check matrix of a code C is a generator matrix of its dual code.

Remark 2.13. If G is in systematic form, i.e., G = [Ik | A], then H is of
the form [−AT | In−k] where Is is the identity matrix of size s.

A parity-check matrix of a code C is very helpful to verify if a word belongs
to C or not, computing the so-called syndrome, which is defined next.

Definition 2.14 (Syndrome). Let H be a parity-check matrix of an [n, k]
linear code C over Fq and y ∈ Fn

q . The syndrome s ∈ Fn−k
q of y is given by:

s = yHT .

Remark 2.15. Notice that if y ∈ C, i.e., if no errors occurred, the syndrome
of y is the zero vector.

The next definitions will be needed to analyse the security of the McEliece
cryptosystem. In particular, they will be used in the Wieschebrink attack
and the distinguisher-based attack, see Sections 3.3.2 and 3.3.3.

Definition 2.16 (Schur Product). Let x, y ∈ Fn
q . We define the Schur

product of x and y as their componentwise product

x ⋆ y = (x1y1, · · · , xnyn).

13

Definition 2.17 (Star Product of Codes and Square Code). Let A, B be two
codes of length n. The Star Product Code denoted by < A ⋆B > of A and
B is the vector space spanned by all a ⋆ b with a ∈ A and b ∈ B:

< A ⋆ B >=< a ⋆ b | a ∈ A, b ∈ B > .

When B = A, < A⋆A > is called the Square Code of A and is denoted
by < A2 >.

Definition 2.18 (Schur Matrix). Let G be a k × n matrix, with rows ri for
1 ≤ i ≤ k. The Schur Matrix, denoted by S(G), is a matrix with rows
ri ⋆ rj for i ≤ i ≤ j ≤ k.

Remark 2.19. It is easy to see that S(G) is of the size 1
2
(k2 + k)× n. Note

also that the Schur matrix of the generator matrix of a code is the generator
matrix of the square code.

The square code construction is very useful when we want to distinguish
a random code from a structured code like a GRS code, as we will see in
Section 3.3.3.

The following result can be found in [15, Prop. 4], for instance.

Proposition 2.20. Let A, B be two codes of length n. Then

dim(< A ⋆ B >) ≤ dim(A)dim(B).
Proof. Suppose that dim(A) = k and dim(B) = k′. Let GA be the generator
matrix of the code A, with rows ai, 1 ≤ i ≤ k and GB be the generator
matrix of the code B, with rows bj, 1 ≤ j ≤ k′. The generator matrix of
< A⋆B > has rows ai ⋆bj with 1 ≤ i ≤ k and 1 ≤ j ≤ k′. Thus the generator
matrix of < A ⋆ B > is a kk′ × n matrix and has at most rank

min{n, kk′} ≤ kk′ = dim(A)dim(B).

Proposition 2.21. Let n : N −→ N be such that n(k) ≥ k(k+1)
2

for all k ∈ N
and define s : N −→ N by s(k) := n(k)− k(k+1)

2
. Then there exits a constant

δ̃ ∈ R>0 such that, for all large enough k,

Pr

(
dim < A2 >=

k(k + 1)

2

)
≥ 1− 2−δ̃s(k),

where A is chosen uniformly at random from A[n(k), k].

Proof. See [12] for details.

Remark 2.22. Notice that the previous result implies that if one chooses a
linear code at random, of dimension k and length n then the dimension of
the square code is typically the minimum of the values n and k(k+1)

2
.

14

2.2 Generalized Reed-Solomon codes
Generalized Reed Solomon codes form a class of codes that was introduced

for the first time in 1960 by Reed and Solomon in [53]. They represent an
interesting family of codes with a wide range of applications as they are MDS
codes and admit several efficient (algebraic) decoding algorithms. Next, we
recall some of their important properties that will be used in this thesis, see
[40] for more details.

2.2.1 Basic definitions and properties

Definition 2.23 (Generalized Reed-Solomon Code). Let Fq be a finite field
and 1 ≤ k < n ≤ q integers. Let (α, β) ∈ Fn

q ×Fn
q , such that α = (α1, · · · , αn)

with αi ̸= αj, ∀i ̸= j ∈ {1, · · · , n} and β = (β1, · · · , βn) with βi ̸= 0, ∀i ∈
{1, · · · , n}. The Generalized Reed-Solomon code, GRSn,k(α, β), is given
by:

GRSn,k(α, β) = {(β1f(α1), · · · , βnf(αn)) | f ∈ Fq[x], deg(f) < k}.

It is easy to see that a generator matrix of GRSn,k(α, x) is given by

G = GGRS =

β1 β2 · · · βn

β1α1 β2α2 · · · βnαn
... . . .

β1α
k−1
1 β2α

k−1
2 · · · βnα

k−1
n

where α1, · · · , αn are called the code locators.

Remark 2.24. Let u ∈ Fk
q , then

uG =

β1

(
u1 + u2α1 + u3α

2
1 + · · ·ukα

k−1
1

)
β2

(
u1 + u2α2 + u3α

2
2 + · · ·ukα

k−1
2

)
...

βn

(
u1 + u2αn + u3α

2
n + · · ·ukα

k−1
n

)

⊤

.

Therefore, the polynomial f corresponding to the codeword v = uG is

f(x) = u1 + u2x+ · · ·+ ukx
k−1.

Proposition 2.25. GRS codes are MDS codes, i.e.,

d(GRSn,k(α, β)) = n− k + 1.

15

Proof. Let v be a nonzero codeword of GRSn,k(α, β). Let f ∈ Fq[x] be the
polynomial corresponding to v. Since f has degree less than k, it has at
most k − 1 roots. Since v = (β1f(α1), · · · , βnf(αn)), with βi ̸= 0 for any
i ∈ {1, · · · , n}, a coordinate vi of v can only be zero if f(αi) = 0. So the
minimum weight of a nonzero codeword is n− (k − 1), i.e., is MDS.

Given an n-tuple v = (β1f(α1), · · · , βnf(αn)) it is possible to reconstruct
the unique polynomial f of degree less than k associated to v using poly-
nomial interpolation. To show that, we need to introduce some notation.
Define

L(x) =
n∏

i=1

(x− αi)

and
Li(x) =

∏
j ̸=i

(x− αj).

The polynomials L(x) and Li(x) are monic of degrees n and n − 1, respec-
tively. Since the coordinate vi of v is βif(αi), i.e. f(αi) = vi

βi
, hence, by

Lagrange interpolation, the polynomial f can be recovered as

f(x) =
n∑

i=1

Li(x)

Li(αi)
f(αi).

Proposition 2.26. The dual of a GRS code is also a GRS code and we have

GRSn,k(α, β)
⊥ = GRSn,n−k(α, β

′)

for β′ = (β′
1, . . . , β

′
n) ∈ Fn

q , where

β′
i =

1

βiLi(αi)
. (2.1)

Proof. Let f and g be the polynomials associated to the codes GRSn,k(α, β)
and GRSn,n−k(α, β

′), respectively. If x is a codeword of GRSn,k(α, β), then
x = (β1f(α1), · · · , βnf(αn)), if y is a codeword of GRSn,n−k(α, β

′), then
y = (β′

1g(α1), · · · , β′
ng(αn)). We want to show that xyT = 0. As deg(f) < k

and deg(g) < n − k, deg(fg) < n − 1. By Lagrange interpolation we can
write

f(x)g(x) =
n∑

i=1

Li(x)

Li(αi)
f(αi)g(αi).

Considering the coefficient of xn−1 from the two sides, we have

0 =
n∑

i=1

1

Li(αi)
f(αi)g(αi),

16

or equivalently,
n∑

i=1

βif(αi)
1

βiLi(αi)
g(αi) = 0

As β′
i =

1
βiLi(αi)

we have that
∑n

i=1 βif(αi) · β′
ig(αi) = 0, i.e., xyT = 0 as

required.

It follows that the parity check matrix of a GRSn,k(α, β) code is

H =

β′
1 β′

2 · · · β′
n

β′
1α1 β′

2α2 · · · β′
nαn

... . . .
β′
1α

n−k−1
1 β′

2α
n−k−1
2 · · · β′

nα
n−k−1
n

where β′

i =
1

βiLi(αi)
.

With the above notation, the following result can be found in [40].

Proposition 2.27.

GRSn,k(α, β) = GRSn,k((aα1 + b, . . . , aαn + b), (cβ1, . . . , cβn))

for all a, b, c ∈ Fq and a, c ̸= 0.

Proof. See [40].

We finish this introduction to the GRS codes with a result about the
dimension of the square code, that can be found for example in [19].

Proposition 2.28. Let A, be a GRS code of length n and dimension k. If
2k − 1 ≤ n then

dim(< A ⋆A >) = 2k − 1.

Proof. See for instance [41, Proposition 18].

2.2.2 Encoding with GRS codes

Let u = (u0, u1, · · · , uk−1) be the message to be sent. We encode u by
computing v = u ·GGRS. So v = (v1, v2, · · · , vn), with

vi =
k−1∑
j=0

βiujα
j
i .

17

Alternately, we can see the encoding process as an evaluation of the poly-
nomial

u(x) = u0 + u1x+ · · ·+ uk−1x
k−1 ∈ Fq[x]

in n different points α1, . . . , αn. Hence, the encoding of u(x) is

u(x) 7→ (β1u(α1), · · · , βnu(αn)).

2.2.3 Decoding with GRS codes

A series of decoding algorithms bearing names such as Berlekamp-Massey,
Peterson, Welch–Berlekamp, or using the Euclidean Algorithm, have been de-
veloped over the years for GRS codes. We briefly present a method based
on the Euclidean decoding algorithm, following the ideas of [28, Chapter 5],
and an algorithm for decoding the dual of GRSn,r(α, u).

Let y = v + e, where v = (v1, v2, . . . , vn) is the codeword transmitted,
y = (y1, y2, . . . , yn) is the received vector and e = (e1, e2, . . . , en) is the error
vector. Let J the set of error locations:

J = {i | ei ̸= 0}.

The decoder will find the error set J and the error values ei when the error
correcting capability of the code is not exceeded, i.e., when | J |≤

⌊
d−1
2

⌋
.

The first step is to compute the syndrome, which is given by Sy = y ·HT .
We let Sy = (S1, . . . , Sn−k). Then, for every 1 ≤ l ≤ n− k, we have

Sl =
n∑

j=1

yjβ
′
jα

l−1
j . (2.2)

Definition 2.29. The syndrome polynomial, denoted S(x), is defined by

S(x) =
n−k−1∑
l=0

Sl+1x
l. (2.3)

Note that Sy = y · HT = vHT + eHT = eHT , because vHT = 0 since
v ∈ C. So, S(y) = S(e), and

Sl =
n∑

j=1

ejβ
′
jα

l−1
j =

∑
j∈J

ejβ
′
jα

l−1
j . (2.4)

In order to find the set of error locations J and the corresponding error
values {ei | i ∈ J}, we define two polynomials as follows.

18

Definition 2.30. Let
σ(x) =

∏
j∈J

(1− αjx)

and

ω(x) =
∑
j∈J

ejβ
′
j

(∏
k∈J,k ̸=j

(1− αkx)

)
.

The polynomial σ(x) is called the error locator polynomial, and ω(x) is the
error evaluator polynomial. Note that deg(σ) =| J | and deg(ω) ≤| J | −1.

Using the polynomials σ(x) and ω(x) we can reconstruct the error vector
e. We may assume that none of the αi are equal to 0, but if αi = 0 then G
has column i null, so vi = 0 and then ei = yi. Thus,

J = {b | σ(α−1
b) = 0}. (2.5)

Lemma 2.31. The polynomials σ(x) and ω(x) are relatively prime, and the
error values eb are given by

eb =
−αbω(α

−1
b)

β′
bσ

′(α−1
b)

(2.6)

where σ′(x) is the formal derivative of σ(x).

Proof. In order to show that σ(x) and ω(x) are relatively prime, it is enough
to observe that they have no roots in common. In effect, if α−1

b is a root of
σ(x), then b ∈ J . By the previous definition,

ω(α−1
b) =

∑
j∈J

ejβ
′
j

(∏
k∈J,k ̸=j

(1− αkα
−1
b)

)

=
∑

j∈J,j ̸=b

ejβ
′
j

(∏
k∈J,k ̸=j

(1− αkα
−1
b)

)
+ ebβ

′
b

(∏
k∈J,k ̸=j

(1− αkα
−1
b)

)

= ebβ
′
b

∏
k∈J,k ̸=j

(1− αkα
−1
b)

̸= 0.

The first sum is zero since j ̸= b, k ̸= j and b ∈ {k ∈ J | k ̸= j}. Hence, σ(x)
and ω(x) are relatively prime. In order to prove (2.6) notice that

eb =
ω(α−1

b)

β′
b

∏
k∈J,k ̸=j(1− αkα

−1
b)

19

and
σ′(x) = −

∑
j∈J

αj

∏
k∈J,k ̸=j

(1− αkx).

So,

σ′(α−1
b) = −

∑
j∈J

αj

∏
k∈J,k ̸=j

(1− αkα
−1
b)

= −
∑

j∈J,j ̸=b

αj

∏
k∈J,k ̸=j

(1− αkα
−1
b)− αb

∏
k∈J,k ̸=b

(1− αkα
−1
b)

= −αb

∏
k∈J,k ̸=b

(1− αkα
−1
b).

Therefore,

eb =
ω(α−1

b)

β′
b

∏
k∈J,k ̸=b(1− αkα

−1
b)

=
−αbω(α

−1
b)

β′
bσ

′(α−1
b)

.

The next theorem gives the so called Key Equation for decoding GRS
codes, and it establishes a fundamental relationship between σ(x), ω(x) and
S(x).

Theorem 2.32. There is a polynomial µ(x) such that the error locator, the
error evaluator and the syndrome polynomials verify the key equation:

σ(x)S(x) = ω(x) + µ(x)xn−k, (2.7)

or, equivalently, using a congruence:

σ(x)S(x) ≡ ω(x) (modxn−k)

Proof. By Definition 2.29 and equation (2.4), we have

S(x) =
n−k−1∑
l=0

(∑
j∈J

ejβ
′
jα

l
j

)
xl

=
∑
j∈J

ejβ
′
j

n−k−1∑
l=0

(αjx)
l

=
∑
j∈J

ejβ
′
j

1− (αjx)
n−k

1− αjx
.

20

Multiplying both sides by σ(x), where σ(x) is given in Definition 2.30, we
obtain

σ(x)S(x) =
∑
j∈J

ejβ
′
j

1− (αjx)
n−k

1− αjx

∏
m∈J

(1− αmx)

=
∑
j∈J

ejβ
′
j

(
1− (αjx)

n−k
) ∏
m∈J,m̸=j

(1− αmx)

=
∑
j∈J

ejβ
′
j

∏
m∈J
m̸=j

(1− αmx)−
∑
j∈J

ejβ
′
j(αjx)

n−k
∏
m∈J
m ̸=j

(1− αmx)

=
∑
j∈J

ejβ
′
j

∏
m∈J
m̸=j

(1− αmx)−

∑
j∈J

ejβ
′
jα

n−k
j

∏
m∈J
m ̸=j

(1− αmx)

xn−k

= ω(x) + µ(x)xn−k.

The next step in GRS decoding is to solve the key Equation (2.7) in order
to find σ(x) and ω(x). We will describe an algorithm based on Extended
Euclidean Algorithm. There are many algorithms that solve this equation
and this is not the most efficient, but this is simple and our aim is to show
that GRS codes can be decoded in polynomial time.

Given two polynomials a(x) and b(x), the Extended Euclidean Algorithm
provides a recursive procedure to find the greatest common divisor c(x) of
a(x) and b(x). This algorithm also finds two polynomials s(x) and t(x) such
that

a(x)s(x) + b(x)t(x) = c(x).

Hence, in order to solve the key equation,

µ(x)xn−k + σ(x)S(x) = ω(x), (2.8)

we will compute gcd(S(x), xn−k), i.e., ω(x). First, let us describe the Eu-
clidean Algorithm for polynomials. Consider two polynomials a and b such
that deg(a) ≤ deg(b). We start from the initial conditions r−1 = a and
r0 = b.
We perform a recursion in steps 1, 2, . . . ,m. At step n ≤ m of the recursion,
we obtain rn as the residue of dividing rn−2 by rn−1, i.e., rn−2 = qnrn−1+ rn,
where deg(rn) < deg(rn−1). The recursion is then given by

rn = rn−2 − qnrn−1.

21

We also obtain values sn and tn such that rn = sna + tnb. Hence, the same
recursion is valid for sn and tn as well:

sn = sn−2 − qnsn−1,

tn = tn−2 − qntn−1.

Since r−1 = a = (1)a + (0)b and r0 = b = (0)a + (1)b, we set the initial
conditions s−1 = 1, t−1 = 0, s0 = 0 and t0 = 1.

By an application of the Euclidean Algorithm to xn−k and S(x), at a
certain point of the recursion we obtain

ri(x) = si(x)x
n−k + ti(x)S(x),

where deg(ri) ≤ ⌊n−k
2
⌋ − 1, and i is the first with this property. Then,

σ(x) = ti(x) and ω(x) = ri(x).
We illustrate the decoding of GRS codes using the Extended Euclidean

Algorithm with an example.

Example 2.33. Consider the code C = GRS9,4(α, β) over F11, where

α = (2, 4, 1, 5, 3, 7, 9, 8, 6)

and
β = (1, 5, 3, 1, 2, 2, 1, 9, 4).

Suppose we want to send the message

u = (4, 1, 3, 2).

To encode it, we compute v = uG:

v =
(
4 1 3 2

)
·

1 5 3 1 2 2 1 9 4
2 9 3 5 6 3 9 6 2
4 3 3 3 7 10 4 4 1
8 1 3 4 10 4 3 10 6

=
(
1 7 8 4 0 5 9 8 0

)
The error correcting capability, t, is 2. Considering that the error vector is
e = (0, 5, 0, 0, 0, 4, 0, 0), i.e., the errors are at the second and seventh posi-
tions. The message received is y = v + e,

y = (1, 1, 8, 4, 0, 5, 2, 8, 0).

22

Suppose that the receiver wants to decode this message. First he calculates a
vector β′ for which C⊥ = GRS9,5(α, β

′): Using Equation (2.1) he obtains:

β′ = (5, 7, 3, 3, 5, 5, 9, 3, 6).

Next he computes the syndrome polynomial, S(x), using Equations (2.2) and
(2.3):

Sy = (5, 2, 0, 5, 10).

Therefore,

S(x) = 5 + 2x+ 5x3 + 10x4.

Now he applies the Extended Euclidean Algorithm with respect to S(x) and
x5. When he finds the first n for which deg(rn) ≤ 1 he stops and obtains the
polynomials σ(x) and ω(x). The process is described below.

n rn qn tn = tn−2 − qntn−1

−1 x5 - 0
0 10x4 + 5x3 + 2x+ 5 - 1
1 3x3 + 2x2 + 4x+ 3 10x+ 6 x+ 5
2 4x+ 3 7x+ 8 4x2 + x+ 5

Therefore he has obtained the error locator and evaluator polynomials
σ(x) = 4x2+x+5 and ω(x) = 4x+3. The error locations are given by (2.5),
so, to find them he must compute the roots of σ(x):

σ(x) = 0 ⇔ 4x2 + 4x+ 5 = 0

⇔ x = 3 ∨ x = 5

Further, 3−1 = 4 = α2 and 5−1 = 9 = α7, so J = {2, 7}. The error value eb
is given by Equation (2.6) where σ′(x) = 8x+ 1. Thus,

e2 =
−4ω(3)

7σ′(3)
= 5

e7 =
−9ω(5)

9σ′(5)
= 4.

Then, e = (0, 5, 0, 0, 0, 0, 4, 0, 0) and v = y − e = (1, 7, 8, 4, 0, 5, 9, 8, 0). To
conclude the decoding process he computes u using u = vG−1

left, where G−1
left is

the left inverse of G.

23

2.3 Goppa codes
In this section we briefly describe a class of linear error-correcting codes,

the Goppa codes. These codes were introduced by V.D. Goppa in [27]. How-
ever, the original publication was in Russian and therefore we will refer to
Berlekamp’s summary in [8] for the definition of Goppa codes. Our interest
in these codes stem from the fact that they were used in the first of the
McEliece-type cryptosystems proposed and, surprisingly, they have resisted
cryptanalysis for more than forty years, since no polynomial-time attack to
the system has been devised up to now. Nevertheless, the improvement in
computing power and algorithms to optimize the attacks have required an
update of its original parameters (see [10]). Irreducible binary Goppa codes
form an interesting subclass of these codes as they admit fast decoding algo-
rithms. In fact, the irreducible binary Goppa codes were used in the original
construction of the McEliece cryptosystem.

2.3.1 Basic definitions and properties

The existing literature about Goppa codes uses several different ways
to introduce these codes. Here we will define them in terms of a Goppa
polynomial g(z) ∈ Fqm [z].

Definition 2.34 (Goppa codes). Let m and t be positive integers, g(z) =
t∑

i=0

giz
i, with gi ∈ Fq, a monic polynomial of degree t, called the Goppa

polynomial and L = {α1, . . . , αn} ⊂ Fq a tuple of n distinct elements,
called the support of, such that g(αi) ̸= 0, ∀αi ∈ L. A Goppa code Γ(L, g)
is defined to be the set of all codewords v = (v1, . . . ,vn) ∈ Fn

q such that

n∑
i=1

vi

z − αi

≡ 0 mod g(z). (2.9)

If g(z) is irreducible then the code is called an irreducible Goppa code.

Goppa codes are linear codes and, as we can use the notation [n, k, d] to
describe a Goppa code with the parameters of length n, dimension k and
minimum Hamming distance d.

Theorem 2.35. [40] Let Γ(L, g) be a Goppa code and deg(g(z)) = t. Then,
the dimension k and the minimum Hamming distance d satisfy the following
properties:

24

(i) k ≥ n−mt,

(ii) d ≥ t+ 1.

We next describe the Parity Check Matrix of a Goppa code, see [40] for
more details. Recall that a parity check matrix of a code C is defined to
be a matrix H such that HvT = 0, ∀v ∈ C, and it is typically used to
decode a message. In order to obtain a parity check matrix of a Goppa code
we are going to transform the left side of Equation (2.9) into a polynomial
expression. First note that z − αi | g(z)− g(αi) and

g(z)− g(αi) ≡ −g(αi) mod g(z)

−1

g(αi)

g(z)− g(αi)

z − αi

≡ 1

z − αi

mod g(z).

Therefore, v ∈ Γ(L, g) if and only if

−
n∑

i=1

vi

g(αi)

g(z)− g(αi)

z − αi

≡
n∑

i=1

vi

z − αi

≡ 0 mod g(z). (2.10)

We express g(z)−g(αi)
z−αi

as a polynomial. Note that we can write

g(z)− g(αi) = gtz
t + gt−1z

t−1 + . . .+ g1z −
t∑

j=1

gjα
j
i =

t∑
j=1

gj(z
j − αj

i .

Hence we obtain,

g(z)− g(αi)

z − αi

= gtz
t−1 + (gt−1 + gtαi)z

t−2 + . . .+

+
(
g1 + g2αi + . . .+ gtα

t−1
i

)
z0

=
t−1∑
k=0

zk

(
t∑

j=k+1

gjα
j−1−k
i

)
.

Therefore, it follows that

g(z)− g(αi)

z − αi

g(αi)
−1 = g(αi)

−1

t−1∑
k=0

zk

(
t∑

j=k−1

gjα
j−1−k
i

)
. (2.11)

From (2.10) and (2.11) we obtain v ∈ Γ(L, g) if and only if,

−
n∑

i=1

vi
1

g(αi)

t−1∑
k=0

zk

(
t∑

j=k+1

gjα
j−1−k
i

)
≡ 0 mod g(z).

25

That is, v ∈ Γ(L, g) if and only if

n∑
i=1

(
1

g(αi)

t∑
j=k+1

gjα
j−1−k
i

)
vi = 0.

Considering the fact that v ∈ Γ(L, g) if and only if HvT = 0, we con-
cluded that a parity check H of a Goppa code is a matrix t × n whose i-th
column is:

gt
gt−1 + gtαi

gt−2 + gt−1αi + gtα
2
i

...
g1 + g2αi + · · ·+ gtα

t−1
i

 g(αi)
−1.

Clearly, the parity check matrix H can be decomposed as H = XY Z,
where

X =

gt 0 0 . . . 0
gt−1 gt 0 . . . 0

...
...

...
g1 g2 g3 . . . gt

 , Y =

1 1 . . . 1
α1 α2 . . . αn
...

...
αt−1
1 αt−1

2 . . . αt−1
n

and

Z =

g(α1)

−1 0 . . . 0
0 g(α2)

−1 0
...

...
0 0 . . . αt−1

n

 .

As X is a invertible matrix H ′ = X−1H generates the same code as H. So
we have a simpler write a parity check matrix H of a Goppa code in a simpler
way:

H ′ =

g(α1)

−1 g(α2)
−1 . . . g(αn)

−1

α1g(α1)
−1 α2g(α2)

−1 . . . αng(αn)
−1

... . . .
αt−1
1 g(α1)

−1 αt−1
2 g(α2)

−1 . . . αt−1
n g(αn)

−1

 .

2.3.2 Encoding and Decoding

To encoded a message we multiply the message by the generator matrix
G of a Goppa code, the matrix k × n whose rows constitute a basis of the
Goppa code and such that GHT = 0. As for the decoding process, we remark

26

that there exist several algebraic decoding algorithms tailor-made for Goppa
codes. For instance one can find the decoding algorithm of Patterson [48]
or the adaptation of the Berlekamp-Massey to Goppa codes [20]. We shall
omit the details here, but one can also find variants of these algorithms. In
[29] the author uses a modification of the Patterson algorithm including an
optimization in the Euclidean algorithm. In [38] it is shown a way to easily
decode classical Goppa codes assuming its representation in the setting of
the Fourier transform.

2.3.3 Irreducible binary Goppa codes

The most important subclass of the Goppa codes is the irreducible bi-
nary Goppa codes, i.e., the Goppa codes with q = 2 and with irreducible
polynomial g(z) in F2[z]. This subclass has some notable advantages over
the general family of Goppa codes (and other kinds of codes as well). Not
only it can be very efficiently implemented but, more importantly, it has a
very good error-correction capability while maintaining a relatively high in-
formation rate. Note that all irreducible polynomials over a finite field are
separable, i.e., have no roots of multiplicity larger than one (see [30]).

Theorem 2.36. For an irreducible binary [n, k, d] Goppa code Γ(L, g) with
deg(g(z)) = t, we have d ≥ 2t+ 1.

Proof. Let v ∈ Γ(L, g) be a nonzero codeword, v = (v1, . . . ,vn) with vi ∈
{0, 1}, and L = {α1, . . . , αn}. We have

n∑
i=1

vi

z − αi

≡ 0 mod g(z),

or equivalently,

n∑
i=1

vi

∏
1≤k≤n

k ̸=i

(z − αk)

n∏
j=1

(z − αj)
≡ 0 mod g(z).

Let vi1 , . . . ,viw be the nonzero coordinates of v. Since the code is binary,
vij = 1, for j ∈ {1, . . . , w}, and we can write

w∑
j=1

∏
1≤k≤w

k ̸=j

(z − αik)

w∏
ℓ=1

(z − αiℓ)
≡ 0 mod g(z).

27

The denominator has no common factors with g(z), since g(αi) ̸= 0, for i ∈
{1, . . . , n}. Therefore it must be a divisor of the numerator, i.e., g(z) | f(z),
where

f(z) =
w∑

j=1

∏
1≤k≤w

k ̸=j

(z − αik).

Moreover, note that the last expression is the derivative of the polynomial∏w
j=1(z − αij), and a binary derivative can only have terms with even expo-

nents, thus

f(z) = f0 + f2z
2 + · · ·+ f2uz

2u, with 2u ≤ w − 1.

So, g(z) | k(z)2, with k(z) a polynomial of degree u and 2u ≤ w − 1. Since
g(z) is irreducible, g(z) | k(z). Thus t ≤ u and w − 1 ≥ 2u ≥ 2t. For the
minimum distance d it follows that d = w ≥ 2t+ 1.

Theorem 2.37. Let Γ(L, g(z)) be a binary Goppa code with g(z) irreducible,
then Γ(L, g(z)) = Γ(L, g2(z)).

Proof. Notice that, since F2 is finite it follows that g(z) has no roots of
multiplicity larger than one. Following the argument and notation of the
proof of the previous theorem:

v is a codeword of Γ(L, g2(z)) ⇔ g2(z) | f(z)
⇔ g(z) | f(z)
⇔ v is a codeword in Γ(L, g(z))

This class of codes admit a particularly efficient decoding algorithm. We
refer to [38] for a similar description of the decoding process as the one
explained above for GRS.

2.4 Convolutional codes
Convolutional codes were first introduced by Elias in 1955 in [21]. Later

they were formalized and further explained by Forney [25, 26], Piret [51] and
McEliece [45], among others. In this setting the message is a sequence of
messages instead of a single block message as occurred in the block code
context. Convolutional codes differ from block codes in that the encoder
contains memory and the n encoder outputs at any time unit depend not
only on the k inputs but also on m previous input blocks. Thus memory is

28

an important feature of an encoder of a convolutional code.

The use of convolutional codes in code-based cryptography is barely ex-
plored. They first appeared in variants of the McEliece cryptosystem in the
work of Carl Löndahl and Thomas Johansson in [39], see also [46]. They pro-
posed a new variant which replaces the generator matrix of the Goppa codes
by a generator matrix of a block code with the classical Toeplitz structure of
convolutional codes. However, as this variant resembled very much the one
using block codes, the proposal was broken in a short time (see [35]). Never-
theless, the scheme presented several very appealing features. For instance,
the fact that its secret generator matrix contains large parts that were gen-
erated completely at random. But the authors had already pointed out that
this approach of using convolutional codes suffered from two main problems.
The first one being the lack of efficient decoding algorithms, namely, that if
one wants a maximum likelihood decoding, such as the Viterbi decoding al-
gorithm, the memory used must be very limited. The second problem stems
from the fact that convolutional codes usually start from the all zero state,
and therefore the first code symbols that are generated will have low weight
parity-checks, which would imply security threats.

In a very different way, we proposed in [1] a new variant of the McEliece
cryptosystem where we use a convolutional encoder to be part of the public
key. In this section we introduce the necessary background on convolutional
codes that is needed to present and understand our variant. Unlike linear
block codes, there exist several approaches defining convolutional codes. We
shall present convolutional codes using the generator matrix approach. Be-
fore that, for a better understanding of the underlying idea we will begin by
defining a convolutional encoder.

An (n, k) convolutional encoder is a linear device which maps a se-
quence of information (u0, u1, . . .), ui ∈ Fk

q into a sequence of codewords
(v0, v1, . . .), vi ∈ Fn

q using an internal m-dimensional storage vector, xi. In
a convolutional encoder the i-th codeword vi is a linear function not only of
the i-th input word ui, but also of the i-th state xi. In a formal description,
called the state space description of a convolutional code: x0 = 0 and for
i ≥ 0 {

xi+1 = xiA+ uiB

vi = xiC + uiD
(2.12)

where Am×m, Bk×m, Cm×n and Dk×n are matrices with entries from a field Fq,
q being a prime power. The integer m is called the degree of the encoder. In

29

the case of a convolutional encoder we have four matrices while in block codes
we have one, the matrix G. A block code is simply a degree 0 convolutional
code, see [45] for a more detailed description.

Let’s look at one simple example of a (2, 1) convolutional code over F2:

Example 2.38. Let A =

(
0 1
0 0

)
, B =

(
1 0

)
, C =

(
1 0
1 1

)
,

D =
(
1 1

)
. Suppose we want to encode the sequence u0 = 1, u1 = 0,

u2 = 1, u3 = 0, u4 = 1 and the state xi is zero at time instant t = 0, i.e.,
x0 =

(
0 0

)
.

Then,
x1 =

(
0 0

)(0 1
0 0

)
+
(
1
) (

1 0
)

=
(
1 0

)
v0 =

(
0 0

)(1 0
1 1

)
+
(
1
) (

1 1
)

=
(
1 1

)
i.e., the convolutional encoder receives 1 and encodes it into the vector

(
1 1
)

at time instant zero. At time instant t = 1, u1 = 0 enters as an input in the
convolutional encoder to produce v1 as follows:

x2 =
(
1 0

)(0 1
0 0

)
+
(
0
) (

1 0
)

=
(
0 1

)
v1 =

(
1 0

)(1 0
1 1

)
+
(
0
) (

1 1
)

=
(
1 0

)
and so on. Hence the sequence 1, 0, 1, 0, 1 is encoded to the sequence(

1 1
)
,
(
1 0

)
,

A physical realization of such an encoder can be implemented in terms of
the so called shift-registers, for more details see [45]. It is easy to verify that
in this example corresponding shift-register is:

To illustrate the dynamics of the encoding process of the Example 2.38
in the first two instants see figures 2.3 and 2.4.

For the purpose of this thesis we next consider convolutional codes as a set
of generating functions. To this end we represent the information sequence
u0, u1, . . . as a polynomial u(D) = u0+u1D+ . . . where D is called the delay
operator, to indicate the time instant in which each information arrived or
each codeword was transmitted. Analogously, the codeword is a polynomial
v(D) = v0 + v1D + · · · . So, we have:

X(D) =
∑
i≥0

xiD
i, u(D) =

∑
i≥0

uiD
i and v(D) =

∑
i≥0

viD
i.

30

Figure 2.2: Shift register implementation of the convolutional encoder de-
scribed in Example 2.38.

Figure 2.3: Encryption process at time instant t = 0

Figure 2.4: Encryption process at time instant t = 1

To transform the convolutional encoder described in (2.12) we multiply both
sides of (2.12) by Di and sum over all i (using the fact ui, xi, vi are all zero
for i < 0), and obtain

{
X(D) ·D−1 = X(D) · A+ u(D) ·B

v(D) = X(D) · C + u(D) ·D
(2.13)

If we solve the system (2.13) to get an explicit expression for X(D) and v(D)

31

in terms of the input u(D) we obtain:{
X(D) = u(D) ·B · (D−1Im − A)−1

v(D) = u(D) · [B · (D−1Im − A)−1 · C +D]

where Im denotes the m×m identity matrix. We have concluded that

v(D) = u(D)G(D)

where G(D) is a generator matrix defined by

G(D) = B · (D−1Im − A)−1 · C +D.

Example 2.39. Considering the Example (2.38),

G(D) =
(
1 0

)
·
((

D−1 0
0 D−1

)
−
(

0 1
0 0

))−1

·
(

1 0
1 1

)
+
(
1 1

)
=
(
1 +D +D2 1 +D2

)
.

We shall allow the transmission to "start" at any time instant and there-
fore consider the infinite sequence as a Laurent polynomial

u(D,D−1) =
∑
i>λ

uiD
i ∈ F((D,D−1)), λ ∈ Z.

Based on this representation, we have the following definition of a convolu-
tional code:
Definition 2.40. [45, Definition 2.3] A convolutional code C of rate k/n
is an F((D))-subspace of F((D))n of dimension k given by a rational encoder
matrix G(D) ∈ F(D)k×n,

C = ImF((D))G(D)

=
{
u(D,D−1)G(D) | u(D,D−1) ∈ Fk((D))

}
,

where u(D,D−1) =
∑
i≥λ

uiD
i is called the information vector. If

G(D) =
m∑
i=0

GiD
i ∈ Fk×n[D]

is polynomial, m is called the memory of G(D), since it needs to “remember"
the inputs ui from m units in the past. Note than when m = 0 the encoder
is constant and generates the class of linear block codes in a natural way.
A dual description of a convolutional code can be given through one of its
parity-check matrices which are (n− k)×n full rank rational matrices H(D)
such that

C = kerF((D))H(D)

=
{
v(D) ∈ Fn((D)) |H(D)v(D) = 0 ∈ Fn−k((D))

}
.

32

Chapter 3

Block code Cryptography

Code-based cryptosystems, namely the McEliece cryptosystem is one
promising family of public key cryptosystems which are potentially secure
against the threat of quantum computing. Firstly, the problem of decoding
a random public code with general decoding algorithms is a NP-hard prob-
lem and any attack based on a algorithm for decoding random linear codes,
namely the Information-Set Decoding (ISD), can be protected by increasing
the size of the code. Secondly, it is very difficulty for an attacker to uncover
the underlying structure of the code used in the public key. The choice of the
code used in the secret key is very important. The McEliece cryptosystem
in its original version used binary irreducible Goppa codes and a generator
matrix for it (the secret key) is masked by multiplying it on the right by a
permutation matrix and multiplying it on the left by an invertible matrix.
Goppa codes are also used in the Niederreiter cryptosystem, but instead of
using the generator matrix, it is uses the parity check matrix. According
to McEliece, they form a large family, providing a vast number of potential
public keys, and there exists an efficient algorithm to decode them. However
this cryptosystem has a big disadvantage, the key size is too large. For this
reason, many variants replacing the Goppa code by other families of codes
have been proposed. Many of these proposals focus on Generalised Reed
Solomon (GRS) codes, since they benefit from excellent decoding proper-
ties which translates into small keys. On the other hand, their structure is
difficult to hide.

In this chapter, we will analyze the three main such proposals. The use
of GRS codes to replace Goppa codes in the McEliece cryptosystem was
initially suggested by Niederreiter in [47], but this proposal was attacked by
Sidelnikov and Shestakov [56].

Berger and Loidreau suggested in [7] a new variant that was resistant
to the Sidelnikov and Shestakov attack. The idea was to replace the GRS

33

code by subcodes of GRS but again a structural attack for this proposal was
presented by Christian Wieschebrink in [63].

Baldi, Bianchi, Chiaraluce, Rosenthal and Schipani proposed in [6] a new
way to mask the structure of the underlying secret GRS code by replacing
the original permutation matrix by a denser transformation matrix. This
proposal was attacked by Valérie Gauthier, Ayoub Otmani and Jean-Pierre
Tillich in [19]. In spite of all these proposals having been broken (for the
more interesting parameters), GRS codes are still of the highest interest for
cryptography as its inclusion in the McEliece cryptosystem would reduce
significantly the key size.

In this chapter, we start with a description of the original proposal of
the McEliece cryptosystem, then we will investigate these three variants of
that cryptosystem which use the GRS codes and, finally, we present Infor-
mation Set Decoding (ISD) attacks. All these results are fundamental to
understand the security and advantages of our cryptosystem, presented in
the next chapter.

3.1 McEliece Cryptosystem
The first application of coding theory in a cryptographic context was

presented by Robert McEliece in 1978 [44], which was called the McEliece
Cryptosystem. This public-key cryptosystem is based on the hardness of
decoding a message with random errors. The original version uses binary
Goppa codes. We can describe the McEliece cryptosystem by means of three
algorithms: a key generation algorithm which produces a public and a pri-
vate key, an encryption algorithm and a decryption algorithm.

Key generation

Let C be a [n, k, 2t+1] linear code that has an efficient decoding algorithm
D that can correct up to t errors.

• Compute a k × n generator matrix G for C;

• Generate a random k × k invertible matrix S;

• Generate a random n× n permutation matrix P ;

• Compute the k × n matrix G′ = SGP .

The public key is (G′, t) and the private key is (S,G, P).

34

Encryption

To encrypt a message u of lenght k:

• Compute uG′ and add a random error vector e of weight t and length
n;

• Send y = uG′ + e.

Decryption

To decrypt y:

• Compute yP−1 = (uS)G+ eP−1;

• Since (uS)G is a codeword in C and the permuted error vector eP−1 has
weight t, the decoding algorithm D can be applied to yP−1 to obtain
uS;

• Calculate u using S−1.

Figure 3.1: The original McEliece cryptosystem

This cryptosystem has the advantage that there exists a fast algorithm to
encrypt and decrypt the message (compared, for instance, with the RSA) and
no effective quantum algorithm is known to break McEliece cryptosystem.
However, it has the disadvantage of having large keys and low transmission
rate. For that, these cryptosystem have been barely used in practice. Several
variants of these proposals focus on the inclusion of GRS codes as it would
reduce the key. However, these variant suffer from structural attacks, i.e.,
attacks aiming to discover the underlying secret GRS structure of the public
key.

35

3.2 Niederreiter cryptosystem using the parity
check matrix

Niederreiter proposed in 1986 [47] a cryptosystem which is similar to the
McEliece system, but using the parity check matrix instead of the generator
matrix and syndrome decoding for decryption. The Niederreiter cryptosys-
tem works as follows.
Key generation
Let C be a [n, k, 2t + 1] linear code that has an efficient decoding algorithm
that can correct up to t errors.

• Compute a (n− k)× n parity matrix H for C;

• Generate a random k × k invertible matrix S;

• Generate a random n× n permutation matrix P ;

• Compute the k × n matrix H ′ = SHP .

The public key is (H ′, t) and the private key is (S,H, P).

Encryption
To encrypt a message m of lenght k:

• Compute m(H ′)T and add a random error vector e of weight t and
length n;

• Send m′ = m(H ′)T + e.

Decryption To decrypt m′:

S−1mT = HPuT = H(uP T)T .

Since wt(uP T) ≤ t, we can apply syndrome decoding to get uP T , and by
multiplying the inverse of P T we get the message u. The security of the
original proposals of McEliece and the Niederreiter cryptosystem is equivalent
as are their computational costs. An attacker who can break one is able to
break the other [64]. The Niederreiter cryptosystem can, in certain situations,
have some advantages. Using the systematic form of the public key, the
public key in the Niederreiter system is then n/(n − k) times smaller than
in the McEliece version (since the public key in the Niederreiter system has
(n−k)×k bits and in the McEliece system it has n×k). The systematic form
of the public matrix H and the low-weight of vector m significantly reduce
the computational cost involved in the encryption in Niederreiter’s version.

36

3.3 Structural Attacks for variants of McEliece
cryptosystems using GRS codes

There are two main classes of attacks to the McEliece cryptosystem: key-
recovery attacks and general attacks. It was McEliece himself that suggested
this classification in the final section of the original paper. The first class
contains attacks directed at the private key of the cryptosystem. Since the
aim is to reconstruct the private key, exploiting the particular structure of the
code, they are known as structural attacks. These attack obviously heavily
depend on the type of the code that is being use. The other class of attacks
aim to decipher the ciphertext in order to obtain the plaintext directly from
the public key without using any particular structure of the code. The main
subclass of these attack are the so-called Information Set Decoding (ISD)
attacks. In the next two sections we describe these two classes in detail
and will establish the basis for the cryptanalysis of our proposal in the next
chapter. We start this section with the structural attacks. In particular we
focus on variants of the McEliece cryptosystem that use GRS codes as that
is what we need for our proposal.

3.3.1 Sidelnikov-Shestakov attack to the Niederreiter
variant

Niederreiter was the first to propose a cryptosystem based on the GRS
codes [47]. However, six years after the article was published, Sidelnikov and
Shestakov in [56] proposed a polynomial time attack against this variant.

Let’s look at the general ideia of the description this attack, which we
can find in [63].

Let SGα,βP be the public key, where P is a permutation matrix of order
n, S is an invertible matrix of order k and Gα,β is a generator matrix of the
code GRSn,k(α, β) (see Definition 2.23). Gα,βP is a column permutation of
Gα,β, so Gα,βP = G̃α̃,β̃, with α̃ = (α̃1, . . . , α̃n), β̃ = (β̃1, . . . , β̃n) and for each
i there exist one and only one j such that α̃i = αj and β̃i = βj. Since G̃α̃,β̃

is the generator matrix of a GRS code, we have
β̃1 β̃2 . . . β̃n

β̃1α̃1 β̃2α̃2 . . . β̃nα̃n
...

...
β̃1α̃1

k−1 β̃2α̃2
k−1 . . . β̃nα̃n

k−1

 .

37

Let M = SG̃α̃,β̃,where S is a k × k non-singular matrix. In the first step, α̃
is reconstructed. Compute the echelon form E(M) of M :

E(M) =

1 0 . . . 0 b1,k+1 . . . b1,n
0 1 . . . 0 b2,k+1 . . . b2,n

.
...

0 . . . 0 1 bk,k+1 . . . bk,n

 .

Consider the i-th row bi of E(M):

bi = (0 . . . 0 1 0 . . . 0 bi,k+1 . . . bi,n).

Let fbi be the associated polynomial to bi (see Remark 2.24). We know that
fbi has k − 1 roots and fbi(α̃j) = 0, for all j ≤ k with j ̸= i. So fbi is a
polynomial of degree k − 1 and has the form

fbi(x) = cbi ·
k∏

j=1,j ̸=i

(x− α̃j) (3.1)

with cbi ∈ F\{0}. Now pick two arbitrary rows of E(M), for example b1 and
b2, and divide the entries of the first row by the corresponding entries in the
second row as long as these are different from zero. Using (3.1) we get

b1,j
b2,j

=
β̃j · fb1(α̃j)

β̃j · fb2(α̃j)
=

cb1
∏k

l=1,l ̸=1(α̃l − α̃j)

cb2
∏k

l=1,l ̸=2(α̃l − α̃j)
= d · α̃j − α̃2

α̃j − α̃1

(3.2)

for j = k+1, . . . , n. Using Proposition 2.27, we can assume that α̃1 = 0 and
α̃2 = 1. Since the b1,j

b2,j
are known, the α̃j can uniquely be reconstructed from

(3.2) through attempts at the correct value of d.

α̃j =
b1,jα̃1 − dα̃2b2,j

b1,j − db2,j

It remains to find α̃3, . . . , α̃k. Therefore, we replace the row b2 by bi in 3.2,
where i ∈ {3, . . . , k}, and get

α̃j =
b1,jα̃1 − dα̃ibi,j
b1,j − dbi,j

Note that d and α̃i are unknown, but letting j = k + 1 and j = k + 2, for
example, those values can uniquely be reconstructed by solving a system of
two linear equations.

38

Now, in a second step, β̃ and the matrix S can be recovered: Let M ′
k×(k+1)

be the matrix consisting of the first k+1 columns of the public key M. Firstly,
find a non-trivial solution c = (c1, . . . , ck+1) of the linear system

M ′c = 0.

Let G̃′
k×k+1 be obtained from G̃ by considering its first k + 1 columns,

G̃′ =

β̃1 β̃2 . . . β̃k+1

β̃1α̃1 β̃2α̃2 . . . β̃k+1α̃k+1
...

...
β̃1α̃

k−1
1 β̃2α̃

k−1
2 . . . β̃k+1α̃

k−1
k+1

=

1 1 . . . 1
α̃1 α̃2 . . . α̃k+1
...

...
α̃k−1
1 α̃k−1

2 . . . α̃k−1
k+1

β̃1

β̃2
...

β̃k+1

 .

Since M ′ = SG̃′, if M ′c = 0 then G̃′c = 0. Therefore,
c1 c2 . . . ck+1

c1α̃1 c2α̃2 . . . ck+1α̃k+1
...

...
c1α̃

k−1
1 c2α̃

k−1
2 . . . ck+1α̃

k−1
k+1

β̃1

β̃2
...

β̃k+1

 = 0.

We have a system of k equations and k + 1 unknowns, so we can consider,
for example, β̃1 = 1 and compute the unique solution. Hence, we have the
matrix G̃′ completely determined. Let G̃′′ be the matrix consisting of the
first k columns of G̃′ and M ′′ the matrix consisting of the first k columns of
M . We have S = M ′′(G̃′′)−1. So we can obtain G̃ by computing G̃ = S−1M .
Notice that this attack works if 2 ≤ k ≤ n− 2.

Next, we will see two other variants of the McEliece cryptosystem that
uses GRS codes. We will study their structural attacks to better understand
the modifications introduced in our proposal of cryptosystem.

3.3.2 Wieschebrink attacks on the BL variant

The idea of using GRS codes was reconsidered more than ten years later
by Berger and Loidreau. In 2005, Berger and Loidreau [49] proposed a vari-
ant of the Niederreiter scheme which resists the Sidelnikov-Shestakov attack,

39

using subcodes of GRS of small codimension to mask the structure. Un-
fortunately this technique was also successfully attacked in two steps by
Wieschebrink [62], [63].

In the Berger-Loidreau variant (BL variant), the plaintext has length
k − ℓ, S is a (k − ℓ)× k random matrix of rank k − ℓ and the public key is
G′ = SGP , where G is a k × n generator matrix of a GRS code. Note that
the Sidelnikov-Shestakov attack cannot be directly applied to this scheme.

Wieschebrink presents two attacks to the BL variant. One presented in
[62] can be considered as an extension of the Sidelnikov - Shestakov attack.
But this attack is only feasible for small values of q and ℓ. In fact, it becomes
infeasible if q ≥ 64 and ℓ ≥ 8. For this reason we will not describe it, as
it is not relevant for the main goals of this dissertation. The second attack
was presented in [63]. Here, Wieschebrink presents a structural attack using
the componentwise product. In what follows, we will see the general ideas of
this powerful second attack that has been also applied to many other variants.

Let us consider G̃α̃,β̃ = Gα,βP as defined above, and set M = G′ =

SG̃α̃β̃ = [mij] the public matrix of the Berger-Loidreau cryptosystem. Note
that the public key gives rise to a subcode of GRS of large dimension and
then a generic attack to GRS cannot be applied (see [62] for details). It is
easy to see that mij = β̃jfi(α̃j) with fi(α̃j) =

∑k
t=1 sitα̃

t−1
j , i = 1, · · · , k − ℓ

and j = 1, · · ·n.
Let bi the i-th row of M , i = 1, · · · , k−ℓ and fi the associated polynomial

to bi. The attack is divided into two cases: 2k−1 ≤ n−2 and 2k−1 > n−2.

Suppose, 2k − 1 ≤ n − 2. We calculate the component-wise product
between any two rows, bi and bj of M , i, j ∈ {1, · · · , k − ℓ}, i ≤ j:

bi ⋆ bj = (β̃2
1fi(α̃1) · fj(α̃1), · · · , β̃2

nfi(α̃n) · fj(α̃n)).

Since deg(fi) ≤ k − 1 and deg(fj) ≤ k − 1, we have deg(fi · fj) ≤ 2k − 2.
Therefore, the code C generated by bi ⋆ bj is a subcode of GRSn,2k−1(α̃, β̃′)
where β̃′ = β̃ ⋆ β̃. For ℓ small, more specifically, for

k − ℓ(k − ℓ+ 1)

2
> 2k − 1, (3.3)

we have C = GRSn,2k−1(α̃, β̃′), where β̃′ = β̃ ⋆β̃, and therefore the Sidelnikov-
Shestakov attack can be applied to discover the parameters α̃ and β̃′.

If ℓ is so large that equation (3.3) is not satisfied, it is possible to apply
the attack described in [62]. However this case is unlikely to occur (see [63,
Section 6], for details).

40

Suppose now that 2k − 1 > n − 2. In this case a similar attack could
be applied to a shortened code. We will explain the details below. First we
define this type of codes.

Definition 3.1 (d-shortened Code). Let C an [n, k] linear code and d ∈ N,
d ≤ k. The d-shortened code Sd(C) consists of all codewords (s1, · · · , sn−d)
with si ∈ Fq, for 1 ≤ i ≤ n− d, such that

(0, · · · , 0, s1, · · · , sn−d) ∈ C.

Suppose that the generator matrix G = [Ik | T] of C is in systematic form,
where T denotes a k × (n− k) matrix. Then, a basis of Sd(C) can be easily
obtained by extracting the n−d rightmost components of the last k−d rows
of G.

Let M be again the public key of the Berger-Loidreau cryptosystem,
denote by CM the code generated by the rows of M and by GSd

the generator
matrix of Sd(CM).

A row s = (s1, · · · , sn−d) of GSd
can be written

s = (β̃d+1h(α̃d+1), · · · , β̃nh(α̃n))

with h(x) = g(x)
∏d

j=1(x− α̃j), with deg(g) ̸= k − d− 1. Therefore,

< Gd >⊆ GRSn−d,k−d(α̃
′, β̃′)

where α̃′ = (α̃d+1, · · · , α̃n) and β̃′ = βd+i

∏d
j=1(αd+i − αj), i = 1, · · · , n − d.

Hence, we are in the same case as above and it is possible to retrieve α̃′ and β̃′.

Wieschebrink used square codes and shortened codes to attack the Berger-
Loidreau variant. His method was extended by A. Couvreur et al. to attack
the variants of the McEliece cryptosystem proposed by Baldi et al. as we
will see in the next subsection.

Both Wieschebrink and Sidelnikov-Shestakov attacks use the vulnerabil-
ity that the public key is permutation equivalent to a GRS code. In the next
chapter, we present a new cryptosystem where the matrix P will not be a
permutation anymore. It will be more dense matrix in order to protect the
encoder of a GRS code against structural attacks.

3.3.3 Distinguisher-Based Attack on the BBCRS vari-
ant

Baldi, Bianchi, Chiaraluce, Rosenthal and Schipani in [6] also used GRS
codes in a variant, which we will designate by the BBCRS cryptosystem,

41

replacing the permutation matrix used in the original proposal by a denser
transformation matrix. This proposal was also attacked, this time by A.
Couvreur, A., V. Otmani, J. P. Tillich and V. Gauthier-Umana in [19].

We start by describing the BBCRS scheme. The main element that dif-
ferentiates this proposal from the original cryptosystem is the replacement of
the permutation matrix P with an inverse of a dense transformation matrix
Q. The construction of this matrix is crucial for the protection of the attack
of Sidelnikov and Shestakov. Given G, a generator matrix of a GRSn,k code,
S a k × k non-singular matrix, and Q an n× n non-singular transformation
matrix, the public key is G′ = S−1GQ−1. The matrix Q is constructed as
Q = R+ T where R is a dense n×n matrix with rank z, T is a sparse n×n
matrix of average row weight m (below, we explain what this means) and the
elements of these matrices belong Fq. The matrix R is obtained as follows:

R =

A1

A2
...

Aw

T

·

B1

B2
...

Bw

 (3.4)

where Ai and Bi, i = 1, · · · , w, are z × n matrices, with z ≤ n. In their
proposal they consider the following two particular cases:

• A1 = A, A2 = 0, where 0 represent the all-zero z × n matrix

R =

[
A
0

]T
·
[
B1

B2

]
.

• B1 = B and B2 = 1 +B, where 1 represent the all-one z × n matrix

R =

[
A1

A2

]T
·
[

B
1 +B

]
.

The matrices R and T are built in such way that Q = R + T is a n × n
invertible matrix.

Relatively to the error correction capability, there is a change from the
previous proposal, since they define t∗ =

⌊
n−k
2m

⌋
and impose specific conditions

on the vector e, namely, AeT = 0. Since the public key is G′ = S−1GQ−1, to
encrypt a message u ∈ Fk

q , we selected a random error vector e ∈ Fn
q , with

wt(e) ≤ t∗ and compute y = uG′ + e. To decrypt the message we compute
yQ = uS−1G+ eQ where eQ = eR + eT .

42

In the first case, with A1 = A, A2 = 0, we have eR = 0. Since wt(eT) ≤
t∗, we can apply a decoding algorithm and obtain uS−1, and then multiplying
by S we get u.

In the second case, we need to have wt(eQ) ≤ t∗ to do the same process.
We have eQ = eA2(1 +B) + eT .

In this proposal they consider that there are advantages if the matrix T
has columns with weight 1 and R has rank 1, because when these values
increase, the key size increases, as well as the complexity of the decoding al-
gorithm. The case with m = 1 and z = 1 is the case which gives the smallest
key sizes. However the fact that there are columns with weight one would
became a weakness that was used by Tillich in [15] to attack this cryptosys-
tem. Once again it is possible to distinguish a GRS code from a random
code. In this case, that is achieved by computing the square code and that
can be used to unravel the algebraic structure of the public code. In [19],
A. Couvreur, A., V. Otmani, J. P. Tillich and V. Gauthier-Umana were able
to attack the BBCRS variant even when 1 < m < 2. For this reason, other
proposal emerged later in which they avoid columns with weight one (see [6]).

Next, we describe the attack in [19] that used the square code of different
shortenings of the public code. The idea is to compute the dimension of the
square code of shortened versions of the dual of the public code and, using
this,to try to reduce this new problem to the original one when T is a per-
mutation matrix. Before describing the attack, we summarize the BBCRS
scheme for 1 < m < 2:

Secret key:

• G a k × n generator matrix of a GRS code;

• Q an n× n invertible matrix, Q = R + T , where:

• R an n × n rank-z matrix, such that Q is invertible, it’s means that
R = aT b, for a = (a1, . . . , an) and b = (b1, . . . , bn), with ai and bi being
z × 1 full rank matrices, ∀i ∈ {1, . . . n};

• T an n×n non-singular sparse matrix, with row weight 1 < m < 2 (for
example if m = 1.4, means that 40% of the rows have weight equal to
2 and the other 60% have weight equal to 1);

• S a k × k invertible matrix.

The authors considered z = 1, since a larger z would imply a larger public
key (see [15] for details)

43

Public key: G′ = S−1GQ−1.

Encryption: Let u ∈ Fk
q a message, e ∈ Fn

q a random error vector with
wt(e) ≤ t∗. Compute y = uG′ + e.

Decryption:

1. Guess the value of eR, trying q elements since eR = eaT b and eaT ∈ Fq;

2. Compute yQ− eR = uS−1G+ eQ− eR = uS−1G+ eT ;

3. Since wt(eT) ≤ t∗, using a decoding algorithm of the GRS code, we
obtain uS−1;

4. Multiplying by S we obtain u.

Below we will give an idea of the distinguisher attack as described in [19].
But first, we need to describe two ways of constructing new codes from a
given code. The first is just a generalization of the d-shortened code defined
in the previous section.

Definition 3.2 (Shortened code). Let C an [n, k] linear code and I a subset
of {1, . . . , n}. The shortened code, SI(C), is defined as

SI(C) = {(ui)i/∈I | exists u = (ui)i ∈ C such that uj = 0when j ∈ I}.

Clearly, a d-shortened code is a particular case of a shortened code, ob-
tained when I = {1, . . . , d}.

Definition 3.3 (Punctured code). Let C an [n, k] linear code and I a subset
of {1, . . . , n}. The punctured code, PI(C), is defined as

PI(C) = {(ui)i/∈I | u = (ui)i ∈ C}.

Consider the following notation: C is the code generated by G, C ′ the
code generated by G′, I1 the set of positions which correspond to rows of T
of Hamming weight 1 and I2 the set of positions which correspond to rows
of T of Hamming weight 2. The goal of the attack is to recover the matrices
T and R. To this end, the parity-check matrix, that is the generator matrix
of the dual of the public code, is considered. The attack follows four steps:

1. Detecting columns of H ′ that belong to I2 and, therefore, those that
belong to I1;

44

2. Transforming columns of I2 into degree 1 columns by linear combina-
tions with columns of I1;

3. Then, the public code has been transformed into another code C ′
∗ such

that exists a secret GRS code C∗ and a matrix ΠR′ where Π is a per-
mutation matrix and R′ is rank-1 matrix such that:

C ′
∗ = C∗(Π +R′);

4. Finally, applying the attack developed in [15], it is possible to recover
Π and R′.

The first step of this attack uses the fact that the dimension of the square
code of structured codes like the GRS codes is linear in k (namely 2k − 1,
when 2k − 1 ≤ n), while the dimension of the square code of random codes
is quadratic in k (see [19, Section 1]).

Firstly, one tries to find a set I such that (SI(H′))2 has low dimension in
the following sense:

dim (SI(H′))
2
< min

{
n− | I |,

(
n− k− | I + 1

2

)}
then, using Propositions 2.21 and 2.28, to distinguish the public code from
a random code (since the public code, in the positions not in I, behaves like
a structured GRS code).

The second part of the first step consists in puncturing SI(C ′⊥) in a
position i /∈ I such that

dim
(
SI(C ′⊥)

)2
= dim

(
Pi(SI(C ′⊥))

)2
+ 1.

It turns out that, when the above happens, i belongs to I2, but when the
above equality is not valid then

dim
(
SI(C ′⊥)

)2
= dim

(
Pi(SI(C ′⊥))

)2
,

and we i can be an element of I1 or of I2. So, in this case we cannot decide
if column i of H ′ corresponds to a row of T with weight 1 or weight 2. This
phenomenon depends on the choice of I, however by choosing several random
subsets I one is able to decide if i corresponds to rows of weight 1 or of weight
2.

From this attack we can infer that the existence of lines with weight one
in the construction of the matrix T is a vulnerability to this attack. This is
a very important fact as it follows that to protect any variant of McEliece
with GRS codes we need to use weight of at least two [32]. We will use this
two-weight masking in our proposal.

45

3.4 ISD attacks
In this section we deal with the other type of attack to the McEliece

cryptosystem, namely, general attacks. As opposed to the structural attack
that try to recover the secret key, these attacks aim to decipher the ciphertext
in order to obtain the plaintext directly from the public key. To this purpose,
the cryptanalyst is faced with the problem of decoding a linear code with an
unknown structure, i.e., a random linear code, which is known to be an
NP-hard problem [9]. These algorithms are usually called decoding attacks.
Decoding attacks require exponential time, and therefore still represent only
a non-critical threat to McEliece, in the sense that it is enough to enlarge the
parameter size in order to make them infeasible. As a consequence, decoding
attacks are often used as a tool to determine the minimum parameter size
required to achieve the desired security level (e.g. 2128 or 2256). The most
renowned and highly regarded attack is the technique known as Information-
Set Decoding (ISD) and all the best decoding attacks are derived from it.

Eugene Prange [52] was the pioneer in the early 1960 in this area and
after him a significant research effort has been put into finding more effi-
cient methods in order to solve the random linear code decoding problem.
More concretely, Lee and Brickell [36], Leon [37], and Stern [57], proposed
decoding attacks through a family of ISD algorithms tailor-made for binary
codes. Algorithms for codes over arbitrary finite fields were proposed by
Christiane Peters in [50]. In this article a generalization of two information-
set decoding algorithms were presented: the Lee-Brickell’s and the Stern’s
algorithms. Moreover, for these attacks, an analysis of the computational
cost, i.e., concrete formulas to estimate the work factor.

Next, we succinctly explain the idea of the ISD attack. Basically, the
Information-Set Decoding tries to solve the following NP-hard problem:

Given a random looking generator matrix G ∈ Fk×n of a linear
code C and a vector y = uG+ e, recover u.

The first step of any ISD algorithm is to find a so-called information-set.
Before we introduce its formal definition we consider the following notation:

Notation 3.4. For a non-empty set I ⊆ {1, · · · , n} we let πI : Fn
q −→ F|I|

q

be the projection on the coordinates indexed by I.

Definition 3.5. Let C be an [n, k] code over Fq and G ∈ Fk×n
q an arbitrary

generator matrix for C. Consider a non-empty set I ⊆ {1, · · · , n} and πI(G)
the submatrix of G formed by the columns indexed by I. If |I| = k and πI(G)
has rank k, the set I is called an information-set and the I-indexed entries
of a codeword v are information symbols.

46

Lemma 3.6. Let C be an [n, k] code over Fq and let G ∈ Fk×n
q be a generator

matrix of C. Let I ⊆ {1, · · · , n} be an information-set for C. Then πI(G) ∈
Fk×k
q is an invertible matrix and, for all v ∈ C we have

v = πI(v) · πI(G)−1 ·G,

that is, G and πI(G)−1G generate the same code, and for any codeword
uπI(G)−1G, the I-indexed entries will carry the information symbols.

Proof. By the definition given above of information-set, the matrix πI(G)
has size k × k and rank k, therefore invertible. If v ∈ C, then v = uG for
u ∈ Fk

q . We trivially have

v = u · πI(G) · πI(G)−1 ·G (3.5)

Applying πI to both sides of (3.5) we obtain

πI(v) = u · πI(G) · πI(G)−1 · π(G) = u · πI(G).

Therefore,
u = πI(v) · πI(G)−1,

and consequently
v = πI(v) · πI(G)−1 ·G.

Proposition 3.7. Let C be an [n, k, d] code and G ∈ Fk×n
q be a generator

matrix of C. Let v ∈ C, t the error correction capability and y = v + e the
message received, where e ∈ Fn

q is the error vector. There exits a information-
set I ⊆ {1, · · · , n} of C for which

v = πI(y) · πI(G)−1 ·G.

In particular, there exists an information-set I ⊆ {1, · · · , n} of C with

d(y, πI(y) · πI(G)−1 ·G) ≤
⌊
d− 1

2

⌋
.

Proof. Let T := {1, · · · , n} \ σ(e), where σ(e) is the set of the nonzero
positions of e. We want to prove that πT (G) has rank k. Suppose, by
contradiction, that πT (G) has rank less than or equal to k − 1. Then, there
exists v ∈ C such that v ̸= 0 and σ(v)∩T = ∅. Therefore, 1 ≤ wt(v) ≤

⌊
d−1
2

⌋
,

contradicting the fact that C has minimum distance d.
Since πT (G) has rank k, there exists an information-set I for C with

I ⊆ T . In particular, I ∩ σ(e) = ∅ and so πI(y) = πI(v). Therefore,

πI(y) · πI(G)−1 ·G = πI(v) · πI(G)−1 ·G = v,

where the latter identity follows from (3.6).

47

We can describe a decoding algorithm for a linear code based on infor-
mation sets in the following way:
Algorithm of Information-Set decoding
Inputs:

1. The generator matrix G ∈ Fk×n
q of an [n, k, d] linear code C over Fq;

2. The collection I(C) of all information-sets of C;

3. The received vector y ∈ Fn
q .

Procedure:

1. For all I ∈ I(C) compute vI := πI(y) · πI(G)−1 ·G ∈ C;

2. If d(y,vI) ≤ ⌊d−1
2
⌋, then return vI and terminate the algorithm.

Christiane Peters presented in [50] a generalization of the Stern algorithm
for codes over arbitrary fields. In Stern’s algorithm there are two parameters:
p and ℓ. The algorithm uses the idea of allowing a fixed number of errors in
the information-set and search for the error vector, restricting the possible
candidates to vectors having ℓ zeros outside the I-indexed columns. Stern’s
algorithm divides the information-set I into two equal-size subsets X and
Y , and looks for words having exactly weight p among the columns indexed
by X, words with exactly weight p among the columns indexed by Y , and
words with exactly weight 0 on a fixed uniform random set of l positions
outside the I-indexed columns. Hence, in the Stern’s algorithm, the aim is
to find error vectors with weights p, p, 0 when restricted to certain index sets
X, Y, Z, respectively. Here X and Y are sets of size k

2
, and Z has size ℓ. The

parameters p and ℓ need to be chosen as to optimize the average run time.
For more details of the algorithm and work factor’s estimates, see [57].

The work-factor is the amount of effort or work required to break a cryp-
tosystem, i.e., the number of bits operations that an adversary needs in order
to break it. In modern encryption algorithms the threshold of 2128 or 2256

bit operations is considered secure. In general, we can say that

WF = mS × 1

Pr

where S is the cost of one iteration, Pr is the probability of success of each
iteration (where we assume this probability does not depend on the iteration)
and m is the number of bits needed to describe an element of Fq.

48

In the case of the Stern’s algorithm for codes over Fq, with q = 2m, r the
number of errors and the chosen parameters p and ℓ, Peters presented in [50]
the following work factor estimate:

WFp,ℓ = mSp,ℓ

(
n
r

)(
k/2
p

)2(n−k−ℓ
r−2p

) , (3.6)

where

Sp,ℓ = (n− k)2(n+ k) +

[
k/2− p+ 1 + 2

(
k/2

p

)
(q − 1)p

]
ℓ+

+
2pq(r − 2p+ 1)(2q − 3)(q − 1)2p−2

qℓ

(
k/2

p

)2

.

In the next chapter we will use this work factor estimate formula in order
to obtain parameters sufficiently large for the security of 2128, 2256 and 2512

bit operations.

49

50

Chapter 4

McEliece Cryptosystems with
Convolutional Encoders

In this chapter we present a variant of de McEliece cryptosystem that
instead of block codes uses convolutional encoders. The idea of this new
variant is different from all previous constructions, even the ones that used
convolutional codes, since it is based on building a polynomial encoder as
the product of a block code encoder and two invertible Laurent polynomial
matrices. Hence, the decoding is performed by inverting the polynomial ma-
trices and decode the corrupted data using the block code. This new variant
aimed at opening the possibility of trying to use again different classes of
codes such as GRS in alternative to the Goppa codes. In this proposed
scheme the message is not a block vector but a stream of vectors sent in
a sequential fashion. Again the security relies in the difficulty of decoding
a general convolutional code (specially hard when the degree of the code is
large).
Our construction uses large parts of randomly generated matrices in order to
mask the secret key and the truncated sliding matrices of the encoders are
not full row rank (i.e., they are not generator matrices of a block code).

In the first section we introduce some definitions and results. In the sec-
ond we describe the cryptosystem and finally in the third section we analyse
the security with respect to decoding attacks and structural attacks.

4.1 Definitions

For the construction of the new proposal, the general ingredients are the
following. Let G ∈ Fk×n

q be an encoder of an [n, k, 2t + 1] block code that

51

admits an efficient decoding algorithm and can correct up to t errors,

S(D) =
ν∑

i=µ

SiD
i ∈ Fk×k

q [D] (4.1)

where ν, µ are integers such that ν ≥ µ, Sµ ∈ Fk×k
q is an invertible constant

matrix and

T (D−1, D) =

µ∑
j=−µ

TjD
j ∈ Fn×n

q (D−1, D) (4.2)

is an invertible (in Fq((D))) Laurent polynomial matrix such that

1. each row of Ti has at most ρ nonzero elements, for i = −µ, . . . , 0, . . . , µ;

2. |T (D−1, D)| ∈ Fq \ {0}.

We propose to construct a convolutional encoder G′(D) as:

G′(D) = S(D) G T−1(D−1, D). (4.3)

Note that the encoder G′(D) is a polynomial, and therefore can be used as
a blueprint for building a physical encoder for the code, i.e., a device which
can be used to transform k parallel streams of information symbols into n
parallel streams of coded symbols.

Recall that the Hamming weight of a vector v ∈ Fn
q , wt(v), is the number

of the nonzero components of v. This definition can be extended to poly-
nomial vectors v(D−1, D) =

∑
i∈Z

viD
i in a natural way as wt(v(D−1, D)) =∑

i∈Z
wt(vi).

For the sake of simplicity we shall consider information vectors that start
at time instant zero and have finite support, i.e., u(D) ∈ Fk

q [D]. We will also
consider the error vectors e(D) ∈ Fn

q [D] to be polynomials.

Lemma 4.1. Let T (D−1, D) be a Laurent polynomial matrix as described in
(4.2) and let e(D) =

∑
i≥0

eiD
i ∈ Fn

q [D] be a random error vector satisfying

wt((ei, ei+1, . . . , ei+2µ)) ≤
t

ρ
(4.4)

for all i ≥ 0. Then all the coefficients of e(D)T (D−1, D) have weight less
than or equal to t.

52

Proof. It readily follows from the condition 1. above, that if each row of
Tj has at most ρ nonzero elements, then wt(eiTj) ≤ ρ · wt(ei) for all i ≥ 0
and −µ ≤ j ≤ µ. Take ei = 0 for i < 0, then the ℓ-th coefficient of

e(D)T (D−1, D) is given by
µ∑

j=−µ

eℓ−jTj, for ℓ ≥ −µ, and the result follows.

Condition (4.4) describes the maximum number of errors allowed within
a time interval and is similar to the sliding window condition introduced in
[4] to describe the possible error patterns that can occur in a given channel.

Theorem 4.2. Let G′(D) be the encoder as described in (4.3), t the correct-
ing error capability of G, u(D) the information sequence and e(D) an error
vector satisfying (4.4). Then, the received data

y(D) = u(D)G′(D) + e(D) ∈ Fn
q [D]

can be successfully decoded.

Proof. Multiplying y(D) by T (D−1, D) from the right yields the polynomial
equation

y(D)T (D−1, D) = u(D)S(D)G+ e(D)T (D−1, D).

Therefore, if u(D) = u0 + u1D + · · · + usD
s and e(D) = e0 + e1D + · · · +

es+µ+νD
s+µ+ν , we can write

u(D)S(D) =
ν+s∑
i=µ

ûiD
i (4.5)

and

e(D)T (D−1, D) =

s+2µ+ν∑
i=−µ

êiD
i,

for some coefficients ûi and êi ∈ Fn
q . So, each coefficient of y(D)T (D−1, D)

is of the form ûiG + êi. By Lemma 4.1 it follows that wt(êi) ≤ t, for
−µ ≤ i ≤ s+ 2µ+ ν and, therefore, each ûi can be recovered. Furthermore,

53

from (4.5) we have that[
ûµ ûµ+1 · · · ûν+s

]
=

=
[
u0 u1 · · · us

]

Sµ Sµ+1 · · · Sν

Sµ Sµ+1 · · · Sν

.
Sµ · · · · · · Sν

.
.

Sµ Sµ+1 · · · Sν

,

so, one can recover each ui sequentially as

u0 = ûµS
−1
µ ,

u1 = (ûµ+1 − u0Sµ+1)S
−1
µ ,

u2 = (ûµ+2 − u0Sµ+2 − u1Sµ+1)S
−1
µ , (4.6)

...

ui =

ûµ+i −
i−1∑

j=max{0,i−(ν−µ+1)}

ujSµ+i−j

S−1
µ .

Notice that if s ≤ ν−µ we do not need to use all the Sj to retrieve u(D).
If we let ∑

i≥−µ

ŷiD
i = y(D)T (D−1, D),

then, at each time instant i, with i ≥ −µ, we compute each

ŷi =

min{i,µ}∑
j=−µ

yi−jTj

by performing at most 2µ+1 multiplications of vectors of size n by a matrix
of order n, then we decode ŷi using the decoding algorithm corresponding
to G to obtain ûi, e.g., using Berlekamp-Massey algorithm requires O(n2)
field operations. Finally we retrieve uj by performing at most ν − µ + 1
multiplications of vectors of size k by a matrix of order k and at most ν − µ
sums of vectors of order k. Recall that the complexity of each vector-matrix
product is O(n2).

54

Remark 4.3. Let see in detail what happens when µ = 1, ν = 2 and s = 2.
We have:

u(D) = u0 + u1D + u2D
2

S(D) = S1D + S2D
2

T (D−1, D) = T−1D
−1 + T0 + T1D

P (D−1, D) = T−1(D−1, D).

Since P (D−1, D) = T−1(D−1, D):

I = P (D−1, D)T−1(D−1, D)

I = (P−1D
−1 + P0 + P1D)(T−1D

−1 + T0 + T1D)

I = P−1T−1D
−2 + (P−1T0 + P0T−1)D

−1 + P−1T1 + P0T0 + P1T−1 +

+ (P0T1 + P1T0)D + P1T1D
2.

So, P−1T−1 = 0, P−1T0 + P0T−1 = 0, P0T1 + P1T0 = 0, P1T1 = 0 and
P−1T1 + P0T0 + P1T−1 = I.
In this case, the convolutional encoder G′(D) is given by

G′(D) = (S1D + S2D
2)G(P−1D

−1 + P0 + P1D)

=S1GP−1 + (S1GP0 + S2GP−1)D + (S1GP1 + S2GP0)D
2 + S2GP1D

3.

The encryption of the message u(D) is given by:

y(D) = u(D)G′(D) + e(D)

= [u0S1GP−1 + e0] + [u0S1GP0 + u0S2GP−1 + u1S1GP−1 + e1]D+

+[u0S1GP1 + u0S2GP0 + u1S1GP0 + u1S2GP−1 + u2S1GP−1 + e2]D
2+

+[u0S2GP1 + u1S1GP1 + u1S2GP0 + u2S1GP0 + u2S2GP−1 + e3]D
3+

+[u1S2GP1 + u2S1GP1 + u2S2GP0 + e4]D
4 + [u2S2GP1 + e5]D

5

Let’s look at the decoding process next.

55

Multiplying y(D) by T (D−1, D) we obtain:

y(D)T (D−1, D) =

(e0T−1)D
−1 + [u0S1G(P−1T0 + P0T−1) + e0T0 + e1T−1] +

+ [u0S1G(P−1T1 + P0T0 + P1T−1) + u0S2G(P−1T0 + P0T−1)+

+ u1S1G(P−1T0 + P0T−1) + e0T1 + e1T0 + e2T−1]D+

+ [u0S1G(P0T1 + P1T0) + u0S2G(P−1T1 + P0T0 + P1T−1)+

+ u1S1G(P−1T1 + P0T0 + P1T−1) + u1S2G(P−1T0 + P0T−1)+

+ u2S1G(P−1T0 + P0T−1) + e1T1 + e2T0 + e3T−1]D
2+

+ [u0S2G(P0T1 + P1T0) + +u1S1G(P0T1 + P1T0)

+ u1S2G(P−1T1 + P0T0 + P1T−1) + u2S1G(P−1T1 + P0T0 + P1T−1)+

+u2S2G(P−1T0 + P0T−1) + e2T1 + e3T0 + e4T−1]D
3+

+ [u1S2G(P0T1 + P1T0) + u2S1G(P0T1 + P1T0)+

+u2S2G(P−1T1 + P0T0 + P1T−1) + e3T1 + e4T0 + e5T−1]D
4+

+ [u2S2G(P0T1 + P1T0) + e4T1 + e5T0]D
5 + [e5T1]D

6.

4.2 Construction
We propose a new scheme of the McEliece PKC where a secret encoder

of a block code is masked by polynomial matrices yielding a polynomial
encoder of a convolutional code, which constitutes the public key. We shall
consider the type of encoders described in Section 2. In this context, the
information vector u(D) represents the message to be interchanged (usually,
in the applications, it is a secret key for a symmetric cryptosystem) and thus
will be a polynomial with designed fixed degree. The proposed scheme works
as follows:
Secret key: {S(D), G, T (D−1, D)}.
Public key: {G′(D) = S(D)GT−1(D−1, D), t/ρ, µ}.
Encryption: Alice selects an error vector e(D) satisfying (4.4) and encrypts
the message u(D) = u0 + u1D + u2D

2 + · · ·+ usD
s ∈ Fk

q [D] as

y(D) = u(D)G′(D) + e(D). (4.7)

Decryption: Bob multiplies (4.7) from the right by the matrix T (D−1, D)
to obtain

u(D)S(D)G+ e(D)T (D−1, D), (4.8)

he then decodes using G and then recovers the message u(D) from u(D)S(D),
as explained in the proof of Theorem 4.2. Note that this can be done sequen-

56

tially since, if we write

y(D)T (D−1, D) = u(D)S(D)G+ e(D)T (D−1, D) =

s+2µ+ν∑
i=−µ

ŷiD
i,

then each coefficient ŷi, for −µ ≤ i ≤ s+ 2µ+ ν is of the form

ŷi =

min{i,µ}∑
j=−µ

yi−jTj,

and hence, Bob can compute each ŷi when he has received the necessary yj’s,
that is, the, at most 2µ+ 1, necessary vectors. Now, since we have that

u(D)S(D) =
ν+s∑
i=µ

ûiD
i and e(D)T (D−1, D) =

s+2µ+ν∑
i=−µ

êiD
i,

then, for every j = µ, . . . , µ + s, the j-th coefficient of y(D)T (D−1, D) is
ŷj = ûjG+ êj, and hence if êj has t or less errors, Bob can recover ûj, from
which he recovers the first s+ 1 coefficients of u(D)S(D), that are the ones
he needs. Notice that Bob does not need to calculate ŷj, for −µ ≤ j ≤ µ−1.
Also he only needs the errors from êµ to êµ+s, and these errors are of the
form

êi =

µ∑
j=−µ

ei−jTj.

In order to reduce the key size, we select G to be an encoder of a GRS
code and construct T (D−1, D) in such a way that it can protect the structure
of G and at the same time remain secure to ISD attacks. Recall that a GRS
generator matrix is given by two vectors α ∈ (Fq \ {0})n with αi ̸= αj for
every i ̸= j, and x ∈ (Fq \ {0})n. The generator matrix is constructed as

G =

x1 x2 · · · xn

x1α1 x2α2 · · · xnαn
...

...
x1α

k−1
1 x2α

k−1
2 · · · xnα

k−1
n

 . (4.9)

We denote these codes by GRSn,k(α,x). GRS are MDS codes, and there-
fore can correct up to t =

⌊
n−k
2

⌋
errors. Due to security reasons, we must

consider ρ to be at least 2 when using GRS (see [32, 11]). Properties 4.4
present some desirable conditions that T (D−1, D) should fulfill in order to
construct a secure public key.

57

Properties 4.4. Let

T (D−1, D) =

µ∑
j=−µ

TjD
j ∈ Fn×n

q (D−1, D),

be a Laurent polynomial matrix. We want T (D−1, D) to satisfy the following
properties:

a) |T (D−1, D)| ∈ Fq \ {0}, i.e., invertible (in Fq(D
−1, D));

b) Each nonzero row of Tj has two nonzero elements, for −µ ≤ j ≤ µ (i.e.,
ρ = 2);

c) The positions of the nonzero columns of Tj form a partition of n;

d) If we write

T−1(D−1, D) = P (D−1, D) =

µ∑
j=−µ

PjD
j ∈ Fn×n

q (D−1, D),

then the nonzero columns of Pj have at least 2 nonzero entries.

Remark 4.5. Let −µ ≤ j ≤ µ and dj be the number of nonzero columns of
Tj. Conditions a) and c) in Properties 4.4 imply that

µd−µ + · · ·+ 2d−2 + d−1 = d1 + 2d2 · · ·+ µdµ. (4.10)

Remark 4.6. Note that G′
0 = SµGP−µ, and therefore if we assume d−µ = dµ,

we have
rank (G′

0) ≤ rank (P−µ) ≤ dµ.

In particular, if σ ≤ s−µ−ν we have that the rank of the so-called truncated
sliding matrix of G′(D),

G′
truc(σ) =

G′
0 G′

1 · · · G′
µ+ν

G′
0 · · · G′

µ+ν−1
. . .

. G′
µ+ν

G′
0 · · · G′

µ+ν−1
.

G′
0

∈ F(σ+1)k×(σ+1)n

q

is also less than or equal to σk+dµ, and we have a rank deficiency of at least
k − dµ.

58

4.2.1 Constructing the matrices T (D−1, D)

In this subsection we present a class of matrices T (D−1, D) that satisfies
the conditions given above and study some of the properties that will provide
the desired security (discussed in Section 4.3). We consider a construction of
T (D−1, D) where the nonzero columns of Pi will always have an even number
of nonzero elements, and having, in general, many columns with more than
two nonzero elements.

We start by constructing a matrix A = A(D−1, D) from which we later
construct the matrix T (D−1, D). In this construction we take n, k and all dj
(defined in Remark 4.5) to be even. Define ñ = n/2, k̃ = k/2 and d̃j = dj/2,
for −µ ≤ j ≤ µ.

Properties 4.7. The matrix A = A(D−1, D) ∈ F(D−1, D)k̃×ñ satisfies the
following conditions:

1. A is an upper triangular matrix;

2. In the i-th entry of the principal diagonal of A, there is an element
of the form βiD

j, where βi ∈ F \ {0}, for 1 ≤ i ≤ ñ, and j ∈
{−µ, . . . , 0, . . . , µ} in such a way that there are d̃j entries with power
Dj, satisfying

µd̃−µ + · · ·+ 2d̃−2 + d̃−1 = d̃1 + 2d̃2 + · · ·+ µd̃µ; (4.11)

3. Each row of A has at most one entry of the form γDj for each −µ ≤
j ≤ µ, with γ ∈ F \ {0};

4. All nonzero entries of a column of A have the same exponent of D.

Condition (4.11) implies

|A | =
ñ∏

i=1

βi,

i.e, |A| ∈ F \ {0}. All the βi can be randomly chosen, as well as all the γ ∈ F
that appear above the principal diagonal.

Example 4.8. In F3 the following matrix satisfies Properties 4.7:

A =

2D 2 D−2 0
0 1 0 D
0 0 2D−2 2D
0 0 0 D

59

Before creating our T (D−1, D) we need a technical lemma about the de-
terminant and inverse of a block matrix first obtained by I. Schur [55].

Lemma 4.9. [14, Formulas (2) and (4)] Let T be a block matrix of the form[
A B
C D

]
,

where A and D are nonsingular. Then

a) |T | = |A| |D − CA−1B|.

b) If T is invertible, the inverse of T is

T−1 =

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
.

We are now in position to construct a matrix T (D−1, D) with all the
desirable properties.

Lemma 4.10. Suppose |F| > 2. Let A = A(D−1, D) be a matrix satisfying
the conditions of Properties 4.7. Take β ∈ F \ {0, 1}, and define B = βA.
Consider the matrices Γ and ∆(D−1, D) where

1. Γ ∈ Fk×k is a permutation matrix;

2. ∆(D−1, D) is the block matrix

∆(D−1, D) =

[
A B
A A

]
∈ Fn×n(D−1, D).

Then T (D−1, D) = Γ∆(D−1, D) satisfies the conditions in Properties 4.4.

Proof. Using Lemma 4.9 a), we have

|∆(D−1, D)| = |A| |A− AA−1B| =

(
ñ∏

i=1

βi

)2

(1− β)ñ.

Therefore, |T (D−1, D)| ∈ F \ {0}.
Conditions b) and c) of Properties 4.4 hold due to Properties 4.7 and

our construction of ∆(D−1, D). Condition d) is obtained using Lemma 4.9
b), since we have

∆−1(D−1, D) =

[
1

1−β
A−1 β

β−1
A−1

1
β−1

A−1 1
1−β

A−1

]
.

If we write ∆(D−1, D) =
∑µ

j=−µ∆jD
j then, by construction, all rows of ∆j,

and hence all columns of Pj, will have an even number of nonzero entries, for
−µ ≤ j ≤ µ.

60

Example 4.11. Take A as in Example 4.8, Γ = I8 the identity matrix of
size 8, and β = 2. Then,

T (D−1, D) =

[
A B
A A

]
=

2D 2 D−2 0 D 1 2D−2 0
0 1 0 D 0 2 0 2D
0 0 2D−2 2D 0 0 D−2 D
0 0 0 D 0 0 0 2D
2D 2 D−2 0 2D 2 D−2 0
0 1 0 D 0 1 0 D
0 0 2D−2 2D 0 0 2D−2 2D
0 0 0 D 0 0 0 D

.

In this case

P (D−1, D) =

D−1 D−1 D−1 0 D−1 D−1 D−1 0
0 2 0 1 0 2 0 1
0 0 D2 D2 0 0 D2 D2

0 0 0 2D−1 0 0 0 2D−1

2D−1 2D−1 2D−1 0 D−1 D−1 D−1 0
0 1 0 2 0 2 0 1
0 0 2D2 2D2 0 0 2D2 2D2

0 0 0 D−1 0 0 0 2D−1

.

4.3 Attacks Against the Proposed Cryptosys-
tem

In this section, we investigate possible attacks to the proposed cryptosys-
tem, and show how the properties analyzed in previous sections provide in-
creased key security with respect to previous variants of the McEliece cryp-
tosystem. Thus, such scheme allows the use of GRS codes, and therefore
reduce the key size of the public key.

We will consider the structural and ISD attacks. Each one of these classes
of attacks will be analysed considering two different situations. One when
the attacker deals with the whole message, and another when only truncated
parts (intervals) of the sequence that forms the message are considered. This
is explained next.
The ciphertext is generated as y(D) = u(D)G′(D) + e(D) or equivalently,[

y0 y1 · · · ys · · · ys+µ+ν

]
(4.12)

is equal to the multiplication of[
u0 u1 · · · us

]
61

with

G′
0 G′

1 · · · G′
µ+ν

G′
0 G′

1 · · · G′
µ+ν

.
G′

0 G′
1 · · · G′

µ+ν
.

G′
0 G′

1 · · · G′
µ+ν

(4.13)

and by then adding the error vector[
e0 e1 · · · es+µ+ν

]
.

An attacker could consider the full row rank matrix in (4.13) as the generator
matrix of a block code. Note, however, that the size of this block code is
k(s+1)×n(s+1+µ+ ν) and therefore it will be very large for large values
of s, even if n, k and µ are small. Precise numerical examples are provided
in the next section. Notice that, to decode, Bob uses just matrices of size
k × n.

Another possibility is to consider an interval of the ciphertext sequence
in (4.12) instead of the whole sequence. However, convolutional codes have
memory and therefore each yi depends on previous data. In order to discover
yi one needs to compute previous yj, i.e., one must estimate the state of the
convolutional code at time instant i.

Thus, it seems natural to try to attack the first vectors [y0 y1 · · · yσ]
for different values of σ ≤ s, as the initial state is assumed to be zero. In-
deed, this possible weakness when using convolutional codes in the McEliece
cryptosystem was already pointed out in [39]. For these reasons we are par-
ticularly interested in the security of the following interval of data[

y0 y1 · · · yσ

]
=

[
u0 u1 · · · uσ

]

G′
0 G′

1 · · · G′
σ

G′
0 · · · G′

σ−1
.

G′
0

+
[
e0 e1 · · · eσ

]
(4.14)

for σ ≤ s and taking, obviously, G′
i = 0 for i > µ + ν. Note that s can be

taken to be very large without increasing the size of the public key nor the
operations performed at each time instant.

62

4.3.1 Structural attacks

One general observation about the security of the proposed cryptosys-
tem is about the way the public key is generated. As opposed to previous
McEliece schemes, G′(D) = S(D)GP (D−1, D) is constructed using large
parts randomly generated, and this makes, a priori, structure attacks more
difficult. Effectively, the coefficients of S(D) are totally randomly generated
except for the Sµ, which is required to be invertible. Moreover, we will show
next that, by counting the number of their inverses T (D−1, D), the set of
admissible P (D−1, D) is considerably large, and therefore P (D−1, D) also
introduces additional randomness into the system.

Lemma 4.12. Let A = [aiℓ], ñ and d̃j, for −µ ≤ j ≤ µ, as in Subsection
4.2.1. Let d̂i,j be the number of elements in the main diagonal with the power
Dj in the first i rows, and suppose ji is such that aii = βiD

ji, for 1 ≤ i ≤ ñ
and −µ ≤ j ≤ µ. Then the number of possible T (D−1, D) matrices is

(q − 2)(q − 1)ñn! ñ!
µ∏

j=−µ

d̃j!

ñ∏
i=1

µ∏
j=−µ

j ̸=ji

(
(d̃j − d̂i,j)(q − 1) + 1

)
. (4.15)

in particular, the number of possible T (D−1, D) matrices is always greater
than

(q − 2)(q − 1)ñn! ñ!
µ∏

j=−µ

d̃j!

(4.16)

Proof. The number of possibilities for the principal diagonal of A satisfying
Condition 2. of Properties 4.7 is

(ñ)!
µ∏

j=−µ

d̃j!

(q − 1)ñ,

where we used the formula for the number of permutations with repetitions
and since, for 1 ≤ i ≤ ñ, the βi can be any element of Fq \ {0}.

Although the number of possibilities for A to satisfy Conditions 3. and 4.
of Properties 4.7 vary widely depending on the arrangement of the elements
of the main diagonal of A, it is easy to see that in the row i we have d̃j − d̂i,j
places after aii to put at most one element of the form γDj in them, for
j ∈ {−µ, . . . , 0, . . . , µ} \ {ji} such that γ ∈ Fq \ {0}. We must consider also

63

the possibility that no element of the form γDj appears with γ ̸= 0 for each
j. Therefore there are

ñ∏
i=1

µ∏
j=−µ

j ̸=ji

(
(d̃j − d̂i,j)(q − 1) + 1

)
(4.17)

different possibilities above the main diagonal, for each one of the possible
main diagonals we can take satisfying the condition 2.. Now, the number
of different matrices T (D−1, D) that we can obtain with this construction is
equal to (q − 2)n! times the number of different matrices A. Therefore, the
number of possible matrices T (D−1, D), is (4.15).

Example 4.13. Suppose n = 16, q = 17, µ = 1, d−1 = d1 = 6 and d0 = 4.
If in the main diagonal of A we have the sequence of powers

(D−1, D, 1, D−1, D, 1, D−1, D),

then by (4.17) we have

(2 · 3)(2 · 2)(2 · 2)(1 · 2)(1 · 1)(1 · 1)(1) = 192

different possibilities of arranging the elements above the diagonal. But if in
the main diagonal of A we have the sequence of powers

(1, 1, D−1, D−1, D−1, D,D,D),

then we have
(3 · 3)(3 · 3)(3)(3)(3) = 2187

different possibilities.

Lemma 4.14. The number of possible S(D) matrices is

qk
2(ν−µ)

k−1∏
j=1

(qk − qj).

Proof. In S(D) =
∑ν

i=µ SiD
i we have ν − µ+ 1 matrices Si. While Sµ must

be invertible in order to decode u(D), we impose no conditions over the other
ν−µ matrices Si. The number of invertible k×k matrices defined over Fq is

k−1∏
j=0

(qk − qj),

while the number of k×k matrices over Fq with no restrictions is qk2 . Hence,
we obtain the stated result.

64

The number of possible matrices S(D) is really large even for small values
of k, but considering S(D) in such generality will yield large private keys.
One way of reducing the size of the private keys is by considering sparse
matrices. The next result gives a subfamily of the matrices S(D) that can
be used for this purpose.

Lemma 4.15. Suppose S(D) is a block diagonal matrix with r blocks, i.e.

S(D) =

Σ1(D) 0 · · · 0

0 Σ2(D) · · · 0
...

...
0 0 · · · Σr(D)

 ,

where r | k and let ϵ = k/r. Then each row of S(D) has at most ϵ nonzero
entries and the number of possible S(D) matrices of this form is

qϵk(ν−µ)

(
ϵ−1∏
j=0

(qϵ − qj)

)r

.

Proof. Follows immediately from the previous Lemma.

Next we look at possible structural attacks to the truncated sliding gen-
erator matrix G′

truc(σ), that can be decomposed as

65

Sµ Sµ+1 · · · Sν

Sµ Sµ+1 · · · Sν

.
Sµ · · · · · · Sν

.
.

Sµ

G

G
. . .

G

×

︸ ︷︷ ︸
=:Struc(σ)

P−µ · · · P0 · · · Pµ

P−µ · · · P0 · · · Pµ

.
. Pµ

.
. . . P0

.
P−µ

,

︸ ︷︷ ︸
=:Ptruc(σ)

where Struc(σ) ∈ F(σ+1)k×(σ+1)k
q and Ptruc(σ) ∈ F(σ+1)n×(σ+1)n

q . As all the
matrices are constant, then it may seem to describe a similar situation as
the original McEliece PKC using block codes. Note, however, that Ptruc(σ)
is neither a permutation nor an invertible matrix.

As discussed in [11, 32, 33] the algebraic structure of a generator matrix
G of a GRS is removed in GP if the weight of the columns of P is larger
than or equal to 2. Due to condition d) in Properties 4.4, this is the case of
the nonzero columns of Ptruc(σ). Obviously, its zero columns will not reveal
any structure of the matrix G either, and thus we conclude that the attacks
presented in [19] and [16] will not succeed against the proposed scheme.
Similarly, one can computed the parity-check matrix H ′(D) from G′(D) via
H ′(D)(G′(D))T = 0 and obtain that H ′(D) = H(T (D−1, D))T , where H is
the parity-check of G which is also of the form (4.9). Again, the attacks fail
as the weight of the rows of Ttruc(σ) are zero or ≥ 2.

66

4.3.2 Plaintext recovery

The plaintext recovery attacks try to decode a random linear code without
requiring any knowledge of the secret key. However, trying to decode directly
a convolutional code using ML decoding (Maximum-Likelihood decoding),
e.g., the Viterbi decoding algorithm (see [58]), seems very difficult due to the
large number of trellis transitions (its computational complexity increases
exponentially with the increasing constraint length, ν + µ in our case) .

The plaintext recovery type of attack is typically performed using infor-
mation set decoding algorithms (ISD).

Next, we analyse how Stern ideas could be adapted to our context. Con-
sider the full row rank matrix in (4.13) and ISD attacks using, for instance,
the Stern algorithm [50].

A detailed description of the algorithm for codes over arbitrary finite
fields can be found in [50, Sec. 3] by C. Peters. In the same paper, Peters
also presents a work factor estimate. For Fq with q = 2m, r the number of
errors, G a k × n matrix and the parameters p and ℓ,

WFp,ℓ = mSp,ℓ

(
n
r

)
(

n− k − ℓ
r − 2p

)(
k
2

p

)2 , (4.18)

where

Sp,ℓ =(n− k)2(n+ k) + ℓ

(
k

2
− p+ 1 + 2

(
k
2

p

)
(q − 1)p

)
+

2pq(r − 2p+ 1)(2q − 3)(q − 1)2p−2

qℓ

(
k
2

p

)2

.

The parameters p and ℓ have to be determined to minimize WFp,ℓ. A
few improvements were made to this algorithm (see for example [23, 31]) but
as was pointed out in [11] new information set decoding algorithms will not
significantly change the security of McEliece PKC and its variants.

Let ks = rank(G′
truc(s)) and select a size-ks information set I = {a1, . . . , aks} ⊂

{1, . . . , k(s+ 1)} and let ts be the maximum number of errors that the code
can tolerate within the time interval [a1, . . . , aks]. Let P (k, n, t) be the prob-
ability of determining the secret message when using a (n, k) block code with
error-correcting capability t in the classical McEliece PKC. Then, it follows
that the probability of recovering û in (4.14) is

1

qk(s+1)−ks
P (ks, n(s+ 1), ts).

67

4.4 Improvements: higher rates and message
length reduction

In order to protect this PKC against structural attacks, we considered
the column weight of each Pj, with −µ ≤ j ≤ µ, to be at least ρ, but this
implies that at each consecutive 2µ+1 instants, we can only send t/ρ errors.
One consequence will be that if we want to protect it against ISD attacks
(at time instant σ = s, when G′

truc(s) is full rank) we need to send large
amount of information with very poor rate. In this section, we develop a
new method of sending the messages in such a way that the message length
is reduced. This method will allow the use of more general parameters n and
k and, therefore, higher rates.

Since our decoding is sequential, we do not need to receive the whole
y(D) to start decoding. In reality we just need to receive (y0,y1, . . . ,y2µ+σ)
in order to decode (u0,u1, · · · ,uσ). This will improve the performance of
the scheme, but notice that to calculate (yσ+1, . . . ,y2µ+σ), Alice also needs
to have (uσ+1, . . . ,u2µ+σ). Hence, Alice can proceed in the following way:
Alternative Encryption: Alice wants to send the message (u0,u1, · · · ,uσ)
to Bob. She randomly generates the vector (uσ+1, . . . ,u2µ+σ), selects an error
vector

e(D) =

3µ+ν+σ∑
i=0

eiD
i

satisfying (4.4), and encrypts the message u =
∑2µ+σ

i=0 uiD
i as

y(D) = u(D)G′(D−1, D) + e(D) =

3µ+ν+σ∑
i=0

yiD
i. (4.19)

Now, instead of sending y(D), Alice just sends

ỹ(D) =

2µ+σ∑
i=0

yiD
i.

Note that in this modified scheme the parameter σ has to be part of the
public key. As was noticed in Remark 4.6, the rank of G′

truc(σ) is less than
or equal to σk+dµ, therefore, G′

truc(σ) is not full rank. If qk−dµ is sufficiently
large, an attacker cannot recover u(D).

Remark 4.16. Note that the security of this alternative encryption heavily
relies on the rank deficiency of G′

truc(σ). However, the addition of errors
increases the security and moreover avoids the right inversion of the complete
sliding generator matrix of G′, as described in equation (4.13), by an attacker.

68

The process just described allows Alice to send much smaller messages
and still be confident that they are protected. But Alice needs to send
(2µ + σ + 1)n elements of Fq if her message is put in (σ + 1)k elements of
Fq, so the rate of transmission is reduced. But since with this alternative
process of encryption we don’t need to worry about ISD attacks on full rank
matrices, we can have larger rates k/n, specially considering dµ very low, but
sufficiently large so that there are enough randomly generated Tµ.

In the next section, we exhibit a few concrete examples where the advan-
tages of this PKC can be seen.

4.5 Examples
We will now explain in detail the construction of two specific examples.

We finish this section displaying a table with thess and other examples with
different parameters, where we explore different work-factors and different
sizes of the plaintext u.

Example 4.17. We choose the field Fq with q = 28. Let m = log2(q) = 8.
Our generator matrix G is the k × n generator matrix of a GRS over Fq

of size n = 180 and dimension k = 96. Therefore, we can correct up to
t =

⌊
n−k
2

⌋
= 42 errors. In order to construct our G′(D), we fix µ = 1, ν = 2

and (d−1, d0, d1) = (60, 60, 60), so, clearly, condition (4.10) is satisfied. With
these parameters, we construct the matrices S(D), T (D−1, D) and P (D−1, D)
as described in Section 4.2 and compute

G′(D) = S(D)GP (D−1, D).

To reach 2256-bit security level against ISD attacks using the full rank matrix
in (4.13), we need to send u(D) =

∑s
i=0 uiD

i with s ≥ 30. Taking t = 42
and s = 30, the value

t′ =

⌊
t(s+ 1 + µ+ ν)

2(2µ+ 1)

⌋
= 238,

represents the total number of errors Alice will send during the transmission
of all u(D). This means that Alice sends the errors in such a way that the
sum of the weights of three consecutive errors is 21, i.e., can send about
t∗ = 238

34
= 7 errors at each instant. Hence each ŷj has at most 42 errors and

can be always corrected.

The parameters t/2, s are public and the G′(D) is part of the public key
and of size (in bits)

m · n · k · (µ+ ν + 1) = 8 · 180 · 96 · (1 + 2 + 1) = 552960.

69

The private key (S(D), G, T (D,D−1)) can be stored (in bits) using

m · (ν − µ+ 1) · k2︸ ︷︷ ︸
S(D)

+m · n · k︸ ︷︷ ︸
G

+m · (2µ+ 1) · n2︸ ︷︷ ︸
T (D,D−1)

=

= 8 · 2 · 962 + 8 · 180 · 96 + 8 · 3 · 1802

= 1063296.

This key can be reduced considering the following facts. We can store G as
two vectors α, x such that GRSn,k(α,x) is the generalized Reed-Solomon code
generated by G, so we only need to store 2 ·m ·n = 2880 bits for G. The way
to store T (D,D−1) is done by storing the information of Γ and ∆(D,D−1).
Since Γ is a permutation matrix, we can represent it as a permutation vector
w ∈ {1, 2, . . . , n}n. Since n = 180 and we only need ⌊log2(180)⌋+ 1 = 8 bits
to store each component, we store Γ using 8·180 = 1440 bits. Now, we explain
how to store ∆(D,D−1). The main diagonal of the matrix A = A(D,D−1)

can be seen as A = Γ̃T Π Γ̃Θ, where Γ̃ is a permutation matrix of order
ñ = n/2, Π is a diagonal matrix of order ñ having the first 60 entries equal to
D−1, the next 60 entries equal to 1 and the last 60 entries equal to D, and Θ is
a diagonal matrix with βi in row i, for 1 ≤ i ≤ ñ. Since ⌊log2(90)⌋+ 1 = 7,
to store this diagonal we just need to store 7 · 90 = 630 bits for Γ̃, since
⌊log2(60)⌋ + 1 = 6 we need 6 · 3 = 18 bits for Π, since we just need to store
the partition (d̃−1, d̃0, d̃1) = (60, 60, 60), and 8 · 90 = 720 bits for Θ. To
finish with the matrix A we still need to store which and where to put the
nonzero elements above the main diagonal. Since in each row we put at most
two nonzero elements and they are of the form an element of Fq times D−1,
times 1 or times D, we can just use 7 · 7 = 49 bits for each position and
8+2 = 10 bits for each element (8 bits for each γ ∈ Fq and it could be 10 for
D−1, 00 for 1 and 01 for D). So we have 2 · 49 · 10 = 980 bits. Therefore, to
store ∆(D,D−1) we need 630 + 18 + 720 + 980 = 2348 bits. We also need to
store S(D), which is a matrix of order 96. Then, to store the private key we
need at most (in bits)

8 · 2 · 962︸ ︷︷ ︸
S(D)

+2880︸︷︷︸
G

+1440 + 2348︸ ︷︷ ︸
T (D,D−1)

= 154124.

Notice that 95% of the private key is in S(D). We can reduce it tremendously
if instead of having completely random matrices S(D), we consider matrices
with many zeros in prescribed places. Using the construction of S(D) given
in Lemma 4.15 with r = 12 blocks and where each row has at most ϵ = 8
nonzero entries, we just need

m · (ν − µ+ 1) · r · ϵ2︸ ︷︷ ︸
S(D)

= 8 · 2 · 12 · 82 = 12288

70

bits to store S(D). Therefore, to store the private key we need 18956 bits
instead. The length of the message (in bits) that Alice would send, if she
sends all y(D) is

m · n · (s+ 1 + µ+ ν) = 8 · 180 · (30 + 1 + 1 + 2) = 48960.

But if she prefers to send a smaller message, she can use the alternative en-
cryption algorithm explained in Section 4.4. If she takes σ = 5, her message
u(D) would only have mk(σ+1) = 8 · 96 · (5+ 1) = 4608 bits, and she would
send mn(σ + 3) = 11520 bits. In this case the rate of transmission is 0.4.
The original McEliece scheme has a communication rate around 0.5.
Comments on security:

One can think that with such a relatively small field of only q = 28

elements and with our particular construction of ∆, which has many con-
straints, it is feasible to consider a brute force attack to construct T (D−1, D).
However, using (4.16) (instead of (4.15)) we have that the total number of
T (D−1, D) is greater than

(q − 2)n!
(ñ)!
µ∏

i=−µ

d̃i!

(q − 1)ñ = 254 · 180! · 90!

(30!)3
· 25590

> 21463.99

The total number of matrices S(D), using the construction given in Lemma
4.15, with r = 12 and ϵ = 8 is

qϵk(ν−µ)

(
ϵ−1∏
j=0

(qϵ − qj)

)r

= 28·8·96(2−1)

(
7∏

j=0

(
28·8 − 28j

))12

= 212287.93

If we try to attack the truncated matrix G′(D), from Remark 4.6 we conclude
that the work factor is

WF ≥ qk−rank(G′
0) = 28(96−60) = 2288.

Hence, one can try an Information Set Decoding algorithm over the full rank
matrix. Using formulas from [11] and [50], (see Subsection 4.3.2) we have
that the work factor for the full rank matrix is

WF ≥ 2257.249.

71

Although the reported WFs are the lowest ones obtained for each set of param-
eters, it is important to remark that we are not using the optimized version
of ISD or new versions that take into consideration the constrains of the er-
ror distribution in this system, so this work factor may be smaller. If this
is the case, we can take a bigger s (for example, for s = 32 the work factor
increases to 2272.909). If we use the alternative encryption proposed in Section
4.4, we never have full rank matrices, so the work factor comes always from
the rank deficiency, which is 2288.

Next, we exhibit an example that reduces the public key enormously,
taking into account that the di’s do not need to be all equal. Note that de-
creasing the value of d1 increases the WF, but the scheme may be susceptible
to attacks that take into consideration the fact that the number of possible
matrices T1 (and so P−1) is reduced.

Example 4.18. Take the field Fq with q = 26, so m = 6. Take G a generator
matrix of a GRS over Fq of size n = 26 − 2 = 62 and dimension k = 30.
Here t = 16. Take µ = 1, ν = 2 and (d−1, d0, d1) = (8, 46, 8). In order to
be protected against ISD attacks over the full rank matrix in (4.13) we need
to take s = 46. The total number of errors is t′ = 133 and the sum of the
weights of three consecutive errors is 8. The size of the public key is (in bits)

m · n · k · (µ+ ν + 1) = 6 · 62 · 30 · (1 + 2 + 1) = 44640.

If we consider S(D) to be a block diagonal matrix with 6 blocks, then the
size of the private key is (in bits)

6 · 2 · 6 · 52︸ ︷︷ ︸
S(D)

+ 744︸︷︷︸
G

+372 + 966︸ ︷︷ ︸
T (D,D−1)

= 3882.

The length of the message (in bits) is

m · n · (s+ 1 + µ+ ν) = 6 · 62 · (46 + 1 + 1 + 2) = 18600.

This value can be reduced by sending a smaller message using the alternative
encryption scheme. If Alice message u only has mk(σ+1) = 6 ·30 · (5+1) =
1080 bits, she would send mn(σ + 3) = 2976 bits. In this case the rate of
transmission is about 0.363.

Comments on security:

72

In this case, the total number of T (D−1, D) is greater than

(q − 2)n!
ñ!

µ∏
i=−µ

d̃i!

(q − 1)ñ = 60 · 62! 31!

4! · 23! · 4!
· 6331

> 2504.26

The total number of matrices S(D), using the construction given in Lemma
4.15, with r = 6 and ϵ = 5 is

qϵk(ν−µ)

(
ϵ−1∏
j=0

(qϵ − qj)

)r

= 26·5·30(2−1)

(
4∏

j=0

(
26·5 − 26j

))6

= 21799.86

If we try to attack the truncated matrix G′(D), from Remark 4.6 we conclude
that the work factor is

WF ≥ qk−rank(G′
0) = 26(30−8) = 2132.

The Information Set Decoding algorithm over the full rank matrix has a work
factor

WF ≥ 2136.055.

The table 4.1 shows various examples with different parameters, all with
µ = 1 and ν = 2 and di = n/3, for i ∈ {−1, 0, 1}, except the first one which
is explained in the previous example. The value s is the smallest for given
parameters n and k that gives a WF full rank larger than 2128 or 2256. In
the second part of the table, it is assumed that the alternative encryption
scheme was used and so we don’t have a WF full rank. The third part of the
table exhibits the parameters for the classic McEliece scheme using Goppa
codes.

In the example with n = 78 and k = 66, the rate k/n is above 0.6 for a
security of 2256 and a public key size of just 144144, but notice that if the
errors are evenly distributed, each ei has weight 1.

73

n k s WF Truncated WF Full Rank Public Key
Main Scheme

62 30 46 2132 2136.0 44640
126 66 20 2168 2128.4 232848
174 78 15 2160 2128.2 434304
264 108 10 2180 2128.7 1026432
180 96 30 2288 2257.2 552960
228 108 25 2256 2260.2 787968
254 122 22 2298 2257.7 991616

Alternative Scheme
66 42 2140 77616
78 54 2196 117936
78 66 2280 144144
138 78 2256 344448
156 84 2256 419328
132 108 2512 456192

Classical McEliece with Goppa codes
2960 2288 2128 1537536
8192 6528 2256 10862592

Table 4.1: Parameters, work factors and public key sizes

74

Chapter 5

Conclusions and future work

In this dissertation we have proposed a new variant of the McEliece cryp-
tosystem using convolutional codes instead of block codes. This scheme is
in many aspects different from the previous proposed variants as the mes-
sage is not a block vector anymore but a stream sequence of vectors. Trying
to adapt the existing attacks seems not straightforward. The class of PKC
introduced in this work has many parameters that can be explored further.

Here, we highlight some remarks on the present work and on the research
we plan to do in our future work:

1. In all examples we considered ν = 2 which is a very simplified version of
this class of cryptosystems, but notice that the public key only changes
by a factor of ν+2

4
if we consider a different ν, so in order to create a

more convolutional version we just need to increase ν.

2. If we consider different values for the di, the public key size can be
reduced, keeping the same security if one tries to attack the truncated
matrices, as has been exemplified in the first detailed example.

3. We also plan to explore other constructions for T (D−1, D), satisfying
the Properties 4.4.

4. Instead of using the encoder G′ as in the McEliece cryptosystem, in the
future we will explore the possibilities of using the associated parity
check H ′ and create a convolutional version of the Niederreiter cryp-
tosystem.

75

76

Bibliography

[1] P. Almeida, M. Beltrá, D. Napp, and C. Sebastião. Smaller keys for
code-based cryptography: McEliece cryptosystems with convolutional
encoders. arXiv, submitted for publication in the IEEE Transactions on
Information Theory, https://arxiv.org/abs/2104.06809, 2021.

[2] P. Almeida, J. Brandão, D. Napp, and C. Sebastião. Convolutional code-
based cryptosystem. In Proceedings of the meeting of the Thematic Net-
work of Linear Algebra, Matrix Analysis and Applications (ALAMA),
Alicante (Spain), volume ISBN: 978-84-16724-96-3, pages 117–119, 2018.

[3] P. Almeida, J. Brandão, D. Napp, and C. Sebastião. Cryptography based
on convolutional codes. In Workshop on Graph Spectra, Combinatorics
and Optimization, Aveiro (Portugal), January 25-27, 2018, 2018.

[4] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos. Layered con-
structions for low-delay streaming codes. IEEE Transactions on Infor-
mation Theory, 63(1):111–141, 2017.

[5] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini.
Ledakem: A post-quantum key encapsulation mechanism based on QC-
LDPC codes. In T. Lange and R. Steinwandt, editors, Post-Quantum
Cryptography, pages 3–24. Springer International Publishing, 2018.

[6] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, and D. Schipani.
Enhanced public key security for the McEliece cryptosystem. Journal
of Cryptology, 29(1):1–27, 2016.

[7] T. Berger and P. Loidreau. How to mask the structure of codes for a
cryptographic use. Designs, Codes and Cryptography, 35:63–79, 2005.

[8] E. R. Berlekamp. Goppa codes. IEEE Trans. Inf. Th, 19(5):590–592,
1973.

77

[9] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inf. Th,
24(3):384–386, 1978.

[10] D. Bernstein, T. Lange, and C. Peters. Attacking and defending the
McEliece cryptosystem. In Post-Quantum Cryptography, pages 31–46,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[11] J. Bolkema, H. Gluesing-Luerssen, C. A. Kelley, K. E. Lauter, B. Malm-
skog, and J. Rosenthal. Variations of the McEliece cryptosystem. In
J. W. E. Howe, K. Lauter, editor, Algebraic Geometry for Coding The-
ory and Cryptography. Association for Women in Mathematics Series,
volume 9. Springer Cham., 2017.

[12] I. Cascudo, R. Cramer, D. Mirandola, and G. Zémor. Squares of random
linear codes. IEEE Transactions on Information Theory, 61(3):1159–
1173, 2015.

[13] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perl-
ner, and D. Smith-Tone. Report on post-quantum cryptography.
Report NISTIR 8105, National Institute of Standards and Technol-
ogy (NIST), https://csrc.nist.gov/publications/detail/nistir/8105/final,
February 2016.

[14] R. W. Cottle. Manifestations of the Schur complement. Linear Algebra
Appl., 8:189–211, 1974.

[15] A. Couvreur, P. Gaborit, V. Gauthier-Umaña, A. Otmani, and J.-P.
Tillich. Distinguisher-based attacks on public-key cryptosystems using
reed-solomon codes, 2014.

[16] A. Couvreur and M. Lequesne. On the security of subspace sub-
codes of Reed-Solomon codes for public key encryption. arXiv:
https://arxiv.org/abs/2009.05826, 2020.

[17] A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. Cryptanalysis of
McEliece cryptosystem based on algebraic geometry codes and their
subcodes. IEEE Transactions on Information Theory, 63(8):5404–5418,
2017.

[18] A. Couvreur, A. Otmani, and J.-P. Tillich. Polynomial time attack on
wild McEliece over quadratic extensions. IEEE Transactions on Infor-
mation Theory, 63(1):404–427, 2017.

78

[19] A. Couvreur, A. Otmani, J.-P. Tillich, and V. Gauthier-Umana. A
polynomial-time attack on the BBCRS scheme. Conference Public Key
Cryptography (PKC), 2015 https://arxiv.org/pdf/1501.03736.pdf, 2015.

[20] M. Elia, E. Viterbo, and G. Bertinetti. Decoding of binary separable
goppa codes using berlekamp-massey algorithm. Electronics Letters,
35:1720–1721(1), 1999.

[21] Elias. P. coding for noisy channels. IRE Conv. Rec., 4:37–46, 1955.

[22] J. Faugere, V. Gauthier-Umaña, A. Otmani, L. Perret, and J.-P. Tillich.
A distinguisher for high-rate McEliece cryptosystems. IEEE Transac-
tions on Information Theory, 59(10):6830–6844, 2013.

[23] M. Finiasz and N. Sendrier. Security bounds for the design of code-
based cryptosystems. In M. Matsui, editor, Advances in cryptology
ASIACRYPT - Lecture Notes in Computer Science, volume 5912, pages
88–105. Springer International Publishing, 2009.

[24] F.J.Macwilliams and N. Sloane. The Theory of Error-Correcting Codes,
volume 16. North-Holland, 1977.

[25] G. Forney. Convolutional Codes I: Algebraic Structure. IEEE Trans.
Inform. Theory, 16:720–738, 1970. Correction, Ibid., IT-17,pp. 360,
1971.

[26] G. Forney. Structural Analysis of Convolutional Codes via Dual Codes.
IEEE Trans. Inform. Theory, 19:512–518, 1973.

[27] V. Goppa. A new class of linear correcting codes. Problemy Peredaci
Informacii, 6:24–30, 1970.

[28] J. I. Hall. Notes on coding theory. Chapter 5: GRS Codes. Depart-
ment of Mathematics, Michigan State University. available online on.
https://users.math.msu.edu/users/halljo/classes/codenotes/coding-
notes.html, 2010.

[29] S. Heyse. Code-based cryptography: Implementing the mceliece scheme
on reconfigurable hardware. diploma thesis, Faculty of Electrical Engi-
neering and Information Technology, Ruhr-University Bochum, 2009.

[30] T. Hungerford. Algebra. Springer, eighth edition, 2003.

79

[31] C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal, and V. Weger.
Generalization of the ball-collision algorithm. Journal of Algebra Com-
binatorics Discrete Structures and Applications, pages 197–209, 2020.

[32] K. Khathuria, J. Rosenthal, and V. Weger. Two masking of the Reed-
Solomon structure in conjugation with list decoding. In Proceedings of
23rd International Symposium on Mathematical Theory of Networks and
Systems, Hong Kong University of Science and Technology, Hong Kong,
pages 309–314, 2018.

[33] K. Khathuria, J. Rosenthal, and V. Weger. Encryption scheme based
on expanded Reed-Solomon codes. Advances in Mathematics of Com-
munications, 15(2):207–218, 2021.

[34] K. Kimball. Announcing request for nominations for public-
key post-quantum cryptographic algorithms. Report NIS-
TIR 8105, National Institute of Standards and Technology
(NIST), https://csrc.nist.gov/news/2016/public-key-post-quantum-
cryptographic-algorithms, December 20 2016.

[35] G. Landais and J.-P. Tillich. An efficient attack of a McEliece cryp-
tosystem variant based on convolutional codes. In P. Gaborit, editor,
Post-Quantum Cryptography, pages 102–117. Springer Berlin Heidel-
berg, 2013.

[36] P. J. Lee and E. F. Brickell. An observation on the security of mceliece’s
public-key cryptosystem. In D. Barstow, W. Brauer, P. Brinch Hansen,
D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer,
N. Wirth, and C. G. Günther, editors, Advances in Cryptology — EU-
ROCRYPT ’88, pages 275–280, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg.

[37] J. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Transactions on Information Theory,
34(5):1354–1359, 1988.

[38] M. Loeloeian and J. Conan. A transform approach to goppa codes.
IEEE Transactions on Information Theory, 33(1):105–115, 1987.

[39] C. Löndahl and T. Johansson. A new version of McEliece PKC based
on convolutional codes. In T. W. Chim and T. H. Yuen, editors, Infor-
mation and Communications Security, pages 461–470. Springer Berlin
Heidelberg, 2012.

80

[40] F. J. MacWilliams and N. J. Sloane. The Theory of Error-Correcting
Codes. North Holland, Amsterdam, 1977.

[41] I. Márquez-Corbella, E. Martínez-Moro, and R. Pellikaan. The non-gap
sequence of a subcode of a generalized reed—solomon code. Des. Codes
Cryptography, 66(1–3):317–333, 2013.

[42] I. Márquez-Corbella, E. Martínez-Moro, R. Pellikaan, and D. Ruano.
Computational aspects of retrieving a representation of an algebraic ge-
ometry code. Journal of Symbolic Computation, 64:67–87, 2014. Math-
ematical and computer algebra techniques in cryptology.

[43] I. Márquez-Corbella and J.-P. Tillich. Using Reed-Solomon codes in the
(U |U + V) construction and an application to cryptography. In 2016
IEEE International Symposium on Information Theory (ISIT), pages
930–934, 2016.

[44] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 44:114–116, Jan. 1978.

[45] R. J. McEliece. The algebraic theory of convolutional codes. In V. Pless
and W. Huffman, editors, Handbook of Coding Theory, volume 1, pages
1065–1138. Elsevier Science Publishers, Amsterdam, The Netherlands,
1998.

[46] H. Moufek and K. Guenda. A new variant of the mceliece cryptosystem
based on the smith form of convolutional codes. Cryptologia, 42(3):227–
239, 2018.

[47] N. Niederreiter. Knapsack-type cryptosystems and algebraic coding the-
ory. Problems of Control and Information Theory, 15:159–166, 1986.

[48] N. Patterson. The algebraic decoding of goppa codes. IEEE Transac-
tions on Information Theory, 21(2):203–207, 1975.

[49] T. P.Berger and P. Loidreau. How to mask the structure of codes for a
cryptographic use. Designs, Codes and Cryptography, 35(1):63–79, 2005.

[50] C. Peters. Information-set decoding for linear codes over Fq. In
N. Sendrier, editor, Post-Quantum Cryptography, pages 81–94, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[51] P. Piret. Structure and constructions of cyclic convolutional codes. IEEE
Trans. Inf. Th, 22(2):147–155, 1976.

81

[52] E. Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[53] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8, june
1960.

[54] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, Feb. 1978.

[55] I. Schur. Potenzreihen im Innern des Einheitskreises. J. Reine Angew.
Math., 147:205–232, 1917.

[56] V. M. Sidelnikov and S. O. Shestakov. On the insecurity of cryptosys-
tems based on generalized reed-solomon codes. Discrete Math. Appl.,
2:439–444, 1992.

[57] J. Stern. A method for finding codewords of small weight. In G. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, pages 106–
113, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[58] A. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269, 1967.

[59] Y. Wang. Quantum resistant random linear code based public key en-
cryption scheme RLCE. In 2016 IEEE International Symposium on
Information Theory (ISIT), pages 2519–2523, 2016.

[60] Y. Wang. First round of submission to the NIST post.quantum cryp-
tography call. In RLCE-KEM http://quantumca.org, 2017.

[61] C. Wieschebrink. An attack on a modified niederreiter encryption
scheme. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors,
Public Key Cryptography - PKC 2006, pages 14–26, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[62] C. Wieschebrink. How to mask the structure of codes for a cryptographic
use. Public-Key Cryptography-PKC, 3958:14–26, 2006.

[63] C. Wieschebrink. Cryptanalysis of the niederreiter public key scheme
based on grs subcodes. IACR Cryptology ePrint Archive, Report, 452,
2009.

82

[64] R. H. D. Yuan Xing Li and X. mei Wang. On the equivalence os
mceliece’s and niederreiter’s public-key cryptosystems. IEEE Trans-
actions on Information Theory, 40:271–273, 1994.

83

84

	Contents
	Introduction
	Linear Codes
	Basic concepts
	Generalized Reed-Solomon codes
	Basic definitions and properties
	Encoding with GRS codes
	Decoding with GRS codes

	Goppa codes
	Basic definitions and properties
	Encoding and Decoding
	Irreducible binary Goppa codes

	Convolutional codes

	Block code Cryptography
	McEliece Cryptosystem
	Niederreiter cryptosystem using the parity check matrix
	Structural Attacks for variants of McEliece cryptosystems using GRS codes
	Sidelnikov-Shestakov attack to the Niederreiter variant
	Wieschebrink attacks on the BL variant
	Distinguisher-Based Attack on the BBCRS variant

	ISD attacks

	McEliece Cryptosystems with Convolutional Encoders
	Definitions
	Construction
	Constructing the matrices T(D-1,D)

	Attacks Against the Proposed Cryptosystem
	Structural attacks
	Plaintext recovery

	Improvements: higher rates and message length reduction
	Examples

	Conclusions and future work
	Bibliography

