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Efficient choice of parameters on delta-reachability
bounded hybrid systems

Eugénio Miguel Alexandre ROCHA and Kelly Patricia MURILLO

Hybrid systems (HS) are roughly described as a set of discrete state transitions and contin-
uous dynamics modeled by differential equations. Parametric HS may be constructed by having
parameters on the differential equations, initial conditions, jump conditions, or a combination of
the previous ones. In real applications, the best solution is obtained by a set of metrics functional
over the set of solutions generated from a finite set of parameters. This paper examines the choice
of parameters on delta-reachability bounded hybrid systems.We present an efficient model based
on the tool pHL-MT to benchmark the HS solutions (based on dReach), and a non-parametric
frontier analysis approach, relying on multidirectional efficiency analysis (MEA). Three nu-
merical examples of epidemic models with variable growth infectivity are presented, namely:
when the variable of infected individuals oscillates around some endemic (non-autonomous)
equilibrium; when there is an asymptotically stable non-trivial attractor; and in the presence of
bump functions.

Key words: bounded hybrid system safety property delta-reachability multidirectional
efficiency analysis

1. Introduction

Hybrid systems occur frequently in safety-critical applications in various do-
mains (health care, transportation, robotics, systems biology, etc). An interesting
problem in hybrid systems’ theory is the reachability analysis. In general terms, a
reachability analysis problem consists in evaluating whether a given system may
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reach certain unsafe states, starting from certain initial states [15]. Let H be a
hybrid system where X ⊆ Rk is a state space and Q is a finite set of modes.
We write [H] to denote the set of all possible trajectories of H . In mathematical
terms, the reachability analysis problem is translated in the following question:
Given Unsafe ⊆ Rk × Q, [H] ∩ Unsafe = Ø?. A system is safe (bounded) when
the system does not violate the safety property within a bounded period of time
and a bounded number of discrete mode changes. This work focuses on the study
the δ-reachability problem. Given a bounded error δ, a system is δ-unsafe when
the system would violate the safety property under some δ-bounded numerical
perturbations.

Different methods have been proposed for solving the reachability problem:
optimal control, deductive techniques, model checking techniques, and approxi-
mations, which works with all the above. In optimal control, approximate by sets
and dynamics for which the problems are easier to solve; deductive techniques are
inherently based on over-approximation, and in model checking, approximates by
a system you can compute with; see [11]. In the literature, some techniques are
available for the reachability analysis. SpaceEx is well-suited to analyze linear
hybrid systems [6]. Flow* is specialized in non-linear systems but with a recent
enhancement for dealing with linear systems [3]. Other prominent tools are KeY-
maera [12], iSAT [5], HSolver [13], HyCreate [9] and Cora [1]. This work is
a extension of the tool dReach for the reachability analysis, based on bounded
model checking using constraint solving techniques. It encodes bounded reacha-
bility problems of hybrid systems as first-order formulas over the real numbers,
and solves them using δ-decision procedures in the SMT solver dReal [7, 8].

In order to study the efficient choice of parameters in a parametric hybrid
system, it is important to examine the fitting problem associated: what is the
best algorithm to adjust a hybrid system to the data? In this sense, the notion of
“best” can be approached in different contexts. In the setting of real optimization,
maximizing a cost function with weights, in optimal control theory, maximizing
a cost functional, or by finding a Pareto type solution, among others. Here, the
notion of “best” is considered as the “most efficient”. Efficiency allows to establish
a relative ranking, using frontier analysis. The most common (non-parametric)
technique in frontier analysis is the Data Envelopment Analysis (DEA) and an
extension is the Multidirectional Efficiency Analysis (MEA), proposed in [2].
In contrast to DEA, the input reduction and output expansion benchmarks in
the MEA approach are selected proportional to the potential improvements in
efficiency identified, while considering the potential improvement separately in
each variable.Thus, in addition to efficiency levels, MEA allows investigating
changes in efficiency patterns.

In this work, a methodology is presented for efficient choice of parameters
based on the called pHL-MT tool, (parallel hybrid language-model translator),
to benchmark the hybrid system solutions, based on dReach [10] and a non-
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parametric frontier analysis approach relying on MEA [2]. In general terms, the
problem to study is represented in the Figure 1. We have an ordinary differen-
tial equation that describes a phenomenon for a parameter α given. We want
to change the parameter α to a new parameter ᾱ. Note that for different val-
ues of α ∈ {ᾱ1, ᾱ2, ᾱ3}, the differential equation will show different scenarios:
solution S1, solution S2 and solution S3. Therefore, the parameter change will
generate costs and will have some impact on the result. Then, we need to find
an efficient way to generate all scenarios and measure the best one possible.
In this sense, the model proposed here allows us to answer the following three
questions:

Question A: How we can measure the cost of using ᾱ; instead of α?

Question B: How do measure the final impact of using ᾱ; instead of α?

Question C: If we have several parameters how we rank them?

Figure 1: Fitting of parameters based on the previous data

The principal contribution of this work is considering the problem of finding
an efficient choice of parameters of a parameterized hybrid system that will
provide the best solution from a (given) set of solutions of the system generated
from a finite set of parameters’ values. The broad approach is to generate a set
of solutions for each value of parameters using the tool dReach. Then, a set of
functions measuring the characteristic of solutions is used, and for each solution,
the pair of solution and its measurable value is stored in a database. Finally, a
multidirectional efficiency analysis is used to establish the relative ranking of the
solutions. In this sense, once the solutions are generated, the functional input
will allow us to study the costs generated (answering question A); the functional
output allows to study the impact of the results, (answering question B), and the
application of theMEAmodel, will allow to identify the best scenario (answering
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question C). A detailed description of how the proposed model works is provided
in Section 2.

The remainder of the paper is laid out as follows. The next section exposes
the approach to the reachability problem and introduces the methodology pro-
posed. A brief description of the main related packages and an overview of the
multidirectional efficiency analysis, are given. Section 3 shows three numerical
examples of a SIR model with variable growth infectivity. To end, in Section 4,
some concluding remarks are formulated.

2. Methodology for an efficient choice of parameters on bounded hybrid systems

There are many natural systems that show a hybrid behavior characterized
by a set of continuous laws that are modified by discrete events and can be
described very naturally by hybrid automata. Hybrid automata is a formal model
that combines discrete control graphs, usually called finite state automata, with
continuously evolving variables, in mathematical terms:

Definition 1 Hybrid automata is a tuple H = (X, Q, Init, Flow, Jump, Inv)
where: X ⊆ Rk is a state space; Q is a finite set of modes; Init : ⊆ Q × X is a
set of initial configurations; Flow : ⊆ Q × X → T X are continuos flows (where
T ∈ R+ is an upper bound on the time duration); Jump : ⊆ Q × X → 2Q×X are
discrete jumps; Inv : ⊆ Q × X is an invariant set in each mode.

Let δ be a numerical error bound and the δ-perturbation
Hδ = (X, Q, Initδ, Flowδ, Jumpδ, Invδ) of H . Choose n ∈ N to be a bound on
the number of discrete mode changes. Let unsafe encode a subset of X × Q, the
state space of H , the δ-reachability problem asks for one of the following answers:
safe (H cannot reach unsafe in n steps within time T) or δ-unsafe (Hδ can reach
unsafeδ in n steps within time T). When safe is the answer, H does not reach the
unsafe region (no δ is involved); when δ-unsafe is the answer, there exists some
δ-bounded perturbation of the system that can render it unsafe. The reachability
problem is associated with the safety verification problem, which proves that the
system can never reach any unsafe state. δ-reachability analysis checks robustness
which implies safety. If a system is δ-reachable under a reasonably small δ, then
a small error can lead the system to an unsafe state (robustness), see [7, 8].

Given a parametric hybrid system, a domain of parameters and a set of func-
tional to measure the characteristics of the solutions, we establish a methodology,
for determining the efficient choice of parameters. The model is main based on
the software tool pHL-MT, which involves packages of logic and statics (see
Introduction Section dReach [10] and MEA [2]).

The system architecture of pHL-MT tool is given in Figure 2. The scheme
comprises the following five stages:
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Figure 2: Efficient squem with parallel hybrid languaje

First stage: input the file of pHL with a parametric hybrid automata H .

Second stage: input a domain of possible parameters, generating hybrid au-
tomata P j, 1 < j < n.

Third stage: from the inputs, dReach generates a logical encoding that involves
the quantification on the time variables. The tool then makes iterative calls
to the package pHL-SV, which is based on solver dReach, to decide the
reachability properties. When the answer is δ-reachable, dReach generates
the solutions for each hybrid automata P j. When the answer is unreachable,
no numerical error is involved and the answer is unsat equal to zero.

Fourth stage: insert a set of input/output functional (Ii(S,I,R) , i ∈ N and Ok(S,I,R) ,
k ∈ N) to measure the characteristics of the solutions.

Fifth stage: a set of inputs and outputs is generated for each P j, which make
up a database. Once the database has been created, the MEA technique is
applied to establish a relative ranking of the different scenarios.

The calculation in pHL-MT tool is run in parallel. The execution of the five
steps allows getting parameters’ value corresponding to the best solution. These
parameters correspond to the solution with the best position (first position) within
the ranking, showing that it is the most efficient in the sample. Efficient, in the
sense of minimize inputs and maximize outputs.

//%OPS CAS=MAPLE
//%OPS RUNSEQ=CODE TEXT
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//%SCOPE Hybrid-beta SIR model for I_b > I_s and T^\ast=+infty

// *****************************************************
// PARAMETERS FOR SPECIAL SYSTEM VARS
// *****************************************************

define(_TTIME, 30) // Total Sym Time

// CONSTANTS
define(_TS, 0.8)
define(_IB, 0.3)
define(_IS, 0.01)

define(_B0, 1.4)
define(_BP, 0.2)
define(_BN, -1.3)
define(_BX, EVAL(_TTIME * (_BP + 1)))

define(_I0, 0.200)
define(_R0, 0.150)
define(_S0, EVAL(1 - _I0 - _R0))
define(_alpha, 0.1)
define(_zeta, 0.1)
define(_gamma, 0.1)
define(_lambdaZ, EVAL(_B0 - _alpha - _zeta - _gamma))

define(_C1,1)
define(_C2,1)
define(_h,3)

#define _FLOWINIT d/dt[T] = 1; d/dt[nT] = 1;
#define _FLOWVARS [0, _TTIME] time; [0, _TTIME] T; [0, _DTIME] nT;
#define _JUMP0 (T:M4S=T)(nT:M4S=0)
#define _INITVARS0 (nT=0)(T=0)

define(_DTIME, _TTIME) // default DTIME = TTIME / 1

// --------- main ODEs --------------------
define(_dtVS, ‘d/dt[VS] = _alpha - _alpha * VS + _zeta * VI - VB * VI * VS’)
define(_dtVI, ‘d/dt[VI] = VB * VI * VS - (_alpha + _zeta + _gamma) * VI’)
define(_dtVR, ‘d/dt[VR] = _gamma * VI - _alpha * VR’)

// --------- ODE jump conditions --------------------
define(_JUMP, (VS’ = VS)(VI’ = VI)(VR’ = VR)(VB’ = VB)(VT’ = 0))

// --------- Initial conditions --------------------
define(_INITVARS, (VS = _S0)(VI = _I0)(VR = _R0)(VB = _B0)(VT = 0))

// --------- Goal conditions --------------------
define(_NODE, 1)
define(_GOAL, (and (T >= _TTIME)))

BEGIN-CODE [ pHL-MT/3.16 | -l=2 -k=3 -html ]
{ config;
param:
_B0: 1.4,0.4,1.4;
_BN: -1.3,-0.2,-1.3;
_BP: 0.2,0.2,0.2;
_IB: 0.6,0.3,0.1;
_IS: 0.5,0.285,0.05;
_alpha: 0.1,0.1,0.1;
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_zeta: 0.1,0.2,0.1;
_gamma: 0.1,0.1,0.1;

inputs:
I1: _C1*sum(i,1,_h,2*(_h+1-i)*(_h*(_h+1))*VI[(_h-1)*i]);
I2: _C2*int(t,0,_TTIME,ind_mode(3,4));

outputs:
O1: 1-max(t,0,_TTIME,I[t]);
O2: 1-1/(_TTIME)*int(t,0,_TTIME,VI[t]);

}

_FLOWVARS
[0, 1] VS; // susceptible
[0, 1] VI; // infected and infectious
[0, 1] VR; // recovery
[-_BX, _BX] VB; // beta
[0,_TS] VT; // max intervention time

{ mode 1; // terminal node
invt:
flow: _FLOWINIT
d/dt[VS] = 0;
d/dt[VI] = 0;
d/dt[VR] = 0;
d/dt[VB] = 0;
d/dt[VT] = 0;

jump:
}

{ mode 2; // [off_- & VI <= IB]
invt:
VI <= _IB;
VB >= 0.0;

flow: _FLOWINIT
_dtVS;
_dtVI;
_dtVR;
d/dt[VB] = _BP;
d/dt[VT] = 0;

jump:
(and (VI=_IB)) ==> @3 (and _JUMP0 _JUMP);
(and (T=_TTIME)) ==> @1 (and _JUMP0 _JUMP);

}

{ mode 3; // [on_+]
invt:
VI >= _IS;
VT <= _TS;
VB >= 0.0;

flow: _FLOWINIT
_dtVS;
_dtVI;
_dtVR;
d/dt[VB] = _BN * VB;
d/dt[VT] = 1;

jump:
(and (VB=0.0)) ==> @4 (and _JUMP0 _JUMP);
(and (VI<=_IB)(or (VI=_IS)(VT=_TS))) ==> @2 (and _JUMP0 _JUMP);
(and (VI>=_IB)(or (VI=_IS)(VT=_TS))) ==> @5 (and _JUMP0 _JUMP);
(and (T=_TTIME)) ==> @1 (and _JUMP0 _JUMP);

}
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{ mode 4; // [on_+ and VB=0]
invt:
VI >= _IS;
VT <= _TS;
VB >= 0.0;

flow: _FLOWINIT
_dtVS;
_dtVI;
_dtVR;
d/dt[VB] = 0;
d/dt[VT] = 1;

jump:
(and (VI<=_IB)(or (VI=_IS)(VT=_TS))) ==> @2 (and _JUMP0 _JUMP);
(and (VI>=_IB)(or (VI=_IS)(VT=_TS))) ==> @5 (and _JUMP0 _JUMP);
(and (T=_TTIME)) ==> @1 (and _JUMP0 _JUMP);

}

{ mode 5; // [off_- & VI>= IB]
invt:
VI >= _IB;
VB >= 0.0;

flow: _FLOWINIT
_dtVS;
_dtVI;
_dtVR;
d/dt[VB] = _BP;
d/dt[VT] = 0;

jump:
(and (VI=_IB)) ==> @3 (and _JUMP0 _JUMP);
(and (T=_TTIME)) ==> @1 (and _JUMP0 _JUMP);

}

// --------- Target Conditions --------------------
init:
@2 (and _INITVARS0 _INITVARS);

goal:
@_NODE (and _GOAL);

END-CODE

2.1. MEA model

To continue, the main idea of a nonparametric and deterministic MEA model
is introduced. Let [m] denotes the set {1, ...,m}; for notation convenience. From
what was discussed above, to any given simulation (ρ) it is possible to associate
J ∈ N outputs y j (ρ), j ∈ [J] and I ∈ N inputs xi (ρ), i ∈ [I].Some input variables
may be discretionary (i.e. their values can be changed) but others may be non-
discretionary (i.e. they are fixed). From now on, the discretionary variables are
represented by the first indices from 1 to d ∈ [1, I]. So, x(ρ) is the vector of
all the inputs and y(ρ) is the vector of all the outputs. Furthermore, the model
change with respect to a chosen set of complementary variables. Here is used the
so-called variable returns to scale (VRS) model, by defining the set

Λ
N =



λ ∈ RN :

N∑
n=1

λn = 1 ∧ λn  0


, (1)
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where N is the number of sequences under study. Alternative definitions of ΛN

allow other models, not relevant in this work. Then, the MEA score is found by
solving the following linear optimization problems.

Problem Pαm( ρ̄) : Problem Pβj ( ρ̄) :

min αm( ρ̄) such that max β j ( ρ̄) such that∑
n

λnxm(ρ) ¬ αm( ρ̄)
∑
n

λnxi (ρ) ¬ xi ( ρ̄), i ∈ [I]∑
n

λnxi (ρ) ¬ xi ( ρ̄), i ∈ [I], i , m
∑
n

λnys (ρ) ¬ β j ( ρ̄), s ∈ [J]∑
n

λnyl (ρ) ¬ yl ( ρ̄), l ∈ [J]
∑
n

λnyl (ρ) ¬ yl ( ρ̄), l ∈ [J], l , j,

(2)

Problem Pγ (α, β, ρ̄) :

max γ( ρ̄) such that∑
n

λnxi (ρ) ¬ xi ( ρ̄) − γ( ρ̄)(xi ( ρ̄) − α∗i ( ρ̄)), i ∈ [I]∑
n

λnxi (ρ) ¬ xi ( ρ̄), i ∈ [I] \ {m}∑
n

λnyl (ρ)  yl ( ρ̄) + γ( ρ̄)(β∗l ( ρ̄) − yl ( ρ̄)), l ∈ [J]∑
n

λρ  ρ̄, ∀n.

(3)

where λ ∈ Λn, α∗m
(
ρ̄
)
and β∗j ( ρ̄) are the optimal solutions to the problems

Pα
m(z, ρ̄) and P β

j (z, ρ̄) respectively.

Definition 2 The MEA score obtained by the directional contribution of each
input and each output variable, is defined by

ME A(ρ) =

1
γ∗(n)

−
1
D

D∑
i=1

xi (ρ) − α∗i (ρ)
xi (n)

1
γ∗(ρ)

+
1
J

J∑
j=1

β∗j (ρ) − y j (ρ)

y j (ρ)

∈ [0, 1], (4)

where α∗, β∗ and ρ∗ are the optimal solutions to the problems Pα
m

(
z, ρ̄

)
, P β

j
(
z, ρ̄

)
and Pγ (

α, β, ρ̄
)
respectively.



790 E.M. ROCHA, K.P. MURILLO

3. Numerical examples in epidemic modelling

In this section, we present three examples of an epidemic model which allows
show the importance of the proposedmethod. The examples are showed following
the same structure of scheme 1.
First stage. Considere the SIR epidemic model together with a piecewise linear
continuous coefficient β′λ , described by

S′ = α − αS + ζ I − βλ IS
(a) I′ = βλ IS − (α + ζ + θγ)I and (b) β′λ = λζ, ζ ∈ (β−, β+)

R′ = θ(γI − αR),
(5)

where the values S(t), I (t), R(t) are respectively, the number of healthy indi-
viduals (susceptible), infected individuals and recovered individuals; α  0 is
a parameter of birth and death, γ > 0 is a recovery rate without possibility of
re-infection, ζ accounts for the rate of individuals that become healthy but may
be re-infected in the future with ζ  −α, and λ ∈ R is a bifurcation parameter.

The hybrid model associated to (5) is described in Fig. 3. In this case, is
established the maximum time of intervention T∗ > 0 and two threshold values

Figure 3: Hybrid system associated to (5) describing the agent police
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as triggers to the on/off states: Ib > 0: when the government answer starts; and
Is > 0: when the government answer stops. We also consider three government
strategies: (S0) ... stops with only T∗; (S1) ... stops with only Is; and (S2) ... stops
by either.
Second stage. Three numerical examples (E1)–(E3) are studied. Table 1 presents
the parameters considered in each case.

Table 1: Parameters and initials conditions

Ex. α ζ γ β− β+ Ib Is S(0) I (0) R(0) β(0)

E1 0.1 0.1 0,1 –1.3 0.2 0.6 0.500 0.550 0.300 0.150 1.400
E2 0.1 0.2 0,1 –0.2 0.2 0.3 0.285 0.910 0.060 0.030 0.400
E3 0.1 0.1 0,1 –1.3 0.2 0.1 0.050 0.925 0.050 0.025 1.400

Third stage. The model results allow to characterize the examples studied. Ex-
ample (E1) where a nontrivial asymptotically stable attractor on I (t) appears,
see Figure 4. Example (E2): with a set of parameters for which the infected in-
dividuals variable I (t) oscillates around some endemic equilibrium which in the

limit tends to
(
S̄, Ī

)
=

(
0,

α

α + γ

)
= (0, 0.3), see Figure 5. Example (E3): with

a succession of bump behaviors a long time, although in the intervals between
bumps I (t) is coming near to zero, see Figure 6.
Fourth stage. Consider the following functionals (advised by healthcare profes-
sionals):

I1(S,I,R) = c1

h∑
i=1

2
h + 1 − i
h(h + 1)

I ((h − 1)i),

I2(S,I,R) = c2

T∫
0

χ{t∈on} (t)dt,

O1(S,I,R) = 1 − max
0¬t¬T

I (t),

O2 f (S,I,R) = 1 −
1
T

T∫
0

I (t)dt.

(6)

Fifth stage. Table 2 presents the sets of inputs and outputs for each example and
the ranking results.

The best scenario in this SIR model, under the established conditions, corre-
sponds to the Example (E3): a succession of bump behaviors a long time, which
in the intervals between bumps I (t) is coming near to zero.
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Figure 4: A nontrivial asymptotically stable attractor for I (t)

Figure 5: Oscillatory behaviour of I (t)

Figure 6: Bump behaviour of I (t)
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Table 2: Inputs, outputs and MEA values

Ex I1 I2 O1 O2 MEA
E1 0.493 1.759 0.403 0.527 0.673
E2 0.319 17.23 0.531 0.730 0.483
E3 0.031 9.581 0.726 0.825 1.000

4. Conclusions

We propose a methodology for determining the efficient choice of parame-
ters in hybrid systems, where the optimization is performed over a given set of
functional which measure specific features of the solutions. Although the set of
parameters is finite and small, the optimization problem turns to be a real multi
objective problem with inputs and outputs variables; for which benchmarking
techniques seem to be the most adequate.

In this work, we extend the dReach tool, which verifies delta-reachability
of hybrid systems, by adding the power of multidirectional efficiency analysis
in order to do the solutions benchmark. We also apply the ideas to a model
in epidemic mathematical modelling, where the functional where suggested by
experts in healthcare. This methodology corresponds to a first approach and
extensions will be the subject of future research.
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